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Section 1. Introduction.

Purpose of this thesis is to present an account of results concerning the solution
set of differential inclusion Cauchy problems, of the type:

(F) x' e F (t,x) x (0) = ¢&

where F: IxX —Y is a measurable multifunction with compact values contained in Y= RN,
and verifying some extra regularity assumptions, namely with respect to the variable x. Here I
= [0,T] is a compact interval in R, X is a compact subset of RM". With the word
"multifunction” we mean that F is a correspondence associating to each point (t,x) in IxX
some nonempty subset of Y, called the value of F at (i,x); and "solution of (F) " will
designate any continuous function x: I —-X possessing a (Lebesgue) integrable derivative on
I, and verifying x' (t) eF (1, x()) a.e. on I. Saying that F is measurable means here
LxB- measurable (for precise definitions see Section 2). We shall assume moreover that F is
uniformly integrable, in the sense that there exists a (Lebesgue) integrable mapping M :I —R
such that:

y e F (%) = |y | <M(t), V(t,x) elIx X

(here |y| denotes the usual Euclidian norm in RM) . Let M, be larger than II M(t) dt;
we shall suppose that X contains a ball around E, of radius M4, where E is some compact
convex set in RM,in which all initial data Elives. This will force all the action to take place
inside X . Note that the compactness assumption on X is not a restriction , but a byproduct of the
compactness assumed on I and on E.

Besides problem (F), we shall study also a closely related one, namely:

(F-A) x e F (t,x) - A x x (0) = &

, where F is as above and A: D(A) <R" RM is a maximal monotone operator. This
implies in particular that the closure of D(A) is convex, and all the values A x of A are
convex closed in RM. In this case we cannot take anymore M, just larger than fI M(t) dt
as before, but we shall nevertheless be able to get another a priori estimate for the values of all
possible solutions of (F-A), based on a well-known estimate for solutions of maximal monotone




differential inclusions. Naturally we shall suppose that now the initial data set Z is contained
also in the closure of D(A ) . We shall say ( following [3],[11],[13] ) that x is a solution of
(F-A )g if there exists a selection v from F( . x()) st x'@) ev(t) - A x(1),
a.e. , x(0)=£.We shall see that the maximal monotone perturbation does not affect essentially
the results that can be obtained for the unperturbed problem (F) : the results for (F-A) are
obtained via a straightforward derivation from the results for (F). This fact allows us to include
here both types of problems without compromising the unity of exposition. In many cases we shall
speak only about problem (F-A) ; it is clear that problem (F) is just a particular case,
obtained by seiting A =0.

For more informations about multifunctions (also called set-valued or
multivalued maps, or also correspondences, in the literature) and for a complete review of known
results on differential inclusions (also called generalized or multivalued differential equations),
see the monograph by Aubin - Cellina [ 2].

The regularity assumptions we consider on F depend naturally on the particular
result to be presented, and are as follows. We shall present results in which F is allowed to be:

-lower semicontinuous (Isc) in x

-continuous in X

-Lipschitz continuous in  x

-continuous in  (t,x).

The expression "solution set of (F-A)" is used to denote the set of all the
solutions of (F-A), equipped with the metric of the supremum on I. We shall also say something
about the set of derivatives of solutions, with an appropriate (weak) topology ; and about the
attainable set, i.e. the set of points b in X such that there is a solution x with x (T) = b.

In this exposition we consider only the finite dimensional case, since in spaces of
infinite dimension almost nothing is known about the solution set of differential inclusions, apart
from the fact that it is nonempty in some special cases. And to treat nonemptiness would mean to
treat existence theory - and this would constitute,‘ on its own, a topic for a thesis of this kind. In
infinite dimensional spaces, the only known results that give something besides nonemptiness are
those based on Baire category arguments (see below some further comments on this method).

We now describe the contents of each section. In Section 3 we summarize some
classical results on the solution set for convex problems, of the type:

(coF) x' € co F(i,x) x (0) = &

with F as above, continuous (or even upper semicontinuous (usc)) in (i,x), due to Filippov
[16], [17] and to Cellina [7],[8],[9]. Namely it is stated that the solution set (and the attainable
set) is nonempty compact connected, has an usc dependence on initial data and parameters, and
enjoys some selection properties; and that the set of derivatives of solutions is (weakly) compact
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and has an usc dependence on initial conditions. Moreover if the attainable set corresponding to a
compact convex set Z of initial conditions is contained in Z, then there exists a fixed point,
i.e. a solution x with x (0) = x (T).

We present also in this section the classical result of Filippov-Waszewski
[29],[17] , stating the density of the solution set of (F) in the solution set of (coF), in the
Lipschitz case. This section is presented without proofs,since we wish to focus our attention on the
nonconvex case.

In section 4 we present a series of results for the nonconvex case, obtained
through the technique of constructing a continuous selection from a Isc multifunction G
associated to F. Each value of G is the family of all the integrable selections from the Nemyitski
(multivalued) operator associated to F, hence it is decomposable [we will call G the selection
multifunction associated to F]. This kind of technique originated in the work of Antosiewicz-
Cellina [1], and was further developped by Bressan [4], Fryszkowski [19], and Bressan -
Colombo [5]. It has been showing itself to be a very powerfull technique to handle nonconvex
differential inclusions. It is in fact the only general tool that works constructively in the
nonconvex case ; the only other general tool known to date is the Baire category approach, and this
is obviously non-constructive. The importance of having constructive techniques appears clearly
on reading Section 4: there it is shown how to construct a solution exactly where we need it, and
several usefull applications of this technique are given. :

Pianigiani, in a paper [28] that we examine here in detail,applied the technique
of Antosiewicz - Cellina to obtain a generalization of the density theorem of Filippov - Waszewski,
for F satisfying hypothesis of Kamke type; to obtain two partial density results for the continuous
case (allowing measurability in t); and to prove upper semicontinuity of a subset of the solution
set (also in the continuous case with measurability in t). We show in this section how a
modification of Bressan's proof [4], following the ideas of Pianigiani, can be used to extend the
three last results of Pianigiani to the case of problems of the type (F) and (F-A) as described
above. We also show how the more abstract methods of Fryszkowski [19] (see also Bressan -
Colombo [5] for a further generalization of Fryszkowski's methods) can be used to obtain the
same results with much less effort. Moreover, we prove that any solution of (coF - A) can be
approximated by solutions of approximating problems (F, - A), with F,, converging uniformly
to F. (The regularity of the approximants F, depends on the regularity of the given F ). These
are new results that will be published in [27]. To deal with the maximal monotone perturbation
we use a technique that was first developped in a paper by Cellina - Marchi [11]. Subsequently
this same technique was used in [13] to obtain an extension of the results in [11] and [4].

A couple of words is due here to the Baire category approach. This technique was
first used by Cellina first used by Cellina [10], in the 1-dimensional case, to prove existence of
solutions to differential inclusions ; and then by DeBlasi - Pianigiani [14],[15], in the finite and



infinite dimensional cases. More precisely ,they proved that the solution set of (F) , considered
as a subset of the solution set of (coF) , is a dense countable intersection of open sets, in the case
of F (Hausdorff) continuous (besides another technical condition) and having interior of

co F (t,x) nonempty for all t,x. The Baire category technique has the disadvantage of beeing
nonconstructive; but as a counterpart it has the advantage of giving an enourmous quantity of
solutions to problem (F) , not only relative to the solution set of (coF) as explained above, but
also relative to the space of continuous functions (where it is again a countable intersection of
“open sets), and also in itself (since it has the cardinality ¢ of the continuum, and is topologically
complete).

Moreover, while other techniques, like the one explained in Section 4, use at some

point a compactness argument (or possibly a contraction mapping argument) and therefore

impose restrictions on F in order to obtain this compactness ( or to obtain regularity on F ,
respectively), the Baire category approach seems to work well exactly in the opposite situation
i.e. with F having values as large as possible. In this respect the two techniques are
complementary, and give disjoint results. It was our original intention to include in this thesis
also a section on the Baire category method , but lack of space does not allow us to .

In the Appendix we present some technical definitions and some technical lemmas,
related to decomposable essentially bounded sets, that are used in Section 4. These are adapted
from similar statements by Bressan - Colombo [5] (see also Fryszkowski [19], to whom the
basic ideas of these statements are due) , but modified to suit our need. The appendix contains also
some results that are the abstract counterpart of similar statements in section 4.



Section 2: Notation .definitions and some useful resulis on multifunctions.

(2.1): Let I= [0,T] be a compact interval in the real line R, and X be a compact
subset of the n-dimensional Euclidian space Y = R" . Denote by L1 = LI(I, R) the Banach space
of (equivalence classes of ) real-valued (Lebesgue ) integrable functions onI ; by L1Y =
L1(I,Y) [respectively L=y=L>(I, Y)] the Banach space of (equivalence classes of ) RN.
valued (Lebesgue) integrable [ respectively essentially bounded ] functions on I. The
(usual) norms in L1y ,Lly will be denoted , respectively , by PR
E denotes a compact convex subset of Y , where all initial data & is supposed to lie.

Let L be the o-algebra of (Lebesgue) measurable subsets of I, pthe
(Lebesgue) measure on I, Bthe c-algebra of Borel subsets of X , ﬂy the c-algebra of Borel
subsets of Y. Given A € L, X(A) denotes the characteristic function of the set A .

2.2) :(see [5])
Aset K<Ly is said decomposable if :
u, ve K, AegL = uXx(A) +v X(I\A) e K
We now recall some concepts from the theory of multifunctions (see for example [2],[21],[20] ).

(2.3) If Z,W are topological spaces, we say that H:Z—W is a multifunction if
H is a correspondence associating to each point z e Z some nonempty subset H(z) of W,
called the value of H at z. Given a subset S of W, we set:

H"(S) = {zeZ : H(z) S = @} H¥(S) = { ze Z : H(z) < S}

We say His lower semicontinuous (Isc) if:

Sopenin W = H(S) openin Z (or equivalently, if : S closed in W =
H*(S) closedin Z); and we say H is upper semicontinuous (usc) if:
S closedin W = H(S) closed in Z (or equivalently, if: S openin W =

H*(S) openin Z)
and naturally, H is said continuous ifitis usc and lIsc.

(2.4): Given a c-algebra A of subsets of Z, we say His A - measurable if:
S closedin W = H(S) e A; and we say H is A-weakly measurable if:

S openin W = H(S) e A; and we say H is AxB(W)-measurable if:
graph(H) i= {(z,w) € ZxW : w e H(z) } e AxB(W) [ the c-algebra generated by
the sets of the form AxB , where A e, B € B(W) i.e., B is a Borel subset of W].



(2.5): Suppose now W is a complete separable metric space with metric d. For
abe W , A,B nonempty bounded subsets of W , we set :

d(a,B) := inf {d(a,B) : b e B}, d*AB) = sup {d(a,B) : b ¢ B}
d(A,B):= max { d*A,B), d*B,A) }
BA ,e):={be W: dbA) <e}; B(A, ¢ :=1{beW : dbA < g.

Then clearly A < B(B, D*(AB) < B (B, d(A,B)).

We say H is _Lipschitz with constant L if:

d(H(z4), H(zp)) < L d(zq,z5), V 24,29 eZ
We say H is Hausdorff lower semicontinuous (H-Isc) if:
Vzg € Z, Ve>0 3 N(z0,e) nbd of zg in Z st

z e N(zg,e) = H(zg) < B( H(z),e).
We say H is Hausdorff upper semicontinuous ( H-usc) if:
VzgeZ Ve>0 IN (zg,e) nbd of zg in Z s.i.

ze N(zg,e) = H(z) < B(H(zg), ¢).
Naturally, H is said _Hausdorff continuous ifitis H-usc and H-lsc.

In general, the following is true : H usc = H H-wusc ; H H-lsc = H Isc.
If moreover H is compact-valued , then the reverse implications also hold.

If moreover Z is a metric space and H is usc with closed values then graph (H) is closed in
ZxW , equipped with the product topology ; while if graph(H) is compact then H is usc.

(2.6): Let now (Z,A,v) be a positive measure space, W asin (2.5), and let 4,

be the completion of the o-algebra A relative to v,i.e. A, is the collection of all the sets

of the form A E where Ae 4 and v*(E) = 0 [v* is the outer measure associated

with v] . Denote by A, xB,, the c-algebra generated by all sets of the form AxB , where

A € A4v and B is a Borel subset of W. Then we have:

Me Ax By = prz(M ={ze: (zzw) ¢ M for some w eW } ¢ A4,.
If moreover H has closed values, then :

H is “4v-measurable < H is Av-weakly measurable < His 4,x By-measurable.

In such a situation , we shall say simply that H is v-measurable to indicate all these properties,

or simply " measurable " if v is the Lebesgue measure pon the interval 1.



(2.6): Consider now a multifunction F: IxX =Y, with LX,;Y as in (2.1) ; we shall

say F is measurable ifitis LxB-measurable. If F is measurable with closed values and if

the multifunction F(t,.) :X = Y is Isc foreach te I( we shall say simply that F is Isc

in x), then a Scorza-Dragoni type property holds , namely :

(see [22] Corollary 5 and Remark 1)) Ve >0 3L, < I , 1
wW(I\T) <e, st FlIxX islsc.

¢ compact ,

If moreover F(t,.) is continuous then the same conclusion holds , with FI st X continuous.
If F is measurable with compact values then coF is a measurable multifunction.

If F (t,.) is Isc then coF (t,.) islsc. If F (t,.) is usc with compact values then
coF(t, .) is usc.

If F is H-continuous then c¢o F (t,.) is H-continuous.

(2.7): If F is asin (2.6), then we say F is uniformly integrable if it is measurable
and there exists a map M e L' st vy eFtx) = |yl < M () ae. Vxe X
[iie. F (., x()) is integrably bounded, uniformly in x:1 — X].

If F is uniformly integrable and Fy:IxX — Y is a multifunction with

clco F(t,x(t)) = clco Fi(t,x(t)), V xe X then :

[ Fitx(®) dt = { | vt) dt : v is a L1-selection from F(. , x(.)) }=
= [ Fl,x@) dt.
f we L'y and xe CO(L R"), x() e X V1t then there exists a ve L'y
s.t.
v(t) e F(t,x(t)) a.e. and lw(t) - v(t) |= d( w(t) , Fit,x(t)) a.e..

(2.8): (see [6],[3],[11],[2],[13] for example )
Let A: D(A) < Y — Y be a maximal monotone operator ,
Ve L1Y , Ee cID(A) ; then the problem :

(v-A)g e - A x + v(i) x(0) = &
has a unique solution, denoted x=i(v,t), and x(t) e D(A), Vi>0. Moreover :

@ li(v,e) (1) - &g | = 1&g gl +Jot Tu(s) - ng | ds
Vte I, V&, eD(@A), Vng e Atg
(b) li(v,&) (1) - i(vy,&4) (B | < le-¢eql +
#lot Iv(s) - vy(s) I ds v tel
© | i) ly s Cp [0+ T alvly)(1+] (v, )+ lel2 1.



Note that (a) gives an estimate for i(v,£) in L®y , hence (c) gives an estimate for

i(v,6)" in L'y. Moreover, (b) tells us that the map i: L1yxX — CO(LY) is continuous.
Then we have :li(v,x)l o< BIEl+ Tlngl+lvly, Vv te I,vvell,

where |E| denotes the maximum of [g for in E ,and mg is any pointin A Z
, and

| i(v,x)' 14 < Cp [(1+T+l vl ) (1+81 21 +Tngl + [vlq) +
el 2] <

< 2 Cy [ 1+T (1+lnol)+3 [El+lvl 12,
Set C=2Cp[1 + T(A+Inyl) + 3 El + My 12 ; and consider the problem:

(F-A) X e F(x) - A X x(0) = &

,where Fis as in (2.7). We shall say (following [3], [11],[13] ) that x is a solution of
(F-A )é if there exists a L! selection v from F( ., x(.)) s.t. x is a solution of problem
(v - A )€ . Suppose x € L1Y , g(x) e L1 y are given, s.t. g(x)(t) e
F(t,x(t)) a.e.

; then we have :

(g (xq),84)0) - i (a0,6)0 l< lg-el+fgtla(xq) - ax) ldt
hence:

(g (x),8) - ig(xq),6q) 1< le;-Exl+lglxqg) - alx)ly.

The above inequalities give then:

lg(x)(t) < M@ ,lg(x)lqy < My, li(g(x),e) |, <I& + My < C
, li(g(x),&) 14 < C.

If we set

Ky={xCO(I,LR") : x(0) e X, x(h e X Vvt , xelLly ,Ixl;< C}
with the topology of L1y

K'y={X:xe Ky} with the weak topology of L1Y ,

K. ={xe Ky :Ix'(t) < M ae. } with the topology of CO(I,RM)

K'n ={x": x¢ K_} with the weak topology of L1y,

then K4 , K, K',, are convex , and they are compact metric spaces. In particular any
sequence (xk)in K_ has a subsequence (xki) converging to some x in K_ , and the
derivatives (x'ki) converge to x'in K'_. Therefore if gyi: Ky — L1Y is a sequence of
continuous maps s.i.

lgO)Ml < M) ae. and we set  h:Kq »K, h() = &+ [o1 ge(x)(s) ds
, for some &eE, then the sequence (hy(x)) has a subsequence converging to some h(x),
while (hg(x)' ) = (gg(x)) converges to g(x) = h(x)' weakly. If in particular we know that



fot gk (x)(s) ds ——>fot g(x)(s) ds equiuniformly [ i.e. equi in x e Ky, uniformly
inte I]
then hy —h uniformly . Also ,by Schauder fixpoint Theorem hy,h will have fixpoints in K_,
and clearly if gi(x)(t) € F(t,x(t) a.e. Vke N , then the fixpoints of hy will be
solutions of problem (F).

Finally , if we set hy : Ky — K1 » (@) = (gg(x),€) , for some
€ e B, then hy is continuous [ and depends continuously on the parameter&], and,
again by Schauder fixpoint Theorem , there exist fixpoints xj of hy, and they verify
xg=i(g(xk),§) ie. , they are the unique solutions of : Xk € - A xp + gp(xg),
x(o)=¢, ie. of X'y () e F(txg() - A xi(t) ae. , x(0) = & , and this means
X is a solution of ( F - A )&, .

We define now the solution set map as the multifunction:
M(F-A) tE Ky > M(F-A) €)={xe Ky: x is solution of (F-A)g } o
and the derivative of solution set map as the multifunction:
M'(F-A) M E—‘) K'1 5 M‘(F'A)(E") = { X' X e M(F-A) ((K:) } ,
and the attainable set map as the multifunction :
ﬂ(F_A) H E-—-} Y, ﬂ(F-A)(&)={x(T) : X € M(F-A) (&)}.
In the special case when A=0, we have:
M(F) 12 Ko, M(F)(g) = { x e K_ :xis solution of (F); }
M'(F)(g) = {x' - X € M(F)(g) } N
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Section 3. Results obtained by construction of a suitable continuous selection

from the associated selection multifunction.

(3.1) Remark.

We use in this section the notations and assumptions described in Section 2 ,
namely relative to I = [0,T] ; X, E,Y = R"; M eL1; A: D(A) < Y - Y maximal
monotone operator ; F:Ix X —Y measurable uniformly integrable multifunction with compact
values , Isc inx ;K_< C% (I, RM"), K; < L1x ; K < L1Y , with weak topology ;

M(F)’ M(F-A),M(coF-A ) solution set maps , from = to K_ andto Ky; M"(F)
, M '(F-A) , M '(coF-A) derivative of solution set maps , from Z to K'_ .
We begin by some lemmas needed to prove Theorem (3.5) , but not to prove the

other results in Section 3 (only Lemma (3.3) is needed after Theorem (3.5)).

(3.2) Lemma.
Let F:Ix x —»Y be a measurable multifunction , Isc in x , with compact

values . Then , for any u, eL‘x and any g;>0 ,
JE=E(u,,e ;) compact contained in I , p(IVE) <eq4 st
Veg >0 38=8( ugy, €1,89 ):
ue LTy, sup {lu®) - ug(t):teE} <5 =
= F({,u,(®) < B(F(t,u(t)),e,), Vvt cE.

Proof:

The first part of this lemma is a generalization of [4 , Proposition 1] , and we
follow more or less his steps . For each u, I — X measurable, ¥ = F(. , uo(.)) is a measurable
multifunction (see Lemma (3.3) (i) ) , with closed values , hence by the Scorza - Dragoni
property of (2. 11) we have :

JEo =Eo(uo,el ) <I , u(I\Eo )< e1/4 st vlEo is H-lsc, hence
V(to,xo0) eE1xX, Jp=p(el, to,x0,0)<c : V (i,x) eE1xX,
d({t,x), (to,x0)) <p = F(lo, x0) < B ( F (t,x) , €2/2).
Set E=E (uo,el)=Eo E1, E2=E2 (u0,el) ={(t,u(t)):te E};
then clearly u(I\E)< €1/2 , and since E2 is compact , we can cover it with balls Bj = B(
CiPp) - C=(ti,uy () € Eo, pj. o, i=1,..m,so that:
(tx) e ExX, a((t,x), (tj,us) < pp = F (t, up(ty)) < B(F(tx), eo/2)

Set A= B; and 8&=min {p;j,i=1,...,m} ; then clearly B(Ep.,8) < A.

Therefore if (t,x) € ExX and | x - uo(t)l < & then (t,x) € A, hence (,x) € B; for some i,
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hence d((t,x),(tj,uy(t))) < p; , and this implies F(tjpug(t)) < B (F(t,x) , €0/2). Now if
lu(t) - uo(t)l <8 Vie E then te E = (tu()) e A = d(tu(t)),(tuy(ty))) < py , for
somei = d(tt) < o = F(tuy(t) < B ( F(tpug(t)), €5/2) < B( F(tu(t)), eo) , and this
proves the lemma.

3.3) Lemma. .
Let F:IzxX =Y be a measurable multifunction with compact values. Then :
(i) for each u :I— X measurable , the multifunction w, :I-Y, y,(t) = Ftu(®) is
measurable ;
(ii) for each uelly st u(f) eX ae.,the set
G(u) = { velLly :v({t) e F,u(t)) ae. }
is nonempty closed decomposable ;
(iiiy if moreover F is Isc in x and uniformly integrable then the multifunction
G:Ky » L1y
, G(u) asin (ii),is H-Isc and uniformly integrable.
Proof.

() Letue L1X ; then ¥, is measurable iff for each open O < X, ¥, "(O) e L. But

Y, ) ={tel:Ftut) OzT1={tel :Vxe Xwith F(tx) O =@ and (tx) e graph (u)
=prp { (tx) : (tx) e F7(O) graph (u) }

, and since F is measurable and u € L1X , F(O) and graph (u) are measurable and , by (2. ),

the projection on I of their intersection is in L.

(i) Let ue L1x ;then ¥, is measurable with closed nonempty values , hence by Kuratowski -

Ryll Nardzewski's Theorem there exists a measurable selection v from ¥,,andv e G(u).

Suppose now (wy) is a sequence in L1y ; then a subsequence Wki(t) - w(t) a.e. , and since

¥, (1) is closed , w(t) e ¥, (1) a.e. ,thatis we G(u).

(i) To show that G is H-lsc, fix uin K and let (uy) - u in Ky ; then each subsequence of

(uk) as a subsequence converging a.e. ; denote by : dy(t) = d*(F(t,u(t)),F(t,uk(t))) the

corresponding sequence of distances ; since it is integrably bounded , to prove that it goes to zero

inL! is enough to prove that it consists of measurable functions and that each of its subsequences

has a subsequence going to zero a.e.. The later property follows from the fact that whenever (u;) is

a subsequence of (uy) going to zero a.e., also (d;) goes to zero a.e., by H-Isc of F in the second

variable. To obtain the former note that since G has closed decomposable uniformly integrable

values , by corollary (A6) (c), D*(G(u) ;G Uty = d*(G(u)(t),G(ui)(t)) =

d*(F(t,u(t)),F(t,ui(t))) = di(t) a.e.,hence d; is measurable. This means dy goes to zero in L1Y

*

,i.e. d(G(u),G(uy)) goes to zero, hence Gis H-Isc.
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An alternative proof can be given as follows (cf. [13]). First using Theorem 3.5
(e) , Theorem 6.5 and Theorem 6.6 in [20] , one shows that d; is a measurable function. As
before d; goes to zero in L1 »and , for each ve G(u) , by (2. ), there exists vi(v) e G(uy) st
d( vij(v)(t), v(t)) < dj(t) a.e., hence d(vj(v),v) < Jdi(t) dt . This means d(v;(v), G(uy)) <
ldj; Vv ve G(u) . Therefore d (G(u),G(up) <ldj{ — 0asi— c.

3.4) Lemma.
Let F:IxX —Y be a measurable uniformly bounded multifunction , Isc in x
with compact values. Let f«: IxX - Y be a Caratheodory selection from coF . Fixany e> 0
and any positive decreasing sequence (eg) st Egt €1 +.. < &/(4M+2T).
Set G : Ky »L1y, G ={veLly :v(t) e F(ut)) a.e. } , where
K4 is as in Remark (3.1) , and g«: Ky —9L1Y ,»  gx(u)(®) = fo(tu®) a.e.
Then there exists a sequence of mappings gj: K ——>L1Y , that approximate both
G and g« in the sense that , for each k>0 :
(a)k gk Is continuous ;
(b)k V ueK , dgg(u), G(u)) < e (M+2T)/4 and  p(Wy(u)) <ei/8,
where Wi(u) = {t e T : d(gg(u)(t), G(u)(t)) =ex/2};
(c)k VuekK Ilgt(gg - ge(u) ds I<se Vviel ;
and ,ifk>0 , d(gg(u),gk.q(u)) < eg 1(T+2M) ;
and  w(Zg(u)) <eg.q ,where
Zy(u) = {te Tz d(gg(u)(®), gg.q1 (W) = epq ks
(d)k 38 >0 (with 8y < 8.q¢ when k>0) s.t.

for each finite set V contained in K with diam V < §, R(W (V) < g, /4
.where Wi(V) = { tel : d(gy(u)(t),G(u)(t)) = g /2 for some u eV }
and p( Xg(V) < eg/8 Where

Xe(V) = {tel : gg(v)(t) =gg(w)(t) for some w,yv eV }
Proof:

The proof is a merging of the proofs of [4, Theorem 1] and [28, Theorem 2]. It
has two main parts , the first beeing the construction of 9o and the second the construction of g,
given gy_q1 , for n > 0. The second part is equal to the proof in [4] (he has got no first part, since
he just sets g,=0) ; the only difference is that instead of 2K we use the numbers g, » chosen
with an adequate sum. As to the first part it is a carefull adaptation of the first part in [28] ; it is
more involved because of the dependence of the sets E(u,) on u , in Lemma (3.2) (consequence of
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passing from the continuous case to the Isc one). The part in common with the first part in [28]
is comparatively small , and since this is a new result , published here for the first time, we
present all the details. ’

Step 1: Definition of do-

By Lemma (3.2) , V uy € K Jp_=p,(Uy) <8 and a compact Ey=E,(u,) < I, with
p(N\Ey) < min {e,/16,e/16M} , s.t. ue K, | U'Uo}oo <po = F(Lu(t)) < B( F(tu(t).e,/2) ,
and [ g«(u)(t) - g*(uo)(t)l < e/8T ,Vie Eg(ug).

(this is true because we can restrict a little the set E, given by the lemma so that we have also
& Eo xX uniformly continuous , by the Scorza-Dragoni property ) . Let E, be equal to I°i ,
except for a set of measure less than ¢/16M. Since K is compact , it may be covered with balls
U%=B(u%,po(u®)), i=1,...my, and there exists a subordinated continuous partition of unity ,
PO=(p°4,---pCmo): K — [0,11MO,

If we set Fi(t):= F(t,u%(t) = G(u®)(), and fi(t) = g~(u®)(t), then F;, hence coF; is
measurable ; and f; is a measurable selection from coF;. Liapunov convexity theorem tells us that
for each measurable J <1, we have :
[y Fith dt :={; o dt:pe L'y, ¢'() e Fi(h) ae.} = I coFy(t) dt,
hence [jfje I; coF; = [; F; ,andthis means[j f; = [; vJ; for some vJ; ,a
measurable selection from F; , i=1,...,m,. Now we divide I into disjoint intervals Jq,...,dyq , OF
lenght less than /(32 M mk,) , and define vo;:I —Y by vO j =vIK; ,i=1,..m, , ae. te
LThen it is clear that vO;(1) e F(t,u®(t)) = G(uO;(t)(t) ae. , thatis, v G(u®) , and for any
interval J < I,1]; (vO;-f)l <e/8mgky , i=1,..mq.

We will now construct , for each u e K, a partition of our interval I in Borel
subsets Joi(u) , i=1,....my, based on the partition of unity pC(u). Finally, denoting by
x(Joi (u)) the characteristic function of the set Joi(u) » U Will be defined by

Uo =2 x(JO%(w) vO;
The construction of the sets Jj(u) follows now. Set A%*:= E,(u®) , A% := IAC;*; then n(A%*)>
T-g4/8 and n(A%) <ey/8. Define recursively the sets YO (u) , YO;*(u) , Y9 (u) , J%(u), and
the map 90; for i=1,....m, , as follows:
Y°i(u) =1\ Jk(u) , Y°i+(u) = Y°i(u) A°i+, Y°i‘(u) = Y°i(u) Aoi' » 9O Y°i(u) - R
00 y(t) =n(0,TT YO (u) (YO () + { m(YO;"(u) + u(0,T] YO (u)} x (YO (u)
and finally J%(u) = (% ) 1 (10, TR W)]) , i=1,....mq.
It is clearly seen that the maps (poi’u are Borel measure preserving transformations , and that the
sets JOj(u) form a Borel disjoint cover of I, and p (J%(u))= Tp(u). It is also clear that
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golu)e LT vuek ,» and this implies that the sets W(u),Z,(u) , and X, (V), Wy(V) are
measurable. Also a little reflection shows that :

p(IOU)  A%*) = inf { TpOj(u), m(YO F(u))} = inf { TpOj(u), n( YO (u))-e,/8 }

, and that the construction of the sets was so carefull that not only p( A°i+) 2 T-e4/8 for each
i=1,...,m, , but , more precisely p( (Joi(u) A°i+)) 2T -¢,/8. Clearly, this implies :

p( (O A9) <ey/8.

It is also clear that , except for a set of measure less than e5/16M , we can say that each set

Joi(u) consists of the union of at most k, intervals ; we shall call Joi*(u) the union of these
intervals, so that :  JOu)  JOx(u) JO.(u) , where JO«(u) = Ioij(u) (IO () <
e/16 M, i=1,...my , where Joe(u) does not depend on i, and Ioij(u) is an interval. Clearly
also I= JO(u) ( JOn(u) = O (u)  JO«(u)).

Step 2: Verification of (a)o,(b)g_,_(g)_g_,(d)g__
(b)g: Yu eK, p(Wgy(u)) < £,/8 and d(gy(u),G(u)) < g4 (M+2T)/4.

To prove this we observe first that if u e K and te JO(u) A%* for some i,
then pj(u)= 0 , hence ue U; and d( u(t),u®i(t) < py(u®) and this gives
F(t,u%(t) < B( F(tu(t), eg/2 ) . Therefore
d( go(u)(t), G(u)(®) < d( go(u)(t),G(uoi)(t)) +e5/2 = d v°i(t),G(u°i)(t)) + £4/2 = gq4/2.
Therefore te Wo(u) and Wy(u)<  (J%u) A9) , and this implies pu( Wy (u)) <ey/8.
to prove the second inequality , note that te W,(u) = d(gg(u)(t),G(u)(t)) < e,/2 , hence
there exists a L! selection v(.) from G(u)(.) [ i.e., veG(u)] verifying :
d(go(u)(t)v() < eo/2 Vie Wq(u) , d(g(u)(t),v(t) < 2M Vie Wy(u).
Therefore d(gy(u),G(u)) = inf { f; d(gg(U)®.V(M) dt 1 ve Gu) } < Tey/2 + 2M gy/8 =
£o(M+2T)/4 , and this proves (b),.

(c)g VYuekK, vteI, oW gg) - g« (u) (s) dsl< e.

To start with we have , setting fi(t) = g«(u®)(t) :

[Tt X CI%(w) (vOr )l < e/(8 mgky) , i=tumg = 1.uky o since I%(w)  [0.T]

is an interval . Therefore

Tt x () (O5-f) () ds I <=X It x (I%w) (vO f) | < mgkge/(8mgko)
=¢/8. Finally : [I,{ggo(u)(s)-g«(u)(s) ) ds| <|Tx (JO(u)) (go(u) -g«(u))(s) ds ! +

+ 10t (9%, ) (Go(w) - g+(w) (s) ds | < | 2 Jt X (JO(u) (go(u) - g+(u) (s) ds |+
+2M e16M < 3 LIt (90(u) (VO - ) (s) ds | + X fot x (JO(u)  (g+(u) -
g«(u®;)) (s) ds | +e/8 < /8 +e/8 +| Jot Yy (JO(u) (s) (f(s,u(s)) - f(s,u®(s))) dsl<
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<e/4 + e/8T | Jip Ty (J%+(u))(s) ds | +2M e/16M < e/4 + /8 +e/8T p(I,) < e/2.
(d)g : 3 85 > 0 s.t. for each finite set V < K with diam V < 8qs
B Wo (V) < ey/4 and  p( Xg(V)) < e,/8.

To prove this , choose §,>0 st v,we K,|[v-wl <3, = [TpO() - TpO(w)| <
go/(8my(my+1)). Set A°k(V) = {te Jok(v) \ J°k(w) tvwe V) and A9V) = Aok(V)
, for each finite set V < K with diam V <§,. Then it is easy to see by induction on k that

u( Aok(V)) < 2Key/(8mg(my+1)) k=1,...m, , using the fact that vwe V =

| T pO(v) - T pO(w) | <eo/(8mg(my+1)). Therefore p (A°(V)) <e,/8.

Note that AC(V) is the set of points in I which are not always in the same set J;(V) of the
partition of I as u variesin V; hencet ¢ Ap(V) = Jismg @ te Jj(u) Yue V. Now it is clear
thatif te Joi(u) for any u e V, then golu)(t) = v°i(t) for any u e V , and this means that tis
not in X4 (V) ; hence XolV) < AP(V),and p( Xo(V)) < ey/8.

To prove the second inequality , recall that p( - (Joi(u) A°i’)) <¢&y/8 , and that
Wo(V)={tel: d (go(u)(t), F(tu(t)) = gp/2 , forsomeuinV} < (Joi(u) Aoi').
This implies that , fixing any u in V, we have B (Wo(V) < p( (Joi(u) A°i')) +

+ £,/8 +£4/8 = e4/4, since for each te A°(V) there exists some i s.t. te Joi(u) for any u
in V. This proves (d).

(a)g 9o :K —>L1Y is continuous.

To prove this we remark that using a reasoning like in the first part of the proof of (d)g , we
obtain: Vey' >0 38, :lu-vi, <8, = p(fte I:gyu)p) # 9o 1) < g4'72M
= d(g(u).9o5M) = flggu) - go(v)l < 2M ey /2M= €,'". This proves (a),.

Step 3 : Definition of dy_diven dy.q_-

Suppose now gk.1 is constructed and 8.4 was chosen so that (d),_4 holds. By Lemma (3.2) ,
Vue K 3Jpy(u) <§_4/2 and acompact Ey(u) < T withp (INEp) < g,/8 st
dxu(t) < p = F(Lu) < B(F(tx) , g/2) Vte Ey.

K can be covered with balls UK, = B( uK;, p (uk)) , i=1,.,m  , and we can find a
continuous partition of unity pk: K — [0,1]Mk . It is possible to choose vki € G(uki) s.t.
d (Vi) L g1 (kD) < g q/2 . Vte Wiy (ukp) . Finally , define AR+, A K
YKy, YRHw) , YRW) L oK, L JKi(u) as for the case n=0 , and define

g = 2 x (Kum v K.
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Step 4 : Verification of (a)y. (bl . (€} . (d)j .

(b)k » (d)k , (@) are verified just as in the case n=0.

(c)y YueK, p(Zyg(u) <eg.q » dlgg(u), gg.q(u) < epq (T+2M)
and 1o Hag(u) (s) ds - gu(u)(s) ) ds |<e.

To prove this , set for each uin K , V| (u) = {u} { uki : pki (u) >0 }. Since
pk(uki) < dK_4/2 , we must have Iuki -ul < dk.1/2 whenever u;e Vi (u), hence diam (
Vi(u)) <84 . Aplying (d)kq to V=V,(u) we obtain two sets , W*k-1 (u) = Wy 4
(Vk)={ t e T : d(gg.4(() , Ftv()) = ek.q/2 for some v e Vi (u } and
X*k-1 (U):=Xg.q (Vg = { te I:gg 1 (v){(t)# gx_1(w)(1) for some v,w € V| (u)}

with p( W q(u) )Se,.1/4 and (X 1(U) Sep1/8. Let te W' {(u)

X'k 5 then g q(u)(D=gy_¢ (k) v ukie Vi) and d (g1 (ukpm L VK1) <
ex.1/2 ¥ uKie Vi (u) , by definition of VK, . Therefore if t is also in JX,,(u) then uK, e Vi (u) |
gkt = VKio(t) , hence d(gy(u)(1),gx_1(u)B) = d (vKio(1)ak.1(uKio)) < ey q/2 .
Therefore t ¢ Zj(u) , and this means Zy(u) < W _q(u) X j_1(0) , and p (Z (W) Sep_1/4 +
€-1/8 <¢_1 - To prove the second inequality , V ue K, d( gg(u), gk.4(u) = fI d(gy (u)(®) ,
k-1 (M) dt < fnzyy O + Izieq) () <egqT +2M g 4. Finally , 11! (gy (u)(s)
- ge(u)(s)) ds | <1t (ggu)is) - ge(u)(s) ds | + = [t gj 1)) - gjlu)(s) | ds < e/2
+ 2 d(gj,q(u), gj(u) <e/2+ 3 g (T+2M) < e/2 +¢/2 Vte I . this completes the proof
of Lemma (3.4).
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(3.5) Theorem.
Let F: IxX —»Y be a measurable uniformly bounded multifunction , Isc in x ,

with compact values , and let f« be a Caratheodory selection from coF.
Then there exists a sequence (x) of solutions of (F) which converges uniformly
to a solution of (f«).

Proof

Fix e>0 . In Lemma (3.4) we proved the existence of a sequence of continuous
approximate selections of the selection multifunction G associated to F , in the sense that
properties (a), , (b)k ,(c)k ,(d)x hold. Clearly , (c)k implies that (gy(u)) is a Cauchy
sequence , uniformly in u e K ; hence (gy) is a Cauchy sequence and converges uniformly to some
continuous g.: K— L1y. As g —0, (b), implies that Ue(u) € G(u) ,V ue K since G has closed
values . Using (a) , one sees that g is a continuous selection from G . Moreover , for any te I,
ol ge(u)(s) - gr(u)(s) ds | < 1ot (ge(u)s) - giuds)) ds | + 115t (gy(u)ls) - ge(u)(s))
dsl <lgg(u) - gg(u)l ;+e , and letting k — =, we obtain :

I] (gg(u)(s) - f« (s,u(s))) ds | e, Vue K Vte I. Consider now hg(u)(t) = Iot g (u)(s) ds
; then hg :K_—K_, is well-defined and is continuous , and since K_ is compact convex , by
Schauder fixpoint theorem , There exists at least a fixpoint ug=h.(u.) ; and this means
U'e = g.(ug)e G(ug)ie., u'g(t) € F(t,u(t)) a.e.. Moreover,
ot (Ue(s) - fu(s,ug(s)) ds | =11o (ge(ug)is) - ar(ug)(s)) ds | < e
Setnow Y=g, , ke N. Then uge K, u' (s) e F(s,up(s)) a.e. and
IIo® (u'k(s) - f(s,uk(s)) dsl <g Vitel. ButK,_ is sequentially compact , hence a

subsequence  (u;) of (uyg) converges to some u e K while the derivatives (u';) converge

weakly to u', hence we have :

[IE (u(s) - fx(s,u(s) ds | <Ifyt (u(s) - uils) ds | +1igtur(s) - fs,u(s)) ds | +
[t (f(s,uy(s) - f(su(s) ds | < 1t (u(s) - ujs) ds | +e5+ 10t (F(s,ujls) -
f(s,u(s))) ds |,

and letting i — -, we obtain Jot u'(s) ds = Iot f(s,u(s)) ds  Vte I hence in particular

u'(t) = f(t,u(t)) a.e. Therefore we have a sequence (u;) of solutions of (F) converging uniformly

to a solution u of (fx) , and the theorem is proved.

18




We now present a much stronger theorem , obtained with the help of the abstract
results in the Appendix . The resulis that follow do not depend on (3.2) , (3.4) , or (3.5).

(3.6) Theorem.
Let F: IxX —Y be a unifomly integrable multifunction , Isc in x, with closed

values , and let f« be a Caratheodory selection from coF. Let A:D(A) < Y - Y be g
maximal monotone operator.

Then there exists a sequence (xj) of solutions of (F-A)g converging
uniformly to a solution x of (f*-A)é.

If moreover A=0 then the sequence (x'y) converges weakly to x'.
Proof:

By Lemma (3.3) , the selection multifunction G:K1——>L1Y associated with F is
well-defined and is Isc and uniformly integrable . If we set , for each u e Ky,

G«(u) = {ve LTy :v() e co FlLu) ae. }
, then the hypothesis of Remark (A.13) are satisfied , with g«(u)(t) = f«(t,u(t)) (the
continuity of g« follows from the fact that g«(u) € L1Y for each u € K4, and f« is Caratheodory )
by the Lyapunov theorem on the range of a vector measure. By Theorem (A.14), there exists a
sequence (gy) of continuous selections from G s.t. Iot gi(u) ds — Jot g«(u) ds equiuniformly (
i.e. uniformly in t, equi in u ). Therefore , setting

hSi, hoe: Ky Ky | pSk(w) = i(gy(u).&),  hy(u)=i(g=(u).&)
, we obtain a fixpoint uk=h§k(uk) i.e. ug(0)=¢& and u' e -A u +g(uy) , hence
u'k(t) € F(t,uy(t)- A ug(t) a.e. . Since (uy) is a sequence in the compact Ky , we may suppose
ux — u uniformly, and we have: ,
e -hSuly < lu-uely + Lug-hE !y +1 hS(up) - héx(u) 1 + 1 hSe(uy) -
- h‘:k(g) l4; but ug—>u in L, U= hgk (up) » hi*(uk) — hé.(u) in L1 ; therefore we
only need to show that if y () = &, (U)(1) - hS«(U)B) = i(gi(u).&) () - ig=(u).E)(1),
then lyk|1 — 0 uniformly in u e Ky. But we have (see [6, Lemme 3.1 , formula (28) ,
theoreme 3.4 in p.65 ; proposition 3.8 in p.82 ]):
|y (D12 < 2051 < g (u)(s) - ge(u)(s).yk(s) > ds ; hence setting By (t) = g (u)(t) -g=(u)(t)
cand o (t) = |1t By(s) ds | and () =1 w(t) | we have :
o2t < 2 <It B(s) ds, [yt we(s) ds > <2 oy (t) 1ig! vc(s) ds | <2 oy (ot oyls) ds.
But oy (t) <gy independently of tin I and u in Ky, and g(t) < 2C since h‘ik: Ki=Kq;
therefore @ 2(t) <2g, T2C hence | ¢ l; <2T(TCg )2 -0 as k—e , uniformly
for u in K. We have thus shown that h‘tvk - hé. , uniformly , and u = hgk(_u_) = i(g(u),&) , i.e.
u(0) =&, u e-Au +g-(u , u) e -Au) +Htut) ae.
u is a solution of (f« -A) and the theorem is proved .

This means
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(3.7) Theorem,

Let F:IxX — Y be a uniformly integrable multifunction , Isc in x , with
compact values . Let A:D(A)< Y —» Y be a maximal monotone operator.
Let x« be a solution of (coF - A)g .Then there exists :
- a Caratheodory selection f« from co F s.t. x«is a solution of (f« - A)‘g
- a sequence (xy) of solutions of (F - A)g which converges uniformly to a
solution x of (f« - A)g
If moreover A =0 then the sequence (x') converges weakly to x'.
Proof:

Since x« is a solution of (co F - A}, by definition there exists a v« in L1Y s.t.
X+ is a solution of (v« - A )F, ’This means that X'+(t) € — Ax(t) + v«(1) a.e. , x«(0) = E.
Define the multifunction F«:IxX — RN -

F(t,x) = v«(t) if Xx= x= (1) ,i.e. (t,x) e graph x*
co F(i,x) otherwise.
Let a(t) = (t,x«(t)) for each te I . Then for each open subset O of R we have :
F+(O) = { (tx) : F«(tx) O =@ } ={(t,x) e graph x« :v«(t) € O}
{ (tx) € graphC x+ : coF(tx) O =@} ={a(t) : te va O) }
(graph® x« coF~(0)) a(v«"1 (0))  (graph® x= coF(0)).
Since coF is measurable , and x« is measurable , graph®( x«} coF (O) is measurable ; and
since v« iS measurable, V*'1(O) is measurable and since a is a measurable function ,
a(V*‘1(O))is measurable ( in fact, a(V*'1(O)) is the graph of the restriction of x« to the
measurable set v*‘1(O)). Therefore , F« is a measurable multifunction . Now, for each fixed
t=t, , and each closed subset ¢ of RM , itis easy to see that :
to 2 v« 1(C) = Fulty, J*(C) = co F (ty, )*(C)
(ile. ifvs(ty) ¢ C then Fx(lg,x) € C = x#xx(ly) = Fx(iy,x) = co F(ty,x))
toe v+ 1(C) = Fu(ty,)T(C) = {x(ty)}  COF(ty,)*(C)
and in both cases F«(t,, .)*(C) is closed.

Therefore , F+ is measurable and F« is Isc for each tin I, and F+ has convex
closed values , hence all the hypothesis of Fryszkowski's theorem are satisfied , therefore there
exists a Caratheodory selection f« from Fx ; clearly f+ is a Caratheodory selection from co F ,
and moreover :  f«(t,x«(t)) = v«(t) a.e. in I . Therefore x~ is a solution of (fx - A}, i.e.
X'«(1) e fx (t,x«(1)) - A x«(1) a.e.

The rest of the statement of the theorem follows from Theorem (3.6).
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(3.8) Theorem.
Let F:@IxX — Y be a uniformly integrable multifunction , Isc in x , with

compact values. Let A: D(A) <Y — Y be a maximal monotone operator. Let x« be a solution
of (co F - A)g.

Suppose F verifies the following one-sided Lipschitz type condition:

3 L=L(xs«) s.t

d*(F(t,x« (1)),F(t,x(1))) < L(x«) I xs«(t) - x (O, vte I.

Then there exists a sequence (xi) of solutions of (F - A )é’; converging uniformly to X« .
In particular the solution set of (F - A )& is dense in the solution set of (co F - A);: if for
each boundary solution x« of (co F - A)F, there corresponds one such Lipschitz constant
L(xx). If moreover A=0 then (x'y) converges weakly to x« ; i.e.,
the derivative of solution set of ( F )F, is dense in the derivative of solution set of ( co F )&.
Proof:

By Corollary (A.6) (c) , we have :
Iy d (F(tx«®).Ftx®) dt = J; D(G(x=)(1),GX)M) dt = [;D (G(x+),G(x) (1) dt <
<L(x#) Jj Ix«-x]| ds
As in the proof of Theorem (A16) (b) , consider a positive decreasing sequence ( g) , and find a
sequence (gy) of continuous selections fro G , verifying :
It (grX)(s) - va(s) dsl < g+ LI x-xlds, Vx eK.
Suppose x* is a solution of X'x€ - AX«+ Vs , andset
hy: Ky = K, hy(u) = i(gg(u), &) ; then , by Schauder fixpoint Theorem , hy has a fixpoint
Xk = hy(xg) ,i.e. xXye - Axe +gg(xg), , hence x, is aa solution of (F - A)g .
Set vy = gk (X¢) - Then the above inequality gives :
| Iot (VK - v+ )(s) ds | <g + L fot | xx(s) - xi(s) | ds ,or , setting

oy () = 1T oY v (s) - va(s) ds |, o) =1 X (8) - x« ()| =1 i(vj,E)(S) - i(v,E)l ,
o) < g + LIt op(s)ds
while the estimate computed in Theorem (3.8) gives : (pk2(’[) < 2 oy(t) fot ok(s) ds .

Combining the two , we obtain :

02 < 2 (e + LIt gp(s) ds) Iot op(s) ds = 28 Joloy(s) ds + 2 L (Iptgy(s) ds )2,
and ¢i(0) =0 ; since we want to obtain an upper bound for ¢(t) in I, the worst possible
situation occurs when we have the equality sign .  Differentiating we obtain :

20, (D)) = 2ep0 () + 4L g0 Io! 9y(s) ds

, and supposing @i(t) # 0 we have : @) ()< 2¢ +4 L Iot ok(s) ds, @'k(0) = 2¢ .
The unique solution of  @" (1) = 4 L gy (1) , ¢’k (0) =2¢, , ¢(0) =0 s
o) = g sh2 LOt) /L5 < g exp(2L5T)/L® < 1k if we take
g = L(x«) - exp (-2 L(x*)-5 T ) /k . Since this represents the maximum possible growth for
oty , wehave: | x -x«|_<1/k ,hence x, converges uniformly to x«.
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Finally a boundary solution is a solution x. s.t. the corresponding v.(f) is a.e. on the boundary of
coF(t,x«(t)) ; the assertion that only boundary solutions need to be checked is justified by
Theorem (3.9).[ The last assertion in the statement follows directly from Theorem (A16)(b) ].

3.9) Theorem.

Let F :IxX —Y be a uniformly integrable multifunction with compact values ,
Lipschitz in x [ with Lipschitz constant L(.) e L1] . Let A: D(A) <Y - Y be a
maximal monotone operator. Let x« be a solution of (coF - A )g .

Then there exists :

- a Lipschitz - Caratheodory selection f« from coF [ with Lipschitz constant
4 nlL() ],st x« is a solution of (f« - A)& ;

- a sequence (xy) of solutions of (F - A)E_, which converges uniformly to X.
In particular , the solution set of (F - A )g is dense in the solution set of ( coF - A )E;
If moreover A=0 then the sequence (x"k) converges weakly to x'« ; hence the derivative of
solution set of ( F )& is dense in the derivative of solution set of ( co F )F,.

Proof:

The theorem of Lojasiewicz jr ([23] ) gives a Lipschitz-Caratheodory selection

f« from coF , with constant 4 n L(.) , verifying f«(t,x«(1)) = v«(i) a.e. in I , where v« is such
that x'«(t) € -A x«(t) + v« () a.e.. The rest of the statement follows from Theorem (3.6) , and
from the uniqueness of solutions of (f+ - A )2; . To prove this uniqueness , set :

wt)= | x(t) - x«(t)l 2 , where X+, _X are two solutions of ( fx - A )é ; and
v(t) = f(t, x(1)) - xX'(1) , v+(t) = f« (1, x«(1)) - x«(1) V te I.

Then v is a measurable selection from A x , and vs is a measurable selection from A x« , hence
v(t) e Ax(t) ,v«(t) e Ax«(t) a.e. and, by definition of monotone operator ,

< V(1) - v(t) , x(t) - x«(1) > = 0 a.e. hence < x'(t) - x"«(t) , x(1) - x«(t) > =

= < fa(t,x(1)) - v(t) - f(t,x«(1)) + v«(t) , x(1) - x=(t) > =

< fe (1,x(1)) - fx (t,x«(1) , x_(1) - x«(t) > - <_v(t) - v«(1) , x(1) - x+(1) > <
| fe (Lx(1) - fo(t,x«(t) ,x(t) - x«(t) > +0 < LI x - x«(t) 12 = L{t) w(t) .
This means w'(t) < 2 L(t) w(t) , w(0) = 0, and since the Cauchy problem w'(t) = 2 L(i) w(t)
, w(0) = 0, as unicity of solution , we have w(t) =0,ie. x=x+ , and the theorem is proved .

Il

IN
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(3.10) Theorem
Let F:IxX — Y be a uniformly integrable multifunction , Isc in x , with

compact values. Let A:D(A)<Y — Y be a maximal monotone operator .

Let x« be a solution of (coF - A)E; s.t. x« is a solution of (v« - A )&
with v«(t) € int co F(i,x«(t)) in a set of positive measure.

Then there exists a sequence (x) of solutions of ( F - A );: which converges
uniformly to x«.[ And the two last assertions in the statement of Theorem (3.9) hold .]
Proof:

Define the selection multifunction Gs« associated with co F as usual , and note
that v« e int G+ (x«) , and G+ is H-Isc , by Lemma (3.3) (iv) , and is uniformly integrable .
Therefore the proof of Theorem (A 16)(a) gives us a continuous selection g« from Gx verifying
g*(X) = v« ,V xe B«, where B« =clB(x«,8) , §8>0, isanbdof x«. Like in Theorem (A
14) we can find a sequence (gk) of continuous selections from G (the selection multifunction
associated with G) s.t.
ft(g*x) gk( ) dsl <egyg, where gg > 0as k- .

Set he 1 Bx — Bx, ha (x) (1) = J,Pg«(x)(s) ds = [ vu(s) ds
hk.B*->K ,hk (t = I, gKx)(s) ds.
Then |1 h (M) - he()®) | =1 he (@) - [tvets) dsl = [[H(g(x) - g+(x) ds| < e

Therefore we can find k, large enough so that k >k = | hy(x) f vsleo< &, since g — 0.
This means also that JO gk (x) ds —>f g«(x)ds , equiuniformly (in xe B.,te I ).

As in the proof of Theorem (3.6) , we set :

hy 1 Ky = Ky, he()(1) = i(gy(x), &) 5 he 1Ky = Ky (X)) = i(g«(x),€).

Like in the proof of Theorem (3.6) , we find fixed points x, = h,(x,) = X = h«(x) uniformly.
Therefore xj = i(g)(x).6) i-e. x(0)=x and X, e -Ax +gg(xy) ,hence

X" (1) e - A x (1) + F( tx (1) , i.e. X is a solution of (F-A )g , and similarly x. is a
solution of (f«-A )g , and the proof of the theorem is complete.

(3.11) Corollary.
Let F:IxX — Y be a uniformly integrable multifunction , Isc in x , with

compact values.Let x. be a solution of (co F)g s.t. x'«(t) € int co F (1,x.(t)) in a set

of positive measure.

Then there exists a sequence (xj) of solutions of (F)g which converges
uniformly to x., and the sequence (x'y) of derivatives converges weakly to X
In particular if F(t,x) =acoF(t,){) , Vtx , then the solution set and the derivative of
solution set of (F)Zi are dense in the solution set , derivative of solution set , of (coF)g,

respectively .
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Proof:

Set A=0 andv«=x'+ in Theorem (3.9).

(3.12) Theorem.
Let F:IxX — Y be a uniformly integrable continuous multifunction with

compact values.Let A :D(A) < Y — Y be a ma ximal monotone operator .
Then there exists a sequence (F) of Lipschitz multifunctions with compact
values , Fy : IxX - Y , s.t. F — F uniformly in the Hausdorff metric , and :

M (coF-p) (&) < M (Fk-p)y (&)
Proof:

We show that there exists a sequence (Fy) of multifunctions as stated ,
verifying: F(t,x) < Fe(tx) < B( F(tx) , 1/k) ;
and if X« e M(CoF_A) (&) i.e., x« is a solution of (coF~A)§, then there exists a sequence
(Xg) = X« uniformly , with X, € M(Fk_A)(g) i.e., X, is a solution of (F - A)g.
Fix £ >0. Since F, considered as a map from the compact metric space IxX to the metric space of
compact nonempty subsets of Y with Hausdorff metric , is continuous , there exists a Lipschitz
compact-valued multifunction H, s.t.

d, (H, F)=sup { d(H.(tx), F(tx)) : (tx) e XX } <e/2 .
Set Ge(t,x) := B( H(tx),e2) Vitx; then G, is a compact valued multifunction , and:
F(t.x) < Gg(tx) < B(F(tx) ,¢) , Vitx
Therefore  x«e QV[(coF-A)(‘g) < M(coGs—A) (¢) ; and since G, is Lipschitz , by Theorem (3.8) ,
there exists a sequence (u,) in SM(G&M ;U = X« uniformly . Choose m, s.t.
| Um_-X.leo < & ; choose asequence (g), o< g <1k , andset F = G ; X = Ymy
;then  x e M(Fk-A) X - xdeo < 1k, deo(Fy,F) <1/k , hence F—>F, x — X,
and this proves the theorem.
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3.13) Proposition:

Let F:IxX — Y be a uniformly integrable multifunction , Isc in x , with
compact values . Let A :D(A) <Y — Y be a maximal monotone operator.

Then there exists a sequence (F,) of multifunctions with the same properties as
F, s.t. Fg— F in the Hausdorff metric, and :

M (coF-a)(8) < M (Fi-a)(E)-

Proof:

Let x* (E M(coF-A)(x) . Consider the multifunctions F :IxX - Y, F (t,x) =
B(F(t,x), 1/k). Then F is uniformly integrable , Isc in x, with compact values, and F, — F
uniformly in the Hausdorff metric . Let X'« e - A X« + v« ; then v.(t) e int coF(t,x«(1)) a.e.,
hence by Theorem (3.9) there exists a sequence (uik)i of solutions of (F - A)&, uik - X+,
uniformly, as i — e . Choose i s.t.| ulk - x«| <1/, and set x, = uikk ; then x is a solution
of (F-A),, | x-x|_ <1k, hence x, — x. uniformly , and the result is proved.

3.14 Remark.
Let G be the space of continuous selections from G ,endowed with the uniform
topology. Let Hbe the space of primitiVes of elements of g ,il.e.,

H=1{h: Ky - Ky s.d. h(u) = i(g(u), £) for somege G and some EcE},
with the uniform topology. Clearly , to each h e A there corresponds at least one solution of
(F-A), a fixed point of h. Now , if x. is a solution of (F-A) , X'« e =A X« + Vi,
then Corollary (A.12") , with G in place of G« gives us a continuous selection g.from G s.i.
g«(x+) = Vvi. Then x'vw € = A X + g«(Xx) D€, X = i(ge(x+),E) = h(x«) for
some he 7. This shows that conversely , any solution x. of (F-A) is a fixpoint of at least one
h e #. In other words , the solution set that can be obtained as the set of fixpoints of elements of
His the whole solution set of (F - A).

In the following theorem we shall consider a compact subset }[o of H, and we
shall denote by My, M, the subsets of the solution set and of the derivative of solution set ,
respectively , corresponding to solutions of (F-A) obtained as fixpoints of elements h of ,‘%
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(3.15) Theorem.
Let F: IxX— Y be a uniformly integrable multifunction , Isc in x, with

compact values. Let A: D(A) <Y — Y be a maximal monotone operator.

Let H be the space of pfimitives of continuous selections of the selection
multifunction G associated with F , as in Remark (3.14) , and suppose 9[0 is a compact subset
of H . Let My(t), M'g(€) be the subsets of the solution set and derivative of solution
set ,respectively, of (F - A)g corresponding to solutions which are fixpoints of maps in
H,.

Then the multifunctions My, M’y have closed graph , and in particular H is
usc. If moreover A=0 then also Mg is usc.

Proof:

We have My:E—-K,; , M':E—K',, and if moreover A=0 then My :E— K'__;
since K4, K'_, are compact the usc property is justified ,and it is enough to prove that the graphs
are closed. Let ((§,,w))) be a sequence in graph(ﬂV['o) & — & and w, — w. Set
u(®) = & + It wi(s) ds , u(t) = & + [, w(s) ds ; by hypothesis , ug=hy(uy) , hy e H , for
k=1,2,... ; and since }[0 is compact relative to the uniform topology in %, we may suppose h, —
h e H,.Also by hypothesis , ue=h(u,) = i( g (uy), &) » h(u)=i(g(u), &)
where the g, , g are continuous selections from the selection multifunction G associated to F. If we
show that u=h(u) then u = i(g(u),&) , and this means (§,u) € graph (9\/['0) , hence this graph is
closed. But the weak convergence of (w,) to w gives the uniform convergence of (uy) to u ;while
(hy) converges uniformly to h and h is continuous , hence:
lu-h(u)l <lu-ul +lug-hy(u)l + 1y (u)-hudh +1hu) - hul - 0 ask - .

Similarly if ((€,uy)) is a sequence in graph (MO) , with §, — &, u, —u uniformly , then
(&,u) € graph (,’Mo) , and this proves the theorem.

(3.16) Theorem.
Let F:IxX — Y be a uniformly integrable multifunction, continuous in x , and

let A:D(A)<Y — Y be a maximal monotone operator.

Suppose that the solution set of (F - A) is dense in the solution set of (coF -
A) [see (3.8),(3.9),(3.11),(3.12) for sufficient conditions] , then the solution set map of
(F - A)is H-usc.

Suppose that the derivative of solution set of ( F) is dense in the derivative of
solution set map of (co F ) ; then the derivative of solution set map of (F) is H-usc.
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Proof:

We prove first that the solution set map of (co F - A) is usc. Let ((§,wy)) be a
sequence in graph(M'(CoF_A)) , as in Theorem (3.15) .By Remark (3.14) , ug=hy(u,) =
i(gk (uk).Ek) for some hye H , k=1,2,... ; setting Vk=0k(ug) , we get a sequence (v) in the
compact K'_, hence we may suppose that v—v weakly. Since v e clco {vk: k=1,2,...} and this
set is weakly compact and closed in L1 we may suppose that uy — u uniformly ; and since

V(1) = gi(up)t) e F(Lug(®)) < co F(tLug(t) a.e.

,we may apply the convergence theorem and conclude that v(t) e co F(t,u(i)) a.e.,

i.e. ve Gx«(u) . But the map (x,u)|— i(g(u),§) is continuous from XxKy to Ky , hence:
u=i(g(ug).&g) € i(g(u),§)=u , and this means that u is a solution of ( coF - A} , i.e.,

(&,u) € graph (M(coF-A)) , and this graph is closed. Since the solution set is in the compact K,
the solution set map of ( coF-A) is usc , and in particular it is H-usc.

By H-usc of ﬂ/[(coF_A) , for each &, fixed in 2, and each >0 we can find a e>0

s.t. 1€ - _E__Q} <e= M(coF-A) (&) < B [M(coF-A)(‘tvO) , 812]

and by density , M(CoF_A)(E;O) < B [M(F_A)(F;o) , 8/2] ; therefore ,

&gl <& = Mpp) €) < Migop.a) € < B [Migop.a) o) » 821 <B [ M (o), 51

This proves the first part of the theorem. The second part has a similar proof , and we omit it.
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