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electron mass.

electron charge.

mass of the k-th nucleus.

charge of the k-th nucleus.

position of the i-th electron.

momentum of the i-th electron.

position of the k-th nucleus.

momentum of the k-th nucleus.

set of all the nuclear positions {R4,..., Ry} .

set of all the electronic positions {r,,...,Tas} .
hamiltonian operator of the solid.

N-particle electronic hamiltonian.

N-particle electronic eigenstates.

N-particle electronic ground state.

eigenvalues of the N-particle electronic hamiltonian.
total,H,; plus ion-ion potential energy, hamiltonian.

eigenvalues of the total hamiltonian

total energy of the system, eigenvalue corresponding to the

ground state of Hy,

N-particle ionic eigenstates.
N-particle ionic eigenvalues.
effective one-electron hamiltonian.
one-electron eigenfunctions.
one-electron eigenvalues.

Hartree-Fock effective one-particle operator.
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Ey,

Erep
V(Ru)
U(r — Ry)
$a(r — Ry)
Cuiatl

electfonic kinetic energy operator.

electron-ion interaction operator.

Hartree operator.

exchange operator.

electronic kinetic energy plus electron-ion attractive energy.
electron-electron interaction energy.

ion-ion interaction energy.

Hartree energy.

exchange energy.

band structure energy.

repulsive energy.

two-body repulsive potential.

spherical atomic effectiv potential centered at atom £.
atomic orbital centered at atom £.

expansion coeflicients of the one-electron eigenfunctions
¥, (rj; R) on the set {¢o(r — Ry)}.

on-site energy integrals.

overlap integrals.

energy overlap elements.

energy of the 3s orbital of Silicon.

energy of the 3p orbital of Silicon.

hopping energy integral between 3s orbitals.

hopping energy integral between 3s and 3p orbitals.
hopping energy integral between 3p orbitals.

hopping energy integral between 3p orbitals.

scaling function.
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V= z structure equilibrium volume per atom.

E* z structure cohesive energy per atom.

B* z structure bulk modulus.

Ve‘i’; silicon diamond structure experimental equilibrium volume
per atom.

R. cut-off distance of Goodwin et al.[9] repulsive potential.

N, decaying-ratio of Goodwin et al.[9] repulsive potential.

Ry nearest-neighbour equilibrium distance for Silicon in the diamond
structure. |

Vo value of the repulsive potential at R,.

L Car-Parrinello lagrangian.

7 fictitious mass of the electrons.

1/.11-(1‘) time derivative of the one-electron wave function ¥;(r).

Rk time derivative of the nucleus vector position Ry.

A;j Lagrange multipliers.

F, Hellman-Feyman force acting on ion .

N;; instantaneous value of the dot product between

one-electron wave function v; and ;.

T dynamical variable controlling the thermostat acting on
electrons.

Te time derivative of z..

Q. mass of the thermostat acting on electrons.

TR dynamical variable controlling the thermostat acting on
ions.

TR time derivative of zg.

Qr mass of the thermostat acting on ions.
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total force acting on ion /.

average fictitious kinetic energy of the electrons.
Boltzmann constant.

physical temperature of the simulation.

matrix with the box coordinates.

primitive Bravais vector.

primitive Bravais vector.

primitive Bravais vector.

electron position vector referréd to the box, s = h'r.
ion position vector referred to the box, S = h'R.
metric tensor, G = h'h.

instantaneous box volume, Q2 = det(h).

box mass.

external pressure.

internal strain tensor.

abbreviated way of writing C,, ia.

time interval for numerical integration of the
Car-Parrinello equations of motion.

velocity of ion £.
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1 Introduction

The realization of a scheme which unifies the approaches of density functional
theory and molecular dynamics [1], allowing for a quantum mechanical calcu-
lation of the interatomic forces, represents a very important advance in the
field of computational condensed matter physics.

In principle fundamental and superior to any other proposed approach, in
practice it requires so much computational effort that its applicability is limited
to systems of approximately 100 atoms. An alternative scheme to overcome the
difficulties of a fully ab-initio approach has been proposed. In this scheme the
electronic energies and Hellman-Feynman forces are calculated by an empirical
tight-binding(TB) method. The compromise between computational speed
and accuracy of this so called Empirical Tight-Binding Molecular Dynamics
(ETBMD) scheme is considered satisfactory.

This work is a preliminary approach to the ETBMD scheme, an exercise to
learn the method and to discuss its applicability to different kinds of problems.
We have choosen to study silicon, which has been widely studied both with
ab-initio and semi-empirical methods.

The work is organized as follows: in section 2, we discuss in detail the
general features of Empirical TB methods. In section 3, the problem of trans-
ferability is addressed by studying several silicon bulk structures. In section 4
we give a short general description of the Car-Parrinello scheme for molecular
dynamics and then we describe briefly all the elements needed for the specific
calculations we intend to do. Section 5 is devoted to the simulation of the

Si(100) clean surface reconstruction. In section 6 we present the conclusions.



2 Empirical Tight-Binding methods

Each solid consists of electrons of mass m and charge —e, and nuclei of masses
M, and charges Z;. The interaction between these particles is purely elec-
tromagnetic. Considering only the Coulomb interaction, i.e. neglecting other

terms such as spin—orbit interaction, etc. , the hamiltonian writes

ZkZ,e
: % LR +22M LR R Y

k<t

IP:
The lower case letters r; and p; are used for the coordinates and momenta of
electrons, while the capital letters Ry and Py for the correéponding quantities
of the nuclei. The set of all the nuclear positions {R,..., Ry} will be denoted
for simplicity with {R}, and that of all the electronic positions {ri,...,rar}
with {r} .

In the Born-Oppenheimer approximation [2] the nuclear and electronic mo-
tions are separated allowing to handle the two eigenvalue problems indepen-
dently. The electrons move in the field of the nuclei considered fixed at some

positions {R}. The purely electronic problem yields a complete set of electronic

eigenstates {¥,(r;R)}
H,¥,(r;R) = EX(R)¥,(r;R), (2)

where H.; is the sum of the first three terms on the right hand side of (1). Both
the eigenvalues E’ff(R) and the eigenstates ¥,(r; R) depend parametrically on
the coordinates {R}. It is useful to combine H,; with the ion-ion interaction

term into the hamiltonian

ZkZﬂBQ

Hio =Hee+2ma (3)

k<t
which has the same eigenstates as H, with energies :
Znge

Etat R) = Eel + 4
H ( ) Z ‘Rk Rfl ( )

k<t



The ionic problem is given by

> grie + E(R)| I(R) = E"I(R). )
For each electronic state p the corresponding eigenvalue Eff (R) plus the ion-ion
interaction term act as an effective internuclear potential EZE(R).

In the first part of this work much interest will be devoted to the problem
of the electronic ground state ¥y(r;R) in correspondence to a given static
configuration of ions {R}. The total energy of the ground state will be given
by (4) with g = 0 ; in the text, when used without explicit specification, total
energy will have this meaning. The study of the quantum problem posed by
(5) is not going to be carried on. In the second part of the work, devoted to
dynamical simulations, the classical motion of the ions will be considered. The
forces acting on ions will be obtained directly from the effective internuclear
potential Ef’*(R) by means of the Hellmann-Feynman theorem. A fictitious
classical dynamics over the electronic degrees of freedom will be also allowed
in accordance to the Car-Parrinello [1] scheme.

In practice, the many-body terms of (2) make it difficult to be solved, so

that it is usually recast in a series of effective single-particle equations:

Hesru(rjs R) = enu(rjs R), (6)

in which the many-electron wavefunction ¥,(r;R) in (2) is constructed from
the set of the one-electron wavefunctions {¢,,(r;; R)} = {1.,(r;)} (the explicit
reference to the ionic coordinates will be dropped for simplicity) of (6).

In the Hartree-Fock approximation [3] the many-electron eigenstates in (2)
are expressed as a single Slater determinant of the {¢,,(r;)}. In doing so the

effective one-particle operator of (6) is given by:

HEY =T+ Uer + U + Ux. (7)



The first two terms of (7) Te; and U.s are the electronic kinetic energy and
the electron-ion interaction operators. These correspond to the first and third
terms of (1) respectively. The electron-electron interaction is described by
the integral operators Uy and Uy respectively the Hartree and the exchange

operators:
Uibn) = 3 [ an T e ®)

and
u, (7)) ()0, (r:)

|r; —I'J]

85 (9)

Uy, (r:) = ~622/d

The set of equations (6) represents a non linear eigenvalue problem. It has to
be solved iteratively in a self-consistent way.

The total energy expression of the system can be given now as:
EéOt - EKE——eI + Eee + EII (10)

In the first term we have grouped together the kinetic energy Te; and the

electron-ion attraction U.;. Formally it is expressed as

Fxpo = / dri (r) [Tot + Uer) s (x) (11)

The term E.. is the electron-electron interaction energy. It is the sum of the

Hartree energy

By =Y [ drgl, (5)Unby (v) (12)

1<y

and the exchange energy
E\ = /dm/) U\dju_]( ) (13)
1<yg

Finally, E;; corresponds to the ion-ion repulsion interaction energy given by
the last term of (1). All the equations given up to now consider all the electrons

in the system. For large systems, however, it becomes prohibitive to treat each



electron explicitly and one can make an approximation: since the valence elec-
trons dominate the interesting physical and chemical properties of the system,
only those electrons are explicitly considered as moving in an effective poten-
tial that includes all the interactions with the nuclei and the remaining inner
electrons. Unless different specified the term electron must be understood as
valence electron.

In the empirical tight-binding methods the electron-electron interactions are
not treated explicitly. These interactions are included via the parametrization
of the Hamiltonian matrix; that is, the electron-ion and electron-electron terms
are "lumped” into a single set of matrix elements. In the evaluation of the total
energy in the TB models, the electronic energy is expressed as a sum over the
occupied eigenvalues ¢,, of (6). In the Hartree-Fock approximation this is

written as:
Ebs = ZEV-' = EKE—eI + 2Eee (14)

where the subscript bs stands for band structure. The band structure energy
Ey, depends implicitly on {R}.

As can be seen from (11-14) the band structure energy Ep, overestimates the
electronic energy due to double counting of the electron-electron interactions.
In methods where the interactions are explicitly computed it is possible to
substract the extra terms. In the TB models this extra component of the energy
is not explicitly calculated and therefore E,, must be empirically corrected. As

first suggested by Chadi [4], the total energy of the system can be written as:
EéOt g Ebs + Ergp, (15)

where

Erep = E[[ - Eee' (16)



The term E,., contains the ion-ion and additional electron-electron terms. For
two ions that are separated by a distance much larger than the sum of the
atomic radii E,, is close to zero. Then a good approximation of this term will
be that of a short range potential. E,., can be thought as the sum of two body
repulsive potentials V(Ry) between all the pairs of nearest-neighbours (NN)
ions

Eep =3 V(Ri —Ryl) (17)

k<l
the explicit form of the V(Ry,) being something that has to be decided ad-hoc.
We will come back to this problem later on. The repulsive energy E,., depends
explicitly on {R}.

In order to find the band structure energy it is assumed that each electron
feels a potential due to the ions and to the other electrons, which can be
expressed as a sum of spherical potentials centered on each ion. The one-
electron effective hamiltonian reads :

N
Heff(R) = Td—l—tzll((r—Rg). (18)

The eigenfunctions of (6) are then expressed on a basis of atomic orbitals:

{da(r — R/} (19)

b, (r ﬁ Z Cuiaida(r — Ry) (20)

where a stands for all the quantum numbers that identify the orbital. This
is a key point in the TB methods: it restricts the applicability of the scheme
to systems where the electronic charge density is mostly localized around the
ions as it happens for example in semiconductors and transition metals. Each

orbital (19) satisfies the Schrédinger equation corresponding to the free atom



at which it is centered:

{Te; + U(r — Rp)} ¢a(r — Re) = €ada(r — Ry). (21)

The eigenvalues €, are the so called on-site energy wntegrals. In many TB

schemes the atomic orbitals {¢,(r — R¢)} are supposed to be orthonormal
Soll'al = /dr gb;,(r - Rl’)¢a(r —Ry) = 5a,al5l,l’ : (22)

this will also be our choice. The above orthonormality requirement can always
be fullfilled by using the Léwdin [5] orbitals in correspondence to the atomic
orbitals of (19). Alternative schemes which use non-orthonormal orbitals are
also possible, but we will not discuss them. The one electron eigenvalues of (6)
with H.f; in the TB approximation (18) are then given by :
o = [ dr () HIEu(x) = ‘le S Ot Cuei e (29
o'l @

with

Ha'l',al = 5a5a,a’51,1’ +
(1= 8) [ dr&(r — Rp)U(x — Ry)da(r - Ri) +

> (1=6p) / dr¢ i (r — Ry)U(r — Ry )¢a(r — Re).  (24)

-
As can be seen from (24) in the energy overlap integrals H_/y ., three contri-

butions can be distinguished:

e an wnter-atomnic contribution corresponding to the atomic energies, e.g.,

on-site energy integrals ¢, .

e a two-center contribution representing the interaction between two or-
bitals centered on two different sites mediated by an atomic potential

centered at one of the two sites.



o a three-center contribution representing the interaction between the or-
bitals of two different electrons mediated by an atomic potential centered

on a third different atom.

An explicit calculation of each H_/,, can be carried out in principle. In
practice the following series of approximations further simplifies the problem,

still retaining its main physical features:

1. Depending on the form of the potential /(r — R;) and on the radial
dependence of the atomic orbitals the sums in (24) can be limited up to
a certain distance (i.e. to a certain number of neighbouring atoms) from

each atom. We will refer to this truncation as a TB scheme up to n-NN.

2. For each atom, only the atomic orbitals retained to be relevant for a
correct description of the physical properties of the system under study
are considered. These will usually be the valence shell orbitals (valence
basis set). Low-lying excited states might also be needed in addition to

the valence ones (extended basis set).

3. Instead of calculate the overlap energies H,/y ,;, wich are relevant ac-
cording to 1.) and 2.), from equation (24) we treat them as tunable
parameters to be determined by means of a fitting procedure, in such a
way that the most relevant experimental and other ab initio theoretical
data are correctly reproduced. This approximation, first suggested by

Slater and Koster [6] makes the present TB method a semiempirical one.

4. Three-center integrals are ignored because they are systematically smaller
than the two-center ones, and much more complicate to obtain. In a

self-consistent TB this approximation will be hardly justified but in the



semiempirical approach the choice of the two-center parameters will take

them into account in an effective way.

With all these approximations the TB calculation of the band structure
term of (15) turns out to be quite simple. In the specific case of Silicon, within
the framework of a valence basis semiempirical TB up to first NN we need only
6 parameters: those relative to the sp® basis. We have the energies of the 3s
and 3p orbitals, (e,),(e,) and the hopping energies (sso), (spo), (ppo) (ppw)
corresponding to the interactions between s and p orbitals at the diamond NN
distance in the possible principal relative orientations between s and p orbitals
[6]. The energy overlap integrals of (24) between two arbitrarily oriented or-
bitals can be decomposed into the sum of principal orientation contributions
by means of simple geometrical rules. The general form of the interactions

between two orbitals s or p centered on two first NN with positions Ry and

R, is

Hsk,sk -

{
Hyppre = <5p>
0

Hygor =

Hy oo = (ss0)

Hsk',pk = <3P0’> Pr'y = — ! ok

Hy o = (ppo) Pk y + (ppm) (1 — Pi’k)

H pklpk T ((PP0'> (Ppﬂ'))Pk GPr e = Hpk',p’k (25)

where p,,+ stands for the direct cosines of the vector R,» — Ry, with p equal to
z,y or z. In the above equations a # o', k# k' and p#p.
We stress that the on-site energies (e,) and (¢,) differ from the neutral atom

values due to the different orbital occupancies in the solids; these occupancies



in turn depend strongly on the particular environment of each atom [7].

As mentioned above the values of the TB parameters are determined by
fitting some experimental and ab initio theoretical data corresponding to a
particular crystalline structure.

In silicon for example the values of the hopping energies (sso), (spo), (ppo)
(ppr) usually correspond to those of the diamond structure at the NN equi-
librium distance Ry. To get into account their dependance on distances R,/

different than R, a scaling function

fo= fo(Byy) (26)

such that f,(Ro) = 1, must be introduced. Then the value of, for example,
the (spo) hopping energy at Ry, will be given by (sps) fo(R ). In general
f, is choosen to be the same for all the different states of coordination and
electronic hybridization.

It should be clear from this discussion that there is not a unique TB
parametrization: the value and the number of the parameters varies according
to the number and species of the atomic orbitals of the basis (19) and also
to the order of the NN shell included in the calculation. However, the differ-
ent set of experimental and ab initio theoretical data considered in the fitting
will make distinguishable two TB models which are identical from the point of
view of the basis orbitals and NN taken into account. We have also to choose a
functional form for the two-body short range potential V(Ry;) and the scaling

function f,.
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3 Application to bulk Silicon

Due to its technological importance silicon has been the focus of a very large
research activity, both experimental and theoretical. Many structural, vibra-
tional, thermodynamical, electronic, and optical properties of this material are
already well known. The reader must not expect new relevant results from the
present work: the application of the TB method (i) mainly to bulk Si, and
—as a first preliminar approach— to (7i) some selected surfaces is intended
to be an exercise to learn the method, to discuss its applicability to different
kinds of problems, and as a starting point for further applications to other
more complex systems. In particular the calculations described in the present
Section reproduce some work which has already been done and published by
other authors.

As explained in the previous section, a valence basis TB model of silicon
up to the NN shell, requires 6 tunable parameters, (e,), (€,), (ss0), (spo),
(ppo) (ppr), a two-body repulsive potential, V(Ry), and a scaling function f,.
Unless explicitly specified the term tight-binding parametrization will refer to
all the needed elements for a TB description of a material.

Once the functional form of V(Ry) and f, is conjectured, and the exper-
imental and ab initio data to be used in the fit are choosen, the fitting can
be carried on. This will be done in a series of steps. Commonly the 6 elec-
tronic parameters are obtained first and then those caracterizing the two-body
potential and the scaling function. A good parametrization is not required
to describe perfectly the electronic and structural properties of a single, (e.g.
diamond) structure, but rather to describe reasonably well a wide variety of
structural geometries caracterized by different bond lenghts and coordinations

(this is also called transferability). This seems to be partially incompatible

11



with an accurately modelling of some of the local properties of the diamond
silicon structure. Harrison [8] TB parametrization illustrates clearly this point.
There the electronic hopping parameters were fitted by requiring that the main
free-electron and TB energy bands of the diamond structure are equal at the
I' and X points of the Brillouin zone (BZ). The on-site energy parameters (€s)
and (e,) were taken from Hartree-Fock calculations. The form of Harrison’s
scaling funcion f,(R) ~ R~? comes out from the distance dependece of the free-
electron eigenvalues. The two-body short range repulsive V(R) potential was
determined to scale as R~ using extended Hiickel theory results. The propor-
tionality constant Vi (V(R) = VoR™*) was determined by fitting the equilib-
rium lattice parameter of the diamond structure. When tested on other silicon
crystalline structures the Harrison TB parametrization gives poor results. In
particular it overestimates the equilibrium volume of closed packed cubic lat-
tices; it gives the diamond structure more closed-packed than the FCC one.
L. Goodwin, A.S. Skinner and D. Pettifor (GSP) [9] were able to correct this
deficiencies obtaining a very simple transferable TB parametrization. Other
parametrizations [10] are now available, but they will not be discussed in this
work.

As just mentioned the very first step is the determination of the 6 electronic
parameters (€,), (&), (sso), (spo), (ppo) (ppm) . In the GSP parametrization
they are essentially those proposed by Harrison (8], the only difference being
the on-site terms (e,), (€,). This is because, as pointed out in the preceeding
section, the on-site term are environment dependent so they must enter the
fitting procedure on the step that considers the other structures. In Table (I)
the electronic parameters given by Harrison (8], Goodwin [9] and Chadi 4]

12



Table I: TB electronic parameters in V.

Parametrization

Goodwin | Harrison | Chadi
() | -6173 | -14.79 | -5.25
(e,) 2122 | -7.58 | 1.20
(ssa) -1.82 -1.82 -1.94
(spo) | 1.96 1.96 | 1.75
(ppo) | 3.06 3.06 | 3.05
(ppr) | -0.87 0.87 | -1.08

Table II: Values of the relative equilibrium volumes (REV) for the lattices considered

dia SC | BCC | FCC | B-tin | sh

TB 0.996 | 0.857 | 0.775 | 0.840 | 0.772 | 0.817
ab initio | 1.011 | 0.808 | 0.736 | 0.735 | 0.773 | 0.727

13



are reported. Chadi’s parametrization is included only for comparison, it can
be used only nearby the silicon diamond equilibrium structure.

The results for the band structure of Si diamond corresponding to the three
different set of electronic parameters of Table (I) are given in Figs. (l.a—c).
They are shown together with ab initio [11] calculations. Harrison’s and GSP’s
sets of parameters give a better description of the highest valence bands than
Chadi’s one. On the other hand Chadi parametrization is the only one which
gives an indirect gap(1.15 eV), although at the wrong point (I' — L, rather
than I' — X); experiments give an indirect gap of 1.17eV between X and
T. Harrison and GSP electronic parameters predict a direct gap at I' of 1.86
eV and 0.77 eV respectively. Conduction bands are reproduced with a worse
accuracy than valence bands. Their description is improved either with a TB
up to a higher number of NN or by enlarging the number of atomic orbitals
used in the basis, e.g., including Louie peripherial states s* [12]. This is beyond
of the scope of this work.

The transferability of a TB parametrization can be discussed by study-
ing the curves of total energy versus volume for several different structures.

Harrison’s TB model with a scaling function and two-body repulsive potential

Ro\?
- (3
fm = (&
Ro\*
V(R) = V(R)(F) (27)
(where Ry = 2.35 A is the equilibrium NN distance in the diamond structure
and V(Ry) = 3.4581 V), as already pointed out, underestimates the equilib-
rium volume of closed-packed cubic structures. If we denote V dia the equi-
librium volume per atom of the diamond structure (whose experimental value

is 20.02 ;13[13]) and as V* that one of the z structure, the following ordering

of the relative equilibrium volumes (REV) is to be expected in accordance to

14



Figure 1: (a.): Band Structure obtained with GSP electronic parameters reported on Table

(I). Open circles correspond to ab initto calculations [11]
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Figure 1: (b.): Band Structure obtained with Harrison electronic parameters reported on

Table (I). Open
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Figure 1: (c.): Band Structure obtained with Chadi electronic parameters reported on

Table (I). Open circles correspond to ab wnitio calculations [13]
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In Harrison’s scheme the FCC lattice, the most close-packed cubic structure,
comes out with an equilibrium volume (EV) per atom larger than that of the
diamond structure. This can be seen in Fig. (3.c); figure (3) is the original
figure of GSP work.

The cohesive energies E. are referred to the energy of isolated Si atoms
in the ground state electronic configuration 3Py, corresponding to the two p-
electrons having the same spin direction according to the Hund’s rule. The
energy of these spin-polarized configuration is found to be experimentally

0.757eV/atom [14] below that of paramagnetic Si(' D), given by 2((e,) + (€,)).
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Figure 2: GSP original figure: in a) are shown ab initio curves of Yin and Cohen [15], in
b) those obtained with GSP TB parametrization [9] and in c) those obtained with Harrison

TB parametrization [8].
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Figure 3: Curves of cohesive energy per atom(E.) vs. relative volumes obtained by us
with GSP TB parametrization as described in the text. Dots indicate the minimum of Yin

and Cohen curves[15].
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Figure 4: Harrison[8] and GSP[9] scaling function fs(R)
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Figure 5: Harrison[8] and GSP[9] two-body repulsive potential V(R)
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Table III: Lattice parameters in (4) and equilibrium cohesive energies E. in (eV/atom)
of several lattices. TB results were obtained by us as described in the text; ab initio data
for all the structures except the sh are directly reported from Yin and Cohen (Ref.[15]).
Data for the sh indicated with the asterisc were derived by ourselves using Murnagham[18]

equation to extract the information from other values reported in Ref.[15].

lattice TB | ab initio | Exp.

dia | a | 5424 | 5.451 | 5.431
E.| 471 | -4.67 | -4.63|
SC | a | 2.579 2.53
E.| -416 | -4.32
BCC | a | 3.143 3.09
E. | -3.92 | -4.14
FCC | a | 4.066 3.89
E.| -4.04 | -4.10
SH | a | 2733 | 2.622°
c | 2.528 | 2.444
E. | -4.350 | —4.608"
B-tin | a | 4.825 | 4.828
c | 2.654 | 2.655
E,|-4.375 | -44

The description of closed—packed cubic structures by Harrison TB parametriza-

tion is improved with the use of the GSP scaling function and two body po-
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tential

iy = (5 oo o (-2 ()

V(R) = V(R@(%)mexp {m (— (7?) 4 (%’—))} (29)
where n = 2, m = 4.54, r, = 3.67 A, n, = 6.48 and V(R,) = V; = 3.4581eV.

We show in Figs. (4) and (5) Harrison and GSP scaling functions and the
two-body repulsive potentials. On the figures the diamond nearest and next-
nearest-neighbour (NNN) separations are marked. The FCC NNN separation,
which is not indicated in the figures, lies close to the diamond NN separation.
The figures illustrate the rapid decay of the GSP scaling function fs and of
the two-body repulsive potential V(R) with respect to those of Harrison; it is
this rapid decay that allows for a better description of the close packed cubic
structures.

In GSP’s work the diamond bulk modulus B%?, equilibrium volume V*
and cohesive energy E%® were taken from the experimental values, e.g., 0.978
Mbar [13], 20.02 A [13] and -4.63 eV /atom [13] respectively; the following
parameters

m, A€gp, Mg, Te (30)
where Ae,, = (€;) — (&), were fitted to the quantities:
A, = E°—EX
A, = EFCC_ g

BFCC
yFec (31)

where E¥, E3 and EFC, are respectively the equilibrium cohesive energies
(ECE’s) of diamond, simple cubic and fcc phases, BFCC is the FCC bulk
modulus and VF¢C is the FCC equilibrium volume.
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In the curves of Fig.(3.b) and (3.c) for the diamond, simple cubic and FCC
lattices only first-neighbour interactions were included in the calculation of the
total energy; in that of the B-tin lattice also second-NN were.

We decided to test the applicability of GSP TB parametrization on other
crystal structures than those reported in Goodwin’s work. In particular, we
were interested in the simple hexagonal and BCC lattices. Owur results are
presented in Tables (III), (II) and Fig. (3); we also include in our calcula-
tions the lattices already studied. In all the structures but B-tin and simple
hexagonal only first-neighbour interactions were included in the calculation of
the total energy; for B-tin and simple hexagonal also second-neighbours were.
To calculate the band structure energy (14) we perform BZ integrations using
the special point technique suggested by H.J. Monkhorst and J.D. Pack [16]
with the Gaussian-smearing method [17] for metallic structures. The curves of
Fig.(3) were obtained by a least-squares-fit to Murnagham’s equation of state
[18].

The present energy-volume curves are different from the published ones of
Fig.(3). There is a sisternatic shift of about 0.2 eV in the ECE, our curves
lying above GSP’s ones. Since we include the same nearest and next-nearest
neighbour interactions than those reported by GSP, the difference on the curves
may probably lie in the different method for calculating the band-structure
energy. GSP used the recursion method (ref.[5] of GSP work).

The cubic structures are well described, even though condition (28) is not
fully satisfied as can be seen from Table(II). The errors in the ECE and REV
are within the 10%. For the diamond structure the results were compared
with the experimental data of [13] for the REV’s and to that of ref.[32] of Yin
and Cohen for the ECE’s. For the FCC, BCC and SC structures all the data
were compared with the ab initio results of [15]. The only quantity that from
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calculations turns out with an error above the 10%, i.e. & 15%, is paradoxically
one of the inputs of the GSP fit: the relative equilibrium volume of the FCC
lattice. This can be attributed again to the difference in the methods used for
calculating the band-structure energy. The results for the REV’s and ECE’s

of the B-tin are in very good agreement with ab initio values.
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4 The Molecular Dynamics scheme

Classical molecular dynamics simulations has been attracting a lot of interest
due to their powerful capability of studying systems at finite temperature, in
the investigation of kinetics in various processes, as well as in locating the
ground state of complex systems with many degrees of freedom. However, the
application of the method to real systems is limited by our knowledge of the
interaction potentials or forces acting among the atoms.

No conventional pair potential can stabilize the tetrahedral structure be-
cause pair potentials fail to represent the strong electronic covalent binding
effects present in such a structure. It is indeed possible to achieve it with the
use of complicated forms for the interaction potential. However, such poten-
tials cannot describe satisfactorily all the different states of coordination and
electronic hybidization of Si [19].

On the other hand, much progress has been made during the past decade
in the calculation of various structural and vibrational properties of solids,
in a fundamental first-principles approach with the use of density-functional
calculations. However, such calculations were almost always limited to con-
siderations of zero-temperature systems. The investigation of disorder and
temperature effects is still a difficult problem.

Recently, R. Car and M. Parrinello [1] proposed a scheme which unifies the
approaches of density functional theory and molecular dynamics and allows a
quantum-mechanical calculation of the interatomic forces. This scheme is, in
principle, fundamental and superior to any other proposed approach. How-
ever, in practice it requires so much computational effort that, at present, it is
restricted to rather short simulation times, of the order of a picosecond, and

small number of atoms, few hundreds at most on the most powerful parallel
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machines available today.

To handle with the limitations of the Car-Parrinello scheme a simplified one
has been proposed [20] which tries to overcome the difficulties in the fully ab
initio approach by calculating the electronic energies and Hellman-Feynman
forces by an empirical TB method like the one described in the first section. It
is called the Empirical Tight-Binding Molecular Dynamics (ETBMD) method.
In what follows we will describe some general features of the Car-Parrinello
scheme; the specific details regarding the ETBMD method will be discussed
later on.

The Car-Parrinello scheme

The underlying idea of the Car-Parrinello scheme is that a fictitious dynam-
ics is introduced for the electronic wave functions. This fictitious dynamics
is treated in the same manner as the dynamics of the atoms by integrating
Newton-type equations of motions. The classical dynamical evolution of the

electronic and jonic variables is generated by the Lagrangian:

£ ({Ra}, {Re} o)} {d(0)}) = ar +

1Y

3 2o Mk — B ((Ra} (6o} + zAu (/ ¢:<r>¢j<r)dr—6ﬁ) (32)

where the electronic wave-functions ;(r) = (r|y;) are regarded as classical
fields, M; are the ionic masses, E{* is the total energy functional, p is a
masslike parameter with dimensions of an energy times a squared time, and
the last term ensures orthonormality of the wave-functions.

The equations of motion resulting from the Lagrangian (32) are:

. 5Etot
[.L’l/),'(l', t) = 5’(,0 Z AlﬂbJ
. 8Etot
MR, = GR, = Fy, (33)
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and

Ny() = [wimen, O = 6y (34)

From Eqns.(32) and (33) the unknowns t;(r,t), R(t), and A;;(¢) can be ob-
tained for any choice of the initial conditions R(0), Rg(O) ¥i(r,0), 4 (r 0) such
that IV;;(0) = 6;; and N;;(0) = ;.

The Parrinello-Blchl solution of the adiabaticity problem

The dynamics generated by the Car-Parrinello Lagrangian (32) is meaning-
ful only if the electrons are in the ground state for each instantaneous ionic
configuration, i.e. they stay on the Born-Oppenheimer surface. This implies
that the two subsystems, electronic wave functions {¢;(r)} and ions must not
be in thermal equilibrium; the temperature related to the electronic wave func-
tions must be very low compared with the physically relevant temperature of
the atomic subsystem. However, the tendency of the system is to transfer en-
ergy between the electronic and ionic degrees of freedom and equilibrate the
temperatures of the two subsystems. In this way the electronic wave-functions
tend to heat up and leave the Born-Oppenheimer surface, accompanied by
a cooling of the atomic systems. For non metals the classical adiabatic ap-
proximation is enough for the electons to be always in the Born-Oppenheimer
surface. For metals it is not. The problem was solved by Blochl and Parrinello
[21] combining two Nosé [22] thermostats to the Car and Parrinello method of
(32). The equations of motion in the Parrinello-Blchl scheme corresponding

to those of (33) are given by

. 6Etot .
/M,b,'(l‘,t) = 5'¢ ( + ZAlﬂbJ d)i(rvt)xfﬂ
MR, = F,— M[Rga:R = F (35)

We will denote as F; the Hellman-Feynman forces and as F; the forces acting
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on the atoms in the simulation. In general they are different because of the
inclusion of extra degrees of freedom such as Nosé thermostats or, as will
be illustrated in what follows, simulation-box dynamics. The last term of
equation (35) is a friction term which couples electronic wave function and
ionic dynamics to the Nosé thermostats. These friction terms are governed
by the dynamical variables z. and =g, which obey the following equations of

motion:
Qele = 2 {Z#/ I%Li(l‘)t?dr - Ekin,o]‘

Qrér = 2 [Z SMR? - —;—ngT} (36)
The fictitious kinetic energy of the electronic wave functions fluctuates about
the mean value E;,o and the average kinetic energy of the ions is %gk‘BT,
where g is the number of degrees of freedom for the atomic motion, kp is the
Boltzmann constant, and 7' is the physical temperature of the simulation. The
masses Q. and Qp determine the time scales for the thermal fluctuations.

A proper choice of the value of Ejinp is very important for a physically
relevant simulation: if, on one hand, this value is too large, the electronic
wave functions will depart from the Born-Oppenheimer surface and eventually
become meaningless. If, on the other hand, it is too small, the electrons cannot
easily follow the atomic motion, which results in a delay of the ionic motion.
In Ref. [21] are given some clues about the adequate choice of Eiin -

The Parrinello-Rahman scheme for phase transition simulations

A pressure driven phase transition of a solid can be studied on a computer
simulation only if the volume and possibly also the shape of the simulation box
are allowed to change during the simulation; this simulation box properties
are to be considered as dynamical variables. It was first proposed, within

the framework of classical molecular dynamics, a coupling of the system to
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an external variable V, the volume of the simulation box[23]. This coupling
mimics the action of a piston on a real system. Best suited for solid state
simulations is to allow the simulation box also to change in shape; this is
what was done by Parrinello and Rahman([24] work also in the framework of
classical molecular dynamics. Generalized to the Car-Parrinello scheme of (32)

the Parrinello-Rahman approach leads to the following equations of motion[25]:

§EL!

",‘ s,t) = ——— + Ai;5(s
/L’l)b( ) 577/)‘ (S) ; 7 J( )
. SElt ..
MS; = ———5(h')50 — Gap0s, ST = 7 (37)
where r = hs, R = hS with
h = (a,b,c) (38)

is the matrix made up with the three primitive Bravais vectors (a, b, c) where
the vectors constitute its columns. The metric tensor G = h'h gives the relation
between the distances in real, e.g. R, and scaled, e.g. S, coordinates. The

dynamics of the box will be given by:
Whas = (Tas — pay) (B4 (39)

In the above equation ! = det(h) is the instantaneous volume of the simulation
box, W is the box mass, p is the external pressure and II is the internal stress
tensor. We will come back to this considerations in the next section where
the problem of the single dimer geometry in the ground state configuration of
the reconstructed Si(100) surface will be faced. There we will allow also for a
dynamics of the simulation box according to (39).

The ETBMD scheme

Originally in the Car-Parrinello scheme the electronic contribution to the
total energy E[* in (32) was calculated within the local-density-functional ap-

proximation with a plane-wave basis set. A parametrized TB approach to
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calculate the total energy (see (15) ) reduces drastically the computation time.
It was estimated that a TB code runs about a factor of 20 faster than the
corresponding density-functional version [20]; the compromise between compu-
tational speed and accuracy of the ETBMD scheme is considered satisfactory.

As stated before in the TB approximation a minimal basis set like that of
(19) is used, consisting only of those orbitals which are occupied or partially
occupied in the free atom; the matrix elements of the Hamiltonian are treated
as tunable parameters. The electronic wave functions ;(r,t) are expanded in

the localized basis functions of (19) as :

U; (I‘ t) = \/__ Z C,af I‘ — Rf) (40)

In this way the dynamics of the electronic degrees of freedom will be in terms of
the coefficients {Cin¢(t)} of expansion (40) insted of the wave-functions ¢;(r, t).
For example, equations (33) and (34) are written in terms of the expansion

coefficients as:

. é‘Etot
#Cim(t) = 50,( Z AIJCJm
w O Etot
MfR[ = - 81:\?.5 - F£ (41)
and
> Ch(t)Cim(t) = &5 (42)

where the index m stays for (3, a).

The ’velocity Verlet’ algorithm for numerical integration

In practice the equations of motion for ions and electrons are integrated
numerically. In the calculations performed in the next section we use for this

purpose the *velocity Verlet’ algorithm[26], which for the ionic coordinates takes
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the following form

Ri(t + At) = Ry(t) + Vi(t)+ ZATtIg F
Vet +At) = Vo+ At [ Fe () + Fe (t+ At)) (43)

2M,

An analogous of the above equation holds also for the coefficients C;,,. The
dynamics for the electrons is usually performed only on the coordinates be-
longing to the occupied subspace of the electronic eigenvectors; the vectors
of the unoccupied subspace do not enter. We also adopt this scheme for our

simulations.

5 Application to Silicon surfaces

In section 2 we studied the applicability of the GSP TB parametrization to
bulk silicon. The equilibrium volumes and cohesive energies for a series of
structures were calculated, the results showing satisfactory agreement with ab
wnitio calculations; a more demanding test for a TB parametrization comes
from the study of surface reconstructions. We will focus in what follows on the
Si(100) clean surface reconstruction.

A truncated 1x1 Si(100) surface, Fig. (6.a), contains two unsaturated or
dangling bonds per atom; the system tends to minimize its energy by recon-
structing its surface. Theoretical [27] and experimental [28,29] evidence shows
that this reconstruction is accompained by the creation of dimers; i.e., surface
atoms move toward each other as indicated on Figure (6.b). Furthermore, these
dimers are tilted and asymmetric (Fig. 6.c). The tilting is accompanied by an
electronic charge transfer from the lower to the upper atom of the dimer. In
addition to that, the dimers can arrange themselves in various patterns on the

surface with different supercells and thus many reconstructions of the surface
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are possible. In Figure (6.c, .d, .e) we show a few important reconstructions
for the Si(100) surface, the (2x1), p(2x2) and c(4x2) respectively.

The calculated energy difference per surface atom between the bulk trun-
cated surface and the (2x1) symmetric dimers reconstructed surface(Fig.(6.b))
is in the range 0.5-0.8 eV [27], the appearance of dimers lowering the energy.
Tilting of dimers further lowers the energy. The (2x1) tilted dimers recon-
structed surface(Fig.(6.c)) has an energy of about 0.05 eV per surface atom
lower than the (2x1) symmetric dimers reconstructed surface.

The relative stability between the (2x1) and other high-order reconstruc-
tions, such as p(2x2) and c(4x2), represents a difficult problem since the energy
differences among the different reconstructions are of the order of few tenths of
meV per surface atom [27]. The smallness of this energy differences is due to
the fact that dimers are weakly interacting one with each other [30]. Instead
of trying to establish the relative stability between a series of candidate tilted
dimers reconstructions in what follows we will focus on the study of single

dimer properties.

5.1 Si(100) surface reconstruction:
single dimer properties

In order to simulate the Si(100) surface we consider a slab of eight silicon layers
with 16 atoms per layer (128 atoms in total). Top and bottom layers correspond
to the two surface layers. We indicate with (xy) the planes parallel to the
surfaces, and z is the perpendicular direction. Periodic boundary conditions
are applied in the (xy) planes to simulate an infinitely extended surface. We
will label the layers as 1,2,3, ... ,8 from the bottom to the top.

Surface dimerization causes sizeble elastic distortions of deep layers [31].
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In our simulation cell layers 4 and 5 should retain bulk properties. To study
individual dimer properties it will be in principle sufficient a slab with just one
(2x1) unit surface cell. On the other hand a larger size of the simulation cell is
required for a proper calculation of the band structure term, since only the T’
point is used in sampling the Brillouin zone. We obtain a reasonable conver-
gence without too much computational effort with 16 atoms per layer. This
cell size allows for surface periodicities up to 4x4. The bulk NN equilibrium
distance used was 5.424 A.

The surface formation energy is defined as the energy needed to create
a surface from the bulk. Our TB calculation gives that to create an ideal
unreconstructed clean 1x1 Si(100) surface 1.61 eV /surf.atom are needed.

The ‘dynamical quench’ procedure used proceeds along the following steps:

o Start with the ions at a temperature of 300 ° K degrees.

o Start a Car-Parrinello dynamics without external pressure but allowing

also for box dynamics.

e Quench over the ionic degrees of freedom: every time that

va f[ <90 (44)
£

then
v, =0,¥¢ (45)
e Quench over the boz degrees of freedom: the same as above.

e We stop when the change in the total energy of the system ef?® was less

than 10~*eV/atom over the last few hundred steps of the simulation.
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All over the quench we have a thermostat like that of (35) and (36) acting on
the electrons. The thermostat on the ions is off. The values of the simulation
parameters used in all our calculations are shown in Table (IV).

The starting point for the first calculation was the ideal unreconstructed 1x1
surface. Only for this calculation in addition to heating the ions we randomly
displaced them by about 0.1A. After 3500 quenching steps we didn’t find any
evidence of dimers on the surfaces, the surfaces looking similar to the ideal
unreconstructed one. The energy gain results to be of -0.04 eV /surface atom
coming mainly from ionic relaxation along the z direction. In Table(V) we
report the average interlayer distances of the upper half of the slab, the lower
being almost identical; bulk interlayer distance is also reported for comparison.

We decided then to start from a surface configuration with the dimers al-
ready formed. From the slab with the two ideal unrecontructed 1x1 surfaces
we move by hand’ only the upper and lower surface atoms (all the other atoms
were kept at the ideal bulk positions) in order to get symmetric dimers. We
kept all bond lengths fixed. In few words we start from a 2x1 symmetric
dimers reconstructed surface like that of Figure(6.b). A 3D view of the up-
per half of our simulatioﬁ cell is shown in Figure(7). The energy difference of
this symmetric dimers configuration with respect to the ideal unreconstructed
1x1 surface was found to be 0.05 eV, the ’reconstructed’ configuration lying
above the ideal one. This result seems to disagree with the well established
fact that surface dimerization is energetically favoured. However, as stated be-
fore, surface dimerization causes also sizeble elastic distortions of deep layers,
distortions not allowed in our present configuration. This explains why we get
a positive energy gain.

After 3000 steps of quench we got that all the dimers on both surfaces were
tilted, the energy gain of this final configuration being of -0.44 eV /surf.atom. A

32



Figure 6: Schematic indication of : (a) top view and side view of the ideal (truncated
bulk) Si(100); top view and side view of the symmetric (b) and asymmetric (c) dimer 2x1

reconstructions; top view of the p(2x2) (d) and c(4x2) (e) asymmetric dimer reconstructions.
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3D view of all the slab is shown in Figure(8); 3D and top-view(upper surface) of
the upper half are shown in Figures(9.a,.b), for the lower half these are shown
on Figures(10.a,.b).

As expected from what stated in the introductory remarks the tilting of the
dimers is energetically favorable. Although the periodicity of the dimer recon-
struction of the two surfaces is different the configuration of the dimers are very
similar. Single dimer configuration is illustrated on Figure (11), and the rel-
evant characteristic quantities (lengths, angles, charge transfers) are reported

on Table(VI). The charge transfer 8q is defined as

bq = L (46)

where ¢; and g, indicate the charge (in units of the electron charge) of the
upper and lower atoms of the dimer( see Fig. (11) ).

Our results are in reasonable agreement with those of other theoretical
calculations. The values of the tilting angle 6, the difference dz of the z
coordinates of the two atoms of the dimer and the bond-lenght 75 are in
good agreement with those obtained from density-functional-theory calcula-
tions ([30],[32]). Other TB molecular-dynamics studies ([20]) give also results
close to ours. Chadi’s results ([4],[33]) are in reasonable agreement with ours.

It is difficult to determine the single-dimer properties from experiments.
It can be done for example by LEED experiments in an indirect way. The
experimental variation of scattered beam intensity against incident energy is
compared with that obtained by an elaborated calculation. The coordinates of
the surface and subsurface atoms are determined by fitting the experimental
intesity profiles with those obtained by the calculations. In Table (VI) we
report one of these LEED-fitting results ([28], Yang, Jona and Marcus work).

It can be seen that the only quantity in good agreement with our calculation
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is the dimer bond-lenght r;;. For # and dz the error is of the order of 50
%. However the LEED values were obtained by fitting the experimental data
to an assumed 2x1 tilted dimer reconstructed surface. It is well established
from STM experiments [29] that the samples exhibit a complex geometry, i.e.
they show coexistence of symmetric and asymmetric dimer domains, as well as
dimer vacancies. Taking this into account the values for 6 and dz of Table (VI)
coming from LEED experiments must be interpreted as mean value results,
that is as an average over symmetric and asymmetric dimers domains. All the
above mentioned experiments were carried on at finite temperatures, the lowest
reported being 120° K ([29]) while our calculation corresponds to the ground
state, i.e. T=0° K, configuration. In Wolkow’s work it was directly observed
that the cooling up to 120° K is accompained by an increasing of the number
of buckled, i.e. twisted, dimers and conversely by a reduction of symmetric
dimers.

The distances between the atoms belonging to two adjacent dimers are
all longer than the NNN distance for bulk silicon (~ 3.8 A), at this internu-
clear distance the two-body repulsive potential V(R) and the scaling function
fs(R) are almost negligible, resulting in a weak coupling of the dimers. This
weak coupling between the dimers is however confirmed by other theoretical
results[30].

We can therefore conclude that GSP parametrization gives reasonable re-
sults also when applied to the problem of the reconstruction of the Si(100)
surface, supporting the well established experimental and theoretical evidence

of tilted dimers as the building block of the reconstruction.

35



Table IV: Simulation parameters

Parameter Value Units

At 1.62x10~ s

72 0.01 eV x s?

M, 4.67x107% g

Q- 1.16x1073¢ eV x s?

W 2.32x10% g

Egino 1x1073 eV /electron state
g 3

Table V: Interlayer distances in A
8«7 |7+ 6|6«5|5< 4| bulk

1.443 | 1.401 | 1.384 | 1.376 | 1.356

36




Figure T: Symmetric dimers initial configuration, 3D view
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view

Total slab after the quench, 3D

Figure 8
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Figure 9: Upper half after the quench: 3D and top(upper surface) views
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Figure 10: Lower half after the quench: 3D and top(lower surface) views
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Figure 11: A single dimer

Table VI: Single Dimer Properties

g 5q dz(A) r12(A)

This work || 16°41.04° | 0.3240.02 | 0.6740.04 | 2.42::0.005

Ref.[30] 15°

Ref.[27] 11° 0.45 0.45 2.35

Ref.[33] 11° 0.36 0.43 2.35

Ref.[20] 0.39 0.59

Ref.[32] 13° 0.69 2.29

Ref.[28] | 8.5°%1° 0.364-40.05 | 2.47+0.3
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6 Conclusions

A preliminar work based on the Empirical Tight-Binding Molecular Dynam-
ics(ETBMD) scheme has been presented here, aimed basically at learning the
method and discussing its applicability to different kinds of problems. We
choose to study silicon, being the focus of a very large experimental and the-
oretical research activity. Among the various TB parametrization available in
the literature we chose the one proposed by Goodwin, Skinner and Pettifor [9]
which turns out to be simple but accurate enough.

After a general discussion about Empirical TB methods we studied the
transferability of the parametrization considered. The curves of cohesive en-
ergy versus volume were computed for several lattices; to this purpose we
implemented a FORTRAN code which can be used for further applications to
other more complex systems. The curves above mentioned were in reasonable
agreement with those from ab nitio calculations.

We tested the Empirical TB method by studying the Si(100) clean sur-
face reconstruction. Our results provide further evidence of tilted dimers as
the building block of the reconstruction. The single dimer geometry was in
accordance to that obtained from other ETBMD simulations and ab initio cal-
culations. The study of surface reconstruction requires quite large simulation

cells. We carried on our simulation with a 128 atoms cell with a non parallel

ETBMD code on an IBM Risc 6000/580 machine.
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