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Introduction

In the last few years there has been an increasing interest in the possibil-
ity of performing self-consistent calculations in the density-functional scheme
without invoking orbitals [1-7]. The conventional approach to the first-principles
calculation of ground state properties relies on the solution of the one-electron

Kohn-Sham equation
{—%Vz + ‘Ueff(X)} 1/1(1()() = Eq ¢a(x) : (1)

where

Verf(X) = vVert(x) + / ]xi(——f;—gq dx' + vge(n(x)) . (2)

The charge density is then recovered from the single-particle wavefunctions

1o(x) by the ansatz

n(x) =D [Wa(x)” ber —€a), (3)

e, being the Fermi energy, and a new iteration is started with the effective
potential obtained from eq. (2).

From a computational point of view, the time consuming part of this strat-
egy is the solution of the Kohn-Sham equation, which is generally accomplished
by expanding the single-particle wavefunctions %,(x) in some appropriate basis
set and calculating the eigenvalues and eigenvectors of the hamiltonian matrix
in this representation. With the use of iterative diagonalization techniques, the
workload needed for the evaluation of the occupied single-particle wavefunctions
is proportional to NM?, where N is the dimension of the basis set and M 1is
the number of occupied states; this is due to the fact that the orbitals have to

be kept orthogonal during iteration. Since both N and M are proportional to
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the number of atoms in the unit cell (N,;), the computational effort required
by the orbital approach to the Kohn-Shain equation scales as NJ,.

In principle, within density-fung;cional theory, the ground state properties of
an interacting electron’systgm are completely determined by the charge density,
which plays the role of a basic variable. Therefore it should be possible to
bypass the Kohn-Sham orbitals, and to devise an algorithm leading directly
to the charge density. Since the local density of states at a given point, as
pointed out by Friedel [8], is a stable quantity with respect to a variation of the
boundary conditions far from that point, this algorithm would naturally scale
linearly with the size of the system.

Let G(x,x';z) be the real-space representation of the Green’s function

associated with the Kohn-Sham hamiltonian H.ry = —%Vz +vepp(x)
G(x,%';2) = (x|G(2)|x') = (x| (z — Heps) " 1¥) - (4)

In terms of the Kohn-Sham eigenvalues ¢, and eigenfunctions %.(x), the
Green’s function reads:

G(x,x';2) = Za M@ , (5)

Z—EQ

The charge density n(x) has a simple expression in terms of the diagonal ele-

ments of the Green’s function:

n(x) =2 L G(x,x;z)dz , (6)

where the factor 2 accounts for spin degeneracy, and C is an integration contour
in the complex energy plane enclosing the whole spectrum up to the Fermi
energy. Eq. (6) is readily proved starting from eq. (5) and making use of the

theorem of residues.




In order to get an algorithm which scales linearly with the size of the
system, the workload required for the evaluation of the integral appearing in
eq. (6) must not depend on the size of the system. The number of points at
which G(x,x;z) has to be sampled depends on:

i) the length of the integration contour C, which is related to the width of
the valence band;

ii) the smoothness of the Green’s function along the integration contour C.

Actually, the valence band width is an intensive quantity which does not depend
on the volume of the system. On the other hand, G(x,x; z) is a smooth function
of z, provided the integration path is kept well apart from the energy spectrum
[9,10]. Therefore, we can conclude that, at least for insulators, the evaluation
of the integral is independent of the size of the system.

An efficient way of computing the Green’s function G(x,x;z) with a work-
load which is independent of the size of the system is provided by the recursion
method [11-13]. The next chapter will be devoted to a brief description of this

method.




The recursion method

The recursion method (RM) provides a simple and powerful technique for
calculating the expectation value of the Green’s operator G(z) on a generic state
|0). Given the hamiltonian H and the starting state |0), both expressed in some
appropriate basis set {|¢x), £k =1,..., N}, the recursion method generates a

chain of states |0),]1),]2),...,|n),... by the three-term recurrence relation
Hn) = apn) + bpiiln+1) +bpin—1). (7)

It is easy to show that the coefficients {an,bn} can be chosen so as to guarantee

the orthonormality of the states of the chain;to this end, it is enough to put

an = <nIH|n>
(8)
boy1 = || (H — an)|n) — bn n =11,

where by = 0 and || |u) || stands for the norm of the state |u). Carry-
ing on the chain up to the N — 1 step yields a new orthonormal basis set
{|n), n=0,...,N — 1} which spans the same Hilbert space as the original basis
set (Lanczos method). In the representation of the chain states, the hamiltonian

H turns out to be tridiagonal, with

Hn,n = Qn
(9)

Hn,n+l = Hn+1,n = bn—l—l .

Using the properties of tridiagonal matrices it is easy to show that Green’s
function matrix projected upon the first n states of the chain is given by

-1

Z — Qy ‘—bl e 0 0
b z—ai ... 0 0
GM(z)=| P : , (10
0 0 Z — Qp—-1 —bn
0 0 —b, z—a, — tn(2)




where t,(z), the so called terminator, accounts for the remaining part of the

chain:
b7 i1
n
tn(z) = 7 . (11)
n-+2
Z = Qap4+1 —
2= lnt2 —

In particular, the diagonal element of the Green’s function Gy(z) =

(0|G(2)|0) is given by the continued fraction

1

Goo(z) = (12)

by

z—ag —
b2
2

z—ag— - —tp(2)

Z — ay —

Since the far states of the chain contribute lower and lower to the local
density of states projected upon the starting state, the continued fraction (12)
turns out to be rapidly converging, at least for energy values quite apart from
the spectrum.

Now suppose that, having obtained the first n states of the chain, one
aims to evaluate the terminator ¢,(z) using a different set of orthonormal basis
vectors {|@x)}. The most obvious way to do this is to project the last two

states of the chain on the space spanned by the vectors {|@x)}:

n—~1) = |0) = Zk [Px) (Prln — 1)

_ (13)
n) = 1) = 3" 16} (@rlm) ,

and to generate a new chain starting from the states 10),]1) and using the

projected hamiltonian H. The terminator is then given by
tn(z) = 11(2) . (14)

Care must be taken when the space spanned by the vectors {|@)} is different

from the previous one. In this case the states |0) and [1), as defined by eq.
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(13), are no more orthogonal to each other and to the preceding states of the
chain, so that the definition of the states |0), [i) and of the hamiltonian H is
to some extent arbitrary. ‘

An alternative approach to the evaluation of the terminator consists in
calculating the Green’s function diagonal element Gnn(z) = (n|G(z)|n) by
starting a new chain from the state [0) = 3., |¢r)(Pr|n) with the projected

hamiltonian H. The terminator is then recovered from the expression

Gn,n(z) —en(z)

tn = 15
&) = Gl eal) o)
where c¢,(z) is the inverse chain
: 1
cn(2) = 7 . (16)
R B
zZ—Qp-1 —
z J— a’n‘_z —_— e s e
It is also possible to write down #,(z) in terms of Grnt1n+1(2) [7):
b2 Grnain
tn(z) _ n+1 +1, +1(z) (17)

T 1402, en(2) Gnrrnta(z)

The same problems discussed previously arise when the basis set {| )} is not

complete with respect to {|px)}.




Calculation of the charge density

In order to evaluate the charge density, the Kohn-Sham hamiltonian has
been discretized on a set of points {x;,7 = 1,...,N}, arranged in a cubic
uniform mesh with lattice spacing k. In other words, the basis vectors {|p;)}

are simply delta-like functions centered at the grid points x;:
(xlips) = 6(x —x) - (18)

These states are obviously orthonormal.
Using a nearest-neighbour discretization of the kinetic energy and a local

pseudopotential, the hamiltonian takes up a tight binding form:

H= Zfi ) (sl + D tiglealesl (19)

i,j=1

where

£i = o5 T vers(Xi)

(20)

b = { “Ellﬁ if 7 and j are nearest-neighbours
0 otherwise

The hamiltonian matrix is clearly sparse in this representation. The lattice

spacing h has to be chosen in order to give a correct sampling of the charge

density without increasing too much the number of mesh points.

For each point x; of the real-space mesh, we calculate the Green’s function
G(x;,%;;z) employing the recursion method. The starting state of the chain
coincides with the localized, delta-like state |¢;). Since the hamiltonian admits
only nearest-neighbour hopping, the n-th state of the chain will be localized into
a regular octahedron whose diagonal is given by 2hn, provided the boundaries

of the system have not been reached. It is this property, together with the
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fact that only a few steps of the recursion chain are needed, that makes this

algorithm independent of the size of the system.

The charge density at the point x; is then recovered from eq. (6). The

integration contour is somewhat arbitrary; our choice is shown in Fig. 1.

Im E
&
—<§-
=B
E E Re E
L F
B~
Fig. 1 — Integration path in the complex energy plane. E : lower

band edge; Ep: Ferma energy.

The integration contour depends basically on the lower band edge Ep, which

can be easily estimated, and on the Fermi energy EF , which has to be calculated

from the relation
fn(x) dx = N , (21)

N.; being the total number of valence electrons.




Results

As a test model, we have chosen a system consisting of 64 Siﬁcon atoms
arranged in a cubic cell with lattice parameter a = 2a¢, av being the equi-
librium lattice parameter of crystalline Si. The atoms are slightly displaced at
random from their equilibrium positions to simulate some disorder.

The local ionic pseudopotentials proposed by Appelbaum and Hamann [14]
have been used. The effective potential v, fs(x) is obtained simply by screening
the bare pseudopotential with the Thomas-Fermi diagonal dielectric function.
The hamiltonian H has been discretized on a cubic uniform mesh consisting
of 32 x 32 x 32 points, with periodic boundary conditions. For comparison, we
have calculated the “exact” charge density by a conventional orbital approach,
assuming the same form for the hamiltonian matrix. For the computation
of the diagonal elements of the Green’s function with the recursion method,
different choices of the terminator have been tested, as discussed in detail in
the following paragraphs. Finally, the contour integral appearing in eq. (6)
has been evaluated using an adaptive Simpson’s rule, with the value of the
Fermi energy chosen in the middle of the energy gap resulting from the orbital

calculation.

(a) Truncation of the continued fraction.

As a first approach to the calculation of the diagonal Green’s function
G(x;,%:;2), we simply truncated the continued fraction after n steps, assuming
a vanishing terminator: t,(z) = 0. Only the first n states of the recursion
chain are needed. The charge density along the (111) direction is plotted in
Fig. 2 for n = 20, n = 80 and n = 200. The values of n(x) were computed
for each of the 32 points laying on the diagonal of the cubic cell, and then

interpolated using a cubic spline.
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Fig. 2 — Charge density along the (111) direction obtained from
the 20-steps chain (dotted line), 80-steps chain (dashed line) and
200-steps chain (solid line) with vanishing terminators.

The result for n = 200 is practically indistinguishable from the “exact” one,
obtained from the orbital calculation.

Though the charge density converges in a well-behaved way to the exact
value, this approach shows some unpleasant features. First of all, it is rather
demanding from a computational point of view, although each grid point can

be treated independently, so that the algorithm is particularly well suited for

parallel computation. Since the required workload grows as n®, at least for
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the first steps of the chain, which are not affected by the boundary conditions,
it would be extremely important to keep the number of recursion steps as low
as possible. Second, and related, the regions far from the starting point are
treated with the same accuracy as near regions, though the latter are expected
to contribute much more to the charge density at the given point. Finally, no
use is made of the fact that the chains starting from neighbouring points contain

nearly the same amount of physical information.

(b) Direct calculation of the terminator.

As an alternative approach to the calculation of the diagonal Green’s func-
tion G(xi,X;;z), we explored the possibility of stopping the recursion chain
after a small number of steps and calculating the terminator using a coarser
grid. By doubling the lattice spacing, we get a set of orthonormal basis vectors
{I@r), k= 1,...,N/8} localized at the nodes of a uniform grid with lattice s-
pacing 2h. Since the new basis set is not complete with respect to the previous
one, the way of rescaling the chain states and the hamiltonian is not obvious;
different scaling techniques have been tested, as discussed below.

The charge densities along the (111) direction shown in Fig. 3 and Fig. 4
(dashed lines) have been obtained by truncating the recursion chain after the
first 20 steps and calculating the terminator t;0(z) on the coarse grid, using
two different approximations.

In the first case, the states |n —1) and |n+1) of the first chain, projected
upon the new basis set, yielded the vectors 0) and |1); normalizing these states

and orthogonalizing them by the ansatz
0) - (110)

/1= 1(1[0)2

we got the starting vectors for the second chain. The new hamiltonian H was

— [0) (22)

obtained from the previous one assuming the same expression for the kinetic
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Fig. 3 — Charge density along the (111) direction obtained from
a 20-steps chain with a coarse grid terminator (dashed line). For
comparison, the truncated 20-steps chain (dotted line) and 200-steps
chain (solid line) results are shown.

energy, and taking the values of the potential at the coarse grid points. The
length of the second chain was determined by a convergence test; 100 steps
were proved to be enough to give stable results. Finally, the terminator tou(z)

was recovered from the relation tsy(z) = to(z).

In the second case, the state |n + 1) of the first chain was rescaled by

averaging its components at the points of the coarse mesh with those at the
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Fig. 4 — Charge density along the (111) direction obtained from
a 20-steps chain with a coarse grid terminator (dashed line). For
comparison, the truncated 20-steps chain (dotted line) and 200-steps
chain (solid line) results are shown.

neighbouring points of the fine mesh. The resulting state was normalized to
get the starting vector |0) for the second chain. The new hamiltonian H was
obtained from the old one assuming the same form of the kinetic energy and
averaging the potential as described above. The second chain was truncated

after 100 steps, and the terminator 5y(z) was obtained from eq. (17).

For comparison, Figs. 3 and 4 show the charge density calculated by trun-
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cating the first recursion chain after 20 steps (dotted lines) and 200 steps (solid
lines), and assuming a vanishing terminator. The mean square deviation of the
charge density with respect to the 200-steps chain result is o = 0.679 X 1072% in
the first case (Fig. 3) and o = 1.065 x 107 in the second one (Fig. 4). These
values have to be compared with the mean square deviation of the charge den-
sity resulting from the 20-steps chain calculation: ¢y = 1.666 X 1072, Only a
little improvement is achieved. There are two possible reasons for this behavior.
First, the way of rescaling the chain states and the hamiltonian is probably too
rough. Furthermore, the states of the second chain are not orthogonal to those
of the first chain, giving a poor description of the region close to the starting

point. Possible solutions to these drawbacks are currently under investigation.

(c) Fitting the terminator.

The idea of fitting the terminator arises from the observation that ¢n(z)
is a smooth function of the starting point x;, provided the complex energy
z is chosen far enough from the energy spectrum. Assuming a parametric
functional form for the energy dependence of the terminator, one can hopefully
fit the parameters in order to reproduce the correct charge density at some
given points X;,% = 1,...N,, with N, < N, and assume the same terminator
holds for all the remaining points.

In order to test this idea, we have chosen the following quadratic form for

the energy dependence of the terminator:
tn(2) = anz® +Bnz +In (23)

where an, Bn and 7, are complex parameters which have been fitted in order
to reproduce the charge density obtained from the 200-steps chain calculation
along the (111) direction. The result for n = 20 is shown in Fig. 5 (dashed line),

together with the charge densities obtained from the 20-steps truncated chain
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Fig. 5 — Charge density along the (111) direction obtained from a
20-steps chain with fitted terminator (dashed line). For comparison,
the truncated 20-steps chain (dotted line) and 200-steps chain (solid
line) results are shown.

(dotted line) and from the 200-steps truncated chain (solid line). The mean
square deviation of the charge density resulting from the 20-steps terminated
chain with respect to the 200-steps chain turns out to be o = 0.266 x 1073,
compared with oy = 1.666 x 107° for the 20-steps truncated chain. A further
improvement to this result could be achieved by introducing some dependence

of the parametrized terminator upon the position of the starting point.
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A self-consistent calculation

As a final test, we have performed a self-consistent calculation on a smaller
system, consisting of 8 Silicon atoms arranged in a cubic unit cell with lattice
parameter gy = 10.26a.u. The atoms are slightly randomly displaced from
their equilibrium positions. The hamiltonian has been discretized on a uniform
16 x 16 x 16 mesh, using periodic boundary conditions. The starting potential
is obtained from the Appelbaum-Hamann ionic pseudopotentials screened with
the Thomas-Fermi dielectric function.

Since the Fermi energy is not known a priori, the following approach to
the charge density calculation has been adopted. First of all, a single 24-steps
recursion chain for each grid point was carried on. The terminator ¢24(z) has
been fitted using a complex constant: t,4(z) = 7. Starting from an initial
guess of v, the Fermi energy can be estimated by solving eq. (21) with the
false position method. Using this tentative value of the Fermi energy, the charge
density at 32 randomly chosen grid points has been calculated by a truncated
200-steps recursion chain, and the first chain terminator t24(2z) has been fitted
in order to reproduce the charge density at these sampling points. This new
terminator leads to a better estimate of the Fermi energy, and the procedure
is repeated until self-consistency is reached. Usually only a few iterations are
needed in order to get a simultaneous evaluation of the Fermi energy and the
terminator.

After a final calculation of the charge density, a new effective potential is ob-
tained by adding the Coulomb potential and the exchange-correlation potential
to the bare ionic pseudopotential. The Coulomb potential has been calculated
by solving Poisson’s equation in reciprocal space, using a nearest-neighbour dis-

cretization of the laplacian. The local density approximation for the exchange-

16




correlation potential, with the parametrization proposed by Perdew and Zunger
[15], has been used. A linear mixing of the new effective potential and the old
one yields the starting potential for a new iteration of the self-consistent scheme,
and the whole procedure is repeated until input and output potentials agree to

within 0.001 Ryd.

.03 — [

Fig. 6 — Self-consistent charge density along the (111) direction
obtained from a conventional orbital calculation (solid line) and from
our approach (dotted line).

The self-consistent charge density along the (111) direction is plotted in

Fig. 6 (dotted line). For comparison, the self-consistent charge density obtained
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from a conventional orbital calculation is also shown in Fig. 6 (solid line). The
difference between the two results is almost entirely due to the approximate
form of the terminator; actually, the mean square deviation is o = 3.6 x 1074,
which compares favourably with the value of 4.9 X 107* obtained after the first
iteration of the self-consistent scheme. Therefore, we conclude that our method

is well suited for the self-consistent calculation of the charge density.
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Conclusions and perspectives

In this work we have discussed a new method, based on the Green’s function
formalism, which leads directly to the charge density without invoking orbitals.
From a computational point of view, the required workload scales linearly with
the size of the system; moreover, no assumptions are made about the symmetry
of the problem. Therefore, our method should turn out to be extremely efficient
for the self-consistent calculation of ground-state properties of large, disordered
systems.

Actually, our present algorithm, though not very demanding in terms of
computer storage, is hardly convenient for systems with less then a few hundreds
atoms per unit cell, if compared with the well-established plane waves approach.
Anyway, we feel that a more reliable approach to grid coarsening, together with
a general improvement of the algorithm, would lead to a speed up of two orders
of magnitude or more.

In this respect, we are presently investigating a block renormalization ap-
proach to the calculation of the terminator. The idea is to partition the real-
space grid into a number of small, non-overlapping blocks, and to diagonalize
the hamiltonian separately for each block, in order to obtain a set of orthonor-
mal, localized basis functions. Taking these states up to a given energy cutoff
yields a new basis set which should allow a quick evaluation of the terminator
while retaining the low-energy features of the spectrum.

Furthermore, a quite straightforward extension of the algorithm to non
uniform real-space grids should make feasible, with little extra computational

cost, all-electron calculations of ground state properties.
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