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Introduction

A major issue in solid-state theory is the study of the mechanical behaviour
of solids under various conditions of temperature and stress. At low tem-
peratures traditional theories, based on the harmonic approximation, give a
rather good account of the observed properties. However, a large number of
systems are so much affected by anharmonicity, that the harmonic approach
is bound to fail. In such circumstances Molecular Dynamics is expected to
be very useful.

Crystal structure transformations are a clear example of highly anhar-
monic phenomenon and thus a natural candidate for Molecular Dynamics
(MD) study. However, until few years ago, such studies were belived to be
impossible, because of the necessity of periodic boundary conditions, used to
minimize surface and finite size effects on bulk properties. The difficulty lies
in the fact that structural tranformations are often associated with change in
the shape of the crystal, while periodic boundary conditions prevent shape
fluctuations. If one can simulate very large systems this undesired effect of
boundary conditions becomes more and more irrelevant, since the system
will eventually crystallize in a new phase by forming appropriate defects; it
is actually crucial in dealing with small systems, to which one has often to
restrict himself, even with modern computers.

Parrinello-Rahman Molecular Dynamics is a recent method, which rec-
onciles periodic boundary conditions, essential ingredient of any MD study
of bulk properties, with the possibility of changing shape and volume of the
simulation cell. The usefulness of this approach has been demonstrated in
the simulation of a large variety of systems using empirical expressions for
the interatomic forces.

The efficancy of the method is obviously limited by the empirical nature
of the potentials used in conventional MD framework. Few years ago Car
and Parrinello have proposed a powerful alternative scheme for MD, where
the forces are derived by using state-of-the-art electronic structure calcula-
tions, based on the Density Functional Theory. The interatomic potential is
parameter—free and derived from first principles, with no experimental input.

This method has been succesfully applied to a variety of problems which had




previously been inaccessible.

In this work, following the method formulated by Parrinello and Rahman
for the conventional classical MD, we have extended the fixed cell ab—intio
MD by Car and Parrinello, by including the possibility of changing shape
and volume of the simulation cell.

In Section 1 we describe the original Parrinello-Rahman method, intro-
ducing some basic concepts used later on. Section 2 is devoted to the general
formulation of the new ab—initio MD with deformable cell. In Section 3 we
describe the practical calculation of the stress tensor, one of the new ingre-
dients of the method, inside the well-known plane-wave representation of
electronic wave—functions, usually adopted in Car—Parrinello simulations of
solids (in the Appendix are collected the explicit formulas of the stress tensor
for such a representation). Since we have finished with the practical imple-
mentation of the method and the tests of the code for computer simulations
in the last few weeks, we can not yet present physically interesting results.
Nevertheless in Section 4, we show two examples of minimization procedure
and dynamics obtained with our code on a small cell of Silicon atoms. In the

last Section we summarize the perspectives of the method.



1 Parrinello-Rahman Molecular Dynamics

In this section we will briefly review the Parrinello-Rahman' method (PR)
for Molecular Dynamics with deformable cell. PR is the natural extension
of the Andersen? Molecular Dynamics. In the original Andersen method the
simulation cell is allowed to change its size isotropically, following the devia-
tion of internal pressure from an assigned value. This is done by introducing
the volume of the cell as a new dynamical variable, without renouncing to
the periodic boundary conditions. In the PR method, the cell can change,
more generally, both shape and size; one has, therefore, to take into account
all the degrees of freedom of the cell. This is done by PR in the following
way.

Let us consider a generic simulation cell for Molecular Dynamics, which
can fill all the space by repeating it at infinity with periodic boundary condi-
tions. This can be described by the three primitive Bravais vectors (a,b,c).
Defining the matrix ‘

h = (a,b,c) (1)

(where the vectors constitute the columns of the matrix) , the position of a

generic particle in the box, in real space (R), can be written as:
R = hS. (2)

S is the vector of the so called scaled coordinates of the particle, whose
components assume values between 0 and 1 inside the cell. (In other words,
in the scaled variable space, the cell is always a cube of side 1.) The relation
between distances in real and in scaled coordinates will be given by the metric
tensor G = h'h, so that:

(Ri — R;)* = (S; — 8;)'G(Si — 8;). (3)

Since we want the cell to change in time, the basic idea of Parrinello—
Rahman method, in analogy with Andersen dynamics, is to consider an ez-
tended langrangian system, where the nine components of the matrix h are
classical degrees of freedom, whose trajectories are determined by appropri-

ate generalized forces. This is obtained by the original Parrinello-Rahman




Lagrangian:

N 1o
L= %Z M(31G8:) = V(R e, Ra) + 5 WTe(B'h) — p2, (4)
=1

where M; is the mass of i-th particle, V the classical potential, W the “mass”
of the cell, p the external pressure, and, finally, 2 = deth is the volume of
the cell.

One can see that the first two terms of Eq. 4 define the Lagrangian for
the usual fixed cell Molecular Dynamics. Note also that when the cell varies
in time the kinetic term in Eq. 4 does not correspond to the actual kinetic
energy of the particles in the real system.

The Euler-Lagrange equations of motion derived from Eq. 4 are:

. 1 8V .., s o
Sy = —ﬁa—ﬁahﬁaal ~ G25G8,S7, (5)
. 1 _
haﬂ = W (Ha-y - p6a7) Qh£/617 (6)
where:
1 N oV
I, = a (z,: Mviv] — 8ha6hgv) , (7)
and
e ST, (%)

(We will always use greek indices to indicate the components of vectors and
matrices. The convention of implicit sum over repeated indices is assumed.)

Notice that, interpreting M,v; as the momentum of i-th particle, IT is
nothing but the internal stress tensor. This can be seen by comparing the
second term of IT with the usual definition of internal stress tensor coming

from the theory of elasticity:?

10V
ﬁ—ggo:ﬁ’ (9)

Tad = —

where € is the strain tensor with respect to the present configuration. Let

in fact € be a small strain of the system, which deforms the cell from h to



h' = h + dh; we have:

R = hS
R’ = (1+¢R=h'S
= h'h"'R.

Therefore, to first order in dh:
e=hh? -1, (10)
from which we obtain: - av
—h'=—. (11)
oh Oe
From Eq. 6 we see that the “forces” on the cell are therefore proportional
to the difference (II — p), which implies that the time variation of matrix h
is driven by the imbalance between external pressure and total stress.

The Lagrangian (Eq. 4) is conservative; and therefore admits a constant

of motion, given by:
1 ..
M= %Z Mw? 4 V(Ra, .., Ra) + 90 + s WTi(B'H). (12)

Physically () corresponds to the enthalpy of the system,* apart for the
last term, which becomes negligible for large N (its contribution to (H) at
equilibrium is 5k T).

It has been shown®? that trajectories generated with PR dynamics give
averages of thermodynamical quantities that are in fact equivalent in the
thermodynamical limit to the Gibbs averages in the (H,p,N) statistical en-
semble, i.e. the ensemble with enthalpy, pressure and number of particles
kept constant.

To conclude this introduction to the PR formulation we briefly point out
some considerations on the role played by the parameter W. In the equations
this quantity is the “mass” of the cell, in the sense that it is related to the
inertia of h. Tt is clear that W does not influence equilibrium properties,
since in classical mechanics the equilibrium properties of a system do not
depend on the mass of the constituents. This is however no longer true for

dynamical properties. Andersen has suggested a physical criterion for the




choice of W: W should be tuned so as to obtain a relaxation time of the cell
of the order of T = L/c, where L is the linear dimension of the cell and ¢
the sound velocity inside the system. From a slightly different point of view,
one can estimate the characteristic frequency of the cell by linearizing Eq. 6.

Assuming this frequency to be roughly 1/7, one obtains:* W = 3%, M;/4r>.



2 Extension to Ab-initio Molecular Dynam-
ics

We want now to extend the previous formulation of the original Parrinello-
Rahman method to the case of Car-Parrinello ab—initio Molecular Dynamics
(CP).5"

In this recent and powerful method, the forces acting on classical ionic
degrees of freedom are calculated not from a parameter—dependent potential
— usually determined via an empirical ad hoc procedure - but from a quantum
treatement of the electronic system based on Density Functional Theory
(DFT)® ' in a consistent way as the simulation proceeds. This is done by
introducing a fictitious dynamics for the electronic wave-functions (treated
as classical scalar fields) that allows the electrons to follow adiabatically the
jonic motion, remaining close to their Born-Oppenheimer surface.

The problem of extending this method to the case of a deformable cell
is in principle the same as for classical systems. One would like to take
into account shape and volume changes of the simulation cell by considering
the extended system obtained by rewriting the original Lagrangian in scaled
coordinates with the two additional terms pertaining to the cell (last two
terms of Eq. 4).

The presence of the electonic wave-functions in the CP Lagrangian’
makes this procedure slightly more subtle. We want indeed to write a new
classical Lagrangian, which reduces to the original CP Lagrangian in the
fixed cell case, and in which the degrees of freedom are some scalar fields
¥ (not explicitely dependent on h) associated to the electrons, the scaled
jomic coordinates S and the cell matrix h. We also want to preserve the
physical meaning of PR equations of motion. Tt is clear that the original
wave—functions 1(r) (where the lower index h indicates a wave-function
defined and normalized on the cell generated by h) are no longer a good can-
didate for being the scalar field of our Lagrangian, because of the dependence
on the cell. We have to decide how to scale them. The natural way to do this,
which has several advantages, as we shall see in the following, is to define a

o)

wave—function 9(s) onto the scaled variable space s = h™'r (normalized on

-~




the unitary cube), such as:

1

RN T
%(r):ﬁdf(h r)—m¢( )y (13)

where the prefactor 1/4/) preserves the normalization. (s) is really inde-
pendent on h. From Eq. 13 follows the transformation law for the electronic
charge density, which appear in the DFT energy functional (see Eq. 20 in

the next section):
1

pu(r) = gp(h7'r). (14)
This choice for the tranformation of the wave—functions corresponds to con-
sider that the only direct effect of the deformation of the cell on the wave-
functions and on the electronic density in real space is a “stretching”of them,
in order to satisfy the changed boundary conditions.

Let us write now the new Lagrangian as:
L= Y [dsih(s)+ S Mi(8168:) — E{wi}, {hS}]+
i I
S ([ dswierists) - 85) + GWI(WR) =02, (19)

where the integrals are taken on the scaled cell. p is the fictitious mass of the
electrons, E is the DFT total energy functional and A;; are the Lagrangian
multipliers associated with the orthonormalization constraints of the wave-
functions. The sums over ¢ and j are taken on the electronic states, and the
sum over I on the ions. Notice that if the cell is kept fixed, Eq. 15 reduces to
the original CP Lagrangian, written for the scaled wave-functions, apart for
the constant term pQ. In fact, using the Eq. 13 and changing the integration
variable, one obtains immediately that the integrals in the first and fourth

term of Eq. 15 are invariant under scale transformation; for instance:

[ (syb(s)ds = @ [ witsysn(us)ds = [wi(epou(rar.  (16)

Notice also that using the scaled wave-functions, we neglect in the kinetic
term (first term of Eq. 15) the contribution due to the deformation of the cell

(exactly in the same way as in Eq. 4 this contribution to the kinetic energy



of the ions is neglected) This ensures that the CP equations of motion for
the electronic wave—functions are not modified by the new Lagrangian.

The equations for ionic degrees of freedom have exactly the same form as
in classical PR case (see Eq. 5), with the replacement of the classical forces
—8V/O6R by —OF/OR. Thanks to the Hellmann-Feynmann theorem, these
classical partial derivatives give the actual quantum—mechanical forces acting
on the ions.!!

The independence of the integrals in Eq. 15 on h ensures also that no extra
terms with respect to Eq. 6 appear in the equations for the cell parameters.
Here in the tensor IT (Eq. 7) 8V/0h is replaced by 0 E/0h. This is the partial
derivative of a functional of classical fields and coordinates, and one would
like to show that it is nothing but the quantum-mechanical internal stress
tensor. Only in this case the extension of PR Dynamics in the ab-initio
scheme would be complete and physically interesting.

If we consider the electronic quantum Hamiltonian of our system and the
ground state ¥, for a generic configuration of the cell (h) and the ions, then
E = (V,|H|¥,) (apart the small deviations due to the oscillations of wave-
functions around their instantaneus ground-state in the CP dynamics). In
close analogy to the Hellmann-Feynmann theorem, it can be shown'**3 that
to calculate OE/Oh at a generic h it is not necessary to know how does
the ground-state modify under the perturbation (dh), since from the vari-
ational property of E a perturbation of the ground-state does not change
E to first order. We can therefore calculate the derivative of E as the ex-
pectation value on ¥, of the derivative of the electronic Hamiltonian, i.e.
the partial derivative inside F, keeping the wave-functions constant. How-
ever one has to pay attention in the present case to the “stretching” of the
unperturbed ground-state wave—functions: since the wave-functions satisfy
boundary conditions, which are changed by the perturbation, it is necessary
to rescale the “streched” functions such as to preserve their normalization
on the perturbed cell. This is automatically taken into account by replacing
¥n(r) with (s) using Eq. 13. This indeed implies that the term (6 E/6h)h’
(see also Eq. 11) appearing in II (Eq. 7) is the actual quantum-mechanical

stress tensor, as we want.




Summarizing, we have shown in this section how it is possible to extend in
a general and natural way the PR method into the CP Molecular Dynamics.
All the equations of motion derived from the Lagrangian in Eq. 15 can be

formally written as:

. 6F
: - _ At s
,U'"wbl(s) 5’(,[):(8) + ; lj"/)J(S) . (17)
. 1 8E .. L
ST = ’—'ﬁb—R—Eh;}al —G.5Gs,S], (18)
. 1 B
haﬂ = W (IIOq — Péa-y) thyﬁl. (19)

In the next section we describe the explicit derivation in the framework
of CP method of the internal stress tensor, the only quantity which is still

lacking for a practical implementation of the ab-initio Molecular Dynamics
with deformable cell.

10



3 Stress Tensor from DFT-LDA Total En-
ergy

Consider a system of N atoms and M electronic states ({¢(r)}) in a cell
generated by h. (For semplicity we consider in the following just one atomic
species, the extension to more than one species being trivial.) The interaction
between electrons and ions is described by using ab-initio pseudopotentials.}*!?
For such a system, the DFT total energy F in Local Density Approximation

(LDA)16’17 can be written as:

occ

>4 [ ari() (5 V) i) + [ @V (39pul
/d 1z rPe(T)pe(T) )Jr Boolp] + 3

=7 I#J‘ I“RJ’!

E [{¢:},{H}]

|

+ (20)

N

Vet is the total ionic potential, expressed as a sum of ionic pesudopoten-
tials vpe; pe(7) = 29 fi [4:(F)|” is the electronic charge density, f; the oc-
cupation numbers of electronic states, Z, is the valence charge density of
the atoms, and E,. the exchange—correlation energy functional, which is ex-
pressed within LDA.

The simulation cell is periodically repeated to infinity and, as a conse-
quence of the periodicity, the electronic wave—functions can be expanded in
plane-waves.!® Since we sample only the I'-point of the Brillouin zone, a

generic wave—function can be written as:

Yu(r \/- > (G G)e'®T. (21)

The basis set for the expansion in Eq. 21 is reduced to a finite set by truncat-
ing the sum over G to include only those plane-waves with a kinetic energy
K = %GQ less than a given energy FE... (Atomic units are used in the fol-
lowing.) It is clear that the choice of E.y determinés the accuracy of the
calculation of the DFT energy, and its value depends on the specific system.

~ Since we use plane—waves, it is much more convenient to evaluate all terms
of Eq. 20, except E,, in the Fourier space.!! In order to calculate 8E/5h as

described in previous section, we have to be able to isolate the dependence

11




of E on h also in Fourier space. It is therefore useful to introduce the scaled

reciprocal vectors, t.e. the reciprocal vectors of unitary cube:

h
q=2r| k |, h,k,l integers. (22)
l

Consider now the reciprocal vector in real variables:
G = hb; + kb, + [bs. (23)

From the definition of primitive reciprocaﬂ vectors b; and the definition of h
(Eq. 1), one gets:
G = h'"lq, (24)

which is the transformation law of coordinates in reciprocal space. Using
Eqgs. 2, 13 and 24 it is easy to get the transformation for wave—functions in

Fourier space:

ch(G) = 1 dre G Ty, (r) = [ dse™*T*¢P(s) = c(q). (25)
Q

This equation states that the cx(G) are invariant under scale tranformation.
They are in fact the electronic degrees of freedom in Fourier space, whoose
equations of motion from Eq. 17 are therefore the same in real or in scaled
variables.

We have now all the basic ingredients to evaluate the expicit formulas for
the stress tensor 8E/Oh. The calculations are straightforward but boring in
some cases and we address the reader to the Appendix for the results.

Concluding this section we will point out some considerations about the
well known problems arising from using a finite basis set of plane-waves in
the expansion of Eq. 21. Plane-waves are very appealing, because they are
independent of the structure of the system, and systematic improuvements
of the quality of the basis set can be simply done by increasing the number of
Fourier components. Furthermore, fast Fourier transform techniques can be
adopted in the practical calculation of E. The difficulty encountered when

using plane-waves is mainly ralated to the problem of convergence in Fourier

12



space, i.e. to the question: how small cut-off energy E.,; will suffice in order
to shrink the errors due to a finite Fourier series to negligible values?

In the present case we are interested in performing calculations of DFT
functional F, while the simulation cell varies in shape and volume. This
implies that also the reciprocal space varies and, consequentely, the set of
plane-waves with kinetic energy less than E., does the same. In the CP
method, however, the number of plane—waves (V) is kept constant to its
initial value. This implies that wave—functions, charge densities and poten-
tials appearing in the functional E are resolved with variable precision. Let
us imagine for semplicity an isotropic volume change of the cell. If the vol-
ume decreases and NN, remaines constant, the effective energy cut-off will
become higher and higher and the corresponding curve E versus volume will
be distorted with respect to an analogus curve calculated with constant E,.
These discrepances gives, for instance, different static quilibrium properties.
Although in principle both this curves are wrong and only at convergence
in Fourier space they will coincide with the right one, the most common
experience!®?’ shows that when choosing a constant E., the incomplete
convergence leads to smaller errors in the static equilibrium. This can be ex-
plained better by an example: Fig. 1 (taken from Ref. [19]) shows the total
energy of GaAs as a function of lattice constant. It can be seen that neither
of the two upper curves are fully converged, but the one corresponding to
constant energy cut—off is actually closer to the exact result.

A modification of the Lagrangian in Eq. 15 for a finite plane~wave basis
set, is coincevable in order to perform a constant cut—off simulation. For -
instance, we can start with a large number of plane-waves, corresponding to
the presumed maximum volume during the modification of the cell, and weigh
the Fourier coefficients ¢(G) of wave-functions by an appropriate prefactor
f(G — Geu), which smoothly switches off the contribution of those plane
waves, whose wave vector becomes larger than the cut-off. However in this
framework an expression of the stress tensor as the derivative of total energy
at constant cut—off is needed. Since the stress calculated in the Appendix
corresponds in any case to a locally constant number of waves, it has to be

corrected by the so called Pulay stress. Several expressions for the Pulay

13




stress have been proposed in the literature;”! their efficiency in ab-initio

simulations at constant cut—off must be checked.
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Figure 1: Total energy of GaAs as a function of lattice constani. (me Ref. [19].)
The broken curve corresponds to a constant energy cut—off Ecyy = 12 Ryd. Dotted curve
to a fixed number of plane waves, equivalent to 12 Ryd at a lattice constant a = 5.65
A(the intersection of the two curves). The solid curve corresponds to a fully converged

calculation (E¢y = 24 Ryd at a = 5.65 A).
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4 Tests and Simple Examples of Dynamics

In this section we will present the first simple tests made with the CP code
modified by the implementation of the stress tensor calculation (Egs. in the
Appendix) and by the equations of motion (Eqgs. 17, 18, 19).

We test the code on a small and not computationally demanding sys-
tem: a cell with 8 Silicon atoms in the diamond phase, using the Bachelet—
Hamann-Schliiter pseudopotential'® in the separable form of Kleinman and
Bylander.?? Since we sample only the I'-point of the corresponding Brillouin
zone, the results of the tests are not expected to be in good agreement with
experimental data. We choose to compare them with usual total energy
DFT-LDA calculations with the same cell.

Since we work at constant plane-wave number (see previous section),
we decided to fix the basis set corresponding to a cut—off E.; = 18 Ryd
for the cubic cell with lattice parameter a = 10.6 a.u. With this basis,
we have computed the ground-state energy for the cubic cell with different
lattice parameters, and the 8 atoms in the perfect crystal sites. We then
fitted this points with the Murnaghan equation of state, obtaining the solid
curve in Fig. 2. This curve has the minimum at En;, = —31.3897 a.u. for
a = 10.428 a.u. In Fig. 2 is also plotted the curve E(a) at constant E.y
(dotted line). This curve gives an equilibrium lattice parameter a = 10.469
a.u. and E,,;, = —31.3872.

4.1 Optimal Lattice Structure of Silicon

As first test we made an optimization of the cell parameters. The starting
cell is a FC triclinic cell with sides a = 10.62 a.u., b = 10.70 a.u., ¢ = 10.32
a.u., and angles between them of 92, 96 and 88 degrees. Scaled coordinates
of the atoms are near the perfect crystal positions (only a small randomiza-
tion is done). The starting configuration of electronic wave-functions is the
ground-state corresponding to such a cell. The optimization is performed by
a combined steepest—descent for the degrees of freedom of the Lagrangian in
Eq. 15. The external pressure is set to zero. The geometry of the cell and

the energy E at the end of the minimization is thus expected to correspond

15
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Figure 2: DFT-LDA total energy for a conventional FCC cell for diamond-silicon versus
lattice parameter. The solid line corresponds to a calculation with constant number of
plane waves, corresponding to a cut-off E.,; = 18 Ryd at a = 10.7 a.u.; dotted line
corresponds to constant cut—off £ ,; = 18 Ryd. Both curves are obtained by fitting some
points with Murnaghan equation of state.

to the minimum of the solid curve in Fig. 2. The results are shown in Fig. 3
and 4. It can be seen the good performance of the minimization: final values
for the energy and for the cell parameters are in excellent agreement with
the predictions of Fig. 2. One can see that the energy E converges very
rapidly to its final value (constant up to one part over 1077 after 200 steps

of minimization). The convergence of the stress tensor (in Fig. 4 we plotted
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Figure 3: Results of the Steepest Descent optimization described in the text. From the
upper panel to the lower there is plotted the DFT energy (E), the three sides of the cell
(a, b and ¢), and the cosine of the angles betwen them (a is the angle between and b, 8

the one between a and ¢ and v the one between b and c).
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Figure 4: Diagonal components of the internal stress tensor during the Steepest Descent
described in the text. The convergence is up to 102 Kbar after 400 minimization steps.

the behaviour of the diagonal components of the stress) and of the cell pa-
rameters is slightly slower and other 200 steps are needed in order to obtain
vanishing stress up to 107% Kbar. This different rate of convergence is due to
the variational nature of the energy, but not of the stress, which is therefore

a better quantity for monitoring the convergence.'

4.2 Dynamics with Variable Cell

We will present here a simple example of {ree dynamics at constant pressure.
The simulation cell is very small (the same cell used for the previous min-
imization). This implies both a bad description of the electronic structure
of the system, by using the only I' point in the Brillouin zone, and too few

degrees of freedom for a resonable Molecular Dynamics calculation of correla-
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tion functions. The simulation we made has therefore no physical relevance.
We are in fact interested in checking the algorithm of discrete integration of
Egs. 17, 18 and 19. The starting configuration is obtained by deforming the
previous optimized cell: the sides of the cell are varied by about 5% of the
equilibrium value, and the angles in a range of 6 degrees around the right
angle. The ionic scaled coordinates deviates from the perfect crystal sites by
a small randomization. The “mass” W of the cell is kept as small as to en-
sure cell fluctuations detectable in the short physical time of the simulation.
Thus, we expect to observe oscillations of the volume and of the shape of the
cell roughly around the equilibrium configuration. We can also verify, in so
doing, the relative mechanical stability of the optimized structure under cell
fluctuations.

The simulation proceeds for 1000 steps (1 step is 5 a.u.), which correspond
to a very short time: 0.12 ps. The results are shown in Figs. 5, 6 and 7. The
constant of motion (Eq. 12) is conserved very well during the simulation. All
the parameters of the cell (Fig. 6) oscillate with non apparent drift, but the
mean values of this parameters, obtained by averaging over the whole time
interval, slightly differ from the equilibrium values, due to the anharmonicity

of the system. For instance, for the cell sides we obtained:

(a) = 10.452 £ 0.005a.u.
(by = 10.47 £ 0.01a.u.
(¢) = 10.465 +0.002a.u.,

which have to be compared to the equilibrium lattice parameter of 10.428
a.u. In Fig. 7 are shown the fluctuations of ionic temperature (solid line),
calculated from the first term of Eq. 12 and the kinetic energy associated to
the cell (dotted line), i.e. the last term of Eq. 12.
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Figure 5: Free dynamics simulation: the cell is allowed to move. Here are plotted the
constant of motion H (dotted line) and the energy E as a function of time {1000 integration
steps are 0.12 ps) for the example described in the text.
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Figure 6: Cell parameters as a function of time for the free-cell dynamics simulation.
In the upper panel are plotted cell sides a (broken line), b (solid) and c (dotted). In the
lower panel are shown the cosines of the angles between a and b (solid line), between a
and ¢ (broken line) and between b and ¢ (dotted).
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5 Future Applications and Perspectives

The CP-PR ab-initio Molecular Dynamics with deformable cell, presented
in the previous sections, opens the possibiliy of new ab—initio simulations,

namely:

(a) Fixed pressure structural optimization for low symmetry crystal unit

cell.
(b) Calculation of elastic constants from the strain fluctuations.

(c) Simulation of pressure and/or temperature induced structural phase

transitions.

Concerning point (a), a simple example of optimization of the crystal
structure has been presented in the previous section. 'The possibility of ob-
taining the equilibrium structure by performing a single steepest descent
schedule, is very appealing, particularly if compared to the more cumber-
some procedure of linear interpolation of the stress components proposed by
Nielsen and Martin'®. The only limitation of the method formulated above,
is due to the constant plane—wave number condition (see previous section),
which restrict its applicability to systems not requiring a very large cut—off.

Concerning point (b), Parrinello and Rahman?® first showed that elastic
strain fluctuation in the (H,p,N) ensemble are a direct measure of the elastic

constants in a general anisotropic medium, .e.:

k(T .
(8e€;j6€r) Hpn = Sg >(Os)ijila (26)

where O is the matrix of the adiabatic elastic constants. If applied within
our scheme, Eq. 26 allows the ab-initio evaluation of elastic constants by
averaging over the trajectories of the isoenthalpic simulation, generated by
Eqs. 18, 19. Still, due to the constant plane-wave constraint, the method is
restricted to systems requiring not too large cut—off. An interestig aspect of
Eq. 26 is that it can be applied also to non—crystalline systems, e.g. to the
determination of ab—initio elastic constants in amorphus silicon.

Concluding with point (c), the ab-initio simulation of structural phase

transition at constant pressure suffers the same limitations of its classical

23



counterpart. Since the PR trajectories sample the (H,p,N) statistical ensam-
ble, one could in principle simulate a first or second order structural phase
transition, from, say, a phase A to a phase B. In a second order phase tran-
sition the critical pressure should be related to phonon mode softening or to
the vanishing of some elastic moduli. In this case one could expect a simul-
taneus transition of a large part of the sample from phase A to B. In the
case of a first order phase transition, the two phases coexist at the transition
pressure. An energy barrier separate them and temperature must be added
to the ions, in order to overcome the barrier. However if one is not interested
in the determination of the transition pressure, but just in the determina-
tion of the structure of the stable high pressure phase, the transition can be
fastened by increasing the pressure up to an instability point.

A further complication in the ab-initio simulation is connected to the
Fermi surface sampling. In many cases structural phase transitions are
accompained by strong rearrangement of the Fermi surface — such as the
insulator-metal pressure induced transition in crystalline silicon. To cor-
rectly simulate this process, the restriction of having fixed occupation num-
bers, f; in the formulation above presented, will be a very relevant shortcome.
However one can hope that using only the I point sampling and performing
electronic minimizations in proximity of a level crossing, also this kind of
situations can effectively be menaged.

Apart from all this technical problems, we stress that by performing simu-
lated annealing (on the extended Lagrangian system), the method presented
in the present work is able, at least in principle, to automatically find the

stable structure corresponding to a given thermodynamic condition (pT').
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Appendix

We will here briefly describe the specific form of DFT-LDA total energy
functional used in our version of the CP FORTRAN code. We will also
present the explicit formulas for the various contribution of this functional
to the stress tensor.

Let us start from Eq. 20. To efficiently treat the slowly decaying Coulomb
forces present in the second, third and last term of this equation, it is con-
venient to regard the ionic core charges as smeared Gaussian distributions
of width R, centered at the ionic sites, instead of treating them as point

charges. With this choice we can rewrite Eq 20 as:'"*!

E = Eke + E:L‘C + Eps + ES; + EH + Esr - Eself) (27)

loc

where all terms, except E,., are written in Fourier space. Ej. is the elec-
tronic kinetic energy, F,. the exchange—correlation energy. The electron-ion
interaction energy is written as the sum of two part, the local (E},.) and
the non-local (EF}) contribution. Ep is the electrostatic energy of the total
charge distribution (electronic density p. and smeared ionic charge density
pion); Esery is the constant self-interaction of the ionic charges, and E,, a
corrective term dependig only on the ionic positions, which cancels the error
introduced in considering Gaussian ionic charges insted of point charges.!b"*!

For E,. it is used the LDA form, 7.e. the exchange-correlation energy
density is locally approximated by the one of the omogeneous electron gas

at the same density p.(r), such as:

Bl = [ drpe(r)e(plr)), (28)

where €,.(p.) is the exchange—correlation energy density of the omogeneous
electron gas at density p..

Concerning the pseudopotentials, let v;(r) be the component of the non—
local pseudopotential acting on the state with ! angular momentum, v, (7)
the one corresponding to the state with highest angular momentum treated
in the non-local form,'® and v, = v; — v;,,. We write the non-local part of

the pseudopotential in the separable form of Kleinman-Bylander.?? Tt is also

25




convenient to define:

Aim — (Sol,m‘é-vl’(/’l,m)—la (29)
F;::n = Z ci(q)eiG.Rvalsol,mY;,m|G>1 (30)
q

where Y, is the spherical harmonic function with indices {,m, |o1.m) is the
atomic radial pseudo-wavefunction'® corresponding to v, and |G) the plane-
wave with wave vector G.

With this choiche, the local part of the pseudopotentials is vjoc = vir+y,,,

where, in the Fourier space:

/A R2G? R:G?
v (G) = Ve [Z C;exp (-— 1 ) — exp (— i )] , (31)
=1

3 22 2 2
v, (G) = }—Z(WR?)WZ exp (— RG ) [Ai + BiR? (—?i — RG )}(32)
Q& 1 2 4

Here R¢ = 1/+/af and R; = 1/ /a;. of, Ci, a;, A;, and B; are the fitting
parameters defined by Bachelet, Hamann and Schliter.' A;, B; and R; in
Eq. 32 correspond to the highest angular momentum /.

The terms of the total energy E (Eq. 27) are implemented in the CP
FORTRAN code by the following formulas:

M
B = 3353 G(a)(a) (33)
=1 q

B = [ drvec(p(s)pclr) (24)

Elpoi: = QZP:(G)S(G)UIO((G) (35)
q
N Al .

El = > T (36)
I=1i=1Il,m
47 () . 1

Ey = —— p1(G) = p1(G) (37)

q£0

1 N N VA (lRI ‘“R/I)

E, = = —r——erfc | ————=— 38
2?;1%;1!]11—311 R.A2 (38)
1 NZ?

Bty = o R (39)
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In the Eq. 35 S(G) is the structure factor for the ions. Notice that in
the previous formulas appear both quantities defined on the real and on
scaled cell, by using the scale transformation laws for coordinates and wave-
functions in direct and Fourier space (Egs. 2, 13, 14, 24, 25). This equations
imply, for instance, that the structure factor S(G) and Qp.(G) are invariant
under a change of h.

Finally, we write the explicit expression for the derivative of the previous

terms of F with respect to the matrix h:

0B &, et (e,
oh ZszGaG SPRACIACY | (40)
0 Eye

5 {/dr [eze(pe(r)) — vae(r)] pe(r } (41)
OE, Q
Ohas

= _Elpfchivﬂl + 2 Z pe (G
q#u

dnZ, [~ CiB? R#G? R2G*
N 2]

=1
272
) i+ BiR’ ( —Rf ﬂ }GanhiTsl
dEY]

3 o Rz
+ 2:(7er)‘3/2 4‘ exp <
—21L = 2Re ﬁ:iZfa Fl"»"a i (43)
6h Em S L T Bh

=1
I=11=11l,m

gf:; I 47@%0 ptG’ 2 (pié?) + prn(G)RZ) GQGW] b
(44)
2 —
gf:; ) _% 2 J%:x {Tfﬁ—?—ﬁ]—f‘ erle (E;Z—\/%J’l) (45)
+ R\C(/;r R, ngJP exp ( IRIR \/PEJ\' ) }(R? _ R%)(R] — R})h'3'
T o _ "

l,m=

In Eq. 43 we do not write the explicit expression for 0F;;""/0h, because we

have to distinguish the case of [ = 0 (and m = 0) from the case of [ =1 (and
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m = 1,2,3). For these derivatives we get:

OFT 1 oc 4T .
O lrpuid [T e
Ohegs 2" . Q ;
>, 5 (G G d GQG_Yht_l AT
0 e 5000(13) vo(w)[]o( :E)-—cos( a:)] z G2 18 ( )
oF ;" 1 ., 127 4
_ e — _ - i*h(tx—-l —’L - c:(q)e_zG.RI
ahag 2 ! 8 Q Xq:
G.G.G,,, , [* ' _
{ G; 'hf;ﬁl [) 11323017(33)(51)1(;1;) [3]1(G1D) - sm(G:n)] dz
Ga, i1 [ o )
- _@—hvﬁ /; T ‘P'l*r(m)avl(m)]l(G%’)dw, (48)

where j, and j; are the Bessel functions with indices 0 and 1.
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