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I - Introduction

A ferroelectric phase transition has been recently observed in the ternary
alloy Zn,Cd;_<Te [1]: this is the first report of ferroelectricity in a material
which has the zincblende structure in its paraelectric phase. The phase
transition is clearly indicated by the increase of the dielectric constant near
the transition temperature (T.), and by the observation of the polarization
hysteresis loop below T.. The transition temperature is in the range 100-
950 C and the absolute value of the residual polarization is ~ 5 nC/cm?, fairly

small with respect to typical values found in other ferroelectric materials.

Ferroelectricity has been found in samples with concentration z = 0.1,
z = 0.3, z = 0.45; in all cases X-ray diffraction studies [2] have shown a
rhombohedral crystal structure, with an angle o = 89.4°. The mixed (Cd-Zn)
sublattice is basically undistorted, while Te atoms are displaced with respect
to the ideal zincblende position, by about =~ 0.11 A, independently of z.
Previously to the discovery of ferroelectricity, this same alloy was studied via
EXAFS [3] at room temperature, i.e. below T.: such measurements indicated
in fact anion displacements of the same order as found from the analysis of later
X-ray diffraction data. The distortion of the anion sublattice is in agreement

with the general understanding of ternary semiconductor alloys, although in a
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disordered (unpolarized) material the dis?lacements detected via EXAFS are
assumed to be incoherent. From a theoretical point of view, II-VI materials—
either pure or alloyed—have been studied much less than the III-V’s, [4][5] and
only a few phenomenological models [6], and some all-electron calculations [7]
exists. The purpose of this work is to study some physical properties of the II-VI
materials—both pure and alloyed—in the framework of first-principles density-
functional theory (DFT). The unexpected phenomenon of ferroelectricity calls

for a deeper understanding of these materials.

DFT within local density approximation (LDA), has been able to describe
with astonishing precision the structural properties of simple semiconductors,
their phonon frequencies, dielectric constants, deformation potentials, piezo-
electric constants, effective charges, macroscopic stress acting in a crystal and
many other properties. Most of the state-of-the-art work for semiconductors is
performed using norm-conserving pseudopotentials and linear-response theory
(LRT). The extension of these studies to materials containing group II elements
(Zn, Cd, Hg) does not present any conceptual difficulty, but practically ab-initio
pseudopotential calculations have given until now few encouraging results [8]
on these compounds, the only exception being a calculation of the structural
properties of ZnS [9], and a calculation of the band offset of GaAs/ZnSe (110)
interface [10]. The most serious problem is the presence of cation d electrons
with energies of order 10 eV below the valence s electrons. All-electron calcu-

lations [11] have shown that d electrons give important contribution to bond
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formation both in ZnTe and in CdTe and in II-VI semiconductors in general%
actually they form a flat band whose energy is higher than the anion s band
and for this reason they should be considered as valence electrons. This cannot
be done in practice with the usual plane-wave formalism, because the resulting
pseudopotential is too hard to allow converged calculations within reasonable
basis sets. One partial solution of this problem has been recently proposed [12]
to deal with these difficult cases. The idea is to include d electrons in the
frozen core and to compute the correct exchange and correlation energy using
the total—rather than valence—charge density: this is achieved by adding the
frozen core charge to the self-consistent valence charge. This approach, known
as non linear core correction (NLCC), was first used by Louie, Froyen and Co-
hen [12] for the description of magnetic systems, but the application to Zn and
Cd was not thoroughly investigated until now, the only work being, to our

knowledge Refs. 9,10 .

We began investigating structural and dynamical properties of pure ZnTe
and CdTe as a preliminary step towards the understanding of the alloy (and
possibly of its ferroelectric properties). A further line of investigation, not
reported in this thesis, concerns the properties of ZnCdTe superlattices. The
original work performed in this thesis is reported in the following sections, which

are summarized as follows:

In Sec. IT we report the generation of new pseudopotentials for zinc and

cadmium, to be used in the framework of NLCC. As a benchmark, we have
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studied the structural properties of the two pure compounds.

In Sec. III we generalized Linear Response Theory in the framework of
NLCQC: this includes the effect of the moving core charge. We have then modified
the numerical code used to calculate phonon frequencies at a generic g point [13]
and we have calculated from the first principles the phonon spectra of ZnTe and
CdTe along several high symmetry directions of the Brillouin zone.

As a preliminary step towards the study of the alloy we report in
Sec. IV the calculated relaxations of the atoms in one prototypical supercell
geometry. We show that tellurium sublattice is much more distorted than Zn-
Cd one and we obtain a relaxed configuration in agreement with X-ray and
EXAFS measurements. Some preliminary considerations about spontaneous

polarization and ferroelectricity are also reported.




TI - Non Linear Core Correction

Within the usual pseudopotential formulation of DFT, the total energy of
the solid is expressed as a functional of the valence (pseudo) charge density ( p, )

only, as:

Eior = T[Pv] + Eei[Pv] + EH[Pv] + E:vc[Pv] + B (1)

where

Ee.; = /‘ Vpspu(r)dr (2)

By = 1 /‘ f’i’_(_ﬂf’“_(f_)drdr/ (3)

2 |r — /|
E;c= ‘/;’ Exc(Pv)Pvdr (4)

Tlpv] is the kinetic energy of the non interacting system, calculated using
Kohn and Sham orbitals, and E;; is the electrostatic energy of bare ions. In
this formulation it is implicitly assumed that the total charge density can be
split into a core and a valence contribution, and the energy associated with
the core charge is subtracted off. The interaction between core and valence
orbitals is completely accounted for by the pseudopotential ( Vp; ), which must
be able to correctly represent the effect of the orthogonalization of the valence

eigenfunctions to the core ones, the effect of the interaction of a valence electron
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with the electrostatic potential of the core charge and the effect of exchange and

correlation between valence and core eigenfunctions. The possibility of building

a pseudopotential that fulfills all these constraints is linked to the validity of

two hypothesis:

(i) Frozen core approximation, meaning that the electronic structure of the
core does not depend on the different chemical environment;

(ii) Small overlap between core and valence charge, which is a necessary
condition to linearize the exchange and correlation energy.

Both hypotheses are not strictly valid for group II elements if we assume
that d electrons are included in the fixed core charge. In particular hypothesis
(i) is clearly violated as can be seen in Fig. 1 where we plot the core and
valence charges of Zn and Cd. To deal with these elements in the framework of
pseudopotential plane waves theory we have to reconsider hypothesis (i) and
its consequences. The idea is to write the exchange and correlation energy in

the form [12]:

Eie = /Exc(Pv + Pc)(Pv + Pc)dr- (5)

This means that we do not linearize Eq. (5) as it is implicitly done in usual
pseudopotential calculations, where it is assumed that it is possible to write

Eq. (5) in the form :

Ezc:/exc(pc)pcdr-}—/Ezc(pu)pudf—{-/Gzc(pv),gcd1'+/Exc(Pc)Pvdr; (6)
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the last two term are then supposed to be zero and the first one to be a
constant (frozen core approximation). Hypothesis (ii) has been used in many
pseudopotential calculations made until now and it is a very good approximation

for groups IV, V, VI elements, but it is not completely acceptable in group III

atoms, and it is basically wrong in group II atoms.
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Fig. 1 - Core and valence charge of zinc and cadmium neutral atoms. d electrons are included in

the frozen core.
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II - a) Generation of the pseudopotentials

In order to calculate exchange and correlation with Eq. (5), the usual ionic
pseudopotentials [14] are not correct because they are obtained using Eq. (6).
For this reason we had to generate new norm conserving pseudopotentials, and
to this end we used the method suggested by von Barth and Car [15]. In this
method the form of the pseudopotential is a given function of some parameters,
which are determined by minimizing simultaneously the difference among the
all-electron atomic eigenvalues and the same eigenvalues calculated for the
pseudoatom and the difference between the valence pseudo-eigenfunctions and
the all-electron wavefunctions. The latter difference is calculated outside a
certain core radius 7., which is chosen between the last zero and the last
maximum of the all-electron eigenfunction. In this formulation the valence
charge is exact in the range 7 > r., and to correctly reproduce exchange and
correlation energy, we have to fit the core charge only in the range » > ny,
where 7y =~ r.. In the range 0 < r < ry the core charge is smoothed with an

arbitrary function chosen is such a way that p. is continuous and derivable:

Asin B
pc:—~517n——7: 0<r<mg. (7)

In order to choose 7y we have to come to a tradeoff between the accuracy
of exchange and correlation and the number of plane waves necessary in the

total energy calculation. Tests made in Ref. 12 showed that 7y can be chosen
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in the range where the core charge is from one to two times larger than the
valence charge density, and in our case we find no substantial worsening of the
results by choosing r; as the radius where core and valence charge are equal,
using therefore a very smooth core charge. In Fig. 2 and Fig. 3 we display
the all-electron valence wavefunctions of Zn™ and Cd™ ions together with the

pseudowavefunctions.
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Fig. 2 - All-electron and pseudowavefunctions of Zn ion. r. is at the maximum of the all-electron

eigenfunction, while the vertical line indicates the position of ry.

The choice of the reference atomic configuration to which pseudowavefunc-
tions are fitted, is a particularly delicate point of the whole procedure. Zinc and

cadmium neutral atoms have only s valence electrons but we need to generate
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Fig. 3 - All-electron and pseudowavefunctions of Cd ion. r¢ is at the maximum of the all-electron

eigenfunction, while the vertical line indicates the position of rg.

the s, p and d components of the non local pseudopotential: this gives us
the freedom of choosing the configuration for the p and d components of the
pseudopotential. One possibility is to calculate the p and d levels of the most
external shell using an excited configuration; but we found that the resulting
eigenfunctions are too spread in space to be efficiently fitted, so we choose the
lowest s, p and d empty levels of the positive ions Znt and Cd ™. As a test of
transferability we then calculated the neutral atom s valence eigenvalue with

the result shown in the first line of Table I:
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Zn Cd
E(R.) All-el.  Pseudowf. AE | All-el. Pseudowf. AE
82 -0.451 -0.457 0.006f -0.432 -0.437 0.005
st -1.538 -1.538 0.0 ] -0.9895 -0.9886 0.0009
p° -0.5881  -0.5881 0.0 -0.5591  -0.5599 0.0008
d° -0.1668  -0.1668 0.0 -0.1694 -0.1693 0.0004

Table I - Energy eigenvalues of the all-electron zinc and cadmium atoms compared with the
pseudopotential values. The first row refers to neutral configuration, while the others refer to

the ions.

In the remaining lines of the table we report the values of all-electron
atomic eigenvalues and those of the pseudoatom for the ionized configuration.
All-electron calculations are fully relativistic but spin orbit interaction is not
included. We used the exchange and correlation energy calculated by Ceperley

and Alder in the parameterization of Perdew and Zunger [16].

IT - b) Structural properties of ZnTe and CdTe

We have tested the quality of the pseudopotentials by calculating the
lattice constant and bulk modulus of pure ZnTe and CdTe. These compounds
crystallize in the zincblende structure. The method used is the standard one

that consists in calculating the total energy with a fixed kinetic energy cut-off
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for a few lattice parameters and in fitting the energies with some equation of

state. We used Murnaghan equation [17]:

@By, 1

, 0
E = Bo—1 4 t. 8
B} [B{,-l(ﬂ) tq teos (8)

o

This formula has three adjustable parameters: the equilibrium volume of the
cell ©y, the bulk modulus By and the derivative of the bulk modulus B
with respect to the pressure. These are fitted to the calculated values of the
energy. The result of the interpolation for various values of the fixed cut-off
can be seen in Table II. These values show that a kinetic energy cut-off of 16
Ryd is sufficient to give accurate results of the lattice constant and of bulk
modulus for both systems. This cut-off leads to approximately 500 plane waves
at the equilibrium volume. For Brillouin zone integration we used the grid (444)
by Monkhorst-Pack corresponding to the set of 10 Chadi-Cohen points in the

irreducible wedge [18].

(a.u.),(Kbar) 14 Ryd 16 Ryd 20 Ryd 24 Ryd exp

ao (ZnTe) 11.47 1148 1147  11.47 11.48
By (ZnTe) 519 516 524 521 506
B, (ZnTe) 4.6 4.6 4.5 4.4 —
ay (CdTe) 1221 1219 1219 1219 1225
By (CdTe) 472 490 475 480 450
B, (CdTe) 4.2 4.7 4.5 45 4.2

Table II - Lattice constant, bulk modulus and derivative of the bulk modulus with respect to the

pressure, calculated for different kinetic energy cut-off.




III - Linear Response Theory within NLCC

A large number of observable ground state properties of a solid can be
calculated as derivatives of the total energy with respect to a parameter. For
instance, the two quantities we want to discuss—force acting on an atom
in a distorted configuration and harmonic force constants—can be obtained
as the first and second derivative with respect to the atomic position. The
derivative can be evaluated either by finite differences, by subtracting the
result of two self consistent calculations for two different configurations of the
solid, or analytically, through the Hellmann-Feynman theorem [19]. The finite-
differences method is limited by the fact that a large number of perturbations
of interest breaks the translation symmetry of the solid: the energy of the
perturbed configuration can therefore be obtained only at the price of using large
supercells. This is the reason why only phonon frequencies at high-symmetry
points of the Brillouin zone have been calculated in this way [20]. This approach

is known as the "frozen-phonon” method.

The linear response does not require high-symmetry distortions. The forces
acting on an atom can be obtained using only the unperturbed charge density;
moreover using the variation of the charge linearly induced by the perturbation

it is possible to calculate second derivatives of the energy and, from these,
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phonon frequencies. Recently a new method [21] has been introduced to perform
a self consistent calculation that gives exactly the linear variation of the charge
produced by any perturbation. Implementations of this analytic-derivative
scheme have been applied to the calculation of the dielectric constants, effective
charges, piezoelectric constants and phonon frequencies [13][22] of the most
common semiconductors of group IV and of groups III-V. We want to extend
these same techniques to II-IV semiconductors (ZnTe and CdTe) and to this end,
the NLCC must be explicitly accounted for in the LRT. The most important
point to note is that whenever exchange and correlation involve the core charge,
a variation of the position of the atom implies a variation of the exchange and
correlation potential. The resulting force has been recently discussed [9][23],
but the contribution to the harmonic force has not been reported in the

literature [24].

Here we present the necessary generalization of the LRT that is applicable
when the perturbation is generated by an atomic displacement: this amounts
to displace both the pseudopotential and the core charge. The starting point
is Eq. (1), where exchange and correlation are given by Eq. (5). For the sake
of clarity, the presentation given here is limited to local pseudopotentials; all of
the calculation are performed indeed using non local pseudopotentials, where
the corresponding expressions look more complex. We are interested in the
second derivative with respect to two general parameters A and p. Within

lattice dynamics, each of the two parameters is identified with one component
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of the displacement u4(R) of the atom s (whose equilibrium position is 7, ) in
a cell characterized by the Bravais vector R. The core charge of the solid is
given by:
=> > pilr — R—1 —us(R)), (9)
R s
and contains explicitly the parameter with respect to which we derive. In this

case Hellmann-Feynman theorem becomes:

8Etot _ ans 3 / BPC 3

where V.. has the usual definition as the derivative of the exchange and

correlation energy with respect to the density. The first term is the well
known expression for the force, while the second one is the contribution due
to NLCC. The harmonic force can be obtained by deriving with respect to a

second parameter p:

a-Etot _ 8/)'0(7') 6Vps 3 / BZVPS 3
N R T Sl LUy

Ve 8,01) 6,06 apc 3
+ d 11
Vv 6ptot 8/11 6}1/) OA t ( )

8%p,
d?
+ /“ Vaelr )5 d T
If we consider the variation of the Kohn e Sham potential [25]:

6VK5 N 5Vp5 n 6VH + Bch ch 8,07,,)
[s) )\ oA Optot ~ OA oA

we see that the introduction of NLCC is equivalent, as far as the variation of

(12)

the valence charge is concerned, to an effective external potential given by:

Ve
AVers = BVps + 50— Z——Ape (13)
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and the harmonic force constant can be expressed as the usual force constant
with the effective variation of the external potential plus two terms that do not

depend on the variation of the valence charge:

8Etot _ 6E?0t BVM 8,0(; 8,06
OudX  Oud Optor Op OA

d3r+/V (r) O pe d®r. (14)
= 8udA

These results have been implemented in a code for lattice dynamics and
applied to the computation of phonon frequencies of ZnTe and CdTe along lines
of high symmetry. Plane waves up to 16 Ryd have been used: this is enough to

! on the calculated phonon

provide a numerical accuracy of the order of 8 cm™
frequencies. The other computational details are the same as in Ref. 13. We
report in Table III our theoretical values for the Born effective charges and

dielectric constants for the two materials; the experimental data are shown as

well, after Ref. 26 for CdTe and Ref. 27 for ZnTe

ZnTe exp CdTe exp

€0 835 T7.28 T.76 T.1
zZ* 2.05 2.0 218 2.35

Table III - Born effective charges and dielectric constants of ZnTe and CdTe. The values correspond

to a kinetic energy cut-off of 16 Ryd.

The phonon spectra have been measured in the early seventies through
neutron scattering (Ref. 28 for ZnTe and Ref. 26 for CdTe), and they were

interpolated using shell model with 14 parameters [28] and rigid ion model using
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11 parameters [27]. Experimental error on optical branches of CdTe is of the

order of 8 ¢em ™!, but infrared measurements at the zone center also exist [29],

which are in substantial agreement with neutron data and have smaller errors

(a few em™1).
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Fig. 4 - Phonon spectra of ZnTe

along high-symmetry directions. Experimental points are from

reference Ref. 28. Continuous line is the first-principles result.

Our calculated spectra are reported and compared with experimental

data in Fig. 4 and Fig. 5

of using NLCC to account

. The present results demonstrate the possibility

quite satisfactorily for the effect of d electrons of

group II elements within a pseudopotential formulation. The difference between

calculated and measured frequencies is never larger than 10 c¢cm™

1 and it is
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Fig. 5 - Phonon spectra of CdTe along high-symmetry directions. Experimental points are from

reference Ref. 26. Continuous line is the first-principles result.

much larger in CdTe than in ZnTe. This error is probably due to relaxation
of d electrons not accounted for by our approximation. Our result for lattice
dynamics indicates that NLCC correctly reproduces bond bending and bond
stretching in the II-VI’s, even for low symmetry configurations. This gives
confidence in the reliability of the approximations for use in the Zn,Cd;_Te
alloy calculations for structural properties, in particular for cases where low

symmetry ionic configurations are involved.



IV - an‘ Cd,_, Te alloy and ferroelectricity

A ferroelectric crystal is a solid which—below a critical temperature
T.—exhibits a spontaneous polarization; in general the polarization may
be reoriented under the influence of an applied electric field. Ferroelectric
crystals can be classified into several classes, and different models have been
used to explain their behaviour. One class contains systems like KH,PO,
where ferroelectricity is associated with the tunneling of hydrogen atoms
between different sites and with a transition form a disordered to and ordered
configuration. A second class of ferroelectric materials consists of ionic crystals
with crystal structures closely related to the perovskite structure. Examples are
BaTiO3;, KNbQOj, PbTiO3. In this class the transition is characterized by a
decrease of the frequency of one optical transverse phonon at zone center which
vanishes when the transition temperature is reached from above. Below T. the
optical mode is unstable and the crystal distorces towards a polarized structure.
Finally there is a third class that contains some narrow-gap semiconductors such
as PbTe whose dielectric constant increases by decreasing the temperature but
it does not diverge at any finite temperature. Also GeTe belongs to this class.
It shows a transition from rocksalt structure at high temperature to a trigonal

ferroelectric structure. In this case the high conductivity prevents any direct
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measurement of the static dielectric constant.

In the alloy Zn,Cd;_.Te a fraction of zinc atoms substitutes cadmium in
the IT- VI semiconductor CdTe. None of the two pure compoundsis ferroelectric,
but the introduction of a small quantity of zinc in CdTe makes the alloy
ferroelectric with a critical temperature that depends on composition an varies

between T, =90 C at z = 0.05 to T. =250 C at =z = 0.45 [1].

P( “C/cm:) sor€ ?"?‘- w102
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| E lv/em}
300/600
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1

40 80 120 léO 200
TEMP.(C)

!C 1 L L H L

Fig. 6 - Experimental dielectric function, and hysteresis loop of the alloy with x=0.1. Data are

from Ref. 1.

Experimental data reported in Fig. 6 are relative to # = 0.1. A clear
increase of dielectric constant in (111) direction, and the measurement of the

hysteresis loop in the dependence of polarization on applied electric field, seem
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to suggest the presence of a ferroelectric transition, even if the maximum value of
€ (€maz = 50) and the value of typical polarization ( P = 5 nC/cm?), are much
smaller than the values measured in typical ferroelectrics (€mq, = 10° — 10%,
P =0.1-100pxC/em?). In this case it is difficult to unambiguously classify the
transition according to some known model even if initially the possibility was
suggested [1] that ferroelectricity could be associated with an order-disorder
phenomenon related to a displacement of zinc atom inside the tetrahedron of
tellurium atoms, in analogy with the alloy Pb;_GeTe [30], where the large

difference in atomic radii between Pb and Ge seems to drive the transition.

Semiconductor alloys have been the subject of intensive studies in last
few years. Even if there was no indication of the possibility of a ferroelectric
phase transition, a great effort has been devoted to the characterization of
local properties of these compounds [3], and to the study of possible ordered
structures. Different approaches have been applied in the study of alloys of the
type A(B;_C, particularly for III-V semiconductors, the most successful being
due to Zunger and coworkers [5]. The results of EXAFS measurements [31]
have shown that A and B cations sit on a fcc lattice, which is practically
undistorted. The approach of Zunger [5] exploits this feature and starts from the
tetrahedra having four cations at the vertices as fundamental units, where the
embedded anion is generally off center. There are five possible arrangements:
A,C, A3BC, Ay;B,C, AB3C, B4C. In general, in all these structures, bonds

are distorted with respect to the ideal geometry of the binary crystal, but it is
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possible to characterize the local properties of the alloy using a single parameter
A which describes the position of the off center anions along (111). Using
DFT within LDA it is possible to calculate the lattice equilibrium constant,
the energy, and the parametér A for every fundamental tetrahedron and to
extract the properties of the alloy from the average. For the particular alloy
we are interested in, EXAFS measurement have been reported [3] long before
the finding of ferroelectricity. In this case the great difference between bond
lengths of the two pure compounds (0.163 A) makes it possible to distinguish
unambiguously two type of cations at slightly different distances from the

anions. Defining
() = dznTe(2) — dodre() (15)
TZnTe — TCdTe

where d are the distances in the alloy and r in the pure compounds, the value
€ = 0.75 is obtained practically independently of alloy composition.

Following the measurement of ferroelectricity also diffraction by X-ray
experiments have been reported [2] and the results have been interpreted
supposing that Zn-Cd lattice is distorted to a rhombohedral structure with
an angle a = 89.4° (very close to the undistorted structure where o = 90°),

and the lattice constant depend on composition according to the Vegard law:

Qglloy = AZnTel -+ aCdTe(l - :E) (16)

Most important, the tellurium sublattice is distorted below T., and every

tellurium atom is in a position that depends on the kind of its neighbours,
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and that makes Zn-Te and Cd-Te bonds almost of the same length of the pure
compounds. The X-ray data have been interpolated supposing that, below T,
tellurium atoms are displaced in (111) direction of an amount A = 0.1+0.02 A
with respect to the ideal zincblende position.

While an all-electron calculation [32] of electronic and structural properties
of the alloy Zn,Cd;_.Te exists, no ab-initio pseudopotential study has been
reported so far on this system. A naif hypothesis about the nature of
ferroelectricity relies on displacements of Zn atoms, due to its small atomic
radius with respect to the average atomic cell size. This hypothesis is not
supported by EXAFS and X-ray data, which show the cationic sublattice
as almost undistorted. Nonetheless we have checked this hypothesis in a
straightforward way, studying the stability of ZnTe at an expanded lattice
constant. Choosing the lattice constant of CdTe, the energy as a function of zinc
position along (111) is shown in Fig. 7. As it is easily seen, there is no tendency
to softening anyhow, the zincblend position being the most stable. Such a simple
mechanism cannot therefore be invoked to explain an order-disorder transition.

Possible relaxation seems to be connected with the properties of the mixed
system. The alloy model we decided to study is the simplest system which has
the same local properties of the alloy at z = 0.5: a superlattice along (111) with
four atoms per cell. Considering the trigonal cell shown in Fig. 8 and repeating
it in a Bravais lattice we obtained a superlattice composed by alternating planes

Zn-Te-Cd-Te-Zn..., in which the two tellurium atoms are not equivalent.
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Fig. 7 - Difference in energy as a function of zinc atom position along (111) direction. x=0.25 is

the equilibrium zincblende position. Energy unit is mRyd.

The first tellurium forms bonds with one zinc and three cadmium and is
an example of the tetrahedron AB3C, while the second one has three zinc and
one cadmium (A3BC). The lattice constant is set at the value calculated using
Vegard law with the pure compounds lattice constants obtained in Sec. II. In
Table IV we report the forces appearing in the unrelaxed configuration. What
can be immediately seen is that forces acting on tellurium atoms are one order
of magnitude larger than those acting on Zn and Cd. This is in agreement
with the model used in interpreting EXAFS and X-ray results, where only the

tellurium sublattice is allowed to distort. Using the forces we searched for the
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(111)

X

Fig. 8 - (111) supercell used in the calculation. The four black atoms are respectively Zn-Te-Cd

and Te and are the basic unit of our system.

relaxed configuration and the result is shown in Table IV where we report the

position of the atoms and the forces acting on them. These positions are along

the (111) direction, and the measure unit is a+/3/2
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Initial Pos. F,(ryd/a.u.) Final Pos. F,

0.0000 (Zn) 1.7x 1073 -0.0003 3.8x1073
1.4142 (Cd) | —1.7x10~? 1.4146 ~2.2 x 10~°
0.3535 (Te) —3.1x1072 0.3403 6.1 x 10~*
1.7677 (Te) 3.1 x 1072 1.7797 ~6.0 x 10~

Table IV - Initial and final position of atoms in the supercell. The forces are along (111) direction.

Distances are measured with respect to the lattice constant (measure unit is a \/3/2).

The distortion of the two tellurium atoms is different and it is A; = 0.099 A,
As =0.088 A in good agreement with X-ray data.

From this simple case we can draw some comsideration concerning the
ferroelectricity of the alloy. If we calculate the polarization of the relaxed (111)
superlattice using a simple ansatz, that is supposing that every atom is an
ion with an effective charge equal to the calculated Born effective charge, and

assuming that the undistorted lattice has zero polarization we have
P =" Zy(7 — ) (17)
3

The result is P = 0.145uC/cm? in the (111) direction, which is a much higher
value than the experimental one. In this case the polarization is due to the
different relaxation of the two unequivalent tellurium atoms and to the different

effective charges. Clearly our value, calculated for perfect ordering, is an upper



Zn, Cd,_,Te 27

bound for the actual value in a real alloy with =z = 0.5. The value measured
in the alloy depends on composition, on disorder, and on temperature. It is
clear that the order of magnitude of relaxation of Te atom is far too large
than necessary to give the measured spontaneous polarization, and for this
reason in this system ferroelectricity could be related to some unbalance between
dipoles pointing toward different directions. The reason of this unbalance can
be investigated only including finite-temperature effects and for this reason a
statistical mechanics calculation—where all possible tetrahedra are accounted
for—is necessary. We have shown that, using ab-initio techniques, it is possible
to describe realistically the properties of this alloy; this work can be considered

as a first step toward a more complete theoretical description.
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