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Introduction

The development of Physics has been often characterized by the introduction
of some more general and accurate theories as sort of deformations of already
known and accepted ones. A well-known example is special relativity, which can
be viewed as a deformation of Galileo’s relativity; the velocity of light plays the
role of deformation parameter. Another example is quantum mechanics, which
can be seen as a deformation of classical mechanics, Planck constant being the
deformation parameter.

Within the recent increasing interest for quantum groups the question
has been raised [1] whether these fascinating mathematical objects can replace (or
generalize) Lie groups in the description of the fundamental symmetries of physics,
since they can be considered as continuous deformations of Lie groups themselves
[2],[3]. One may ask whether the axioms of quantum mechanics are compatible
with a more general description of continuous symmetries than the usual one,
which is provided by Lie groups and their representations over the Hilbert spaces
of physical states; many new possibilities in this direction seem to be open [4].

In particular it looks tempting to consider deformations of the symmetries
of space(time) [5],[6],[7],[8]; in such a case quantum groups and/or the underly-
ing quantum spaces [3] replace classical space(time) and represent examples of
noncommutative geometries [9]. As known, such geometries look promising for
describing the microscopic structure of spacetime.

To understand what is going on and to introduce some important concepts
which will be heavily used in the next chapters, let us consider for instance a one-
particle system in ordinary 3-dimensional space. First we consider it as a system
described by classical mechanics.

Let r,7 be the position and the momentum of the particle; (r,7) define the
state of the system. We introduce a reference frame S and the coordinate and

momentum (vector) functions Z, p:
z:r— @(r) € R® p:m— p(r) € R (0.1)

zi(r), p'(m) are respectively the coordinates and the momentum components of
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the particle in the frame S. The functions z',p' commute:
[,27] = 0 = [p',p'] = [&', p']. (0.2)

All other observables are functions (power series) of z!,p’ and make up a (com-
mutative) C*-algebra Fun(RZ x R3).

We denote by Fun(G) the commutative algebra of functions (power series)
on the group G := SO(3,R). The basic variables TJ‘ € Fun(G), 7,7 = 1,2,3,
are defined by Tj(g) = g;: (9 € G and ]]g;H € adj(G), where adj(G) denotes the
adjoint representation of (7). The physical description of the system is covariant
w.r.t. the group of rotations G. We can express this covariance using the language

of corepresentations, i.e. introducing a (left) coaction ¢
¢ : Fun(R®) — Fun(G ® Fun(R?) (0.3)

defined on the basic variables z¢,p’ by

pr(z') =T} Q) 2’ ér(p') =T () p’ (0.4)

(either multiplet (z?),(p’) gives the fundamental corepresentation) and extended

as an algebra homomorphism

ér(ad) := ¢r(a)pr(b), a,b € Fun(R2 x Rg). (0.5)

The coordinates a:li(r) of the particle in a new frame S’ (obtained from S by a
rotation ||g5||) will be given by
[Br(2")](g:7) = [T} Q) @7)g,7) := T} (9)e'(r) = gja’ (r) = = *(r); (0.6)
in a similar way we get the new momenta p (7).
The transition to quantum mechanics is characterized by the following
replacements. The functions Z,p are substituted by operators X, P on a Hilbert

space H. In the socalled coordinate representation

lu > H 18 represented by flz) & EQ(R‘E)
X z- (0.7)
P b ﬁ@,

This implies that the commutation relations (0.2) are to be replaced by

(X%, X7 =0 =[P, P] (X7, P) = irg" 5 0. (0-8)



X, P/ generate the C*-algebra of the observables of the system. The (left) coac-
tion is now defined on the latter algebra replacing the basic definition (0.4) by the

new one

r(X7) =T} Q) X7 = Ur(Lrunie) Q) XUz’
$r(P') =T} R) P! = Ur(1run(c) Q) PHUT"; (0.9)

1Fun(G) is the unit element of Fun(G) and Ur € Fun(G) @ B(H) evaluated at the
point g € @ gives a unitary operator U, := Ur(g,-) on H. As in the classical case
¢r is extended as an homomorphism through the relation (0.5). The coordinate

observables X ¢ in the rotated frame S’ are given by
X' = [o(Xg,) = gjX7 = U, XU (0.10)

and a similar relation gives P''. As shown in formula (0.8), the coordinates X'

(resp. the momenta P?’s) commute with each other, and so do the functions T;’s:
[T}, T = 0. (0.11)

Next we ask whether we can deform the commutation relations of the
coordinates (or of the momenta) preserving the definition (0.9) of ¢r together
with the natural requirement (0.5) that it be a homomorphism. We can easily see
that this is not possible, unless we deform the commutation relations (0.11), as

well; the converse is also true. In fact (0.9),(0.5) imply
$r((X', X)) =TT QX*X* ~ TIT; @Q X* X" (0.12)
Then
{(0.12) and [X{, X7] = 0} = 0 = ¢, (X', X']) = (TiT{ - TITH Q) X" X* =
= [T}, T}] = 0. (0.13)

To prove the converse implication we need to specify the kind of deformed com-
mutation relations we wish for the coordinates. We assume that they are homo-

geneous:

PLXNX =0, (0.14)

with a nontrivial matrix P.4. Then

{(0.12) and [T}, T} = 0} = 0 = ¢ (P 5, X"X*) =P 0, T/ Th QX'X™" =
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=P, I TITE =0= P, 7, o (66 —6.60) = {(0.14) reads [z, X'] = 0};
(0.15)
the second implication in the last line is due to the fact that the relations
P, i}{:kT/’Trﬁ = 0 must be equivalent to the commutation relations [T,f,TZ] = 0.
Now we come back to the general discussion keeping the previous example
in mind and generalizing the notation used there in an obvious way. It is easy
to guess that for a physical system with group of symmetry G the deformation
of Fun(G), and the deformation of the algebra of the observables are coupled.

Quantum groups and the underlying quantum spaces are naturally conceived to

provide manageable tools for nontrivial examples of such deformations.

Following the line suggested in ref. [5] and [7],[8] it is possible to define differ-
ential calculi respectively over quantum groups and over quantum spaces, in such
a way that they are covariant and reduce to the classical ones in the socalled clas-
sical limit, where the deformation disappears and the generating elements (z?, TJZ
in the previous example) of these algebras become commuting variables. If we
consider deformations of space alone (leaving the time as a classical coordinate),
it is natural to ask whether we can endow the space of “functions” of these (gen-
erally noncommuting) “coordinates” with a suitable notion of scalar product, so
as to consider it as the Hilbert space of a finite-dimensional quantum mechanical
model. In other terms, the idea is to mimic the originary construction of quantum
mechanics, where we naturally endow the space of square integrable function-
s with the corresponding well-known Hilbert space structure. If this is possible
one could build the deformed (position, momentum, hamiltonian,...) operators in
terms of the deformed coordinates and derivatives and set the eigenvalue problem
for the hamiltonian and the other observables. In ref. [10] the construction of
a 4-dimensional harmonic oscillator with SU,(2) symmetry was performed along
these lines using three generating (noncommuting) “coordinates” of the quantum
group SU,(2) and an additional commuting variable r = R™ (the radius).

Here we consider the harmonic oscillator in the V-dimensional real quantum
euclidean space Rq\ (N > 3) as the deformation of the classical isotropic harmonic
oscillator in R™. Correspondingly, the symmetry group SO(N,R)is deformed into
the quantum group SO,(N,R).

To understand the line of development of the present work, let us briefly
review the basic mathematical tools which allow the formulation of classical (i.e.

nondeformed) quantum mechanics in the coordinate representation II (over the N-



dimensional space R"). We can summarize its main ingredients in the following
list (with self-evident notation):
e 1) There exists a differential calculus D on RY (derivatives = 9' € D).
e 2) There exists an antilinear involutive antihomomorphism defined on the
algebra of functions of z, 8, the socalled complex conjugation *.

e 3) The vectors belonging to the Hilbert space H are represented by
M:ju>e H — pulz) € L2

e4) Relevant operators (observables etc.) are represented in terms of prod-
ucts of z-,0 (and their functions). Eigenvalue equations are represented by differ-
ential equations (at least in a domain dense in L2(R™).

e5) scalar products are evaluated by means of Riemann integration,

<ubo>= [ Ve b,

which satisfies Stoke’s theorem and therefore automatically makes the momentum
operators %.Bi hermitean.

6) The Schroedinger equation for the harmonic oscillator on R”Y admits
an algebraic solution by means of the creation and destruction operators (which
are also represented using z-,d)

In the present work we present a g-deformed version of each of these
points. The analogs of points 1), 2) were thoroughly developed in Ref. [11],[3],
the analogs of the remaining points are essentially constructed here; some of the
latter results are anticipated in [12]. Using these g-deformed tools, we show that a
sensible g-deformed harmonic oscillator on R‘/qv (with symmetry SO4(N,R)) can
be constructed. In other words we will show that such a model satisfies all the
fundamental axioms of quantum mechanics.

The plan of the thesis is as follows.

Chapter 1 is an introduction (based essentially on Ref. [3] [11]) to the quan-
tum group SO,(N,R), the quantum space BI\ (Sect. 1) and the (two) differential
calculi D, D on RY (Sect. 2).

In Chapter 2, Sect. 3, the time-independent Schroedinger equation is for-
mulated in terms of the g-deformed laplacians of D, D and it is solved using a
suitable generalization of the classical creation/destruction operators. The spec-

trum is bounded from below, as physics requires. The eigenfunctions are the
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“q-deformed” Hermite functions. Then (Sect. 4) we show that any function of
the type polynomial - gaussian can be expressed as a combination of q-deformed
Hermite functions (as in the classical case), a property which enables to handle
the question of completeness.

Chapter 3 deals with the definition of integration over qu\r . Integration
is thoroughly defined using Stoke’s theorem only on some functions of the type
polynomial - gaussian; the latter will be involved in the definition of the scalar
products of states of the harmonic oscillator. To define integration in full generality
one should carefully delimit the domain of functions on which commutation of
integration and infinite sums makes sense; this is out of the scope of this work. In
Sect. 5 we analyse the desired requirements that an honest definition of integration
should satisfy; among them Stoke’s theorem plays a special role. In Sect. 6 and
appendix A we carry out the construction of the integrals for the abovementioned
relevant fucntions; at the end of that section we comment on a surprising feature
regarding the behaviour of integration under dilatation of the integration variables,
a sort of “quantized” scaling invariance.

In Chapter 4 we construct the Hilbert space of the harmonic oscillator. First
a pre-Hilbert space H is introduced by representing the states in two different ways
over the space Fun(R)) (Sect. 7). The two representations (II,II) correspond
respectively to D, D. It is shown that the square lenght, the square momentum and
hence the hamiltonian of the harmonic oscillator are observables, i.e. hermitean
operators. In Sect. 8 another observable, the square angular momentum, is found,
and its spectrum and eigenfuntions are determined. With the help of these results
we prove (Sect.9) the positivity of the scalar product introduced in Sect. 7. This
allows the completion of H into a Hilbert space [H].

Section 10 contains the conclusions of the present work.

g-deformed harmonic oscillators have already been treated by other au-
thors [13] starting from a purely algebraic approach, in the sense that cre-
ation/destruction operators with some prescribed commutations relation are pos-
tulated from the very beginning without any reference to a geometrical framework.
Here and in [10], on the contrary, a geometrical framework is the starting point and
creation/destruction operators are constructed out of the deformed “coordinates”

and “derivatives”.
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Chapter 1

The Quantum Group SOﬂ(N,R),
the Quantum SpaceRfi,

and its two Differential Calculi

1. The quantum group SO,(N,R) and its quantum space Rév

In Ref. [3] one parameter deformations of the classical simple Lie groups
and Lie algebras are presented. For each Lie group G a family Fun(G,) of Hopf
algebras parametrized by ¢ € C (g = the parameter of deformation) is given, and
for ¢ = 1 (which corresponds to the socalled classical limit) Fun(Gy) reduces to the
Hopf algebra Fun(G) of functions on G. With a suggestive expression, Fun(G,)
is said to be the Hopf algebra of functions on the ” quantum group ” G4. Ilf ¢ # 1
the expression ” quantum group G ” has no intrinsic meaning: all ” geometrical
" properties of G are to be translated and understood in terms of properties of
Fun(G,). We will be concerned with the deformation SO4(N) (N = 3) of SO(NV),
more precisely with its real section SO4(N,R).

The elements of the Hopf algebra Fun(S0,(N)) are formal ordered power
series in the generating elements {T;}, i,j = 1,2,...,N. The latter satisfy the

relations
TCT' = 150,(x)C (1.1)
and
RT®T)=(TeT)R. (1.2)
Here C := ||C;j|| denotes the (q-deformed) metric matrix, 1so,(x) denotes the

unit of the algebra, and the tensor product appearing in eq. (1.2) just means
that we are tensoring indices. R := HR;L],c | is the braid matrix and satisfies the

Yang-Baxter equation (in the braid version)

(Re1:)(1; ® R)(R®1:) = (1. @ R)(R®1,)(11 ® R), (1.3)



CN. Eq. (1.3) itself is most commonly written in the form
RisRo3Ris = Roy RisRos (1.4)
with self-explaining notation. Eq.’s (1.2), (1.4) imply
FR(T ®T)=(T®T)f(R) (1.5)

F(Ri2)RasRiz = Ras Riz f(Ras) (1.6)

for any polynomial f(R) in the variable R. C, R are explicitly given by
Cij = q”piﬁij/, jl =N+4+1-7 (17)

R=g) ei@ei+ > el@ei+q?) ei @el+  (18)

iz i#j4,j, or i=j=j' £
Ha—g D ei@el =) g triel @ell, (1.9)
i<j i<j

where (e;)iL = 5ih5jk and

(%—1,‘—;’:—2,...,0,0,...,1——%1) if N even
i) = - N . 1.10
ORI S AR S D
For instance for N = 3 .
q_z"
C = 1 (1.11)

In general C~! = C, so that C/ = C;;. The fact that the matrix C is not diagonal
for g=1 is due to the choice of non real coordinates for the fundamental represen-
tation of SO(N). The R-matrix can be decomposed using the three orthogonal

projectors corresponding to its three eigenvalues ¢, —q ™!, ¢*~™:

R=qPs—q 'Py+q P, (1.12)

and
1, =Ps+Ps+P; (1.13)

Here now 1, denotes the unit matrix acting on C¥N®CYN. Therefore any polynomial
in the R variable reduces to a combination of these three projectors. It can be

also expressed as a combination of three other linearly independent functions of
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R. For instance the choice of the variables R,1,P; will be convenient for many

calculations, so we solve here equations (1.12), (1.13) for P4, Ps:

1

Pi= +__J—E+@1—(q—¢‘NVH;

R (1.14)
Ps = Riqg1-(g +¢ NP
s q+q_1[ +q (g g~ )Pi]

The projectors P4, P, Ps, have respectively dimension N(z\zfﬁl),l, l\r(‘i\;—{_l) —-1. If

q=1 they reduce to the projectors over the irreducible corepresentations (antisym-

metric, singlet and symmetric respectively) of the tensor product =z of the
fundamental corepresentation (z) of SO(N). The projector P; is related to the

metric matrix C by

i ciiC .
Piohk = thk, Qn = CYC; (1.15)
I
The matrix R is symmetric
RT = R, (1.16)
R and its inverse satisfy the relations
Cmi R = RTY 77 Crse. (1.17)

As a direct consequence, they also satisfy the following one
(R, P.(C®C)] =0, (1.18)

and so does any polynomial function f(R) (in particular each one of the three

projectors):
[f(R),P-(C®C) =0, (1.19)
F(R)T = f(R) (1.20)
The coproduct ¢
¢ : Fun(SO,(N)) — Fun(SO,(N))(X) Fun(S0,(N)) (1.21)

and counity €

£: Fun(S504(N)) — C (1.22)



11

are defined on the basic variables by

(T}) = T{ Q) T, e(T}) = 6 (1.23)
and extended to all Fun(S0,(N)) as algebra homomorphisms:

$(abd) = ¢(a)d(b), e(ad) = e(a)e(d) Va,b € Fun(SO,(N)). (1.24)
The antipode S is defined by

S(T}) = C*T[™ Crm; (1.25)

on the basic variables and is extended as a linear antihomomorphism to al-

1 Fun(S0O4(N)):

S(ab) = 5(b)S(a). (1.26)

¢,€,5 have the properties
(3R id)od=(idX)¢)o¢ (idX)e)o ¢ =id = () id) o ¢ (1.27)
o(id®5)o¢:ios:mo(5®z’d)oq$, (1.28)
(eX)id)o¢ = (id(X)¢) (1.29)
oS =¢ (1.30)
¢oS=To(5®S)o, T(a®b) = (b®a). (1.31)

Here 1d is the identity operator on Fun(S0,(IV)),
m : Fun(S0,(N)) (X) Fun(S0,(N)) — Fun(S0,(N)) (1.32)

is the multiplication operator (m(a @ b) := ab) and i : C — Fun(S0O,(N)) is the
injection operator defined by i(c) := c15()4’(_\-\.

If ¢ € R there exists an antilinear involution * on Fun(SO,(N)). It is
called complex conjugation, since it reduces to the ordinary complex conjugation
for q=1. On the basic variables it is defined by
(TH* := $(T7) = C''T!,Cjm (1.33)

J
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and extended as an antilinear antihomomorphism to all Fun(SO.{(N)):
(ab)" :=0b"a". (1.34)

It is easy to show that = is compatible with the relations (1.1),(1.2) defining
Fun(S0,(N)), namely that the relations obtained by taking the complex conju-
gated of (1.1),(1.2) are identically satisfied. We explicitly check the compatibility

with the first relation, which we rewrite here by showing indices
TiCHTi = C'1so,(n) (1.35)

Since lz‘oq(N) = 150,(v) and the matrix elements of C are real, complex conju-

gation on the LHS gives
(LHS(1.35))" = C'1s0, (N3 (1.36)
as for the RHS, using formula (1.1) itself and the property C~! = C we find
(RHS(1.35))* = (T})*C7M(Ti)* = C™ T CrnCIFCP T Cjy =

= C™T G, T OV = C™ CmpCP 150, 3y = C'Lso,(n); (1.36)

they are equal, as announced. Similarly one shows that (1.2) is transformed by *
into an identity. By multiplying relations (1.1),(1.2) by powers of Tf one generates
new relations involving higher order polynomials in T7; the latter are compatible
with # too, since * is an antthomomorphism.

»

Finally it is straightforward to show that the complex conjugation ” com-

mutes ” with the coproduct and the counity:

gbo*:(*@*)og{) (1.37)

The Hopf algebra Fun(SO,(V)) equipped with * is the compact real section

of this Hopf algebra and will be denoted by Fun(S0,(N,R)). If ¢ =1 it reduces
to the Hopf algebra of functions on the compact group SO(N,R).

The algebra O,(N) (this name is due to Ref. [3]) of functions on the
quantum euclidean space is introduced as the algebra of formal ordered power

series in the generating elements {z'}, 1 = 1,2,..., N modulo the relations

P ek = 0. (1.38)
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For instance for N = 3 eq.’s (1.38) amount to the three independent relations

—1
zle’—gzz' =0, o2z’ —qz’z® =0, wlms—a::;ml—l-(q%—qT)(mz)z = 0. (1.39)
For ¢ = 1 and any N 774 I %(5,‘152 — 52.5,];), so that the z' ” coordinates ”
become commuting variables and their order in each monomial doesn’t matter
any more. In other terms the underlying geometry is no more noncommutative,

but classical (i.e. commutative).
The left coaction ¢r : Ogf(N) — Fun(SO0¢(N)) @ Oq(N) of the quantum
group SO,(N) is defined on the basic variables by

¢r(z') = Tj (X) 27 (1.40)
and is extended as an algebra homomorphism:

ér(ab) = ¢r(a)dr(b) a,b € Oy (N). (1.41)

The conditions (1.38) are covariant w.r.t. the quantum group SO,(N) (hence they

)
are compatible with the coaction) because of relation (1.5) (with f(R) = P.4):
(P, L te®) =P ] ThTE 2 e* =T TJ ®P4hzkj zh k. (1.42)

Imposing condition (1.38) puts both handsides equal to zero.
@1 satisfy the properties

(8 id) o dr = (id(X) dr) 0 1 (e id)o ¢ =ido,n) (1.43)

Therefore by the introduction of ¢r Oy(N) gets a ” left SO (N )-comudule .

Similarly one could define a right coaction and show that O, (V) is a ” right

S04(N)-comodule ”
It is easy to check that the square length =C'z := z'C;;z/ is central in

0,(N) and is a scalar under the coaction of the quantum group:
¢r(zCz) = 1(X)(zCx) (1.44)

As for the first point, note that relation (1.12),(1.13),(1.38) imply

. 1 — g2 —
g R ghok = gyt +—/:—?—q—fVC'lJ(mcm) (1.45)
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2_1 ..
CY(zCc); (1.46)

qR lhlk]:z:h:l:" =zizd + 9
7

hence, using property (1.17),

. 1—g° .
z'(zCz) = 2'¢' O™ = [q “1RU phaF — 1 g VO (2C2)|Crma™ =
7
“ 1-— q2 . .
=g 'CuRE eheke™ — — 2 ¢V (zCz)z?
7

1A hpo =11 ¢ =1 1-¢® _n '
= ¢ ' Cuzt g e’ + ¢ ——C"2Ca] + — ’LL g " (zCz)z’
B

2 _ 1 a2 1 . .
=[¢g %+ q_zil——-—— + g7 g————](wC’m)m‘ = (zCz)z’",
p 7
(1.47)
as claimed. As for the second point, relation (1.44), it is a straightforward conse-
quence of the definition of ¢1, and property (1.1).
As before if ¢ € R one can define an antilinear involution *, the complex
conjugation (we will use the same symbol used for Fun(S0,(N))) on O4(N) b

setting
()" =27 Cy; (1.48)

on the basic variables {z'} and extending it as an antilinear antihomomorphism.
The basic conditions (1.38) defining O,(NN) are compatible with complex conjuga-
tion. In fact, using properties (1.19), (1.20), we find

[P, atak] =P, e o CpaCrrg = (P_Aj,;f;,:vk'mh')C’jle”"i; (1.49)

Imposing eq.’s (1.38) sets both handsides of this relation equal to zero. The coac-

tion and the complex conjugation commute:

¢Lo*:(*®*)o¢,;. (1.50)

It is enough to check this property on the basic variables z', since ¢, are re-

spectively an homomorphism and an antihomomorphism. Indeed
$1((2))) = Cjigr(a!) = C;iT) Q=" (1.51)

and

(Ti) Q=) = CI'TCin Q) ' Cik = C;uTi (X) <, (1.52)
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upon use of (1.30), (1.45) and of the property C~! = C.

It is easy to check that (zCz)" = zCw, i.e. that the square lenght is real
(for ¢ € R.

The algebra O,(N) equipped with the involution * will be suggestively
called ” the algebra O,(N,R) of functions on the N-dimensional real quantum
euclidean space Rév ” (again the expression Rév has a well-defined meaning only
in relation with O4(N,R)). From the above contruction it should be clear that
the structure of the quantum space Rév is strictly dependent from the symmetry
we endow it with, namely the symmetry w.r.t. the quantum group SO,(N,R).
Then the construction of szv from SO,(N,R) can be seen as a noncommutative
realization of Felix Klein’s program for geometry: the geometry of spaces should
be determined by the symmetries we want them to satisfy. In this approach
the quantum group is defined before the quantum space. On the contrary, in
Manin’s approach [6] the quantum spaces are defined first (as deformations of
the commutative spaces), and the quantum groups are defined so as to be their

symmetries.

2. The differential calculi D,D on Rfl\'v

Following the successful lines suggested in Ref. [5] and [7],[8], the differ-
ential calculus on the quantum space Rév (see Ref. [11]) can be defined by a few
essential requirements: its SO4(V, R)-covariance; Leibniz rule and nilpotency for
the exterior derivative d whatever q; homogeneous commutation relations between
1-forms and 0-forms (i.e. functions). It turns out that the differential calculus re-
duces to the classical one on R” for ¢ = 1. The steps are the following. One
first introduces the basic 1-forms £’ by applyving the exterior derivative to z'’s.
Then one looks at sensible homogeneous commutation relations between z'’s and
¢/. Finally one introduces ” derivatives ” 9;'s 7 w.r.t. the coordinates ” by setting
d := £'8;. We will see that two independent differential calculi are admissible.

They are mapped one into the other by the complex conjugation.

The exterior derivative of the differential calculus D is denoted by d. It is

nilpotent, namely

d® = 0. (2.1)
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Denoting by AP(ON) the space of p-forms over R , we define
doy| 5= day — (<1 ayd (2.2)
Leibniz rule amounts to the statement
ap € AP = da,| € APF? (2.3)

In fact it implies
dapB| = day|B + (—1)Papdf] (2.4)

for any form . In the common notation da,| would be denoted by (de;), so that
Leibniz rule (2.4) would take the usual form d(a,8,) = (dap)Bq + (- 1P a,(dBy).
We prefer to use the new symbol do,| to keep in mind that this form can be written
as the difference (2.2); this will enable us to define the complex conjugation * in
an explicit antihomomorphic form on all arguments (also on d, see below) and to
avoid many notation ambiguities.

In particular if f € Oév = A), df| is a 1-form. We denote by ¢ := dz’| the
exterior derivatives of the basic coordinates z'; {£'}is a7 basis ” of A;, the space of
1-forms. The latter can be obtained by arbitary combinations of formal products
f(z)¢ig(z), fg€ O;V(R). One should be able to reduce all such combinations to
combinations of terms either of the type f¢ or of the type £'g, and to this end one
needs to prescribe commutations relations between the zi's and the ¢/’s. In the
classical case these relations are homogeneous; therefore, as already anticipated,

we look for homogeneous ones for any g:
zied = hkﬁhmk, M invertible. (2.5)

M is fixed by the requirement of covariance, consistency with the g-space relations
(1.38) for z’s and consistency with Leibniz rule. By covariance we mean that

the coaction should be naturally extended as an homomorphism to all Al by

”

the fundamental requirement that the exterior derivative ” commutes ” with the

coaction:

¢L0d st() ®d OGSL (26)
As an immediate consequence of (2.6) and the definition £f = do'| we get for
instance

=TiX) ¢ (2.7)
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Applying ¢ to both sides of (2.5) we find that M must satisfy the condition
TiT) R a’zl = MITETE Qe et = METATEM T Q)2 (2.8)
in other words
M(TQRT)=(T®T)M. (2.9)

Therefore M must be a function f(R) of R (see formula (1.5)), hence a combination

of three linearly independent functions of fZ, let us take R, R™1,Py:
M =aR+ bR + cPy. (2.10)
Let us now consider the matrix B(a,b,c) appearing in the commutation relations

cigieh = Bk ¢lgm (2.11)

lmn

and obtained by applying two times relations (2.5) with M as given in (2.10).
Consistency with the relations (1.38) means that contracting both sides of (2.11)

with P hlf we should get zero, namely
(Pa)12B(Pq)2s =0, =251 (2.12)

A little lenghty calculation shows that this gives two equations in the unknowns

a, b, c; they have two solutions:
erther b=c=0, or a=c=0 (2.13)

The remaining constant is fixed by the requirement of consistency of Leibniz rule
with the relations (1.38). Upon use of the (1.12),(1.15) (2.10) we find for the two
solutions (2.13) respectively the identities

k h bk iioenr J(1—aq™t) .
dp{ hkac ‘T !'“73-1 E z* +P4 h,m "=T ¢ (1 — bg) ;o (2.14)

the LHS vanishes because of (1.38), (2,2) so we conclude that it must be a = ¢

~! respectively. We denote the 1-forms and the exterior derivative corre-

and b = ¢
sponding to the first and second solution by ¢/, d and €', d respectively. Summing

up, & =: dz?|, €' := dz'|and

2'¢) = qRy) ¢"at (2.15)
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zif = q"lfz—"lhigf_hmk. (2.16)

The wedge product of two 1-forms is essentially determined by the require-
ment of nilpotency of the exterior derivative. In fact, using relation (2.16) and the

decomposition (1.12) of R we find
do'el| = d(£'a? + o'¢0)| = dl(1 + gR)} "] =
= —[(1+¢*)Ps + (1 + @ V)P "€ (2.17)
consistency of this relation with d? = 0 requires that
Ps(é®¢€) =0="P({®E). (2.18)

Therefore the wedge product A of 1-forms is to be defined as the tensor product
® modulo the relations (2.18). In other words:

Ps(ENE)=0="P(NE) (2.19)

In this way one defines Ag. Higher degree forms are to be defined in a similar way,
namely as tensor products of 1-forms modulo relations (2.18) for all neighbouring

tensor factors. In a similar way one shows that d* = 0 implies
Ps(ENE) =0="Pi(ENE) (2.20)

for the barred 1-forms. This enables us to define the space ./_UQ’ of barred p-forms.
As a direct consequence of eq.’s (2.19), (2.20)

Pi(ENE)=(ENE), P(ENE) = (ENE). (2.21)

In the sequel we will drop the symbol A.
The decompositions d = £46;, d = £'0; define the derivatives 8;, d; corre-
sponding to each coordinate z'. In general, indices are raised and lowered by the

metric matrix C (which is its own inverse), for instance
0; = Cijaj, al = C'ija,'. (2.22)

The coaction should be extended in a natural way as an homomorphism to the
larger algebras generated by zi, £, 0" and z', €', 0 respectively. The requirement

that the exterior derivative be invariant, namely

¢1(d) = 1so,(v) ® d, ¢r(d) = Lso, () ® d (2.23)
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implies that the coaction must act on the derivatives in the following way:
L(8) =T} Q& ¢r(8') =T} () & (2.24)

(we have used the orthogonality relations (1.1) of SO,(N)).
The commutation relations involving the derivatives are already fixed by the
previous constraints, let us determine them. First, notice that dz’ can be written

in two ways
dmi = E]ajmz, dil) = f -+ (Cld Ez + IBLE ah, —E + quh£] kaha (225)

whence, by comparison,

3j:z:i = 5;: + qu-’}c:z:k(?h, (2.26)

or, equivalently,

8'z? = OV 4+ qR™ V2", (2.27)

These are the ” commutation relations ” of the derivatives with the coordinates;
notice that the Leibniz rule for the derivatives § holds only for ¢ = 1 (in fact for
g=1 R;Jk = 6:87). Similarly one can show that

8! = CY 4 g RY 2" 5" (2.28)
To find the commutation relations between two derivatives note that
d* = d¢'9; = —£'d0; = —£'¢79;6;. (2.29)

Using properties (2.19) (2.21) of the wedge product and formulas (2.1), (1.19) we

derive that the commutation relations between the derivatives must be of the form
(Pa+ aPs +bPy)) A"a% = 0. (2.30)

Apply both sides of the preceding relation to z'" and use twice the derivation rule
(2.27). It is easy to check that the constants a,b have to vanish to get again zero

at both sides. An analogous argument applies to the §' derivatives. Summing up:
P08 =0 (2.31)

P, 00" =0 (2.32)



20 THE QUANTUM SPACE quv AND ITS TWO DIFFERENTIAL CALCULI

Tt remains to find out the commutation relations between the derivatives and the
1-forms. They can be determined by the requirement of covariance and consistency
with the commutation relations (2.15), (2.27). The calculations are straightfor-

ward and one finds:

¢l = 7 R0 (2.33)
58 = qR T, EM". (2.34)

By the above discussion we have shown that the forementioned consistency
requirements are satisfied for any product ninin® of three basic elements 7 (n! =
z!, ¢!, 8"). Then consistency will be satisfied for any product of any arbitrary
number n of elements. One can easily show that this statement is a consequence
of two facts: first, ¢ (resp. *) is a homomorphism (resp. a antihomomorphism);
second, the matrices Ri,i+17 i = 1,2,...,n provide a representation of the braid
group (with generating elements o i41,0; . L)

One can easily show that no combination of the 1-forms {¢'} can reproduce
the {7} satisfying the above relations, in other terms barred and non barred
forms are linearly independent objects. This is also the case for the {5} and {07}
derivatives.

The above relations define the differential calculi D = {d, ¢', 8} and
D = {d, ¢1,0'}. Note that all commutation relations inside D can be ob-
tained from the corresponding ones of D by replacing d,{i,ai,A,Aq,q,Rq by
d, £, 04 A, /_\q, q_l,Rq“l. We omit to look for the commutation relations between
objects in D and objects in D [14], since we won’t need them.

Tt is natural to define the laplacians A, A by

A= 0'0; = 8'C;; 0 A= §'8; = 8'C;; 07, (2.35)

Just in the same way as for the square lenght zCz, one can prove that they are
central elements respectively in the algebra of the d and 0 derivatives; and that

they are scalars under the coaction of the quantum group:
A =AY A = A, (2.36)

$1(A) =1 A, s:(3) =1 A, (2.37)

Now let us consider the effect of the application of the complex conjugation

on both handsides of all the commutation relations of this section. For ¢ € R we
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define the complex conjugation * as an involutive antilinear antihomomorphism

acting on the algebras generated by D and D respectively:
(AB)" = B* 4" (2.38)

One can show that no new relations are introduced by the application of * to the
upper relations; more precisely, the relations involving the D calculus are trans-
formed into relations equivalent to those involving the D calculus, and viceversa.
Let us consider for instance relation (2.15). It can be rewritten in the form
¢la™ = q—lR—liJl-m:z;ifj. (2.39)
By taking the complex conjugation of both handsides and using the definition
(1.45) we get
2™ Crim (€)= ¢ P R™Y, ™2™ ()" O (2.40)
It is straightforward to check that, performing the replacement (¢!)* — &/C};
and using property (1.17) of the R-matrix, the previous relation becomes exactly
the commutation relation (2.16) between the coordinates z'’s and the barred 1-
forms &7, so one can identify (£?)* and £/Cj;. Looking at the explicit definition
¢ = de! — 2'd, € = dz’ — z'd we see that d* behaves as —d, so they can be
identified,too. Finally, by means of the commutation relations (2.33) between
derivatives and 1-forms and the decompositions d = £'0;, d = £'0; of the exterior
derivatives, we are led to the identification of & with —qN(Bj)*C'ji; in fact one
can check that the latter is consistent with all other relations (2.28),(2.34) etc.
Summarizing, one can say that * maps ¢?, £¢, 8%, d into a combination of z¢, £, 8%, d

respectively, in the following way
()" =2iCy, (6 =80y, (0 =—-¢0CHu, d"=-d (2.41)

For q=1 the two calculi D, D are the same and these relations become the usual
ones characterizing the classical calculus.

A direct consequence of (2.41) is the relation
A% =g VAL (2.42)
From (2.27) it is easy to derive the following useful formulas:

Azt = pd + FPatA 8'(zCz) = pz' + ¢*(2Cz)d" (2.43)
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Azt = b + ¢ %z'A §(zCz) = gz’ + ¢ *(zCz)0" (2.44)
where pi=1+ ¢ N, g:=1+ ¢V 2.
For any function f(z) € Of]\[, 0'f can be expressed in the form
Gr=frfol Fifico) (249
upon using (2.27) to move step by step the derivatives to the right of each !
variable of each term of the power expansion of f, as far as the extreme right.

Similarly to what has been done in formula (2.8), we denote fi by
8'f| = 8'f — fioi(= fY). (2.46)
In an analogous way we can define & f|.

The g-exponential function is introduced by

=z gt —1
expy| 4] = — n)g = ; 2.47
its usefulness lies essentially in the relations
; a(zCez ; a(zCz 2a(zC
0 {exzpy2| ( )]} = az'erp,| ( )] + ezp,2 [2___(____)] (2.48)
a; a(zCe ; a(zCz 2a(zCz
0 {exp,-2| ( — )]} = azr'erp,-2| ( — )] + empq—?-[g——_(:—““‘)‘]a (2.49)
7 7 7
which imply Biempqz[a(zucx)ﬂ o miea:pqz[a(rucz)], giempq_z[g—(iff‘—)ﬂ o
miempq-z[g—gz—u@].

From the definition (2.47) it is easy to check the following q-derivative
property for the exponentials

ezp,2[g?a(zCz)] — expgela(zCa)]

pe— = a(zCz)erp,2[a(zCz)] (2.50)
—2[g™2 C - -2 C
ezpq-2lg”"a(@ q"“_)i - f“’pq lo(2C=)] _ a(zCz)ezp,-2[a(zCa)).  (2.51)
Finally we write down a formula which will be often used in the sequel
3 N+4+2h—2 2(g2 £ 1

AlzCz)* = ﬁ‘—%i—l——hqz(mcm)h*lf;z - H—qig—j—l—lhq,l(mcm)h—l + @M (2Ce) A,
(2.52)

where the operator B is defined by

¢ -1
B:=1+ z'0; (2.53)
L

and satisfies the properties

B(zCz) = ¢*(zCz)B BA = ¢ *AB. (2.54)



Chapter 2

The Schroedinger Equation of

the Harmonic Oscillator on Rt{

3. The g-Deformed Harmonic Oscillator on Rflv

and its Schroedinger Equation

In this section we consider the Schroedinger equation for the harmonic oscil-
lator in Rév with characteristic constant w and symmetry SO,(N,R). As we have
the two calculi D, D at our disposal, we introduce the corresponding two versions
of the equation. Then we recursively determine eigenvalues and eigenfuntions by
using a suitable generalization of the creation/destruction operators of the classi-
cal case. In section 4 we will see that no other eigenfunctions (at least in the form
“gaussian - polynomial ) are possible.

Let

. 1 -
hy = -;—(-—QNA + w?zCxz) hy, = —2—(——q—NA + w?(zCz)) (3.1)

be the hamiltonians corresponding to the calculi D, D. Both coincide with the
classical one for g=1. By the above choice ¢"V,¢~ " of the factors preceding the

laplacians A, A the eigenvalues of A, h., will coincide and
R = h.. (3.2)
From (2.24), (2.25) and for any o, & € R we get respectively
2h.(z' +ad') =
=z (2Cz)w? — agV A — ¢V (ud' + ¢®2'A) + wlagq [ (zCz) — pz'] =

= 2'[q*2h -1 — paw?q ] + 8'[a2h-1 — pg’] (3.3)
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2/—zw(mi + &gi) =
= z'(zCz)w’® — ag VoA — g N(ad' + g 2z'A) + w?ag? [0 (zCz) — '] =
= 2'[q 22k — Faw?q?] + 0'[62R.g — g~ M. (3.4)

Note that in both square brackets on the RHS of (3.3) (respectively (3.4)) the

same operator h,-1 (respectively h.q) appears.
Now assume that 1(z,w) (respectively (z,w)) is an eigenvector of h. (h)

with eigenvalue E (E):
hot| = Ev, hop| = Ev; (3.5)

then 9’ := ¥(z,wq™ ') (respectively B = P(z,wq)) will be an eigenvector of h -1
(Ruq) With eigenvalue Eq™' (Eq) (in fact E,E « w for dimensional reasons). I

look for o (&) such that (z° + ad )y’ ((&* + a8 )9') be an eigenvector of b, (hw).
Let E' (E') be the corresponding eigenvalue. Then the relations

2B (¢ + 0 )| = 2ho(al +ad )| = 2'[q2E — pow?q 1 + 0 (ag 2B — pg™1¥|

(3.6)
2B (o + 6BV | = hale’ +65 )| = o'lq 2B o’ @15+ 6g2B— i |
(3.7)
must hold, namely )
2FE'a = a2Eq™ — pg™ (3.8)
2F' = qF — pow?q™? )
2B'a = 62Eq — g™ (3.9)
2F = ¢2F — paw?q®. )
These systems of equations have the following solutions
_ E(q—-q_L)iﬁz(’]—"]—1)24‘/12%2’]‘\.—2
o= petqm? (3.10)
E'=Eq¢ " - §4",
a = E(g ' =)V E (= —q)2+p2e?g? Y
T (3.11)
. -1
E'=FEq—- 43¢

Formulas (3.10),(3.11) can be used to find by induction spectra and eigenfunctions

of hy,hy starting from known eigenfunctions g by respectively. In analogy with

the classical case, we try eigenfunctions of the form ¥y = empqz[—-'hfz], by =
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erpy-2[— B”ﬁcz}, which depend only on (zCz) (*); the factors 4, B are fixed by the
requirement that 1, ¥y are eigenfunctions of h.,,h., and one finds 4 = +wqg™ 7,
B = +wq”. We choose the solutions 4, B > 0 as they correspond to the classical

normalizable ground state with positive energy. Finally:

QNw

wqg NzeCa

hy = expge[— P l, Ey = 5 (3.12)
_ qua:C':E — Qnw
Yy = expy—2[—————], By = (3.13)
7 2
where
ij (1-¢Mu No1 o g-xya¥ - T
Qn :=C Cijzm=(qi’ +q 2)"?:"(;:1*— (3.14)

We see that Ey = Ey as we wanted. Let us apply formulas (3.10), (3.11) to this

eigenvalue; we obtain respectively

q;\'+1 L a’
=< T T 3.15
= { T (3.15)
-N-1 -5 .
a= woo T, (3.16)
_Lw = Q1

Here the primed (non-primed) solutions correspond to the choice of the plus (mi-
nus) sign in formula (3.10) (formula (3.11)). The solutions a,&) can be discarded
as they yield trivial functions: (z*+ o} 8% )y (wg™)| = 0, (2! + &} 8) Yy (wg )| =0
(see (2.29),(2.30)).

Now we devote our attention to the sequence of solutions that are determined
from g (y) by a recursive application of formula (3.10) (formula (3.11)) with the
choice of the minus sign. The coefficient and eigenvalue obtained after n steps will

be called an, E, (&n, E,).

Proposition 1:

2—n 1 N . N
w -
— qn—z _ 1 X4 o~ N
ap = — w ) TL>1, En:5W(q2 ‘I‘q )["2— —‘.—n]q._E,, nZO
(3.18)
where
¢"—q"
[n]q - —1 ? (3.19)
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are the g-deformed integers: [n}, q_':} n. The proof of this proposition is straight-
forward: (3.18),(3.19) yield for Ey, Eo the values of formulas (3.12),(3.13), and it
is trivial algebra to show that if the proposition is true for n = m then formulas
(3.8), (3.9) imply that it is true also for n =m + 1.

As a consequence of formulas (3.17), (3.18) and the very construction of

the eigenfunctions, at level n the latter are of the form

¢in T —Teerdl
n

wqg " NzCx

Il =

= (2’ + a, 0" )(z" Fqoan 1871 (zt + " ray 8 )expye[—

@
2-n 4—n n —n—N
i q i ; q i ; q" 4 wq zCzx
= (z'" —TB")(:E not - gt (z —;Gl)empqz[————————————][
(3.20)
Jinin-tonit =
, . , . ‘ - tn+NpC
= (2% + 8,0 ) (2! + g Ea1 6 ) (2 b gt 8 enp, [— 2 — 225
7
. qn'—2 . . qn—'i s . q_n . wq+n+l\7mcm
— In __ aln tn—1 __ azn—l o au _
(oin = L gin)(atr=t = L), (ot = TG empye| ]
(3.21)

in fact the replacement w — wg™! is equivalent to the replacement o — gTh).
P q q

? . since

The eigenfunctions (3.20), (3.21) are the “q-deformed Hermite functions
they (both) reduce to the classical Hermite functions for ¢ = 1.
Let us come back now to the choice of the plus sign in formulas (3.10),

(3.11). If we set B = Fp (E = E,—1) we find solutions

o =1 = al, E' =FE,_» (3.22)
w
q—-n—.l\"' _
a' = = a, E' =E,_ (3.23)
w

We see that no new eigenvalue is introduced in this way. Actually in next section
we are going to show that all independent eigenfunctions of h. (respectively h.)
of level n are represented in formula (3.20) (respectively (3.21)), hence the eigen-
functions corresponding to (3.22), (3.23) must be combinations of them. Therefore

the operators

i rai G 1 L
{Ezi;a%GZ ,  Gof(z,0) := flg" 22,4 0) (3.24)
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act as destruction operators when applied to eigenfunctions of level (n — 1)

Yn_1,%n_1 respectively, whereas the operators

{(m + a.8')G, (3.25)

(:Bi -+ &nal)Gq_x
act as creation operators. ‘

We conclude this section with the following remarks:

1) From the basic formulas of section 2 and the whole construction of this
section it has become apparent that the barred and the non barred scheme can be

obtained one from the other by simple replacements:

D b
o I
n Pn
1/) g—q '8 —8
an :L:::_t G, (3.26)
q7 t—q, 028
O O
R R1 R1R

2) The energies are invariant under the replacement ¢ — ¢!, hence they
coincide in the barred and non-barred scheme. In Chapter 4 we will show that

” of the same

these two schemes can be seen as two different “representations
Hilbert space.

3) The spectrum is bounded from below and increasing with n for any ¢ € R™;
energy levels are not equidistant as in the classical case (¢ = 1) and the difference
between neighbouring energy levels diverges with n (as it was found in [13]), so it
would yield to a macroscopic energy gap for great n (2); the energy levels have the

same degeneracy as in the classical case. As we will show in next section, these

results hold at least if we look for eigenfunctions in the form P(z)ezp,» [—Qﬁfl—)],
where P(z) is a polynomial.
4) In the case ¢ = 1 both schemes reduce to the classical ones, and the

eigenfunctions (3.20), (3.21) become the classical Hermite functions.

4. The Linear Span of the g-Deformed Hermite functions

In the classical case any function of the type P(m)ezp[——ﬁ(—%—qﬁ] (P(z)

being a polynomial) can be expressed as a combination of particular functions
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of this type, the well-known Hermite functions with characteristic constant w.
Moreover, any eigenfunction of the corresponding harmonic oscillator hamiltonian
is a combination of Hermite functions of one (an the same) level. In this section
we want to understand whether analogous statements hold in the g-deformed case.
The answer will be affirmative, provided we suitably adjust their formulations to
the present case. We explicitly consider only the non barred scheme, since all
results valid in this case will hold also in the barred one after their translation
according to the rules (3.26).

What seems to complicate the analysis in the g-deformed case is the
fact that the exponents in the exponentials of formulas (3.20),(3.21) have a n-
dependent g-power; consequently an enormous proliferation of functions of the
type polynomial - ezponential for the same characteristic constant w seems to
take place. Nevertheless, upon iterative use of relation (2.31) we easily realize

that one function of this type can be expressed in infinitely many equivalent ways,

wgN"™(zCxz)
L

Pp(z)exp,e [— | =

wq—l\"——m—E(mcm)

. ¢ -1
= P(2)[1 —wg V"2 ——(2Cz)|expy2[—

p p
wq—.N-m—-Z z2Cc
= Ppia(z)expy [— ( )] = ...
7
w —N-—m—2h Cz .
= Ppyon(z)expgz[— c . (= )], h >0, (4.1)

where by P,(z) we mean a polynomial of degree n in z; so this proliferation is (to
a great extent) only apparent.

To simplify the analysis we can consider polynomials containing only either
even or odd powers of z, since both the enforcement of relation (2.31) in (4.1) and
the application of the operators A, zCz appearing in h.. to a function of the type
monomial - ezponential change the degree of the monomial only by 2. Therefore

from now on

P,(z) := a polynomial in z containing only powers of degree p = n(mod 2).
(4.2)

We introduce the following notation:

U, := linear span of all the ¥),s of formula (3.20)
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@'2m = Uap 11-’2m+1 = @ Uoht1
h=0 h=0
—n—-N C
V, := linear span of all functions of the form P,(z)exp,: [—-wq M(w :13)]
M., := space of homogeneous polynomials of degree n (4.3)
Below we prove the following
Proposition 2:
- N -1
V, = 0y; dim(0,,) = dim(M,) = ( ;“ : > neN. (4.4)
Now we define the following spaces,
Vi=> Vo=
n=0
= linear span of all functions of the form
—n—N C
Pnea:pqz[——wq (= :1:)] (Vn>0)=
K (4.5)

= linear span of all functions of the form

wg N2 (2 Cx)
L

(the first equality holds by the definition of V;, the second does since P, is a

| (7 n,k > 0)

Prezp,e [—

particular polynomial of the type P,425) and

S := linear span of all eigenfunciions of h,, of the form
a(a:C’a:)] (4.6)
. .

= P(z)ezp,2[—

Then the following chain of inclusion relations holds:

fo o} <

n=>u n="{
The first equality holds by proposition 2; the second inclusion relation
is trivial since the eigenfunctions (3.20) are eigenfunctions of the form
polynomial - gaussian. The first inclusion relation is true as we need choos-

ing @ = wg™™ "N in (4.6) in order that ¢ be an eigenvector of h.; in fact this
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is the condition which must be satisfied to annihilate the coeflicient of the term
of degree n + 2 in the LHS of the eigenvalue equation h.,y| = Et (as one can
easily check from formulas (2.24), (2.29)). Since the two extrema of the chain of
inclusions (4.5) coincide, all the inclusions can be converted into equalities, and

we get a multiple characterization of V:

V::iVn.—_Szé\I!n. (4.8)

n=0 n=0

We find also the

Corollary: No eigenfunctions of A, other than those belonging to ¥, (for
some n) can be found in ¥V = §. Correspondingly, no eigenvalue other than those

belonging to {E,}nen (for some n).

Now we come to the
Proof of Proposition 2:
The proposition is trivially true for n = 0,1 (see (formulas (3.20),(2.29)).
The general proof is by induction. Assume that the proposition is true for n =
m—2,m—1.

We first prove the statement
dimV¥,, = dimM, n=m,m-+1 (4.9)

which is a direct consequence of the

Lemma:
Cirmennf) e (i ly) o
To prove the = implication in (4.10) we note that
A aziiat =0 (4.11)

with nontrivial coefficients 4;, ;. can only occurr if at least one of the relations

in

T T
Aj i, =Pyl A

ijij-{-l Lol j o Ty p1lj 42 in

1<j<n—1 (4.12)

is satisfied (recall that P, i]];ka;h:v}" = 0). But if this is the case then also the

expression A;, . ; !l vanishes because of the relation

P4 + 8" (2 + B20F) =0 (4.13)



(which can be easily checked on the basis of relations (2.3),(2.8),(2.9),(2.2)).
To prove the <= implication note that by use of the relation

azCz

(z' + B0') (2! + 78 )exp,2 | Il

2 . .
= az'zlexp, [a:nC'm] + bexp,z [———————aq w0$]8’m’| (a = cost # 0) (4.14)
we find
iy i qz—nai W 97 Bis
gt = (o = gt (oo — T o)
o —n—N 2=n—NgCp . .
-{aa:”a:“empqz[—w—q—————mg—f] 4 bezp,: [_wq ” m]@”m”}h (4.15)
7 Py

the second term in the braces can only give a term of the type
qu—n—-Nch}

u when the operator standing to its left acts on it, there-

Pt eTp,2 [—

fore

2—-n ) n—+4 —n—N C . )
L iny (o — T p)enpy|— L T2 gizglt |4

indt — g gin
bn ( » - p

. . 2—n—N C
+ Pl (@)eapys [ 7). (4.16)

By applying the same argument to the first term in the RHS, and then again and

again, we end up with

B (z)enpye [ 1, a#0. (4.17)

Let us consider

A artt=ad

in U
n 'tz exp,e |

inody

qu—lv—;\‘mcm

7

tAiyi Py (2)eapg: (= J- (4.18)

According to the induction hypothesis the second term in the RHS belongs to

T ,,_y; but the first term cannot, since the n-th level eigenfunctions do not belong
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to ¥,,_5. Consequently the vanishing of the LHS implies the vanishing of the first
term, i.e. the < implication of (4.10). So the proof of the lemma is completed.
Now the proof of the claim V,, = ¥,, for n = m,m + 1 is straightforward,

since clearly V,, D ¥, (to check this inclusion relation use formula (4.1) to reduce
wq_"_N:z:C:r:]

” when necessary), and

the exponents to [—
dimV,, = dim(space of polyn. P, 's) = dimM, + dim(space of polyn. P,_5's) =

= dimU, +dimV,_s = dimU,, +dimT,_, = dim¥,,, n =m,m+1. (4.19)

Here the first two equalities are trivial; statement (4.9) has been used to justify
the third equality, whereas the fourth and the fifth hold because of the induction
hypothesis and the defintion of ¥, respectively.

It remains to show that dimM, = (N;Z;l) as in the case ¢ = 1. In

the classical case (i.e. for ¢ = 1) (N;fl_l) is the number of sets {ri,r2,...,7n}
N

satisfying the condition Y, 7; = n, or, equivalently, the number of independent
1=1

ordered monomials z'!...z"» modulo the relations (2.3)
ij o hok
Piapeiz” =0

where P | zik = %(5}15,1 — 6;5“ (for ¢ = 1). The antisymmetric projector P is
deformed for ¢ # 1, but the number of relations (2.3) remains the same; conse-
quently also the number of independent monomials. The proof of Proposition 2 is

so completed $.

Whatever ¢ > 0 relations (2.3) are sufficient to order any monomial ac-
cording with a prescribed order relation for the indices, for instance according to

increasing order; hence a basis in M, is
{zhrz 2l 4 <ip <<y} (4.20)
and a basis in ¥, (because of lemma (4.10)) is provided by
{hirin iy <y < Sdn) (4.21)

As we have already noticed, all the results of this section hold for the barred

“representation ” after the replacements (3.26).
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Notes

(1) Other power solutions f(zCz) = Y, an(zCz)™ which cannot be written
in the form P(zCz)ezp,:[AzCz] (P being a polynomial) can be formally found
solving the Schroedinger equation (the a, are found recursively). In the classical
limit they correspond to functions that are not normalizable. Postponing the

discussion of integrability to a forthcoming paper, we leave them out here.



Chapter 3

Integration over Ril

5. Integration: formal requirements

In Ref. [7] the authors propose a definition of integration over the quantum
hyperplane essentially based on the requirements of linearity and of validity of
Stoke’s theorem (of course in such an approach the latter is no more a “theorem
"). Denoting by < f >, [wn respectively the integral of a function f and of
an n-form w, over the n-dimensional hyperplane (as usual they are related by
definition by the identity < f >:= [dV f, where dV denotes the volume form),

Stoke’s theorem takes respectively the forms
< 8if| >=0 1=1,2,...,n; /dwn_1| = 0. (5.1)

In the classical case, if f = P,(z)ezp[—a|z|?] (P, denotes a polynomial of degree

nin = and |z|?® the square lenght), then

8" Py(z)ezp|—ala|?]| = Pa-i(e)ezp(—ale|’] + Poirezp[—alzl’];  (5.2)
relations (5.2), (5.3) imply
< Pp_i(z)ezpl—alz[’] > + < Ppiiexp[—alz’] >= 0. (5.3)

Relation (5.3) allows to recursively define the integral < f > (for any function f
of the same kind) in terms of < ezp[—alz|?] > (which fixes the normalization of
the integration). The same holds in the q-deformed case, provided one has defined
the generalization of the exponential (the socalled g-exponential).

The integral over the hyperplane defined according to (5.1), (5.2)has the
following properties: a) it is covariant w.r.t. GL,(n) (in the sense that will defined
below); b) it coincides with the classical Riemann integral for =1 (by a suitable

choice of the normalization factor); c) it satisfies the reality condition

< f>F=< > (5.4)
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for any q (€ R™T). Therefore the relation
< f*f>2>0, <ff>=0&ef=0 (5.5)

(positivity condition) holds, at least in a (f-dependent) neighbourhood of g=1,
since it holds for q=1. If there exists a neighbourhood U C R™ of q=1 such that
positivity holds V¢ € U, a scalar product can be introduced through the definition

(f,9) =< f"g >, (5.6)

and one can convert into a Hilbert space a suitable subspace of the algebra of
functions on the quantum hyperplane.

In the case of the real quantum euclidean space the situation is complicated
by the fact that there exist two sets of linearly independent derivatives belong-
ing respectively to the differential calculi D, D, hence potentially two kinds of

integrations < >, < > and two versions of Stoke’s theorem:

<Ofl>=0 i=1,2,..,N; /dwn-lle.

<< FF >>=0 i=1,2,..,N; /Jan_ly -0 (5.7)

It is not difficult to guess that reality condition (5.4) for each of the two
integrations < >, < >> is no more guaranteed by Stoke’s theorems (5.7) because
* maps derivatives 8 € D into derivatives 8 € D, and viceversa. Therefore we
should be prepared to abandon or to modify some of the formal requirements that
we wish integration to satisfy.

First, we list these requirements; then we ask whether they are compatible.
If they are not we should investigate how they can be modified to become such.
Even though here we are considering R?”, the following analysis should be valid

for any quantum space. Through the relation

< f>= /dV f (5.8)

statements regarding integral of functions can be translated into ones regarding
integrals of N-forms, and viceversa, so often they will be written only in one of
the two versiomns.

We would like an integration < > to be defined on a not too poor subspace
Y of OflV(R) and to satisfy:
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1) linearity;

2) covariance;

)
)
3) correspondence principle for ¢ — 1;
4) reality;

)

5) positivity.

Of course linearity means
<af+fg>=a<f>+f<g>  feC fgeV (5.9)

and one has to check that if f vanishes because of relations (2. ), then so does

< f >, in other terms
flz) = AyP " e"eb g(z) = <f>=0. (5.10)
By covariance we mean
1so,v) < f >= (idso,(v) Q) < >) o (/) (5.11)

where 150, (v and idso, (v) denote respectively the unit element and the identity
operator on Fun(S0O4(N,R)), and ¢ is the left coaction of SO, (N, R) on OE/IV(R).

More explicitly, if fitiz-i = gigi2. g g(zCz), then covariance means
Lso, vy < firizete >=TIT2 . The < frriz-dv >, (5.12)
in other words the numbers < fitizi% > i; = 1,2,...,N, are the components

of an “isotropic ” tensor; in the classical case this corresponds to the well-known

property of tensors such as
/dN:B g(|m12)mi ~ 0, /dz\'m g('m‘2)$imj OC(Sij,

/d"\_:c g(|z)zizdzhz! o (6964 + 66 £ §T5I%Y, L (5.13)

namely the property that the latter are invariant under an orthogonal transfor-
mation of the coordinates z! — z ' 1= gj-a:j. The simplest nontrivial example of a
tensor satisfying (5.12) is for k = 2, < f% > C'". In general tensors satisfying
(5.12) involve matrix products among R-matrices (or, equivalently, R~ !-matrices)
) and contractions with metric matrices C: the former reorder indices by means

of the RTT relations (2. ), whereas the latter transform a couple of neighbouring



T-matrices into a commuting number.Therefore an integral < z! zltg(zCz) >

should be factorizable as a product
< z't.zg(zCz) >= St *a,, (5.14)

and St = 0 for k odd; the g-dependence of the RHS of (5.14) is concentrated
in the constant a,, which essentially is a (yet unspecified) integral along the “”
radial ” direction. Explicit solutions S, §it--i satisfying (5.12) will be found
in setion 4.

Point 3) means that we require a g-deformed integral to reduce to a classical
one (with some integration measure p(z)d"z) when q=1. Maybe it is timely to
recall the fact that the z? coordinates are not real (even for g=1), but are complex
combinations of the usual real cartesian coordinates; the latter can be used to
perform the integral when g=1.

The reality and positivity conditions 4), 5) in the form (5.4),(5.5) or in
some other form should guarantee that the definition (5.6) or what takes its place

introduces an honest scalar product ( , ) in a suitable subspace of O4(N,R)

(fag)*:(g')f)v (fvf)207 (f,f):0¢>f:0 fvgeva (515)

to convert this subspace into a Hilbert space.

To the five previous points we add a requirement characterizing the spe-
cific problem we are dealing with here, namely that the hamiltonian (or the po-
sition/momentum operators) of the harmonic oscillator be hermitean operators

w.r.t. (, ). As it will be clear in the sequel, we are led to ask for the validity of

6) Stoke’s theorem

in the form (5.7). As in the classical case, point 6) involves a definite choice
of the “radial ” part of the integration (whereas the latter is left unspecified by 2)
alone). As already noticed, Stoke’s theorem is a formidable tool to define (up to
a normalization factor) the corresponding integration.
Now we briefly discuss compatibility of requirements 1) - 6).
It is straightforward to check that linearity is compatible with covariance
because of property (1.5) (taking f(R) = P.4). Requirement 3) is obviously com-
patible with 1),2) since classical integration is linear and there exist SO(N,R)
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invariant integration measures. As for reality, we consider two possible formula-
tions, (5.4) and
< frr=< >, (5.16)

where we consider a couple of integrations < >,< > (virtually the ones satis-
fying Stoke’s theorems (5.7), and (5.7),). It is straightforward to prove that both
formulations are compatible with linearity (because of relation (1.19), where again
we take f(R) = P.4), with covariance (apply * to eq. (5.11) and use property
(1.34)) and with the correspondence principle (classical real integrations satisfy
the reality condition). Positivity in the form (5.5) is clearly compatible with re-
quirements 1),3) and with reality in either form (5.4) or (5.16). At this stage is not
easy to understand if it is compatible with covariance. Using the results which will
be presented in Sect.’s 6.,7. one could prove that this is the case (decomposing
f in a combination of eigenfunctions of the square angular momentum L?, and
using orthogonality of the eigenfunctions corresponding to different eigenvalues of
L?). The question is not strictly relevant for the solution of problem (5.15) in the
specific case of the harmonic oscillatos, since the scalar product ( , ) that we are
going to introduce in Sect. 5 is not of the form (5.6). In fact, we will prove that
the latter s positive definite.

Let us analyse now the compatibility of Stoke’s theorems (5.7) with points
1) - 5). It is straightforward to check that both (5.7), and (5.7}, are compatible
with linearity: in fact this compatibility is reduced to the consistency of both
differential calculi D, D with the g-space relations (1.35) and the commutation
relations (2.15),(2.16) respectively. Similarly, the compatibility with covariance is
guaranteed by the commutation relation (2.6) of the exterior derivative with the
coaction. As for the correspondence principle, compatibility is ensured by the fact
that in the limit ¢ — 1 both D and D go to the classical differential calculus, and
Riemann integration (on smooth functions) satisfies Stoke’s theorem. It 1s hard to
say whether Stoke’s theorems are compatible with reality in the form (5.4), and
we are led to think that this is not the case, but it is surely compatible with reality
in the form (5.16). To understand this point, let us consider the spaces of formal

relations

F={8'f -0'f| - fio! =0}, i,j=1,.,N feV} (5.17)

]l

Fi={8f 8- Fid =0}, ij=1,.,N FeV} (5.18)

~
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where: 1) Bif[,f;, Eifi,ﬁ are the functions introduced in formula (2.43); 2) V is
some subspace of O;\T(R) closed under complex conjugation and containing also
the functions 0 f|, f;, 0" [, f; for any f € V. In the classical case the space Vi
of functions of the type P(z)ezp[—alz|*] (P being a polynomial) is an example of
such a subspace V, and we will see that an analogous space will be available in the
q-deformed case, too. Under these assumptions it is immediate to recognize that
the two sets (5.17),(5.18) are mapped into each other by x, since * : D — D and
#: D — D. In other terms F* = F. If we define subspaces A, A C V as the linear

spans of functions &' f| and &' f| respectively, the previous remark implies
A=A (5.19)

For each a € A let @ € @ be the function such that a* = A. Stoke’s theorems
respectively imply

(5.7 = <a>=0=<a>" Vac A (5.20)

5.7 = <a»=0=<a>»" Vacdi, (5.21)

hence reality in both forms (5.4) and (5.16) is trivially satisfied for the integrals
<a>, < a>. If qg=1 and we take V = V,; one easily realizes that any f € V can

be expressed in the form
f=a+csfo, a€A cpeC (5.22)

(as anticipated at the beginning of this section), where fy is defined by fy :=
ezp[—al|z|?]. Consequently

<f>: Cf <fu > . (523)

For self-evident reasons we call f; the refernce function of the integral. In next

sections we will see that the a similar situation occurs also in the ¢-deformed case,
(eCur)

oy,
In any case fy should be a real function not belonging to .4 and should go to

for instance by taking V = V (V was defined in Sect. 4.) and f, := ezp,2[—a

a smooth rapidly decreasing classical function in the limit ¢ — 1. Taking the

complex conjugate of eq. (5.22) we get

ff=a+cifo, ac A creC, (5.24)
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which implies
L fre=c < > (5.25)

We are free to fix < fy >, < fo > as we like. If we impose the reality condition
in the form (5.24) on the reference function we see that it is transfered to all
functions belonging to V, as claimed. Since f§ = fy, the reality condition (5.16)
on the reference function reads < fy >=< fu >". In the sequel we will take
< fuo >€ RT. .

Finally the compatibility of Stoke’s theorem with the positivity condition in
the form (5.5) is left as an open question, but again is not relevant for our specific
problem; whereas we will see in Sect. 7 that the scalar product in the Hilbert
space of the harmonic oscillator, defined using the integrals < >, < > is positive
defined.

6. Integration: construction

In this section we use Stoke’s theorem (in its two versions (5.7)) as a tool
for constructing the integrations. The systematic enforcement of Stoke’s theorems
generates a set of formal relations between integrals of different functions. We
determine these relations in two steps. First, we find out the isotropic tensors
Sivte Giiik: hence, according to (5.14) , the integrals < f >, < f > of
a non scalar function f will be expressed in terms of integrals of a scalar one.
Second, we determine the equations relating integrals of different scalar functions;
in this way we will be able to express integrals of scalar functions in terms of
the integrals < fy; >, < fu > of a particular one, what we call the reference
function fy. < fu >, <€ fo > are normalization constants and can be fixed
quite arbitrarily. So to say, the second step amounts to integration over the radial
coordinate. As an example we will explicitly consider in this section the reference
function fy = ezp,: [iﬁf—c—i], in section 5. we will take an other reference function
which is more suitable for defining the scalar products of states of the harmonic
oscillator. In this way the integrals can be defined for infinitely many independent
functions {f;};en and therefore for finite combinations of them. This is enough
for the scopes of this work, since it will enable us to define a positive definite
scalar product inside the span of states of the harmonic oscillator (see section 5.);

then the completion of this pre-Hilbert space will be done w.r.t. the corresponding
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norm. Nevertheless, to further enlarge the domain of definition of the integrals
one could consider series expansions in the {f;}, and we will briefly address this
problem at the end of this section.

The preliminary discussion of the previous section has shown that the two
basic integrations < >, < >> are linear, covariant and coincide with the classical
Riemann integration for q=1. Therefore the explicit recursive application of the
two Stoke’s theorems will determine (up to a factor) isotropic tensors Siveie
Givix (see (5.12)). As we are going to see, up to a factor these tensors do not

depend on the choice of the function g(zCz) in formula (5.a).

—azCz

The choice g = ezpg| ] (or, alternatively, we could take g =

empq—z[—"%q—”]) is particularly convenient for this goal. Using relation (2. we

find c
—azCe
iz, gt expy [ —]| =
L

—azCz

L _d*asC
—az'tz'.. .z ezp,: [———;——-] + exp,2 [——q——CEM

10iziz. 2| =

- ; —azC —¢?azCz ;
= —az'z?.. .’ empqz[——gi———m] + e:cpqz[———q———————]]\/f Y]Z; zh ..zt (6.1)
and c
—. . —oxr(Cx
Ozt enpy [ —|| =
7
- . . . —g 2 Cm —_ _za Cax . . .
—gN "tz empqz[—-—q———g—m———]-i—ea:pqz[——g———-—m——]a”mz?...:c““ =
7
-2
N —q “azCz —q 2azCxz .
= —¢V 2azitz. o “erp,2 [————-—————'u ] + ezpge [_—-——_I—L ]]\/Ik g “‘ ]3...:1:“,
(6.2)
where the tensors M il"'i" ]\[ 1-" are introduced together with the ones
. . B kjg...jx? g
Ny ey Ny o ”‘ ¢ by the deﬁnmcr relatmns
oz .zt = ]\/fkyjf';.':_';:mf Lzl LN, g :J‘:Z:n""...a:j"“@j" (6.3)
ot .zl = M ikl dh 4 W el el a0 (6.4)

Taking the integrals < >, < > respectively of (6.1), (6.2) and applying Stoke’s

theorems we find

azCz . 2azCe
p ] > ——M ‘]3 “‘ <a:“ .:z:“ea:pq2[———-————q a;j

] > (6.5)

iy ix )
<z't..zerpp[—
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C - p ' azCe
o :E} >= g————1\/[ ks IZ < . .xlkexp,|—

7 o

] >
(6.6)

Starting from k = 0,1 and noting that Stoke’s theorem (or, equivalently, covari-

< z'.zterpga|—

ance) imply < z'ezp, [———‘”‘ifﬁ] >= 0, we see that the recursive application of
relations (6.5), (6.6) determines tensors Sirt Siv satisfying (5.12), in the

form

Shie .= 0= S if kis odd (6.7)
Sgn = ]V_[gn . J\/[2(n—1) . ]\/_[2 (68)
Son 1= My - My(r_1y - ... M2, (6.9)

where we have used the shorthand notation

(Mo, Moo = My 202 Moy 5052 (6.10)

Jsie---J2k A2k o Jok

(and similarly for the M tensors). To give an idea of what these tensors My, M,
look like, we draw the explicit expression for My, Moy, My, M, using the derivation
rules (2. :

ﬂ/fzij = Cij = Mij

]\/_[ L1221314 CL11,212314 +qR—l legClSZglu +q2R 1 lll'ZR“l Sl'}cbu

4,j3j4 J3Jj4 Jas Jas Jav
11121311 __ vipizqiaiy —1 Diria vaia i; —2 i1iz DSia 7414
‘ZV[ 4,734 =C 1]3] +4q Rjgs C 1 R];,s R];LC (6'11)
Now it is easy to realize that
y
' i i i Giig...is
< zllg.zitg >oc Sitiz L 'tz g > Sy (6.12)

also for a different choice of the reference function g(zCwz). In fact, looking at
the power series defining g one immediately finds that 8g(zCz)| = §(zCz)a’
8'g(zCz)| = §(zCz)z’ with some functions g,g € Oy(N). Then. applying both
sides of (6.3), (resp. (6.4)) to g and taking the integral < > (respectively < >)
we find

0:< allml‘z . l?ng1> ]\Izn ‘l,;L) l:n <,Ej3 ’ng>+qun‘“ 1/2n, <(E‘“ ':_E‘/Q,,§>
(6.13)

0=« éilﬂli?...ﬂ)izng| >= ]\/‘[Zn 3;’2 2 < 113 .$j2'Lg > +
+N2n 11 12n << It .ijnE > . (614)
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This result holds for any function g, in particular for the previous choice g =
erp, [19%9—’—], by comparison with (6.5), (6.6), (6.8), (6.9) we infer the invertibility

of the matrices Nopn, Non, the relations
N2_;1,1 ) SZn x SZn Jvz—;zl ) 5’Zn X S2n (615)
and hence the relations

< zig' G =y g Sal (6.16)

& 22 > =y  Sih T, (6.17)
for any function g(zC=z). By contracting the free indices i1,%2,...,%2n with
CiiiyseesCipn_ ipn We reduce the determination of the constants ¢, 3,Cn,5 to the

evaluation of integrals of purely scalar functions:

; ; e < zCz)"g >
<ztlzithg >= 5L ( )"g (6.18)
’5211,
. . — . < mCm na >
<< mll.“ml'zng >>: ;1;1...12” ( ) g , (6-19)
5277,
here
Sop 1= (Jm-z...Cizn_ﬂ-hSZH“’”""’”",
S—zn = Ci1iz-"0i2n_1izn 512ni1,i2,...,i2n’ (6.20)
For later use we derive here the following very useful formulas:
A”milmiz...a:i?”[ = (u)nnqz!SQ#Q'“i“ (6.21)
Arzitgi 22" = (ﬁ)”"nq_a!5’é§152"'52". (6.22)

Their proof is by induction. For n = 1 (6.21), (6.22) are true, since Azitez] =
pditgir = uCiviz Agligi?| = pdirz’s = pCh:. Now assume that they are true

forn =m — 1. Then
L : e i o nmed i A fs i
AMgiigi | ghm| = p ATl et |+ P AT T I A e | =

= /‘L(l + qz)Am_lailmi?...azi?m} -+ q*Am_QmilAzmi‘z .__mizm‘ —
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= #quAm*lailmiz...mizm + @Mzt ALz, (6.23)

The second term in the last expression is zero, since the 2m derivatives contained
in A™ act on (2m — 1) coordinates z; using the definition (6.3) of the tensor Mam,
the induction hypothesis and the definition (6.8) of S2,, we are able to rewrite the

first term as

iLiz..-iQm m—1 j3---j2m — m H i[iz...i;m j3-~-j2m —
/.LmQQ-ZV-[2m,]3]2mA T ]— (ILL) qu 'J\/Izm,]3.]2m Sz(m“l) -

= ()™ m g Gl (6.24)

which shows that (6.21) is true also for n = m. In a similar way one proves

(6.22). It is not difficult to evaluate the constants Sap,S2n. From the definition

and formula (2.52) we derive
Son = A (zCz)"| = /LGqz(J—;— +n—1)gp A" (zCz)" 7 =
:nqzl(—]-;[— +n—1)q2...(.%v)qm2n > 0; (6.25)
similarly
Son = A™(zCz)"| = nq—z!(%r- +n - 1)q_2...(£2v—)q_2ﬁ2” > 0. (6.26)

Let us analyze the “radial ” dependence of the two integrals < >, < >>.

We introduce the operators

-2 _1 .. ~ -2 __
—— b =¢"(1+ El
H H

it is straightforward to check that B(zCz) = ¢*(zCz)B, B(zCz) = ¢~ %(zCz)B

and therefore

B::1+q

Bf(zCz) = f(¢°zCz)B, Bf(zCz) = f(¢”*zCx)B, (6.28)

for any f € O,(N) depending only on (zCz); hence

2—— . - —_—
T~ L oiaf]) = f(g*xCa), ¥ (f+ T Faf)) = fla e Cs).

g N(f+
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By taking the integrals < >, < >> respectively of (6.29),, (6.29); and by applying

Stoke’s theorems (5.7) we find the formal relations

< f(¢*zCz) > ¢~ =< f(zCz) >, < f(¢*zCz) > ¢~ =< f(zCz) >;
(6.30)
but the integrals < f >, <« f > of any f € O4(IV), if they exist, are reduced to
combinations of integrals of radial functions by means of (6.18), (6.19), therefore

property (6.30) can be generalized as follows
< flg) > ¢ =< f(z) >, < flgz) > " =< () > . (6.31)

This fundamental relation characterizes both integrations < >, € > defined by
meauns of Stoke’s theorem and will be called “scaling property ” of such integra-
tions, for reasons which will become clear at the end of this section.

So far we have not specified the domain of functions f € O;’ZV(R) for which
the integrals < f >, <« f > can be defined. Therefore all the previous relations
were purely formal. Now we pick up a particular reference function fy(zCz). We
ask what are the functions f such that the corresponding integrals < f >, < f >
can be reduced to the ones < fy >, < fy > by means of iterated application of
Stoke’s theorems and of linearity, and turn out to be finite. Of course we wish to
include in this space of “integrable ” functions as many f € O (R) as possible.

q
], @ >0, which for q=1 reduces

_ozCx
w

to a well known smooth rapidly decreasing classical function, the gaussian. First

As an example we take f; = exp, 2|

_axCz
o

arbitrary polynomial. Using property (6.31) and the g-derivative property (2. of

we consider functions f of the type f(z2Cz) = P(zCz)ezp,:| |, P being an

the exponential we show that

azCe hoo (BN N N
< expgz[— ; [(zCz)" >= <E> (h——l—r—g— L ) qz.

.q—h(N+h—-l) < exp,? [_

azCz

L

] > (6.32)

and, in the same way,

h N N N o
~ (£ h—14+—] .. |—= L I T ar 1;] > . (6.33)
! 7
q? q?
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In fact
C' . ol L 2 O .
< exzpg2[— 0433# ‘B](mcm)k—1 >= gV <epp [—_._—__q a: ZE](mCm)’” 1o
- C )
~(g = 1)g" T < eapps[- amﬂ Z)(@Ca)t >, (6.34)
whence
N
< expgy[— amCm](mCm)k > = (ﬁ)(k — 14 __2__)q2q—-N—2(k——1)
' : (6.35)
azCe b1
< B:I}pqz[—— u ](:BCQ]) >;

applying A times formula (6.35) for k = h,h —1,...,1 we find (6.32).
If we want the reality condition (5.16) to be satisfied, then we can normalize

the two integrations < >, < >> by setting

azCez azxCz

| >=< ezpge[— P ] >»>=ccRT; (6.36)

< expg2[—

then, as a consequence of (6.30), (6.31), < f >=< f >> for purely radial functions
F = f(zCz). The same result holds for any other choice of the reference function
fy, since the scaling property (6.31) has the same form for both integrations.
Relations (6.18), (6.19), (6.32), (6.33), (6.36) allow to define the integra-
tions < >, < >> on all functions of the type f = P(z)fy, where P(z) is an
arbitary polynomial in z and fy := empqz[mg‘i”;—?’i]. We could enlarge the domain

of definition of the integrations by admitting functions P(z) in the form of power

series P(z) = Z > iiliz__.in:vilmi:’...mi" such that the series

n=01iy,i2,...,in

iz i
E E di iy in <az'tzoz' fu >

n=011,i9,...;in

o0
SN A, <atatoa o> (6.37)
nzoil,ig ..... in

converge; the integrals < f >, < f > would then be defined as the limit (6.37)q
and the limit (6.37)p respectively. A further step towards the enlargement of the
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domain of definition of the integrations could be done along the following lines. In

>
the previous formula we could take P = P(zCxz) = > an(zCz)" with coefficients
n={

ar € R and such that < P(zCz)exp, [—-9—:”7?2] >:= ¢’ is finite. Then we could

define a new reference function by letting fy := P(zCz)ezp,2|

of formulas (6.18), (6.19), (6.30) we should be able to evaluate < P(z)fy >, <
P(z)fy > in terms of ¢’ for all polynomials P(z). Thus one could include in

—22C2]: by means

the domain of integrable functions also functions f susceptible of a decomposition

f=P)fo, Plz) = S X A, izitz. zin such that the series (6.35)
TL=UI’L,Z.2,...,Z'”
with this new f; converge. It is natural to figure that to the new choice of the

reference function there should correspond an actual enlargement of the domain
of integrable functions. This operation could be iterated in a sort of continuation
of the functionals < >, € >», so as to enlarge to the maximum possible size
the space of integrable functions. It is out of the scope of this work to face this

problem by analysing which conditions the coeflicients {4;,:,...;, } of an expansion

m . . -
of the type f = fio > > A, 'tz .z' should satisfy in order that f

n=U11,12,...,1ln

be integrable(!).
We just briefly note that, having defined the integrations < >, < >
using Stoke’s theorems (5.7), one could define new integrations < >,, < >,

satisfying (at least) requirements 1) - 3) of the preceding section, by setting
<f>p=<f-p> L fF> =< fp>; (6.38)

the “weight ” p should be a real scalar function.

Now let us come back to property (6.31). By its iterative application we

find
< flg"z) > ¢"V =< f(z) >, < flg"z) > ¢"" =< f(z) > nez,
(6.39)
or, equivalently, in differential form notation
Jav ¥ sgra > = [av o)
_ d (6.40)
/dV’ "N f(q"z) = /cﬂ? f(z). nez.

Relation (6.40) states that under the change of integration variables z — az

with a = ¢" the integrals f,]" are invariant if we let dV transform according to
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dV — aNdV, namely like dVz. This explains the name “scaling property 7 for
relations (6.30),(6.31),(6.39), (6.40). In both the classical and the q-deformed case
this property characterizes the integrals satisfying Stoke’s theorem; for q=1 the

" (ie.

latter reduce to the usual Riemann integral, which has a “homogeneous
translation invariant) measure. '

One can now ask if the scaling property holds even if the dilatation parameter
a & Q:= {¢", n € Z}. One can easily check that this is not the case (take for
instance fy = exp,2[—b(zCx)] and define f = ezpyz[—ab(zCz)] to be the function
which we want to integrate by choosing fy as reference function). In other terms,

the function

F(a) :==< f(az) > a” (6.41)

is periodic in the variable b = In(a) with period In(g), but is not identically
zero. To be specific, assume for instance ¢ > 1. If a € R* and ¢" < a < gttt
the function F fluctuates around the value F(1) =< f(z) >, the width of the
fluctuation being the same Vn € Z, therefore also around large a. But if we take
the deformation parameter q very close to 1, then @ is, so to say, “almost dense ”
in RT, i.e. a can be approximated quite well by an element of Q. In other terms,
at a macroscopic scale (i.e. for a € R" such that H——Z(L;—))[ > 1) deviations from
the classical scaling property would not be detectable, even though they would

be relevant at microscopic ones (i.e. for a € R, i:((;z)” ~ 1). This surprising

feature might be considered as a very interesting indication of the occurrence of
a dishomogeneity of the observable properties of space when the usual euclidean

commutative space is replaced by the corresponding quantum space.



Chapter 4

The Hilbert Space of the

Harmonic Oscillator on R‘\%

7. The pre-Hilbert space of the harmonic oscillator
and the observables R?, P?, H,

We introduce the pre-Hilbert space H of the SO, (N )-symmetric (isotropic)
harmonic oscillator with characteristic constant w in the following way. Let |0 >
be the ground state with the energy Ey given in formula (3.12). We introduce a
direct (II, V') and a barred (II, V') representation by first assuming

wqg™ N r
E:quz[—-—-q——*;s—x—g—)] eV

0> H (7.1)

JENH

wqg¥ (sCx ¥
empq-z[——i-(b—g——)] ev.

Up to a normalization factor, creation and destruction operators AiT,Ai are to be

represented respectively by

(2 + 0, 0))G, = aij

II
. e
A (7.2)
I
\ .4
(z' + @,8)G -1 = @
when acting on states of level (n — 1) (to give states of level n), and by
(mi + a,nai)G(l
II
o
A (7.3)
1I
N
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when acting on states of level (n — 1) (to give states of level (n — 2)); here

2—n n—2
q - g
Qp = — Qp = —
w w
N+n —n—N
o q -/ q (7 4:
Qn = &y = ) ' )
w w

and the operator G, was defined in formula (3.24). The space H, of states of level

n will be introduced as linear span of the vectors
fimyiny iy o= AT gint 4070 > (7.5)
The vector |in,...51 > can be assigned the SO,(N,R) transformation law
G1([iny iz >) = Tim T3 @ |giny -wed1 > (7.6)

since both it and ﬁf{““il have transformation laws of this kind. Any |u >€ H,

is an eigenvector with eigenvalue

1 N N N
E, :w—z—(q”f“l—}—ql—?)[—i + nlq, n>0 (7.7)

of the hamiltonian H,, which is represented by

ho = 2(—¢V A + w¥(zCz))
II
/

S H

‘H itself is defined as
M=) Ha. (7.9)

By the above construction any vector |u >€ H will be represented both by a vector

¥, € V and by a vector 1, € V (see Sect. 2.):

Pu
I
e
lu > (7.10)

/b
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With reference to the motation of Sect. 2., we know that any function of the
type ¥y = Pn(z)ezp,: {—”q_n_mp—mzcz] belongs to V. From the above con-

struction the corresponding ¥, := O ~'¢, € V will be of the form b, =
w +n+N+2mIC$

P,,,(:z:)e:cpq-'z [ - ] where the polynomial p,,(:n) is obtained from P, (z)

wq—n—N—‘Zmzcr]
— ‘L —

of ¥ ’s; 2) replacing ¥m’s by ¥r’s. If we consider the explicit form of ¥, ¥m

as a combinations

by the following steps: 1) writing P,(z)ezp,2[—

involving only the coordinates (without derivatives) the second step amounts to

the substitutions ¢ + ¢~ !, R « R~ in particular if the R, R~ matrices are

written in terms of the projectors Pg, P4, P1 alone, then we only need to inter-
-1 wq_l“\rrCr}
. m 7

. . —-2-N s w —-2-N
Yyii = mlm]empqz[-—wq——#——§g] = P, (z)exp,e [———q——-u—f—c—z] The reader can

change g with ¢ Let us consider for instance 1,: := mie:cpqz [—

easily verify that
wgtVeCr

Fa—

Yui = ¢ ezpg-2[~

24+ N 24N
=i wq zCx wgq zCz N iy
B EPﬂw)ewpq—z[—*———,—r——] = eapy-s [

1 - q -1, o g7t -1
CUl=(1— N+1 -1 C 2N43 _  N+2 _ \ : 711

+

notice that the fact that Pzij(:c) contains no term of zero order in z doesn’t imply
that also in Pzij(:n) no such a term is present (except when g=1).

From the above correspondence rule we immediately realize that if h, =
OII-%4,, then zCzv, = NI (zCzi,). This means that the square lenght

operator R? can be defined over H and represented by

zCz

R? (7.12)

V==

zCz.

From (7.7), (7.11) we see that P? := H. — w?R’ is a well defined operator H
represented by

N\ A

p? ; (7.13)

e
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it will obviously be called the square momentum, since it reduces to the classical
square momentum for q=1.

We define the scalar product of two vectors [v >, |u >€ H by
(u,v) =< By >+ < Piby > - (7.14)
Indeed ( , ) is manifestly sesquilinear and
(v,u)" =< Pipy, >* + L i, >'=< iy > + < Yy >= (u,v)  (7.15)

as required (see also relation (5.15)). Relation (7.15) implies that (u,u) € R;
its positivity (i.e. (u,u) > 0 and (uv,u) =0 © u = 0) Vg € RT will be proved
in Sect. 7. Here we just note that it must hold at least in a (Ju >-dependent)
neighbourhood of q=1, as it holds for q=1 and (u,u) is a continuous function of
q. The abstract definition of the hermitean conjugate TT of an operator T is the

usual one

(u,Tv) = (TTu,v) (7.16)

We have chosen for the scalar product the (apparently cumbersome) form (7.15)
to make the operators R?, P? (and therefore H., itself) hermitean. It is trivial to
check that R? is hemitean, so let us check P? is. Using the notation introduced in

formula (2.46)
Af = f'(z) + fj(a:,ﬁ)aj = Af]+ fj(mva)aj7

Ag = §'(z) + §;(2,8)87 := Ag| + gj(=,0)&, f,g € OY(R) (7.17)

and the relation A = ¢~V A* it is straightforward to show that

(AfD) g = fg=F (a7  Agl) - " fig|

-

(Af)'g:=F"g=Ff (" Agl) - 6" f}gl. (7.18)

Hence
(u, P2) = —¢~ < Ppid| > —g7" < ¢, A0 > (7.19)

and

(P?u,v) = =g~ < (A¢u]) ¢y > —¢" < (AYu]) Yy >=

= _ql\r < %Zval > __q“-N' < w:A’lE7‘| > +
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+q N < HP | > +dY € O | > (7.20)

The last two terms vanish because of Stoke’s theorem (5.7) (in fact 8/*,8/* are

respectively derivatives of 0 and 0 type), therefore
(u, P?v) = (P?u,v) (7.21)
as claimed. As an immediate consequence of the hermiticity of the hamiltonian
(u, Hov) = (Hou,v), (7.22)
if |u >, |v > are two eigenvectors of H,, with different eigenvalues, then
(u,v) =0. (7.23)
Looking back at the previous proof we see that in fact a stronger property holds:
nitm = <P >=0, KL Pitm >=00, €T, ¥, € T, (7.24)

For the evaluation of the scalar products ( , )it is only necessary to find

out integrals of the type < (zCz)*f(zCz) > with

wgV Tz Cr wg Nk Ce

! (7.25)

f = exp,—2 [— lezpg2 [—

since their tensor structure is already determined by the general knowledge of the
tensors Sit-+f2n Girians this will be done in Appendix A.

For later use we derive the formulas

.4
1]

< (@l 8ty >= gt < el _yale > O (7.26)
< (all, all )P >= ¢ < al_yahd > CpriCui (7.27)
They can be proved using the definitions (7.2), (7.3) of a, a, aT, al and the scaling
property (6.31) of the integrations < >, < >.
In the classical case the N coordinate operators ¥ are a complete set of
commuting observables; their action on a wave-function 1 (y) is purely multiplica-
tive

Yip = y'y, g=1. (7.28)
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In formula (7.28) new real coordinates y' = y'* have been introduced (recall the
fact that the coordinates z'’s are not real even for g=1) through a nondegenerate
linear transformation A; this can be done also for ¢ # 1, and in general such a

transformation will take the form:
Y= A;'-mj, yr =y o Aj- = C'jkAfc* = A;—qui, (7.29)

where p;is given in (1.10) and j' := N+1—j. Nevertheless, for ¢ # 1 no coordinate
operator acting purely multiplicatively in both the II and the II representation ex-
ists, as a glance to examples (7.11) shows. In fact, in that case yih, = Al
does not contain terms of degree zero in z (or, equivalently, in y), whereas the
corresponding vector Afzﬁuu in the II representation does, namely a purely multi-
plicative action in the II representaion is not represented as such in the II one, and
viceversa. Then it is hard to imagine how one could define a set of N hermitean
operators corresponding to the coordinates. The same sort of difficulty arises for
the momenta and, as we shall see, for the components of the angular momentum,
whereas we will be able to define an hermitean square angular momentum (Sect.
6). In other terms, so far we have not succeded in finding observables being covari-
ant but not invariant (w.r.t. SO,(N,R). We don’t know whether this difficulty
can be overcome. If not, such a circumstance may be considered frustrating for
finite dimensional systems like the one considered in this paper; in a gauge field

theory it would not be a problem, since all observables are gauge-invariant.

8. The observable L?

We look for some other hermitean operators such that they commute with
the hamiltonian H. and with each other. To this end in this section we search
the analog of the angular momenta. As a primary requirement they should com-
mute with any scalar function of the coordinates and of the momenta. In the
classical case they are antisymmetrized products of coordinates and derivatives of
the type %(yiayj — yjayi) or their combinations. Therefore we first look at the
commutation relations of the operators L7 := P, i,j;,l,m’l@"’ =—q¢*P, i}fL_(?’":uL’ and
LY = P, i,{ka:hék = —¢*P, i,{k(?h:c}" with zCz,\ and zCz, A respectively. Using
formulas (2.43), (2.44),(1.38),(2.31), (2.32) we find

LY2Cz = ¢?zCalY, LUA =g ALY (8.1)



and

LUgCx =q %zCzlP, LN =g? ALY (8.2)
respectively. It immediately follows that
(Gl ,2Ca) =0 =[GpL,A] (8.3)

(G-2LY,2Cz] =0 =[Gy LY, A], (8.4)

where G, was defined in (3.24). Next, it is easy to show that quﬁij (resp.
G,-2LY) commutes with any scalar polynomial I (resp. I) obtained combining

z'’s and 8''s (resp. z'’s and 0'’s):
[I(z,08), Gy L] =0, [I(z,8),G,-2L7] =0 (8.5)

Actually any such polynomial can be written as a polynomial in zCz, A (resp.
zCz, A) alone (see Appendix B).

By squaring the £¥, £ we obtain scalar operators £2, £%:
L2 = LYL; =a"0%P Y ;0 (8.6)
L2 :=LYL; =2"0%P, J z;0; - (8.7)

To obtain the last expressions in (8.6), (8.7), we have used the property (1.19),
and P34 = 0. Of course G+ L? (resp. Gy-4 £?) commutes with any scalar function
I(z,08) (resp. I(z,0)) and in particular with h,, (resp. with A,).

We want to find out eigenvalues and eigenfunctions of G4 L? (resp. G-+ L?)
in V (resp. in V). From the above property it is clear that if P(z) is an eigenvector
of GuuL? (resp. G,-+L?) , then for any function f = f(zCz) g := P(z)f(zCz)
is an eigenvector of G 1L? (resp. Gq—-~1£_2) with the same eigenvalue. A little
thinking will convince the reader that, just as in the classical case, after factorizing
a possible function p(zCz) the eigenvectors P(z) (resp. P(z)) of G +L? (resp. of
Cyes )

G L*P(z)| = cP(z), G,-+L?P(z)| = eP(z) (8.8)

can be written as homogeneous polynomials:

P(z) = p(zCz)A;:p. i,z 22zt (8.9)

P(z) :p'(mC’a:)leizminmilmi?...a:i". (8.10)
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Actually G L? (resp. qu;[?) is homogeneous in both z, 0 (resp. =z, 0) with
the same degree (two), hence it transforms any homogeneous polynomial of degree
n into another one of the same degree. Now we specify the form of the Ailiy.in
(resp. A;i,..i,) coeflicients. We are going to prove that just as in the classical

case and up to factors f(zCz) the set of homogeneous polynomials

]V[Tiﬂ _ {Pélzz...zn —p blds giigis gin [ =1 N} (8.11)

n,S i1i2...1n

is a complete set of eigenvectors of degree n of both G g4 L£? and Gq—+,/:'2. Here Pr s
is the q-deformed symmetric projector acting on X" C (in particular P25 = Ps),
whose existence will be briefly discussed in Appendix C. The main property of

these projectors is that
Pr,sPaii+1) = 0= Pns5P1 i (i+1) 1<i<n-—1

Pn SR 1+1)P4 (i4+1),(i42) = =0="P, SRl (Z_T_l)fp (i+1),(i+2) 1<1<n—-2
(8.12)

where, for any matrix F defined on C ® C Fj iq1 (1 <1 <n—1)is the matrix
acting on ®@"C defined by F ;41 :=1® .19 F®1®..81 (F at the 7;, and
(i + 1)** place). Since rP;‘CS = P, s, the above properties hold also if we multiply
an,S by

DE
P—l i,(i+1) fPl i,(i+1) P-l (i+1),( z+2)R i, (i+1)? P (i+1),(i+2)Ri’(1g+1)7-'- (813)
from the left. Relations (8.12) imply
Pr.sPs i(it1) = Pr.s 1<2<n-1

P, sR l+1)P5 (i+1),(i+2) = 'Pnzsqzl 1<1<n~—2 (8.14)

To reach the goal we first transform L2, £? into more suitable forms, which
explicitly show their scalar character. By quite a lenghty calculation one can show
that

L% = an(q)z'0; + Bn(q)z'z?0;0; +yn(g)zCz A

£? = an(gH)z'8; + Bu(gh)a? '298,;0; + (g7 )zCzd (8.15)
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where y N
2 N2y 1-N _ N-1
aN(Q) = (q N i qN ) (q —2 1 2 )a
(@77 +q27Y) (77— )
3 N-—1 5—IV —-N
¢ +gq (@ "+l +g")
Bn(q) i= ——— n(q) == — ~ (8.16)
@)= vy w(g) p g +q71)
Now notice that property (8.12) together with the relations
Pe i,fk:chak = Pg i,fkah:ck, Py i,{kmhgk =P i,{kghmk (8.17)
implies
P, Sabllabz'.::‘;:mbl...a:b"‘lab"a:b"“...mb"! =0
Pnysiﬁzzzzgsmbl...mb"‘lgb"mb"“...mb“l =0, 1<:1<n. (8.18)
Similarly, upon use of formulas (2.43), (2.44),
Pshiira’eh -t A2t =0
a1072...0n b]_ b,'_l A b,‘ bn — < g <
Prshs etz Azva™ | =0, 1<i<n. (8.19)
blyodn iy piz | pin we can

This means that when applying £? (resp. £2) to P.siit
forget all the terms (which we will denote by dots) containing powers of A or
where the index b; of a derivative 8% (resp. 8%) is contracted with an index of
Pn,s. Now let us consider only the case of £? explicitly. The term with coefficient

v~ in the RHS of (8.15) can be ignored, whereas
(2°8,)z" = 2" + ¢?zb(228,) + ...

(2°2°858, )z = (1 4+ ¢*)2% (2"8,) + ¢*z’ (2°2°8,8,) + ..., (8.20)

Hence

Gq*ﬁzrp blaodn iy iy s

n.S il’[g...i,l

=g "[anz", + Brnz 2 0,0,]P, 12l gligi gl

n.S iyiz.dy

= q“zn{a_,\r[:cilm“...mi" + qzmil(m“(?a)mi”...mi"] + O~ [(1 + qz):c’-‘ ("0, )mi‘“’ oz
+q'z' (2 2" 0,0,)z .2 }P, S = L=

=q¢ "™an(1+ ¢+ ..+ PN L BN+ A1+ ¢ + oo+ A+

+ 1+ + o+ PO L g g, el gt gl (8.01)
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Pé""l"(m) are therefore eigenvectors of G £? with eigenvalues (depending only

on n)

Cp = 2{a,ynz—|—,5N1—|—q Zn— —1), *"} =

2(n 1) -1

—1 (8.22)

= ¢ " {ngpla N+5N

where we have used the formula (2.47); and the relation

1
Zqzkk s = PN (7;+ ot (8.23)
2

(the latter can be easily proved iteratively). Finally, replacing the explicit expres-

sions (7. for an, Ay we find

N L
Cn = ¥ [n]y[N +n — 2. (8.24)

[n]g[N +n — 2. (8.25)

We see that the operators 2¢°G,+ £? and 297G+ L£? have the same eigenvectors

Ps(z) and the same eigenvalues

2 q'z_“z—}—q l'\zj
li: N +n—2|4; 8.26
e el - 2 (5.20)

we have included in their definition a factor 2 so that for N = 3 and q=1 the
eigenvalues reduce to the classical ones n(n -+ 1) of the classical square angular
momentum in three dimensions. Notice that, as the energies E,,, the eigenvalues
(8.26) are invariant under the transformation ¢ — ¢™*.

Consider M, (the linear span of {ztz'?...z'*}, see sect. 2) and its two
projections

Mg, = Pr.sM; Mi = (P ® 15_2) M, (8.27)

Because of formula (8.12) their direct sum is M itself:

My =M;y® M; =[Prs®(P1® 1y—2)| M. (8.28)
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We can evaluate the dimensions of these subspaces in a straightforward way, since
we know the dimension of M; as a function of [ (see formula (4.4)) and M} is
generated by {zit..zl-2gie-1zde P, F71E Y e by {zi..zi*-2(zCz)}:

‘ N +k—
dim(M;):dim(Mk_g):< - 3>

N -1
dim(Pg) = dim(M7) = dim(My,) — dim(M;,) = dim(My) — dim(My—») (8.29)

By repeated application of formula (8.28) we find

My= B M, 5, M2y = (P1® ...® P1 ® Pnzm,s)Mn. (8.30)

0<m<y

In other words

15, = @ ('Pl R.9P1® fpn_zmys) (8.31)
0<m< 3
is the identity operator on M,. Relation (8.30) states that any eigenvector of
G L? (and G,-+ L? belonging to M, must belong to lwf’n_z.m for somem < 3,i.e
it must be combination of the vectors P;""l”'z"‘ modulo a scalar factor ((zCz)™),
as claimed.
Since [hy,GpL?] = 0 (resp. [hw,Gg-+L?] = 0), it is possible to find
eigenvectors of h,, GuL? (resp. s, Gq—452) at the same time. Using again
property (8.12) it is quite easy to realize that

—n—N
o : wq zCc
(Pn’5¢n)lll2"'l" x P lllz"'l’." pilpt?,  pin ETP,2 [..._.____..___....—__

n,5 i1ig..in

I, (8.32)

73
- . : wgT" T NeCz
O Pn,sﬁ-lf?;::f?nw”w”---m’"ewq-z{—‘q—‘}r‘“k (8.33)

therefore these functions are eigenfunctions respectively of 2¢°G,1£* and

297G ,-+L* with eigenvalue [2. In general

[('Pl R..P1Q® /‘Dn—Em.S)l/J,,]ll“'l” ~

—r =\
lZm-{-J_n-Zn i‘2m+l in . ‘ wag CBCCC
o P(n—Zm),S PR W T pn,m(mCm)el‘,pqz[————————#

| (8.34)

and

(PL® .. ® P1 ® Pr—azm,s )]
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wq"‘+N:z Cz

lomiteodn o
o P(n—2m),5 i;m:;...in (E”"“H...:Elnpn,m(IC&Z)e:qu—z[————-——————ﬁ ] (8.35)

(with suitable polynomials pn m,Pnm, 0 < m < ) are respectively eigenvectors
of 2¢2G . L2 and 2¢72G -+ L? with eigenvalue [2_,,,. Using the property (4.13)
(Pivn = 0) we see that 1as, is the identity operator in U,,¥,. Therefore

\Iln et @ \I;n.,’n.—Zm (T‘ESp. @n = @ ‘yn,n—Zm) (836)

0<m<3 0<m<2

where

\I’n,n-—Zm = (Pl ®..0 /Pl ® Pn-—-Zm,S)an
(resp. @n,n_gm =P1®...9P: ® Prn-2m.s)¥x) (8.37)

is the eigenspace of hi,2¢*G,+L? (resp. of h.,2972G -+ L?) with eigenvalues
E,, 2

ny'n—-2m:*

The above discussion shows that we are in the right condition to define a

square angular momentum operator L? in H. We set

, 2¢° G L?
v
Lz (8.38)
II
N _
2q“2Gq-4£2
We introduce the subspaces Hp n—2m C H by
‘yn,n—Qm
II
7
Hn,n——zm (839}
an,n-—2m _
2q“2Gq-—4£2
We summarize the preceding results in the
Proposition
The vectors
(Pl R...0 Pl ® ran——ZmS)flLZLill: iliEH-in >& Hn.n—?m (8‘4:0)

(n>0, 0<m< Z)are eigenvectors of H., L? with eigenvalues E,, [? _,,, (see

(7.7),(8.26)) respectively. Moreover

He® D Horoom (8.41)

n=00<m< 5
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We now show that L? is hermitean. Using formulas (2.41), (1.19) (where
we take f(R) = P.) it is easy to show that £2* is related to £? by

L2 =g (8.42)

From the definition (7.14) of the scalar product

1 - e =
(u, -2-L217) = q2 < ¢§Gq4£2¢v| > -}—q—z < ¢;§G’q—4£21/)v\ > (8.43)
whereas
1 e _
(§L2u,v) = q72 < (G s L))"y > +0° < (G s L%y |) by > (8.44)

because of Stoke’s theorems (5.7). We can rewrite the RHS of the latter formula

as
RHS(8.44) = ¢®N 42 < (G-t )" L2%] > 772 < (Guthu) L2, >=
= VP2 < G (PG L ]) > ¢ TP € G (¥ Gy Lo%:]) >; (8.45)
finally,using the fundamental property (6.31) of the integrals < >, < > we get
(éLzu,v) P < PGS L] > g € PGy BBy = (u, L),  (8.46)

as claimed. The direct consequence of formulas (7.23),(8.46) is that H, , are
orthogonal subspaces of H, i.e.

UE Hng, vE Huyp and (nk)# (n' k)= (u,v)=0. (8.47)
Looking back at the previous proof we see that in fact a stronger property holds:
< "/;:,’k'ﬂbn’,k’ >=0=< '@b:;kl;n’,k’ > 7’f (TL, k) :/‘_i (TL,, k1)7 (848)

where ¥p.1 € Ty ny Yp,n € Up e
We have not succeded in defining (hermitean) components of the g-deformed
angular momentum as operators on . The operators G LY and Gq—zﬁ—ij have

different eigenvalues, hence they cannot represent one and the same operator on

H.
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9. Positivity of the scalar product

In this section we prove the positivity of the scalar product ( , );in this
way the proof that H is a pre-Hilbert space is finished. Then completion of 7 can
be performed in the standard way.

The results of the preceding section imply that it is sufficient to prove
positivity inside each subspace My n—2m. The most general |[u >€ Hpk, kb =

n — 2m, Ogmggisoftheform

Iylg.. Ay
Dlll2---lk¢n,(k75)

II
/
u Dy, €C (9.1)

/F

Iyla. Ay

Dty (575

gl

Thilade . (=] _T _T 1 Tlilg. g
¢n,(k,5) = (a‘Lca'n-—l)"'(a‘k+2ca’k+1)¢k,5 (9.2)
and
—k—N
Lilgody Iyoode gt ko Iyode 1y ik wq :EC{D
k,S =Prsirir Vs =t1(q)Pp s i lifet - att expge [ - ]
k+1\7 O
Tlhilaody Iyoode 710 —1 Iy e iy ik wq zLzT
k75 T Pkws lek ¢k - tk(q )Pk,S ll.lk T e empq“z [—— — ]'
(9.3)
Here amCamyr = afncijafn_i_l and amit,al are the creation/destruction oper-

ators introduced in (7.2), (7.3). An easy calculation shows that ¢;(g) is given

by
k—1

te(g) =g = [[(1+a "), (9-4)

h=u

therefore #(g),t(g™!) are positive Yg € RT. In the rest of this section a oc b will

mean a = ob, o > 0. The square norm of u is given by

(w,u) = D3, Dy [< (BGRE ) 0iils) > + < (B0 78 ) sy > (9.5)
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From the definition (9.2), and formulas (7.26) it follows

(wpl k 5))*¢ (k 5y >x< (% 5P llcfg'lk > (9.6)
where ' :
lit..S:'lk = ((Lk C'ak+1)...(an_ic’an_a)(an_g Can_l),(b?l;’l(zk;’-g)k. (97)

Because of formula (7.26), only the component of f,litsl" belonging to ¥ con-
tributes to the integral (9.6). Looking at formula (A.10), we can decompose the

operator (an—2Can—1) in the following way

(an-—Q Can—l) = an—l,Z(a;‘;.{_Q Caj;-i-l) + ﬁn~1,2(an0an+1) + 711—1,2(a;r10an+1)+

+6n_12(ant2Cal 1), (9.8)

which is appropriate to clearly display the result of its action on P..: we see that it

maps ¥, (k,5) into a combination of functions V!0, Wl o belonging respective-

ly to U pq0,¥,,¥,_5. Next, the operator (an—sCan—3) acts on Yrta, Uy V2
For each of these three functions we choose the appropriate decomposition of
(@n-sCan—3). Doing the same job again and again, we end up with a combination

of functions belonging to Yon—k, Yon_2—k,---Px. It is not difficult to realize that

Py, ( ;ifé'lk) = H ﬁn—2h+1,z(ak+zC’ak+3)...(anC'an+1‘)’l/Jillyl(2k',”Sl)’°, (9.9)

h=1

where Py, denotes the projector on ¥y. Since all coeflicients bi,m are positive for
g € RT, by picking the explicit definition (9.2), of ¥, (x,5) we find

‘Plllk( k S lk) o (ak+2Cak+3)...(anC’an+1)(aj;Cal_l)lbLlng';(;k_S)- (910)

In the appendix A it is proved that
(a'ncan+1)(az,caz.—1)¢fl 122 (]‘ 5) x ¢7 ’) [l\ 5) (911)

(see formula (A.12), (A.23)); hence
Pa (fis"™) o (arr2Carys)(an—2Canr )b, 5 (9-12)

using m = 1‘;—’“ times the same kind of argument we conclude that

Pa(fils™) o g™ (913)
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From eq.’s (9.6), (7.24), (9.13), (6.18) it follows that

1- * I;...1
(¢p kS)) 'GL’ (k 5) >oc< (Y pk) Bs >

Iy P1 Pk hijy heje,
o8 Pk,S iL Pk S j C .O

—k—N E+N
: - zCz w zCz
< ghe  ghigh. zh eTPy2 [~—Bg———l—1‘——————]empq-z[————q——ﬁ—————] >=
:Pks _ll fpkspl Pkghul 'Ohkjk,
' i1
Shk---hlil-wik E+N C w ——k—N:BC:D
—— < empq—z[—-cgi——ﬁi—?—](mCa:)kewpqz [___Q_T——] > (9.14)
Similarly one can show that
Tyl
< (@bif(k,]);))*%(k,%) >
Pl Plc hiji  ohedx
Sh/c hitr..ig w k+N:I:C:E w k N:z:C’a:
5 <eopyil- d - [(zCz)kexp,: [ . |>. (9.15)
2
Since
w T w zCe
< expg-2| g ﬂa: [(2Cz)Fexpye|— 1 p |> >0 (9.16)

(see formula (A.24)), Sok >0, Sox > 0 (see formula (6.25),(6.26)), we can reduce
the positivity of (u,u) to the positivity of the two quantities

* P1P2..-Pk I 12 !]c h171 haja heje hi...hiiy.. ik
DPLPZ Pk,S F1dz.-Jx Dhlz'--lkpk,s i1z, O c .0 S (9-17)
and
D* P PLP2---PkD P Iy lg Zk Crhux Chgjz CrhkjkS'v/u.,...hlil...ik (9 18)
Pip2-Pr RS jijegr Tzl TR S iy CA

We prove the positivity of (9.17); the proof of the positivity of (9.18) is com-
pletely analogous. First, using property (C.6),(C.10) of the symmetric projectors

we can rewrite (9.17) in the following way
[( kC) ]]1 ,Pk .S hk Pk S LL [k Shk hlilmilell'z--»lb' (919)

In appendix D we prove the following
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Lemma:
Jee ot Lyloody Qhgohyip. iy
Pk,S hk...hlpk,s ilig...ik‘s =
k Ie. 1y )
= i [Pr,s - (®"C)Prsl} or > 0; (9.20)

a similar result could be proved in the barred case. Using property (C.6) (c.10)

again, we can rewrite the LHS of (9.20) as a sum of positive terms

S [(®*C) - Prs - Dmamame 2, (9.21)

Ty, M2, T

this expression is always > 0 and is zero if and only if Py s-D =0 & u =20
(in fact (®*C) is a nondegenerate matrix). The proof of the positivity of the
expression (9.17) is thus completed, and so the positivity of ( , },

(u,u) >0 (v,u)=0 & u=0, uw€H (9.22)

is thoroughly demonstrated.

Now we can introduce a norm || || in H by setting
lul® = (u,u). (9.23)

The completion [H] of H w.r.t. this norm can be performed in the standard way.
It induces completions [V], [V] C OIqV(R) of V, V. It would be interesting to inves-
tigate if the latter can be characterized in an intrinsic way, e.g. by characterizing
their (formal) power expansion in z'’s. This is left as a possible subject for some

future work.
Notes

(1) To do this job one has to manage q-series. We hope to report useful results

in this direction elesewhere [15].



Appendix to Chapter 4

Appendix A

In this appendix we first show how to evaluate integrals of the type

N4k C —N—-k C
< (a:C’m)mempq-z[—wq z m]empqz [_fﬂ____ﬁ_m__f] > (A.1)
taking fy = empq_z[—fﬂ—]—vﬁ‘”—gz—]empqz[—ﬂ;:z—gi] as reference function. The out-

coming results, together with formulas (4.18),(4.19), will allow the determination
of all integrals involved in the scalar products of vectors of H. Second, we give
some results concerning the action of creation/destruction operators on functions
e V.

We start from

k+N-2 C —-k——N{BC
< (mCm)mempq—z[—wq - ? Qc]eaz:pqz[-—&)-q“*-‘“‘-—m] >=
7 p
wgtNeCe wg? FNgCe

= ¢V < (2Ca) " exp,-2 [~ —————|ezpyz[— | > (4.2)

L
which is a direct consequence of the scaling property (4.31) of the integrals. Us-

ing the g-derivatives properties (2. of the exponentials to expand the functions

N-2 2—-N
wq zCx wyq xCu .
===, expy2[—“4—"==] we find

e:cpq-z[~— m

Nz C g N2 x N
< (202)™ eap,-s [~ eapp [ =] >= (¢ 47T
N [m] m wgttNzCx wgFNeCx
.[§+m]qm < (zCz)exp,-2[— ]ea:p,lz[—ﬂ—————————# ] >, (4.3)
i.e. . -
) C —_k—1 C
< (a:C':E)me:quﬁz[—wq z m]empqE [_u] >=
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1-& 1
I & N N N, [m]!
= ( » )" A m =1l +m= 2y [_Q—]Q[2m],1”
wgttNzCx wqg " NzCz )
< exp,-2[— E je:cpqz[——q—lz-—} > . (4.4)

Now consider the integral < fy >. If & = 2, upon use of of the g-derivative
property (2.) one finds

wa*NzCxz wg A NgCe
< f() >=< empq—z[———q———_——————]empqz [-——g—————-————-——————}
[ p
T (h~D)=N,, g’ - 2(1~h)+N,, g -1
. 1—4¢° ! :cC’;n & ——uzCz)] >. (A5
[T]¢ |=| 2 )] (4.5)

Expanding the products contained in the square brackets and using formula (A.4)
to evaluate all the integrals one finds

k+IN C —k—N C
w je A O w A H
< fo>=zp < empq—z[———("———ﬂ—}empqz[—%—

| > (4.6)
with a suitable constant zj. If k is even, this formula, together with (4.4), allows to
evaluate any integral (A.1) in terms of < fy > (which is taken as the normalization

factor of te integral). If k is odd, by repeating the previous steps we obtain

k+N C —k—N C
w zCz w zCz
< fo>=2z < e:z:pq~z[—~q—_———————]empqz [—q————————] >, (A.7)
f y
where f) := empq_z[—ﬂ%@]empqz[—ﬂ:—%—l'—x—qﬂ. Following the line suggested

at the end of sect. 4, it is possible to find the constant ¢(g,w) such that

14N —-1-N
wg Tzl wgq zCz
< empq-z[————————————]e:cpq:[——————-——-——] >=
7
and N N
wgzCe wg " zCe
8010) < eopma [T e - 120 > (4.8)

and to show that it is positive Vg £ R™. We don’t perform here this computation,
but just notice that by continuity the positivity of ¢ must hold at least in a
neighbourhood of ¢ = 1, since ¢(1,w) = 1. In this way all the integrals (A.1) are

evaluated in terms of the normalization constant < f; >
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sk ok ok KRR
From the definition (5.2), (5.3) of the creation/destruction operators it
immediately follows

: qn+N + q——n . qn+N+m . qn+N i']'

13
a, = a -+ a
n qn—l-N—i—m +q" n+m qn—!—./V-i-m +q ™ n+m

q——n—-N + qn y —n—-N—m _ q-n——N-i_i_

+ ! qn——N——m + gm Qptms m € Z, (A9)

—~1
a, — a
n q—n—N'——m + qn n-+m

whence
an_lc'an = a;_lCijai; = an,m(Q)(aj;+m+1 Caj;.}.m) + ,Bn,m(Q)(aln—{-m—l Can+m)+

tvmm (@)@ 1 Cngm) + 6nm()(@nimi1Cal )

Gt Clin = cnm(7 )@ 12 O 4 1) + B (47 (@ntms Climpm )+

‘f")’n,m(q*l)(di_}_m_l CC_LTH-TH) + 5nym(q 1)(an+m+10ai+m)> (AlO)
with

q—-n——N +qn q—n—N+1 + qn——l

e +
ﬁn,m = q—-n-—l\f—-m + qTL . q——n—N—m+1 + qn—l > 0 \/q S R . (.‘4.11)
st sk sk sk ok ok ok sk ok ok
We know that
(anCan+1)(aiCai_1)¢Q:;”zkls) = ”n~2,k¢i;:él,?k,5) (4.12)

(the function v, _5 (5,5) (k =mn — 2m) was defined in (7.2)), since both sides are
eigentuntions of h.,, G +£?* with the same eigenvalues and have the same transfor-

mation properties under the coaction of the quantum group SO,(N,R). We now
determine the constant v,_5 ;. Note that ¢,],‘;'i,/_’{ i g) can be written in the form

—p = N+2,
Iy 1y m— wzCz . sl i Tk ‘
ﬁgbnl_zlf('kys) - [C(:ECUS) 1 -+ ...]633]7,12 [— [ ]Pl‘..slli’ ‘{f‘[k:n 't y (4413)

where (as below) the dots in the square bracket denote lower degree powers of
(zCz). The strategy will be to find out v,_s by only looking at the term of
highest degree in zCz at each step of the derivation. From the definition (5.2),(5.3)
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of the creation/destruction operators and the definition (4.27) of the B operator

we get
' n N n+2N
(anCans1)(alCal_,) =g *[2Ca + SN il B + cost]-
"Con-t A L@
q10—2n qé n+/\/'u’2
[zCz + = A— ol = 1) B+ cost]G (A.14)

The A’s in the first and second square bracket have to act respectively on functions
belonging to G2 ¥, and to G4+ ¥, _», therefore they can be respectively replaced
by (¢7V twizCz — ¢~ N72E,) and (q_N“Swsz’m —q¢N"*E,_,). Hence

(anCansi)(alCal_) = E-F, (A4.15)
where
n+2N/1,2
E = q *[zCz(1 + ¢" T3 1)) 4 ——(—-——1—)3 + cost]

7 —

q& n+N,LL2
= [zCa(1 + 1~V — "B + cost]G,. (A.16)

w(g® —1)

From formulas (6.18) and (6.20), one easily derives the identity

2k 2—-N
g—i—g——P hoele gin | gl (A.17)

i1 e ]
BP}\. S 11 :1) el I - k,S 1.1k

Using the fundamental property (4.28) of B, formulas (4.13) and (A.17) we find

m m n —n_j\r——zw{l?c:l}
Fiyk, s = le(zCz)mg ™ (1+ g )ezpga (- P I+

6—n—2m+N¢ 2k 2—-N —n—N C
Nt 2(q k! >(ow)"’“lemp,1'z[———-———————q hta m] + ]
w(g® —1) p

ka_SII'N:,[k' a)i'---lEi“; (4418)

=N Cr
7 - 2 .l]

applying the g-derivative property (2.) to the exponential ezp,2[— we

get
=Ntz C I,

Fplizgee o = fle(@Ce)™ + . Jexp,2 [~ . [Ppgih el a’ (4.19)

with
f e q&——sm(l +q2m)(1 + q2(m+1—n)—N). (AQO)
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After similar steps one can see that the result of the action of E on v,,_s (1.5 is

——n~l\7——2wmcm

E- F¢lelél,lzk,5) =e€- f[C($C$)m+l + ..]ezpg[— " ],Pk,sll{{f.ki,,wil oz
(A.21)

where
e 1= q~3(1 _ q2m)(1 _ q2(n——m——1)+ZV) (A.22)

Using again the g-derivative property (2.), we increase by 4 the degree of the g¢-
power in the exponent and we lower by 2 the degree of the polynomial in (zCz)

contained in the square bracket, with the result that eq. (4.12) holds with v,

given by
_ —p —p _
Un-2,k = € f(w(qz —1)g N2 )(w(qz — 1)q——n-N)
_ . e 1 — q.?m 1 — qZ(n——m——l)-HV
— /.qua 6m+2n+2N(1+q2 )(1+q2(m+1 ) N) > . ) (A23)
1—gq 1—g¢g
We see that v,—2 1 >0 Vge RT.
ok s kok o ok ok o K
We show that
k+N C —k—-N C
< e:z:pq-z[~w](m0m)kempqz[—~u] > >0 Vge RT
7
(A.24)

First we consider the case k = 2h. Using the scaling property (4.36) of the integral
we find
LHS(A.24) = ¢~ * ) < o (2CeGp2 ) eepy > . (A4.25)

It is easy to prove that (2Cz)G 2 can be decomposed in the following way
(CECIE)G,]? = 0n+l(ancan+1) + ’\n+l(a;,., Ca'n+1)+

tpnsi(ansaCal )+ ouialal,,Cal ) (4.26)

where

q?

0 4= _ _ _\’—}—217—2‘9
n (1 +qN+2n)(1 +q1\+2‘n,—2)’

Apg1 =g

n-1,

2n+N—2
N+2n1 +q°"

Prt1 =g T;gmﬁn+1, Tng1 =gV 20000, (4.27)
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Only the component Pg,((zCzG,2)"y) belonging to W, of the function
(zCaGy2 )" 4y gives a nonvanishing contribution to the integral (A.25), because
of property (5.24). Using the decomposition (A.26) with n = 0,2,...,2(k — 1) we
see that

Py, (2CzG 42 ) by) = 1o, (A4.28)

where 7y is given by a sum of products of constants (A.27), which are all positive
for ¢ € R*, hence is positive as well. This proves (A.24) in the case k = 2I.

If £k = 2l + 1 an analogous reduction shows that

k+N g0 ~k=Ngo
< e:npq-z[—c—u—g——ﬁ-u](a:C’m)kempqz{—c—u—q————l;—m] >=
1+NL0 —-1-Ng
=1, < empq_z[——ajg——ﬁ—f—fl:—](a:C’m)empqz [—L—U—LT—E] >, (A.29)

where 7, > 0 Vg € R¥. Formulas (4.3), (4.8) imply

wgltVzCr wgtNeCx

< expg-2(— 2 J(zCz)exp,e [—————M—-———] >=
S St k0 RPYOS
ST 2120k —m)], "
wgNzCxz wqg NzCxz
< empq_z[~———g—ﬁ———]empqz [——-g——;L———] > . (A.30)

Since ¢(g,w) is positive Vg € RT, (4.24) is proved for any k.

Appendix B

In this appendix we show that any scalar polynomial I{z, ) (resp. I(z, 0))
in z,87 (resp. z¢,87) can be expressed as a ordered polynomial in the variables
zCz, A (resp. zCz, ) alone. We limit ourselves to the nonbarred case; the proof
for the barred case is a word by word repetition of the proof of the former, after
obvious replacements.

To be a scalar I must be a polynomial in scalar variables of the type

I~2n(€i;€;‘) = (7751)1.1(7762)1'2__.(1']5“)1.71 (775111 )in ...(77512)1‘27]5’1’1'1, (Bl)
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where €;,e; = +,—, 74 = z and - := 0. From here we see that I can only
contain terms of even degree in 7}; we denote by I»,, a scalar polynomial of degree
9m and containing only terms of even degree in n!. The only four independent
I, are 1,zCz,A,2'0;, and they all can be expressed as polynomials in zCz, A
because of formula (2.

Our claim amounts to showing that for any I, (m > 0) there exist an

ordered polynomial Pr(zCz,A) in zC=z, A such that
Inm = Pr(zCz, A) (B.2)

The claim is obviously true for m = 0. The general proof is by induction: assume
that it is true for m = k. Since any I5(x41) can be written as a polynomial in L
variables with n < k-1, it is sufficient to prove the claim for a I~2(1=+1) whatsoever.
By the induction hypothesis and the very definition (A.1) of the I variables —fz(k+1)

can be written in the form
fz(k+1) = (Us)ip(iECiv,A)("?s')i (B-3)

with some polynomial P. Decomposing the latter in a sum of monomials and using

formulas
8'(2Cz) = pz' + ¢*(Cz)d" A =q 2 Azt — pg28 (B.4)

to move the 1'’s step by step through all the factors £Cz, A as far as the extreme
right we will be able to write the RHS of (A.3) as a combination of terms of the
type P'(2Cz,A) - (nen ) (ne)i; but (7.1) (1) is a polynomial of the type I, for
which the claim (A.2) holds, hence it holds also for fz(k+1) and the statement (A.2)

is completely proved.
Appendix C

In this appendix we give arguments witnessing for the existence of the
projectors Py defined in formula (6.12) and list a few properties of theirs.
The number of independent equations (6.12) is the same for any ¢, since
we know that the dimension of the basic projextors Py, P:,Ps is g-independent.
. N+Ek—-1 N+k—3
But we know that for ¢ = 1 there exist dj := ( ;,11 ) - ( 1{}7——1

solutions of equations (6.12), or, equivalently, there exists one projector Py s of

) independent
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dimension d;. Then we can apply the implicit function theorem to say that such

a projector must exist in a neighbourhood of ¢ = 1. In this neighbourhood
Pr.S bbb bighr g =0 (C.1)

because of the defining properties (2.) of the wedge product of forms £. Applying
the coaction to the LHS of (C.1) we get

ajas...a b b b b pbl b’
Pk,S b]_i)'z-z..bkka’llTbl;'"Tbl: ®€ 16 2...5 k (0'2)

This is a strong indication (maybe a proof!) that Py s must be a polynomial
in the (k — 1) variables Riiy1, 1=1,..,k —1; in fact in this case using formula

(2.) we can rewrite (C.2) as
a a by... ‘ !
Tyt Tt @ Py g it it €%, (C.3)

which is zero because of (C.1). In this case the fact that 7, satisfies eq.’s (6.12)
must be a purely algebraic consequence of the relations involving R-matrices and
projectors P, Py, Ps, eq.’s (2. etc. But these relations are true Vq € R*, where
R, Tfk(Ri,i_*.l) are always well-defined, therefore setting P s = 7 provides a solu-
tion of (6.12) Vg € R™.

Here we give, as an example, the explicit form of P3 s in terms of

~

Ri,i+1, (Pl)i,i+1:

1

P35 = ﬁ{l + q(Riz + Ras) + ¢*(RizRas + RosRiz) + ¢* Ri2Ras Ris+
22!

N

————-——————2((21\,__:2 1)/;) [(2¢2 +1—¢*)((P1)12+(P1)2s) +20* QN ((P1)12(P1)23+(P1)23(P1)12)

92(9 + 9—1)(1%12(771)23 + (fpl)zslez + st(p1)1z + (P1)12R23)+
+(R12(771)23R12 +R23('P1)12R23)]} (C.4)

From the above explicit expression we see that P; s is symmetric (namely ’P{S =
P3,s) since R, P! are, and it is invariant under the interchange of indices (12) <

(23). In a forthcoming paper we will show that
Pr,s = Ti(Riiv1, Plig1)s i=1,2,.,k~1 (C.5)

Pils="Prs (C.6)
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where 7 is a polynomial in Ri7i+1,’P}1i+l such that
T (Rimikmitts Phoi pminn) = Te(Riie, Pliga)- (C.7)
Let us denote by P, the permutator on ®* CN defined by
Prvi®v2® ... Qvp) = v ® ... @ vz @ vy, v; € CN; (C.8)

Using the relation (2. it is easy to check that

Py - (®"C)Ri 111 = Ri—ijr1-iPs - (8°C),

P (®kC)Pz 41 Pk i,k+1— sz (®kcr) (09)

Relations (C.7), (C.9) imply

[P+ (®°C), Prs] =0 (C.10)

Appendix D

We give a brief proof of Lemma (7.20). From relation (4.25) we infer that

1112 lk he.ohyig..
PkShk kaS S

= U}CPk,S]}fk P Sll L Ak e zhigh i oy > 0. (D.1)
Using relations (2.,(6.17),(6.18),(6.19) we can rewrite the RHS in the following
way:

! l[ lk k—1 /lk 2 ’I;,- llk__l hl i[ ik .
UkPkShk Pt E AT (p0" + g Az Ltttz =

= o‘k’Pk s h;c PA 5 i Z‘ ;\]‘ 1[ Lq-:ch"'...mllzal"‘mi‘...a:i"|+
Ak"lqz}"a}h"...mhl;lm”...mi“\]. (D.2)
The second term in the square brackets will yield a vanishing contribution. In fact,
the operator A*~! can transform at most (k — 1) of the k z"i into 8", and the

remaining z"i’s can be moved to the left of all derivatives using property (6.17);

such an expression is zero, since it contains a number [ > k of derivatives acting
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on z't...z* (i.e. on their left). Using k times the same kind of argument we end
up with
'pk 5]}: Pk Sl vla.. lk Shk---hlil---ik

lltl

AP s Py g ik [0t L8P oM a2, o) > 0. (D.3)

Now let us perform the remaining derivations in the RHS of (D.3). Using the

relation

D—1 hiiy ia __ hig Dty
R nivgiz = gl Rl e (D.4)

(see (2.) it becomes

oy k,sj;f,; I Py, 5 o [5’“’ Lo (Ohitigiz | gle 4 qR;ql hiiigpQtizgia gt 1)),
(D.5)
and using relations (6.14) it can be written in the form
UZ'Pth}’: i P Sll L [6“ Ok Clrigir g =
= 0kPy s h, Pk s\ i ) Chmchm Ot =
= oy [Pk,5(®kC)Pk,s]ff.'.'.'zfv or >0 (D.6)

where for the last equality we have used property (C.6). Lemma (7.20) is thus

proved.



Conclusions

We have shown that the quantum harmonic oscillator on R" with symmetry
SO(N,R) admits a g-deformation into the harmonic oscillator on the quantum
space Rév with symmetry SO, (N,R), for any ¢ € R™".

In fact this g-deformed harmonic oscillator has a lower bounded energy spec-
trum; generalizing the classical algebraic construction, the Hilbert space of physical
states is built applying construction operators to the (unique) ground state. The
scalar product is strictly positive for any ¢ € R'. Observables are defined as
hermitean operators, as usual. In particular we have constructed the observables
hamiltonian, square angular momentum, square lenght, square momentum; as in
the classical case, the first two commute. We haven’t found non-scalar observables
(such as position, momentum and angular momentum components) yet.

Both spectra of the hamiltonian and of the square angular momentum are

discrete, and the eigenvalues have the same degeneracy as in the non-deformed

1

case. The g-deformed eigenvalues are invariant under the replacement ¢ — ¢! and

can be obtained from the classical ones essentially by the replacement n — [n],,

qn__ —_n

g—g-1

where [n], is the g-deformed integer n given by [n], := . Energy levels are

no more equidistant; their difference increases with n.

Guiding ideas for the construction were SO,(N,R)-covariance and cor-
respondence principle in the classical limit ¢ — 1. Essential tools were the two
differential calculi on R;’]V,
pace and the corresponding two representations of the Hilbert space into the space

the corresponding two integrations on this quantum s-

of functions on R,’]\ A sort of quantized scaling property of the integrals under

dilatation of the integration variables has been singled out.
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