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L’AMOUR ET LE CRANE

L’Amour est assis sur le crine
De ’Humanité,

Et sur ce trone le profane,
Au rire effronté,

Souffle gaiement des bulles rondes
Qui montent dans lair,

Comme pour rejoindre les mondes
Au fond de l’éther.

Le globe lumineuz et fréle
Prend un grand essor,

Créve et crache son dme gréle
Comme un songe d’or.

J’entends le crdne d chaque bulle
Prier et gémir:

-?Ce jeu féroce et ridicule,
Quand doit-il finir?

Car ce que ta bouche cruelle
Eparpille dans Pair

Monstre assassin, c¢’est ma cervelle
Mon sang et ma chair!”

Charles Baudelaire
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Introduction

The initial idea which professors Bonora and Babelon suggested me was a review about
the physical applications of integrable systems. After a general study of the argument, I
realized that such a work was too disparate for a magister work, and I finally decided to
restrict the field to some models among the most significative ones.

Even though it can seem contradictory, the final structure of the work has grown from
the last chapter (from end to beginning and back again!). Indeed, investigating toroughly
the solution of the Kondo model with the ”Quantum Inverse Scattering”(QIS), I went back
in a very natural way to the classical systems, since the QIS unify the traditional Bethe
Ansatz and the classical inverse scattering, and these notes summarize all the material I
looked through about the argument in the last months.

At this point, it is maybe opportune to stress that this work does not intend to be a
rigorous treatise about integrable systems (in fact, only one proof is present). The main
scope is much more modest: I just wish to illustrate some general features (physical and
mathematical) of these systems using concrete examples.

This work deals only with (1+1)-dimensional models and is fundamentally divided
into two parts. The first one is devoted to classical systems, here intended as integrable
nonlinear differential equations. We first give some examples about the physical origin of
the three most important cquations of the subject. Then, after a short introduction to
the concept of soliton and the inverse scattering method, using principally the nonlinear
Schrodinger equation as basic example, we illustrate the so called zero curvature method,
emphasizing the hamiltonian structure of these particular equations. In this part, the
important concepts of fundamental Poisson bracket and r-matriz are also described.

The second part is dedicated to quantum systems. The chapter three illustrates, with
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the help of the quantum nonlinear Schrodinger equation, the main characteristics of the
Bethe Ansatz method and the QIS. The important concept of factorization equation (or
Yang-Baxter equation) is introduced. Here, one sees that the approach to classical systems
presented in chapter two can be readily generalized to quantum systems and the classical
r-matrix is substituted by the quantum R-matrix. Chapter four is entirely dedicated to
a description of the various lattice models and the relation between vertex models and
quantum theories in one dimension is explained. An example of the construction of an
integrable lattice model starting from the Yang-Baxter equation is also given.

The last two chapters are completely devoted to a particular class of models which
have been successfully applied to the theory of magnetic alloys. The low-energy phenomena
of these models cannot be treated by conventional perturbation theory because of their
asymptotic freedom, but their complete integrability can avoid this handicap. First we
give a detailed derivation of the hamiltonians for particular physical situations, preserving
in a certain sense the initial spirit of the work. Then, in chapter six, we solve in detail
the so-called s-d exchange model which describes a magnetic atom in a non-magnetic host
metal. This allows us to see the techniques previously illustrated at work, to solve the

model. To conclude we deduce the explicit formulas for the impurity magnetization.



Chapter 1
Physical motivations.

1.1 Nonlinear dispersive waves.

One of the most remarkable developments in the study of nonlinear dispersive waves is the
discovery of a variety of explicit exact solutions for some of the simple canonical equations
of the subject.

The main equations concerned are the Korteweg-de Vries equation

vutty + Uzze = 0, (1.1)

-,

Ut T
the nonlinear Schrédinger equation

tus + Bz +ylulfu =10 (1.2)
and tne sine-Gordon equation

Utt — Uge + sin Bu = 0. (1.3)

These equations are canonical in that they combine some of the simplest types of disper-
sion with the simplest types of nonlinearity and are therefore quite simple in structure.
However, the original equations of motions of most physical systems which lie behind these
equations are not so simple and generally contain several dependent variables. If we look at
the dispersion relation of the above-mentioned equations, we see that they can be viewed
as a Taylor series approximation to a more general dispersion relation and for this reason,
the equations are not mere models but frequently can be derived as a valid approximation
for long waves, that is waves whose wavelenght are long compared to a typical lenght scale.
Mathematically, in order to build this lenght scale into the original equations of motion, we
need to rescale both space and time in order to introduce space and time variables which

are appropriate for the description of long wave phenomena. This rescaling enables us to
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isolate from the system the relevant equations of motion which describe how the system
reacts on the new space and time scales. Before discussing this procedure in section 1.3.,

let us briefly introduce the concept of soliton which characterize these equations.

1.2 Solitons.

The nonlinear differential equations introduced in the previous section have a number of
special properties which the vast majority of field equations do not have. One of the most
important of these properties is the existence of solutions having finite energy and stability
properties, called generally solitons. The solitons are pulse formed as a result of balancing
occuring between the steepening effect due to the nonlinearity and the smoothing effect of
the dispersion. It should be noted that solitary waves occur also on propagating systems
that are characterized by nonlinearity and dissipation but here we consider only cases

where dissipative effects are small enough to be neglected.
Traveling waves for the KdV equation.

Let us take for example the KdV equation. We examine travelling wave solutions assuming

that
é(z,t) = ¢(z —vt), v >0. (1.4)

We obtain after substitution in (1.1):

(@) —v)ge + ¢eee =0 (1.5)

where ¢ = ¢(€), £ = z — vt. Integrating two times (with a multiplication by ¢¢ after the

first time), the general traveling wave solution can be written in the form of an elliptic

¢ dé B
/0 P(¢)—m~vt (1.6)

where ¢g is the value of ¢ at (z — vt) = 0, and

integral

P(¢) = Ky + Kz¢p +ve? — gqﬁ. (1.7)
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Since a solitary wave is localized, its first and second derivative must vanish as £ — *oo.

This implies that K; = K5 = 0 and we obtain the solitary wave

B(€) = —sech(*-¢). (18)

The following' properties of the travelling wave can be readily seen:

1) The amplitude of the wave is directly proportional to its velocity. That is, the taller
the wave the faster it moves. This actually is observed in the case of solitary water waves.

2) The wave travels only to the right. (In fact if we change v — —v, the wave which
would be moving to the right becomes oscillatory).

3) Finally, the most important of all is that the wave has no dispersion. That is, it

mantains its shape as it moves. This is, in fact, the definition of a soliton solution.
Traveling wave solutions for the NS equation.

Let us find the traveling wave solutions of the nonlinear Schrédinger equation in the form

i + oz + k|80, k> 0. | | (19)

We write ¢ in the form
(1.10)

¢ — @(m’t)eie(z,t) “

where @ and @ are real, and seek a traveling wave solution for which the carrier travels at
velocity v.:

0 = 6(z — v.t) (1.11)
and the envelope travels with velocity v.:

® = P(z — v.t). (1.12)
Equating real and imaginary parts, we obtain the ordinary differential equations

Bop — P62 + 0. 90, + kB> =0 (1.13a)

30, + 28,0, — v.8, = 0. (1.13b)
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Integration of (1.13b) yields
$%(20, — v.) = const. (1.14)

Choosing for convenience the constant to be zero, (1.13a) integrates to the elliptic form

®(z,t)
/ d® =T — vl (1.15)
$(0,0) P(9)
where
P(é) = -2@4 + %(vg - 2vevc)q)2 + G (116)

We consider for simplicity only the case C = 0. In the range v.(ve — 2v.) > 0, we have

d(z,t) = ®(z — vet) exp [z%e—(m - 'vct)] (1 17)

where

k v2 — 2V,
& = $;sech [\/;éo(m -~ vet)] o, = _.?_T (1.18)

These solutions decrease rapidly as |z| — oo, so that by analogy with the argument for the
KdV equation, they may be considered to represent solitons. Unlike the KdV equation,

however, the nonlinear Schrédinger equation does not admit a permanent progressive wave.

The steady solutions of the sine-Gordon equation will be derived in the section 2.2.

For example, the so-called kink solutions have the form

z — vt

¢(z,t) = 4tan™? (C’exp im) , (vl <1). (1.19)

1.3 The reductive perturbation method.

The procedures which reduce a set of standard equations to simpler forms are usually
perturbative in nature and are consequently called reductive perturbative theories. In this
section, we shall illustrate with very simple examples how this procedure works for the
KdV equation and the nonlinear Schrodinger equation. At the end, we will derive the

sine-Gordon equation through a one-dimensional lattice model.
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1.3.1 The KdV equation .

The KdV equation
¢t + a¢¢x + ¢za:z = () (120)

was first derived by Korteweg and de Vries to describe the propagation of shallow water
waves. In fact, it is a model equation which describes nonlinear waves where the nonlin-
earity and the dispersion are balanced one against the other. Among the various other
applications, we mention 1) the anharmonic lattice [Z269,73]; 2) pressure waves in liquid-
gas bubble mixtures [vW68]; 3) thermally excited phonon packets in low- temperature

nonlinear crystals {TV70l
The ion acoustic waves.

Here we will use as example a description of ion acoustic waves, that is, fluctuations in the
ion density of a two-component plasma [Ta72,WT66]. The high-temperature plasma is a
fully ionized gas comprising electrons and ions, which are governed by the two hydrody-

namic equations for electrons and ions

f a:? -I—V(n]v;):()

£y

¢ 5 v (1.21)
v ; .
1njmja—t1+(v,--V)vj =nj(BE+ = xB)=Vp; (=i
coupled with the Maxwell equations

V- E =4n(g:n; + gene), (1.22a)
V-B=0, (1.22b)

B
%— +¢V xE =0, (1.22¢)

E
—%_t + ¢V x B =47(j; + je)- (1.22d)

Finally we have the equation of state

p; = kn;T; (j= i,e). (1.23)




Here, n and v are the number density and average velocity respectively.

Cold ions and hot electrons.

Let us consider a longitudinal wave (V x E = 0,B = 0) propagating in one dimension with

m. — 0 and T, ; constant with T, > T;. Writing v = (v,0,0), we obtain the following

equations:
0¢ on.
ene—a—a; = kT, e (1.24a)
On;  0(n;v;)
= .24b
En 9 0 (1.24b)
Ov; Ov; e 1 90(n:Ty)
ot Ve T Tm i G (1.24¢)
8%
0z = 4re(ne — n;) (1.244d)

where E = —0¢/0z.
Eq (1.24a) yields the Boltzmann distribution for the electrons:

Te = Mg €XP (]:;:e) . (1.25)

At this point, it is more convenient to scale out constants introducing new variables as

follows:
n; — n;/ng T —z/A
v; — v;/cs t — wpt (1.27)
¢ — eqﬁ/kTe
where

[4 2 4 2
A= 7:;36 , wp = 72:/0.6 , Cs = Adwp. (1.28)

Note that now, the space, time and velocity variables are dimensionless. w, is called
the plasma frequency and ¢, the ion sound speed. Setting T; = 0, the equations (1.24)

reduce then to



6ni B(nivi) .

5 "oz 0

Ov; Ov; 0¢

i Sy - 2T 1.29
5 TUlE) =5, (1.29)
824

gz =

Next, we expand n, ¢ and v in terms of a perturbation parameter ¢ :

n=1+en® 4 2n® 4 ... (1.30a)
¢ =ed™ + 263 4 ... (1.300)
v =ev® £ 23 4 ... (1.30¢)

where n(), (9 v() - 0 as |z| — oo and we linearize the system (1.29) keeping only O(¢) :
q-s(zla:)tt + 455:1:) - E:) = 0. (1.31)

This yields the dispersion relation

kz

w?(k) = m

(1.32)

Since we are looking for long waves, these have small wave number k. Consequently we
write k as k = ePx where k is O(1) and p is some unknown number which is to be determined
later. Looking for solutions in the form exp(i6), we have 6(z,t) = kePz — w(ePk)t. In this

case w ~ k — 1/2k* and we are led to a natural scaling for z and t:
£ =eP(z—at), T=cPt. (1.33)

These new variables are long in the sense that it needs a large change in z and ¢ in order
to change ¢ and 7 appreciably.
Substituting everything in the system (1.29) and taking into account that

_(_9__ 3pa pa _?__ p_?__
6t_€ '5;——05 'éz, am———E 3§ (134)

we obtain the following set of equations corresponding to the various powers of ¢ (without,

as yet, setting any to zero).




For equation (1.29a), we obtain

gPtl .

P2

€3p+1 :

For equation (1.29b)

gPT1 .

gPt2 .

g3t

For equation (1.29¢)

[N

£

g2Ptl.

g2Pt2 .

2.

— angl) + vgl)

— angz) + véz) -+ (n(l)v(l))g
n(

— a,vgl) + ngl)

— avgz) + gb(fz) + v(l)vél)

oV,

— (¢,(1) _ n(l))
(4@ _ @ L@
(¢ = n' + 2 (™))

(1)
bee -

The lowest order terms (eP1!,¢) just give

n() = M) = 4O

for a =1 (@ = —1 corresponds to time reversal).

In order to determine the value of p, a plausibility argument is needed. For example,
if p is chosen too large (3p+ 1 > p+ 2) then derivatives in 7 will not occur at all at order

p+2 of € and it would be necessary to go to higher orders of perturbation theory to obtain

an evolution equation for n(1).

However, setting 3p + 1 = p + 2, then p = 1/2, and the n(*) and »(V) terms are of

the same order as the e?t2 terms where quadratic nonlinearities in n(1) occur. Setting the
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terms at each order to zero we obtain the equations:

véz) — ngz) + 2n(1)ngl) + ns,l) =0

</>(2)— (2)+n(1> (1)+n5_1):0 (1.36)
(1) (¢<1>)z FONRNO}

The three equations together give
1
g 4 g(Mg1) 4 5?52]&)5 =0 (1.37)

which is exactly the KdV equation.

The physical interpretation of this result is the following: if, by means of an electro-
static probe, a disturbance is introduced into an initially uniform plasma (which constitutes
an initial value problem for the KdV equation) the number of solitons which will emerge
is exactly the number of bound states of the initial disturbance. This has been tested,

for instance, for a square wave input, which breaks down into as many solitons as it has

discrete eigenvaluesfHRM72].

1.3.2 A general procedure.

The above-mentioned reductive perturbation method has been established in a very general
form by Taniuti and Wei [TaW68] who have shown that a large class on nearly hyperbolic
mathematical systems reduce to the KdV equation and other canonical ones. The basic
system of equations considered by them is of the form:
BU > 0 0
- il B8 B_~_ —
+A +{Z H(HaatJrK BU =0 p>2, (1.38)
B=1a=1
where HE and K are n x n matrices, all of which are functions of U. An expansion about

a constant solution U(®) in terms of a small parameter ¢ is assumed.

By means of a so-called G-M transformation

U=UO +eU® 4.... (1.39a)
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E=¢*(z—Aot), T=¢e"Tt (a=—), (1.390)
eq (1.38) can be reduced to

(1) 1 P (1)
o¢ +a¢<1)a¢’ +pa o _o. (1.40)

or o¢ 19134

Here we have used the boundary condition as z — oo that U(1) — 0 and, consequently,

that (1) — 0, while U(%) is given by
U = g, (1.41)
with Ry the right eigenvector of 49 = A(U,) corresponding to Ag, so that
(Ao — XoI)Ro = 0. (1.42)

The coefficients « and p are given by

_ Lo(Ro - Vudo)Ro

= V.o - Ro, 1.43
Lo - Ro 0 Lo ( a)
LoKyRy :
= 1.43b
I'l' LQ . RO 3 ( )

where Ly denotes the left eigenvector of 4y corresponding to Ag, and
s p
Ko=) JI(=2(HE)o + (KE)o). (1.44)
B=1a=1

Therefore we see that for p = 3 we obtain the KdV equation. For p = 2, we obtain the
Burger’s equation.
For example, if we eliminate the n; and ¢ from eqns (1.24), then we obtain a system

of equations corresponding to system (1.38) with p =3,s =1 and U, 4, H and K given by

e _ vy Ne
= (5) A= %)

1 0 1 0
Hl“()? Kl“‘(o 0>7 H2—<0 O>, (145)



For U(®) = (é), the eigenvalues of 4y become A\g = £1. For example, considering the case

of Ag =1, we have

Ry = G) Lo =(1,1), Vil =(0,1), (1.46)

so that we find o = 1, = 1/2, as expected.

1.3.3 The Nonlinear Schrodinger equation.

The nonlinear Schrédinger equation (NLS)

.94
"ot

2
T e (147)

is a generic equation for describing the modulation of a wave in a nonlinear medium.
Among the various applications in physics of continuous systems, we mention 1) fluid
physics [BN67] 2) one-dimensional self-modulation of a monochromatic wave [WT68], 3)
Langmuir waves in plasmas [Za72]; 4) relation to the Ginzburg-Landau equation of super-
conductivity [G66]; and 5) the more recent light pulses in optical fibers [HK85].

It has also found applications in discrete systems, such as atomic lattices’i [Ts77],
magnetic chains [Las77] and electrical networks [MSW82]. In these systems the solutions
of the NLS equation describe the slow space time evolution of the envelope of a career
wave with fast oscillations.

Here we will relate the NLS equation to an effect occuring in nonlinear optics: the

self-focusing of waves [T65].
The self-focusing of waves.

In nonlinear optics, there are some phenomena in which the refractive index change in
proportion to the intensity of the light. For instance, we refer to the optical Kerr effect,
in which anisotropy of the refractive index results from the total rotation of each molecule
with anisotropy under the action of the light and the electrostriction effect, in which the

pressure varies due to the electric field; the associated density variation then causes a
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change of the refractive index, proportional to the square of the modulus of the electric

field. Let us consider, for simplicity

D = o(w)E + G|E|’E. (1.48)
The Maxwell’s equations read:
1 8°D
V/\(V/\E)-{——c; 572 =0 (1.49a)
V.-D=0. (1.490)

The nonlinearity is supposed to be weak. Let us consider a linearly polarized, quasi-

monochromatic wave of the form
E(x,1) = Eo(x,1)elFoz—t) (1.50)

where Eg(x,t) is a function of space and time which varies very slowly (the variations
are small in the intervals At ~ 1/w and Az ~ 1/ko). The wave vectors in the Fourier
development are distributed in a small interval around the vector ko. Furthermore, we
shall consider steady propagation in which the spatial variation of the wave amplitude is
slower in the :c-direcktion of propagation than normal to it. This suggests to write Eg in

the form

Eo(x,t) = 590(5,77,C)i (151)
(=c'z  n=ey, (=ez

where i is the unit vector along the z-direction (i.e. the direction~of polarization of the
electric field).
Inserting eq(1.51) into eq (1.49), we obtain the linear dispersion relation

wZ

kX = C—za(w) (1.52)
from the first order terms in €. The second order terms do not exist, and from the third
order terms in ¢, we get the nonlinear Schrédinger equation

B

. 1 k
ipg + 5 Vie + J—(;)wlwlz =0, (1.53)

2ko 2

14



where V3 = §2/0n% + 62/8¢2.
In the event that the amplitude does not change in the y and z-direction, the solutions

of eq(1.53) becomes

o = pvexp ()7 Iwole|. (1.50)
Thus the change of phase, which is proportional to the intensity, results from the nonlinear
effect. Since the effective wave number becomes k = ko[1 + (1/2)(e8/)?|¢o|?], the phase
velocity w/k becomes smaller in the regions of larger amplitude, and consequently the wave
converges to the place of largest amplitude. When the amplitude attains a maximum at
the centre of the light beam, the wave focuses on its centre. This is called the self-focusing
effect. However, diffusion also occurs in waves due to diffraction (which is represented
by the second term in (1.53)), so that there exists a threshold value of the amplitude for
self-focusing to occur. It is then possible that the focusing properties are compensated
precisely by the diffraction, allowing for a solution in the form of a stationary beam which

doesn’t spread.

1.3.4 The sine-Gordon equation.

The sine-Gordon equation

99 _ 9% _n (1.55)

has been used to describe 1) self-induced transparency [L67]; 2) Bloch wall motion of
rystals [RB59]; 4) a unitary theory for elementary particles [Sk58]; and 5)

propagation of magnetic flux on a Josephson line [Sc70]. The example which we will

use here is the propagation of a crystal dislocation[KS50].
Propagation of a crystal dislocation.

Some of the phenomena displayed by a layer of atoms in a solid are exhibited by the
classical model of a row of particles attached to each other by springs. The effect of
the adjacent layers of atoms (the substrate) is represented by a periodic potential. The

simplest equilibrium situation is obviously the one in which there is a particle in each
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trough of the potential. However the balance between the potential energies may lead
to other equilibrium cénﬁgurations. For example, over some distance the chain may be
expanded (or contracted) so that the number of particles is one less (or more) than the
number of troughs. Such a configuration is referred to as a negative (positive) dislocation.

In order to describe the dynamics of the chain within a completely classical framework,
we shall consider a row of particles, each of mass m, attached to one another by linear
springs with equal spring constant k. The particles slide over a sinusoidally corrugated
surface so that the periodic potential is provided by gravity. A discussion of the relation
of the model to the macroscopic properties of a solid may be found in [In58] and [SS66].
The various quantities involved in setting up the governing equations are:

a = period of the substrate,

b = space between particles with unstrained spring,

X, = location of n-th particle,

Z, = location of n-th trough = a(n + 3/4),

z, = X, — Z, = displacement of n-th particle from n- trough.

Introducing the following abbreviations

{n==2zn/a, k=(b-a)la,
W = 2mgh, L = ka®/2W, (1.56)

we find that the potential energy V =V, + Viiriny may be written
1
V=WILY (bny1—&n—r) + 5 W (1 — cos2mén). (1.57)

Various possible equilibrium configurations of the masses are obtained by solving the sys-
tem of equations that arise when we set V/9¢; = 0. Admissible equilibrium configurations

are therefore the solutions of the equations

™ .
Eir1 — 285 + €1 = ;55 sin 2m¢;. (1.58)
2L

Choosing two adjacent values of ¢; as well as Lo, the other displacements are readily

obtained from (1.58). As an example, we set {, = 0, ¢; = 3 and L2 = m/2 so that ¢, = 1.
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Dislocation on chain of masses located over sinusoidal troughs.

Figure 1.1.

Then {1.58) yields &5 = g, s =1, & = %, and so on. A graph of these results as well
as a diagram indicating the location of the masses with respect to the potential‘ troughs is
shown in fig 1.1. |

Assuming that £ varies slowly from one site to the next, we may replace the discrete
labeling ¢, by a contiﬁously varying parameter é(n). It results that a

_c?é . isinﬂ'f

= 1.59
dn Lo ( )

is the amount by which the distance between successive particles, measured in units of a,

exceeds unity. Let us consider only the expansion of the chain (positive sign). Integrating

IAy)

* and arbitrarly seiting { =1/2 at n = 0, we obtain

£ = ?—tangl(emr/L"). (1.60)

™

Therefore, in a region of magnitude Lg, the displacement increases from 0 to 1.
Let us consider now the motion of the particles on the chain. The kinetic energy of

the chain is obviously

T = —;—maz En:(gn)z (1.61)

and the Lagrangian equation of motion for the j-th particle have the form

ma’é; — 2LgW (€541 — 265 + €5-1) = 0. (1.62)
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In the continuum limit introduced above, this equation becomes

gi 8%t 9%
c? 012 Ogz?

+ sin27¢ =0 (1.63)

YR

wher ¢? = ka?/m. If we now introduce the new dependent variable o = 27¢ as well as the

independent variables u = wz/Lg and v = wct/Loa, we obtain

80 Oc

_8—;;2_ —_ —6—';)—2- = sina’ (1.64)

which is exactly the sine-Gordon equation. We now see that the single-soliton solution
oc=4tan 1 emAY) gy = (1-— ﬂz)_l/z (1.65)

describes the uniform translation of the dislocation given in eq (1.56). The energy required
to create the static one soliton solution is, from eq (1.57), E = 4LoW/m. It is interesting to
note that it is found from experiments that metals with a low value of V are more plastic.

This may be explained by their increased ease of production of soliton-like dislocations.
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Chapter 2

Hamiltonian methods in
the theory of solitons

There is deep reason behind the solvability of certain nonlinear equations. They are
actually completely integrable systems: if one looks at them in the right way, they have an
Hamiltonian structure and a transformation exists to cyclic action-angle variables, which
are essentially the scattering data of the associated scattering problem. In this chapter,
after a short introduction to the inverse scattering method, following [FT86,D89], we
outline the main features of the Hamiltonian approach to the method, using as basic
example the Nonlinear Schrédinger equation (NS).

This method is based on the so-called zero curvature representation, which results to
be the more elegant way to calculate Poisson brackets and has the great advantage that it

can be readily generalized to the corresponding quantum systems.
2.1 The inverse scattering method.

There exist Weﬂ known methods like Fourier and Laplace transformations for solving a
given linear system with fixed initial conditions. These methods are, however, inapplicable
to a nonlinear system.

Gardner, Greene, Kruskal and Miura [GGKM67] were the first to solve the initial value
problem for the KdV equation and in the subsequent years, their method has become the
standard one for solving nonlinear systems. This goes by the name of inverse scattering
theory (IST).

In this section, we shall briefly summarize the Lax formulation [La68] which generalizes

the GGKM method and recall the main steps of the IST procedure.
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2.1.1 The theory of the Lax pair.

The main results of Lax can be formulated in terms of the following theorem.

Theorem: Let a non linear evolution equation be given by
w = K(u) (2.1

in which K is a non linear operator acting on a scalar function u. Suppose that a pair of
self adjoint linear operators L and A (the Laz pair) which depend on the solution u(z,t) of
eq(2.1) ezist and satisfy the operator equation

1Ly =[A,L] = AL — LA. (2.2)
Then the eigenvalues X of the operator L given by

L = A (2.3)

are time-independent. Also, the time-evolution of the eigenfunction v is determined by

ithy = Arp. (2.4)

For a proof, see for example [TN83].

It is sometimes possible to associate a scattering problem with the linear operator L.
Let us look at the KdV example. If L is taken to be the Schrodinger operator §%/9z? +
V(z,t), then L/8t = V; is a multiplication with V;. If A = §/0z is taken, we obtain the
result that the spectrum is time independent if V; = V — z, which just means a shift in z.
But if we take , ' :
A= "4i(§? + b% + %b), b= —ZV, (2.5)
a simple calculation shows that terms depending on 8/0z and 9*/9z? cancel. We finally

obtain

Vi=[4,L] = —Voor + 6V Vr, (2.6)

which is just the KdV equation (1.1) with a = —6. It is worth while deducing a certain

correspondence between the KdV equation and the Schréodinger equation. When u is
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infinitesimal in the KdV equation (2.6), the dispersion relation becomes w + k* = 0.
Consequently, the phase velocity A\, = w/k is equal to —k?, and hence the solution is
a plane wave proceeding in the negative z direction. When |u| is large, but v — 0 as
|z| — oo, the linear approximation is also valid as |z| — oo, because in that case |u] is
sufficiently small. For the case of a soliton, u decays exponentially as |z| — oo, so that

k must be purely imaginary. That is, k = ik, ,xp > 0(< 0) for ¢ — 4o00(—0), and A,

2

becomes Ky

, so that the soliton proceeds in the positive = direction.

This is of course readily seen from the soliton solution (1.8)

u = —2x* sech®[k(z — 4x7t)],

#2852 a5 |z| — co. Hence putting 2k = &, yields the soliton

which becomes proportional to e
velocity 4x?(= /»:12,). On the other hand, if |u| is sufficiently small, the Schrédinger equation
reduces to —t., ~ A to give A ~ k? and ¥ ~ e*?*=, In general, ) is positive and arbitrary
for the scattering state (the continous spectrum), while for the bound state, A becomes
negative and discrete, and 1 decays exponentially as |z| — oo, so that k becomes purely
imaginary. In particular, for the one-soliton solution (eq.(1.8)), the Schrédinger equation

admits one and only one bound state, with the eigenvalue A = —x2, which implies that

the soliton velocity is determined by the eigenvalue.

When u(z,0) is given, we can find u(z,t) by the following procedure.

1) The direct problem: From the given u(z,0), calculate the scattering parameters for

L th

L

(¢
4]

igenvalues of the hound states (Njk,,Cph,n = 1,---,N) and the reflection and
transmission coeflicients (R(k),T'(k),0 < k? < o0)..

2) Time evolution of the scattering data: By means of (2.4) and the asymptotic form
of 1 as |z| — oo, obtain the time evolution of the reflection and transmission coefficients
for the scattered state and normalization factors for the bound states which will be called
collectively the scattering data.

3) The inverse problem: From a knowledge of the scattering data of L as a function

of time, construct u(z,t). This step is accomplished through use of the so-called Gel’fand-
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Levitan- Marchenko (GLM) equation

K(z,y;t) + G(z +y;t) + / K(z,z;t)G(z +y;t)dz =0, =z <, (2.7)
where
1 ik 2 (2 8)
Gast)= = [ R(k1)e*dk+ Y c(t)e "=, .
(2’ ) 27 /:.oo ( )e = ( )e

The GLM equation is an integral equation for K(z,y). The required solution u(z,t) to
the KdV equation is given by

u(z,t) = -Z%K(z,z;t). (2.9)

- This procedure is shown graphically in figure 2.1.

Uy = 6Ull ;= U s

w(x,0) po--m=vmmmmmmmme e * u(x, 1)

(1) direct problem (3) the inverse problem

eigenvalues A,

o tering dat the scattering
the scattering data
g (2) time evolution dataatt=t
att=0 of the scattering

data

Figure 2.1

Although not many solutions with R(k) # 0 of (2.7) are known explicitely, all reflec-
tionless potentials can be constructed. Assuming that x; # &y, for [ # m and making the

following ansatz for K:
N

K(z,y) ==Y chi(z)e™™?, (2.10)

=1
where 7; turns out to be the normalized bound state wavefunction, the GLM equation

becomes

CiCm —(K1+Krm)z
(1 4+ C(2))mithi(z) = cme %, Cim(z) = ;z—_lme (eitrm)z, (2.11)

From (2.11), we obtain all reflectionless potentials with eigenvalues ¢; and wavefunction
normalization constants ¢;:
2

u(z) = -—2;—2111 det(1 + C(=)), K= —¢. (2.12)
z
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All soliton solutions of the KdV equation will be reflectionless potentials.

There is an entire hierarchy of operators A, all of odd order, for which the commutator
[4, L] is a multiplication operator. Thus there is an infinite family of nonlinear evolution
equations which leave the Schrédinger operator invariant. They are called the higher KdV
equations. This infinite family is closely tied to the infinite number of conservation laws

for the KdV equation. This fact will be discussed in the next chapter.
2.1.2 Multi-soliton solutions.

in this section, we describe how to construct multi-soliton solutions through the application
of so-called Backlund transformations.

Bécklund transformations originated in the study of surfaces of constant negative
curvature. Roughly speaking they can be described as follows. Given a higher order

differential equation in the variable u(z,t), namely
P(u(z,t)) =0 (2.13)

a Backlund transformation is a transformation to a new variable v(z,t) defined by a pair

cx

. [ AR, PO R o
S oL nist order equanl

’Bu‘

5. = fulz,1),0(2,1))
2 (2.14)
57 = 9(u(2,1),(2,1))

where f and g depend on u,v and their derivatives in such a way that the higher order
equation eq(2.13) arises as the integrability condition of the two first order equations.
Backlund transformations may relate the solution of the original equation to that of another
which is easier to solve or one solution to another of the same equation which we may
already know. Let us illustrate the latter with the sine-Gordon example. We introduce
the light cone variables defined by

et =g+t
so that the SG equation (1.55) becomes

04+0_u =sinu. (2.15)
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The Béacklund transformations, in the present case, to the variable u;(z*,z7), are defined

by the pair of equations

Oyru; = 3+u+2asin(u1;_u) (2.16a)
O_u; = —0_u-+ 2 sin( “ ; u) (2.16b)
a

where a is a constant. Differentiating eqns(2.16) with respect to z*, we obtain respectively

0-04uy — 0_04u = (sinu; — sinu) (2.17a)

0+0_uy + 84+0_u = (sinuy + sinu). (2.17b)
The integrability condition for eqns(2.16) then give

0+0_u =sinu (2.18q)

04 0_uy = sinu;. : (2.18b)

Thus we see that not only u but u; also satisfies the sine- Gordon equation. For example,

taking the trivial solution u = 0, we obtain from (2.16) that

d(u1/2) 1
— 2 —gdey, = —de_ 2.19
sin(u1/2) @O =0 ( )
so that after integration
uy = 4tan"(efTO), (2.20a)
1 1 1 1 —a?

where C is an integration constant which for simplicity will be set equal to zero. Defining

1—a?

Tire

(2.21)
so that |v] <1, u; takes the form

_ 1 z — vt
Uy = 4tan (CXP m) (222)

24



and we see that we have obtained a topological kink solution moving to the right from the
vacuum solution. This process can be further carried out to generate more complicated
solutions. Normally, such a procedure would appear to be formidable if not for the fact
that the Backlund transformations satisfy the theorem of permutability . This theorem
states that two successive Backlund transformations with distinct parameters a; and as
are commutative and consequently, one can construct higher order solution algebraically.

The Backlund transformations are, therefore, of great help in constructing solutions.
The difficuly lies, of course, in first finding a Béacklund transformation. There exist a
method, due to Clairin [C109], to construct Backlund transformations systematically. How-
ever, it is not always simple and straightforward.

Another useful method of solution which yields multisoliton solutions by directly solv-
ing nonlinear evolution equations has been established by Hirota and is called Hirota’s
method. This method basically involves transforming a nonlinear evolution equation into a
bilinear differential equation. It can be applied not only to equations solvable by the inverse
scattering method, but also to some equations which are not completely integrable. The
method is also being extended so that it is applicable to initial value problems, periodic

solutions and multi-dimensional problems. For an illustration, we refer to [H76,HS76].

.2 Compilete integrability. -

Let us consider an Hamiltonian system with n degrees of freedom, Poisson Bracket { , }
and Hamiltonian H on the phase space Iz, with coordinates ¢ = (p;,¢;), ¢ = 1,---,n. The
sysiemn is said to be integrable if it possesses n independent functions I;(p, ¢) in involution,
1e:

(H,I;}=0, {L,I}=0. (2.23)

The I; are called the (commuting) integrals of motion or conserved quantities. The Hamil-

tonian depends on p, ¢ only through them,

H=H(I). (2.24)
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Morever, one can in principle find a change of variables

(p,q) — (L, ) (2.25)

such that the following relations are true

Api Ik} = wir (1), (2.26)

and, in particular

{H,pi} = wi(I). (2.27)

In the new variables the equations of motion simplify to

I={H,I}=0,
(2.28)
¢ ={H, ¢} =uw(l),
so that
I = constant; ¢(t) =¢(0)+w-t (2.29)

is a solution.

The (¢,I) are known as the angle-action variables. Finding them explicitly could be
difficult but a general theorem of mechanics says that they exist whenever the full system
of conserved quantities is known. v

In what follows, we shall consider field theoretical models and so the number of degrees

of freedom will be infinite.
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2.3 The zero curvature representation.

Let us rewrite the three equations introduced in chapter one in the following form:

-The Korteweg de Vries (KdV) equation:

ot — B6pps + @raz = 0. (2.30)

-The sine-Gordon (SG) equation:

2

m- .
Pttt — Pzz + ‘F smﬁ(p = 0. (231)

-The nonlinear Schrédinger (NS) equation:

s = —Yaz + 26[4p[*. (2.32)

The basic point is that the above three equations turn out to be the compatibilty condition

for the overdetermined system of equations

g-g = A(z,t;\)é (2.33q)
8¢ _
5 = B8, (2.330)

Here ¢ = (ﬁ:) is a vector valued function of z and ¢, and A, B are 2 X 2 matrices. The
compatibility is ensured by the zero curvature condition

04 OB
=— _ - 1[A,B]l=0. 2.34
k Ot Oz [4,B] =0 (2.34)

F
Equations (2.33) and (2.34) have a natural geometric interpretation. In fact, the matrix
functions A(z,¢; ) and B(z,t;A) may be considered as local connection coeflicients in the
trivial vector bundle R? x €'? where the space time [R? is the base and the vector function
¢ taks values in the fiber €'2. Here, ) is a subsidiary complex parameter. In this case, the
(A — B)-connection has zero curvature and for this reason the representation of a nonlinear

equation in the form (2.34) is called a zero curvature condition.

For the KdV equation we have:

A

Ar—”z—i'0’3+0'++(pa'_ (235)
1

B = Z(As + 2\ — 21:(,0,:)0'3 -+ ()\2 -+ 2(,0)0'-{- + (Azﬁp - "'A‘Pa: + 2902 - (sz)a" (236)
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and F}? yields the KdV equation.

For the NS equation:

A=Ay + 24, (2.37)
where
- 1
Ao = Ve(Yor +9po_), A= 2,73 (2.38)
and
B = By+AB; + B, (2.39)
where

By =ik |9 |? <T3—z\/_(*“<7+———6r )
By = —4As, B,=—A. (2.40)

Here, the coefficients of A, A%, A3 vanish identically by construction and the constant term

_is equivalent to the NS equation (2.32).

For the sine-Gordon equation:

1 By Be
A= o ((,871'0’3 + m(A + )sm( )01 +m(A — ——) cos(—- 5 ) 2) (2.41)
B = N ((ﬁéi;—a'g +m(A — —)—\-)sin(—;)al + m(A + K) cos(——z—se)cm) . (2.42)
As usually
({0 1 (0 —1 (1 0
"“‘(1 0)"’2“(z’ 0 /T \o -1
g +'I:O"2 0 1

o= — = (0 0), (2.43)




2.4 Conserved quantities.

The consequences of the zero curvature condition are far reaching. For example, let us
consider the parallel transport from (z1,%;) to (z2,%2) along the curve 74 , given by the
following path-ordered exponential:

0,(1 — 2) = exp ( / (Adz + Bdt)) . (2.44)

Then the vanishing of the curvature implies, for the Stokes theorem, that ., depends only
on the initial and finai poiuis and not on v, ie. O, = 1if v is closed.

Obviously, a superposition formula holds
Qyitya (1= 3) =04, (2 = 3)024,(1 — 2). (2.45)

- Now we introduce an object of fundamental importance in the study of integrable systems,

the so called transition matriz given by

T(z,y;A) = exp/ A(z,A)dz. (2.46)
y

To understand the role of T'(z,y; A) let us analyze the auxiliary linear problem given by
the equation (2.33a) at a fixed time t,:

04(z)
Oz

= A(z,A)$(z) (2.47)
where A(z,)) = A(z,?0; ). Then the solution is given by
$(z) = T(z,y; \)(y); (2.48)

that is T'(z,y;\) translates the solution of the auxiliary problem along the z-axis for a

fixed time. Let us mention some important properties of the matrix T":

T(z,y; T (y,2;\) = T(z, z;\) (2.49a)
T z,y;A) = T(y,z; A) (2.49b)
T(z,z;A) =T (2.49¢)
det T(z,y; ) = 1. (2.494)
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Furthermore, T' also satisfies the auxiliary problem, namely

OT(z,y; A)

2 YY)~ Ae, A)T(z,3i3) (2.50a)
HE) 1o,y A, ). (2.500)

Now, let us prove that the zero curvature condition implies the existence of non trivial

conserved quantities. Consider the situation illustrated in figure 2.2:

t
AN
T.(A,)
S, (A1) S,(At)
> X
—L TL(A )O) L
Figure 2.2
where
L
Tr(A,t) = exp / A(z,t; N)de (2.51)
L
Sz(A,7) = exp [/ B(w,t;,\)dtJ . (2.52)
0
The zero curvature implies
S(A,T)TL(A,0) = To(A, 7)S—r(A, 7). (2.53)

If we impose periodic boundary conditions on the interval [—L, L], then S_p(A,7) =

S1(A,7) and therefore
Tr(A,7) = Sp(A, 7)TL(X,0)S7H (A, 7). (2.54)
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Taking the trace of this relation, we find that
T(A) = tr T(X\ 1) = tr Tr(X,0) (2.55)

is time-independent; A being arbitrary, we obtain an infinite set of conserved quantities.
In order to calculate these quantities, we use the fact that performing a gauge trans-
formation ¢ = g¢' in the linear system (2.33), the zero curvature condition is preserved.

The transformation properties of A and the monodromy matrix T, are

IA=g 49— g 0.9 (2.56)
gTL(;\7t) = g_l(L7t)TL(’\7t)g(—Lat)' (2'57)

Therefore, if g(z,t) is periodic, i.e g(L,t) = g(—L,t), one has
tr 9T (A, 1) = tr Tr(A, 1) (2.58)

and 7 (A) will be easier to calculate if 94 is diagonal. In the three examples considered,

the matrices A and B belong to the s, algebra, whose fundamental representation is

pe () 0)om= (0 D) m= (2 0). 59

A=AyF+A_E_+ A E, ©(2.60)

In particular

where Ap(z,t), A+ (z,t) are periodic functions of z if we impose periodic boundary condi-
tions.

Proposition. There ezists periodic gauge transformations such that

9A_ =94, =0

94, = =P (\H

o

with Pr(A) independent of z.

PROOF: the desired gauge transformation is constructed through three successive
steps, 1.e:

g = 919293 (2.61)
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with
g1 = exp(f+ E1), g2 = exp(f-E-), g5 = exp(hH). (2.62)

The coefficient of E vanishes if f; is a solution of the Ricatti equation

fi—24nfr +A_fF — A, =0. (2.63)
Setting
1 1A
fr=—WwW+®), =4+ -— (2.64)
- 24
this equation becomes
v 4vi=V, V=02-0+A4_A,. < (2.65)
Finally, the substitution v = y'/y linearizes the equation which becomes
y" — Vy=0. (2.66)

The potential V being periodic, one can take for y any one of the two Bloch waves y+:
y2(e + L) = exp(4iPL(\)ya (¢ — I) (2.67)

where we assume that the Wronskian is normalized to one.

Then we obtain for the other two coefficients that

f-=A4_yy- (2.68)
h = —% ln(A-yie"ZiPL(A)%) - (2.69)
so that we have
tr Tr(X) = 2cos Pr(}) (2.70)
with L
. o y(L)
Pr(A) = z/ vdr=1iln . (2.71)
* -L y(—L)

The functional Pr()) can serve as well as ¢r T7,()), as a generating functional for conserved

quantities.
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At this point, to show the complete integrability of the system, we have to define
a Poisson bracket and see if these quantities are independent, commute and contain the

hamiltonian.

2.5 Hamiltonian approach to ISM through an
example: the NS equation.

In this section, we emphasize the hamiltonian structure of the NS equation and we calculate
the conserved quantities and the action-angle variables of the system. This will be done
using the r-matrix approach of the Leningrad school which allows one to transform the

Poisson-brackets of the transition-matrix elements into a commutator.

2.5.1 The fundamental Poisson-bracket relations.

Let us show how the NS model can be considered as an Hamiltonian system. The phase
space I'g is here an infinite-dimensional real linear space with complex coordinates defined
by pairs of functions ¥(z),%(z) in S(R'). The algebra of observables on Ty is given by
smooth real analytic functionals. A Poisson structure on this algebra will be then defined

by the following Poisson bracket

(F,G} =i / _@.72)

—c0

* < §F  §6G §F  6G ) P
" z.
59(2) 53(s)  59(2) 50(2)

The coordinates v(z) and (z) themselves may be considered as functional on I'g. How-

ever, their variational derivatives are generalized functions

S )
5¢(y) - 5( y)7 57;(:9) = 5( y)' (2'73)

Using these relations , we obtain the canonical Poisson brackets

{$(2), ()} = {(2),¥(v)} = 0
{$(2),$()} = i6(z - y) (2.74)

and choosing the Hamiltonian to be
> 0
B[ (5 Pels s (2.75)
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the NS equation of motion (3.1) is represented through the Hamiltonian equation of motion

o
== {Hy) (2.76).

The next step consists in calculating the Poisson brackets between the matrix elements
of the transition matrix considered as functionals of the dynamical variables %(z),% (z),

for different values of A. For this purpose, let us introduce the following notation
{A%B}ik;j1 = {Aij, Bra}- (2.77)

Recalling that
Az, )) = Vi(Bos +vo_) = 2o
we obtain

{A(e, )2 A(y, )} = in(o- ® or — o4 ® 7_)8(x — y). (2.78)

Let us next define the so-called permutation matrix as

. 1 0 00
1 0 01 0
P:E(I—i—gai@ai): 01 0 o (2.79)
. 00 0 1
Given any two arbitrary 2 X 2 matrices C and D, we have
P(C®D)=(D®C)P. (2.80)
Using the properties of the matrix P , we obtain
[P, A2, ) @ T+ 1@ Ao, )] =i(A — )03 ® - —0_®0s)  (281)
and comparing it with equation (2.78), we can write
{A(2, )2A(,m)} = 8(z — (- 1), A2, ) @ T +1® A(gop)]  (2:82)
where
K
r(A—p)= ——P 2.83
(A= p) e (2.83)
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The relation (2.82) plays a fundamental role in proving the integrability of the system
and is consequently called the fundamental Poisson bracket relation (FBR).

The FBR must obviously satisfy the Jacobi identity. Using the antisymmetry of the
FBR which takes the form

{A(z, V)8 A(y, w)} = —P{A(y, 1) ® A(2, )} P (2.84)
we obtain the consistency condition to be

[r12(A = 1), 713(A)] + [P12(X — ), 723 ()] + [r13(A), r2s ()] = 0 (2.85)

where r1, means that the operator r is embedded into the tensor product space. This
relation, which is a sufficient but not necessary condition for having the Jacobi identity, is
also known as the classical Yang-Baxter equation (CYBE).

From the local equality (2.82), the global relation for the transition matrix can be

obtained:
{T(z,y; M)3T (2,95 1)} = [r(A = 1), T(z,95A) ® T(z,y; 1)) (2.86)

To do this, one has to divide the interval [y, z] into infinitesimal sub-intervals of lenght A

and take the limit A — 0 after having used the general formula

[A®BC} = I ® B{A®C} + {49B} ® C.  (2.87)
Taking = L and y = —L, we get the same relation for the monodromy matrix 77, ()):
(THNOTL(0)} = (A — ), To (V) ® Tr ()] (2.88)

2.5.2 The L— « limit.

z—+ oo

Taking into account the particular form of A given by (2.37-38) and that ¥(z),¥(z) *—=

0, we see that

hm T(z,y;\) = e "/2202(2=%) = Ty (5 — y; \). (2.89)

Z,Yy—oo

35




The transition matrix T(A) for the infinite interval (—oo0,c0) is then given by
T(\) = Jim To(~L,\TL(\To(~I, \). (2.90)
Due to the fact that A(z,A) satisfy the involution relation
A(z,)) = g A(z, Ao (2.91)

where 0 =01 if kK > 0,0 =05 if K < 0 and af;, € A if a;; € A, the transition matrix looks

therefore like
() = (Z((i)) f*((;\))) (2.92)

with € = sign x. We call a(A) and b()\) the transition coefficients. From (2.49d), they
satisfy

la(N) | —e ] B(A) |*= 1. (2.93)
Using the identity (2.80), written as
(CD"'@ DC™)P =P(DC™ '@ D1() (2.94)

where C = exp(idosz), D = exp(iposz), together with the formula

eikz
lim
A—dtoo A

and the definition (2.90) of T'(}), it follows that

= £in§(})

{TA) @ T(1)} =r+(A = p)(T(A) ® T(1)) = (T(A) ® T(p))r— (A — 1) (2.95)

where

re(A—p) = X r (I®I+03Qc3)timké(A—p)or Qo —o—_Qoc4). (2.96)

A—p)
Equation (2.96) contains all the Poisson brackets between the coeflicients of T'(\). Ex-
plicitely we obtain

{a(V), a(m)} = {a(}), 3()} = {5(1),b()} =0 (2.97a)
{6} = 53— g ¥ VHw) (2.975)
{0, 8(0)} = =5 — 55 B(w) (2.97¢)
{30, B} = 2mi | 5 || a(d) P 61 — p). (2.97d)
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The action-angle variables.

It can be shown, using eq(2.97) that if we define

Q(A) = —argb(A)
PO = é-%gbg la(\)] (2.98)

then

{Q(), @)} = {P(N), P(1)} = 0
{QQ), P(w)} = 8> - u). (2.99)

We can analytically continue the Poisson bracket relations in eqns (2.97) to the upper half

of the complex A-plane and deduce for the discrete spectrum that the variables

2
gj =logb;| pj =——Relj, (2.100)
2
pj=—argb; oj=——Im}; (2.101)
satisfy
{pre, a5} = bk {or, i} = 8. (2.102)

Together the variables {Q()), P()\), ¢j,p;,0j, ;) defined above constitute the action angle

variables of the system.

In particular, let us note that in terms of the action variables, the Hamiltonian H

becomes
had K2 1
H= /m A2Q(A\)d + T Z(gjp§ — 59?) (2.103)

j=1
which allows us to evaluate the time evolution of various quantities:
P(A) =p; = é; =0,
QM) = {H,Q\)} = X,
K2 (2.104)

¢; ={H,q;} = 5 iPi)

2
. K
bj={H,e;} = (0} — 2})-
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These relations can be shown to be equivalent to the following formulae:
B\, 1) = e"(X,0),  b;(t) = e=i%;(0),
Ai(t) = 2;(0); j=1,---,m. (2.105)
Therefore, the passage to the new variables completely trivializes the dynamics of the NS
model.

2.5.3 Construction of the conserved quantities.

We use the notation introduced in section 2.4. In this specific case we have

]

An=35A A= Ve, Ay =+rp (2.106)
_ (R 197 3¢'z 2
When A — oo, v admits the asymptotic expansion
i o= Un
v=o+ Z ) (2.108)
n=0
We find .
14’ -
vg = 5%, v] = KPP (2.109)
and for n > 1:
n—1
Unpl = _¢(3¢2)’ ~ > vpvns (2.110)
. p=1
vy = —1h0y1b (2.111)
=982 — [¢|? (2.112)
Therefore
N P H
where
N = / dz ||? (2.114)
p= %/ de($0.9 — $0,%) (2.115)
H= / do(8, 50, + T [). (2.116)
~L
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Notice that the coefficient of A\° in the expansion of Pr()) is given by

P i e
2./;1; dz vy = 2111 31 (2.117)

which vanishes when one uses periodic boundary conditions, but is in general a topological

charge.
Using the fact that ir A® B = tr A-tr B, an immediate consequence of the FBR

for the generating functional 7 is the following
{T(A),T(w)}=0 (2.118)

from which we deduce the integrability of the system.

We see that in this approach, a new tool comes into play, the r-matrix, and the
criterion of complete integrability is given by the eq(2.82). Although its validity for any
model is rather a matter of fortune, the r-matrix approach can be extended to a broad
variety of completely integrable models. Among them, one should mention the sine-Gordon
model and the Heisenberg ferromagnet. For the SG equation in the form
m2

sin = (2.119
5 Be =0 (2.119)

O +

we have

AN = i(ﬂ(,ba'g + kg sin %pal + kj cos %S—qaz) (2.120)
i
and parametrizing the vector k = (ko, k1) by
ko =mch A, k; =msh A (2.121)

we obtain the FPR with a trigonometric r-matrix given by

()‘)_0'1®0'1+<72®0'2 ch A
nA= sh A sh

o3 ® 03. (2.122)

For the second model, the equation of motion is

0 6?
““'S = _ = e = 2 = 2.123
55 =5N555, 8=5%), a=1,2,3, 8’ =1 (2.123)
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where the field variables are subject to

{5%(2), 5°(y)} = €**°5%(2)8 (= — v)-
This implies, for the auxiliary linear problem, a matrix A given by

AN = ;XS%“ (2.124)

and the r-matrix coincides with that of the NS model:

P

r(A) = X

(2.125)

These two models have one common feature: the FPR are ultralocal. It has been shown
in [Tsy81] that for nonultralocal models such as the KdV equation, the r-matrix is also
apllicable. In this case, the eq(2.82) must be somehow generalized but the eq(2.86) remains
valid.

The concept of r-matrix has also been used to classificate the integrable models, in
connection to the Lie bracket formalism for current algebras (or loop algebras). We do not

enter in this subject and refer to [FT87] and literature therein.
2.5.4 Time evolution of the transition matrix.

First, let us comment on the relationship with the scattering theory and the analytic
properties of the transition coefficients. We first rewrite the auxiliary problem (2.33a) as
the eigenvalue problem

1
Lo = —2-)\q5 (2.126)
for the first order matrix differential operator
.od -
L= io3 - + ivr((z)o- — P(z)oy). (2.127)

We note that this is nothing but the scattering problem for the stationary massless Dirac

equation. Let us define the following matrix functions:
Ty(z,A) = lir:il T(z,y; \)To(y; z) (2.128)
y—rEoo
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which satisfy eq(2.50a) with the asymptotic behaviour
Ty (z, ) "2 To(z, A) = e~#¥/2092, (2.129)

If kK > 0, L is self-adjoint operator and the corresponding spectral problem is the main
object of scattering theory. In particular, the matrices T (z, A) are called the matrix Jost
solutions of the auxiliary problem with the boundary condition (2.129) and taking the
limit L — co we can write

T(A) = T7 =z, \)T-(z, A). (2.130)

It can be shown, using certain properties of the integral representations for 7., that the
first column of 7_ and the second of Ty may be analytically extended into the upper
half-plane, while the first of T and the second of 7_ may be into the lower half-plane.

Denoting the columns of Ty by T:(EI’Z), so that

Te(e, ) = (15(2,0), T (2, 1)), (2.131)

we get, from (2.92), the following expressions for a()) and b()\):

a(A) = det(T (2, A), TP (2, 1)) (2.132a)
b(A) = det (TN (2, 1), TP (2, \)). (2.132b)

Using the analytic properties of the columns T and T _5_2) and their asymptotic behaviours
for |A| — oo, it results that a(\) has an analytic continuation into the upper half-plane
ImA > 0 with the asymptotic behaviour a(A) = 1 + o(1) as |A] — co. The coefficient a()
has an analytic continuation into the lower half-plane, which is denoted by a*()) and we

have

a*(A) = a(A), ImA <0. (2.133)

Furthermore, it results that 5()\) has no analytic continuation off the real line.
Let us now investigate the zeros of a()) in the upper A half-plane. If k > 0,a()) has
no zeros because of the selfadjointness of the operator L. If x < 0, L is not selfadjoint and

a()) may have zeros. Let Ay,---, A, be the zeros of a(A), Im); > 0, j = 1,...,n. Here we
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assume for simplicity that no zeros occur on the real axis and that all zeros are simple.

Then it follows that
Tgl)(m,Aj) =bjTi2)(:c,Aj), j=1,---,n (2.134)

with b; # 0. It is clear from (2.133) that A;,---, A, are the zeros of a*(\) in the lower

half-plane. From the involution property, we have

T®(z,3;) = -5;,T(2,};),  j=1,--,n (2.135)
and using eq(2.130), we obtain

b =b(x;), b =b(};), Jj=1,---,n. (2.136)

The set {);,A;} is the discrete part of the spectrum of (2.126) for x < 0. Furthermore,
for any k, L has continous spectrum of multiplicity two on the whole real line, according
to the existence, for real A, of two linearly independent solutions of (2.126) given by the
columns of Ty (z, A).

The analyticity of a(A) and the normalization relation can be used to express a())

through its zeros (if there are any) and b(\). Namely, for ImA > 0, we have

50 4 —exp { 1 /°° 1og<1+|b<m|)“}

o n— A
k<0:  a()) —exp{;z /w 105(1#' !bA“)| ) }E[l( ’) (2.137)

Let us conclude the chapter deriving the time evolution of T'(z,y; A). By differentiating the
auxiliary linear problem with respect to ¢ and using the zero curvature condition together

with the initial condition (2.49c), we obtain

—%T(w,y) = B(2)T(z,y) — T(2,y)B(y): (2.138)

For 1(z),%¥(z) rapidly decreasing, we can take the limit of (2.138) as y — —o0,z — o0,

for real A, to obtain the evolution equations for the transition coeflicients.
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For this purpose, let us recall that

|z]—o0 i\

and consequently

[B(X), To(z, \)] = 0. (2.140)

Using the definitions of the Jost functions
Ty(z,A) = ﬁlz)él T(z,y; A\)To(y; ) (2.141)
y—+oo

we find by multiplying by Ty(y; A) from the right and taking the limit as y — Foco that

*y 2
-(%Ti(z,,\) = B(z, T (z,\) — ’-;—Ti(z,x)as. (2.142)

The time evolution of the transition matrix is then easily obtained from T' = T;lT_ to be

s
ST = Slos, TV (2.143)

This equation is remarkable in that the dependence on ¥(z),%(z) is completely eliminated.
For the continous spectrum, we obtain

9 8 s
g - =z S : (2.144
ata()\,t) 0, 8tb()\,t) iIA2b(\, 1) (2.144)

For real A, we deduce that a()) is time-independent and by virtue of analicity, the same
holds for ImA > 0. Thus, as expected, in the rapidly decreasing case, the generating
function for the conservation laws is just a()).

For the discrete spectrum, an analogous analysis brings to

d : :
b = —iA%bi(t),  j=1,---,n. (2.145)

and therefore, the time dependence of transition coefficients is perfectly equivalent to the

formulae (2.105).
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Chapter 3

Quantum integrability

In a quantum theory, the dynamical variables must be quantized as operators and
various commutation relations must take the place of Poisson brackets. Furthermore,
since the quantized variables do not commute, we must adress the question of operator
ordering and wherever necessary, the quantum expressions must be regularized.

By integrability of a quantum system, we understand that we can determine the
spectrum of the Hamiltonian as well as its scattering matrix. In this chapter, we will
discuss the tradional approach to quantum integrable systems, the so-called Bethe ansatz
method, and the more recent Quantum inverse scattering method (QSTM) which combines

the main ideas and methods of both the classical and quantum theory of integrable systems.

3.1 The Bethe Ansatz.
3.1.1 Generalities.

By "Bethe Ansatz”, we mean a wave function with a particular structure which provides
the exact solution of many interesting physical systems.
Its origin goes back to Bethe who constructed in 1931 [Be] the exact wave function of

the isotropic spin-1/2 Heisenberg chain with nearest-neighbour interaction:

N
H=7J)Y on-oni1. (3.1)
n=1

Bethe proved that the eigenstates of the Hamiltonian (3.1)

I\Il >:Z\II($1’...,$M)0-11...glMlo >, (mi:]_,...,N) (3.2)

are given by a function of a special form:

M M
U(zy, +,zpm) = Zexp zz kp;z; 41 Z sign(z; — z;)®(k»s,, kp;) ¢ » (3.3)
P =1 i>j=1
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Figure 3.1

where P = {’,---,Fp} is a permutation of the integers {1,---,M}, |0 > is the state
with all spins down, z; are coordinates on the lattice, k; are quasimomenta of magnons

and

_ sin(k — p
$(2k,2p) = 2cot™} [Cos(k - p)( — COS)(k — p)} , (3.4)
is a two particle scattering phase. The spin and energy of this state are equal to
M
S*=N/2-M, E=J) cosk;. (3.5)
i=1

It results very convenient to use a parametrization for k(1) and p(}) in which the scattering
phase depends on only the difference hetween the corresponding arguments A and A’. For
the Heisenberg model, this parametrization has the following form [Hu38]:

E()) =2tan™! ), (3.6)

2(k(1), p(V)) = 240~ (25, (3.7)

The quantity A is generally called ’rapidity.

The wavefunction describes the so-called factorized scattering: when a particle passes
from a region X¢g = {z, < --- < z4,, } to another region X, which differs from the first
one by a permutation of some pair (z,, z4), only two-particle processes occur. Furthermore,
any N-particle scattering process is expressed standardly in terms of the product of N(N —

1)/2 two-particle processes (see Fig. 3.1 for N=5).
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The absence of multiparticle processes is in fact the Bethe hypothesis. For its self-
consistency, it is necessary that the several ways in which one can decompose the per-
mutation connecting Xg with another region Xg/ lead to the same result. For systems
without internal symmetry, the scattering reduces only to a phase shift. Therefore Bethe

hypothesis is valid provided that the N-particle scattering phase has the following form:

N

Bk, kn) = Y B(ki,k;). (3.8)

1>j=1

Until the early 1960’s, Bethe’s work had no considerable impact on either physicists or
mathematicians. Then in 1963 Liniger revived the Bethe method by solving the problem of
the interacting Bose gas. Generalizing this solution the general many-body wavefunction
for a problem with a § -function interaction was derived definitively in 1967 by McGuire,
Lieb,Yang and Gaudin [Ga67,Ya67].

In the course of this solution, the general special function relations between two-
particle scattering amplitudes were derived. These relations are necessary and sufficient
conditions for the validity of the Bethe Ansatz and they constitute the foundations of the
theory of integrable two-dimensional statistical models (Baxter [BaT2]) and of the theory
of factorized scattering (Zamolodchikov [Zm79]).

These relations are generally called the Yang-Baxter equations. In the general case
of the one-dimensional quantum theory of particles with n different colours, they have the
following form:

Salal(kl’ kz)Sa (11 (kl,k3)sa’ a’,%(k27 k3) =

“2“2 2 (ka, kg)s“,l“}, (ky, k3)5a: “,1, (k1 ks); (3.9)

here S:::::(kl , k2 ) is the two-particle scattering matrix. The subscripts (a1,a2) and (@}, a})

correspond to the particle colours in the |[in > and |out > states with momenta ki, k,.
These factorization equations ’imply that all the possible decompositions of the N-

particles S matrix as a product of two particle S matrices give the same result.
Obviously, for systems without an internal .symmetry, the S-matrix is diagonal and

condition (3.9) is trivially fulfilled. For systems possessing an internal symmetry, the Bethe
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Ansatz has the following form. Let Q = {q1,..,q~} and P = {p1,..,px } be permutations of
the integers {1,..N}. Then in the region X¢ = {z4, < 24, < -+* < T4y }, the wavefunction
is
N
$(XQ) =3 Awran(P | Q)exp{i ) kp;z;} (3-10)
P j=1
The summation is carried over all permutations. A(P|Q) in the given region does not
depend on coordinates. A(P|Q)s from different regions are connected with each other by

S matrix elements. For example, if the region Xg and Xg«;;> differ by the permutation

of ¢ and j particles, then
A (P|Q) = SFA4.(P | Qcis>)- (3.11)

Once the two-particle S-matrix is known, all A(P|Q)'s can be expressed in terms of
AP |I), I={1,.,N}.

The parameters {k;} of the wavefunction (3.10) are so far arbitrary quantities. In
order to find the spectrum of the system, some boundary conditions have to be imposed.
The more convenient choice are the periodic boundary conditions (PBC) where one puts

the system into a box with length L and demand that

¢(wl,...,wj,...,$N):¢(ml,...,mj+L,...’mN) (3.]_2)

for any j = 1,---,N. The resulting equation for the coeflicients A(P | Q) leads to the

following eigenvalue problem
exp(ibi L) = Tye, €= A1) (3.13)

where

T; = Sjj_,_l...SjNSjl..Sjj_l (3.14)

and S;; = S(kj, ki) denotes the spin entries of the scattering matrix.
For models without an internal symmetry, the S matrix is not an operator but a
c-number and eq(3.13) leads straight to the algebraic equation for k;:

M
exp(ik(Aa)L) = [] exp(:®(Aa — Ag))- (3.15)

i=1
it
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Equation (3.15) describes the whole spectrum of the system. The most useful form of
PBCs is found by taking the logarithm of (3.15), for which one must choose a branch of
the function $(A). We obtain

M
k(Aa)L = 27No + Y ®(Xa — Ag), (3.16)

p=1
Ba

where N, = integer are the quantum numbers of the system. The transcendental equations
(3.16) were first found by Bethe in his work about the 1/2-spin chain and we shall call
them Bethe-Ansatz equations in the following. For systems possessing an internal symme-
try, PBC imply the simultaneous diagonalization of N operators, and using the triangle
equations, it can be shown that all operators T; commute with each other so that the
problem may indeed be solved. We will return in more details to this argument in chapter

6 by examining the solution of the Kondo model.
3.1.2 The Bethe Ansatz for the quantum NS.

As a simple example, let us look at the traditional Bethe ansatz for the quantum nonlinear
Schrodinger system (QNS).

The dynamical variables ¥(z) and %(z) are replaced by the annihilation and creation
operators ¥(z) and ¥1(z) with

[¥(2),%(y)] = [¥'(e), ¢ (y)] = 0
[¥(2),$"(y)] = 8(z —y) (3.17)
and the functionals of the dynamical variables are defined to be normal ordered, so that

all the 9 operators stand to the right of %7. The normal ordered quantum hamiltonian

takes the form

H= [_ " de(0upt 09 + st iyl (3.18)

and the Heisenberg equation of motion becomes

10yp = —024p + 2repTehep (3.19)
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which we recognize to be the quantum nonlinear Schrodinger equation. Let us define the

Fock vacuum | 0 > by
P(z) |0>=0  Va. (3.20)

It will be called the pseudovacuum and it is to be distinguished from the physical vacuum
which is the ground state of the Hamiltonian, representing the Dirac sea.

Since the operator N of number of particles

N = / dzpt () (z) (3.21)

is an integral of motion, i.e [H,N]=0, we may consider each N-body sector of the Hilbert

space separately and look for common eigenfunctions ¥(ky,---,ky) of operator H and N:
U(k1,- -, k)
1 <O

= [ @abular e e k) @)0> (322)
1Y . —_—C0

Here ¢ is a symmetrical function of all ;. The eigenvalue equation

H|U >=E,|¥>; N|¥>=N|¥ > (3.23)

results in the fact that ¢, is an eigenfunction of the many- body Schrédinger operator

31

~with delta-function interaction:

N g N :
H:_Za—mf+2“,z 8(zi — z;); (3.24)
=1 4 i>j=1
Héy = Exdy.  (3.25)

Let us consider the domain in the coordinate space defined by
T <y < - < Ty (3.26)

In this domain, ¢y is an eigenfunction of the free hamiltonian with the same eigenvalue
and the delta-function potential leads to a discontinuity in the first derivative of the wave

function at the interaction points:

9] 8 -
(3wi+1 - 5;;) ¢’N = ﬁ(bN (125-}-1 =x; + 0, 7 = 1, cen ’N). (3.27)
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We can easily see that the function defined in domain (3.26) as

0 0 .

satisfies all the conditions with Ey = >, k?. Using this we can check that the solution

=1 """

of eq(..) can be written in the following form:

—kp. —1xe(z; — T;
(f)N(z],---,lekl,---,kn).—2 exp(z_s_ kanN)” ke, P’ k( ) (3.29)
P,"' Pj

>3
where as usually {P;,---, Py} denote the permutations of the numbers {1,---, N} and the
summation is over all such permutations. Therefore the N-particle states ¢ are the exact

eigenstates of the full hamiltonian and the scattering phase is given by

B L. ki —k; +1ik
i®(ki—k;) _ 4 J 3.30
© <k,- —k; — in) (3:30)
or equivalently .
k—1ik 1
=3 = — —. 3.31
(k) zln(k -I—‘ifi) 2 tan - (3.31)

Let us rewrite the BA equation (3.16) ignoring the A-parametrization. We have:
kiD= ®(ki— kj) + 21N, (3.32)
i
A change in the branch of (3.32) is just equivalent to a redifinition of the N;’s. Let us
note that (k) in (3.31) is not precisely the phase shift due to the interaction which has
discontinuity of —2 at k = 0 for any finite . In fact, this definition introduces a fermionic

description of the spectrum in terms of the N;’s because a state with two identical N’s

vanishes identically.
Ground state distribution and ezcitations.

The ground-state k distribution is obtained from the BA equations (3.32) by choosing the
Ni’s to be as closely spaced as possible, i.e. N;1; = N;+ 1. Subtracting the PBC’s for

adjacent k;’s gives

2w
z_|.1 k; = kiy1— kj) — q)(ki — kj) + T (3.33)
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As L — oo, the k;’s become infinitesimally spaced, and the quantity

1
p(ki) = L(ki—l—l — ki)

(3.34)

approaches a continuous function. The sum in (3.33) can be replaced by an integral:

1 T /"F
N dkp(k)---,
L 3 —kp
where ky is determined from’the particle density by
kp N
dkp(k) = —.
[ ae09=7

Equation (3.33) becomes an integral equation for the ground-state density p(k),

kg

2rp(k) =1 — / R(k — k"p(k')dE',
.._kF
where the kernel R is given by
Y 2k
R(k) = ®'(k) = (S

The ground state energy is obtained from the solution to (3.37),

kp
_EIL;E_—_/ 1 p(k)dk.

—kp

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

The excitations above the ground state consist of ”particles” which are filled modes

above the Fermi surface and "holes” which are empty modes below the Fermi surface. Let

us consider for simplicity a single particle-hole excitation, as shown in Figure 3.2.
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In response to such an excitation, the Fermi sea will shift slightly, compatibly with

the PBC’s. Denoting the modes in the excited state by k;, we have

kiD= ®(ki — kj) + ®(k: — k) — 3(k: — k) + 27N (3.40)
j#i

Subtracting (3.33) gives

(ki — k)L =Y [8(k: — ;) — ®(ks — k;)] + 8(k; — kp) — B(E: — k) (3.41)

Let us define a function w(k) by
(ki — k)L — w(ks). (3.42)

Denoting F(k) = w(k)p(k), in the thermodynamic limit we obtain
kp
o (k) + / Rk — K)F(k')dk' = (k — ky) — B(k — kn) (3.43)
—kp
So it is possible to describe the vacuum polarization caused by a particle and a hole.
Observables for the excitations over the ground states (energy, momentum, scattering
matrix,..) are obtained by adding the contributions due the vacuum polarization to the
corresponding "bare” quantities. For example, let us calculate the excitation energy AE
AE=E—FBy =k} -k +> (kI —k)
kr
=k2 -k} + / 2k F(k)dk. (3.44)
—kp
Defining the function e(k) as the solution of the linear integral equation
1 [
e(k) + — / R(k — B)e(k')dk = — po, (3.45)
2 —kg
where po is the chemical potential fixed by the requirement e(+k;) = 0, it is possible to
prove that

AE(kp, kh) - E(kp) - 6(]6;,,). (3.46)

Therefore, (k) is just the energy of the one-particle excitation over the ground state

and eq(3.45) can be regarded as the fundamental spectral equation of the theory. The
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generalization of (3.45) for finite temperatures was obtained by Yang and Yang [YY69]
using a variational method. More details and rigorous results about this subject are well

summarized in [BIK85].
3.2 Other models solved by BA wavefunction.

3.2.1 Models with diagonal S matrices.

Here we enumerate the main models described by the Bethe-Ansatz wave function (3.3)

with a special two-particle scattering phase.

(i) The epin 1/2 anisotropic Heisenberg ring (XXZ-chain) [Or58]

N
H=IZ{(0§02+1 +obon i) Feosp onon 4] (3.47)
n=1

k() = 2tan™!(cot % tanh pAd),

®()) = 2tan"'(cot ptanh pd), ) (3.48)
v :
E = IZ cosk(Aq).
a=1
(ii) The interacting Bose-gas [LL63]
. 62 s o
H= [ |-¢"gme+9lee’)| dz (3.49)
¢ is a Bose-field and
3(k) = 2tan"*(k/g),
N
E=) k. - (3.50)
a=1
(iii) The massive Thirring model [BS65,BT79]
£= [0 - b +9 5% (3.51)

here j, = Py,, ¥ = (1,%2) is a spinor, ¥ = ¥Ty, and 7, are two-dimensional Dirac

matrices
{7#771/} = 6#1"
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This model is equivalent to the Sine-Gordon model which was directly solved in [STF79]:

L= / [%(3“90)2 — mg(1 — cos By)| dz,

k()) = msinh A,
®(A\) = 2tan"!(tan g tanh 1/2),

M
E = chosh)\a,

a=1

where m = mg/2A (A is an ultraviolet cutoff), and
B* =4r+48g at|g| <1.
(iv) The resonance-level model [FWi80]
M= / dz(-_z'cf(x)%c(x) + V(@) (el (2)d + die()) + Ub(2)c! ()e(2)d d),

k(A) =V exp(}),
$(A\) = 2tan™'(tan U tanh \/2),

N
E =) tan " (V?/k(Xa))-

(v) The generalization of the Heisenberg model for an arbitrary spin § [ZF80,KS81]

N
H= Z p(sn : Sn—l—l);
n=1
here P(z) is a polynomial of the order 25 of a special form,

k()) = 2tan"t /S,
®(N) = 2tan_1 A,

Zcosk
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3.2.2 Models with internal symmetries.

The factorization conditions (3.9) are very strict constraints on the scattering kinematics.
Some non-trivial solutions correspond to different models of the 1+1-dimensional quantum-
field theory. Among them, we mention:

(i) Many-body problem with the é- function interaction [Y67,5u68]:

Hzf{ Z'l’aa 2¢a+92¢ Yy ¥eda | de, (3.58)

a>b

where n is the number of colours.The two-particle S matrix of this model is

k—p+ nga2a2
57293 (k 4 3.59
ala, ( ’p) k p_*_zg ( )
where P:f:,l'z = baya,00,5q] IS @ permutation operator
The energy of the system is £ = Eﬁv 1 k?
(ii) Hubbard model [LW68):
=1t Z(Cnacn+1a + cn_{_lacna) + U Z TchcJr (Cnls (3.60)
n,o :
! t(sink — sinp) + iUP;::’
Sorat (kyp) = ) 13.61)

t(sink — sinp +1U)

where ¢l _ is the creation operator of an electron with spin o at the nth site of a one-

dimensional lattice. The energy of the system is

N
E = tZ cosk;.
j=1

(iii) Chiral invariant Gross-Neveu model [Be79,AL79]:

L= /d:c [ 7"¢’u v Fapg — ((Z"/’ d’a)z (Z $a75¢a)2>:| ) (3'62)

a=1

\ T—7"+ ngafaz
a az _ a
ala G " = e (3.63)

55




T = £1 is a particle chirality and the energy is given by

N,
E= ) 1Y ky, (3.64)

r==%1 i=1

where NV, and k,; are the number and momenta of particles with the given chirality 7.

The physically relevant s-d ezchange model and Anderson model will be treated in

more details in chapter 6.

3.3 Quantum Inverse Scattering Method for the
Nonlinear Schrédinger equation.

The inverse scattering tecnique analyzed in chapter 2 which had been developed in classical
field theory could be formulated as an exact operator method for solving quantum field
theory ([SF78],[Ski79], [ThW79],[Ho79]). Morever, this method called quantum inverse
scattering method is closely related to the Bethe Ansatz technique previously discussed
and provides an elegant algebraic formulation of those results.

As said in the introduction and illustrated in the previous section, the quantum version
of NS was originally solved by means of the traditional coordinate Bethe Ansatz. In this
section we briefly illustrate how the QISM works in this special case.

The essence of the QISM consists in formulating the problem of quantum generaliza-
tion of the classical IST as the problem of constructing the quantum operators a(A),at(N),
B()\),Z;T(A) from the transition coeflicients after replacing ,% by %,%! and subsequent
normal ordering.

Most of the relations obtained in the classical case readily generalize to the quantum
system but the operator character will introduce new structures into the theory.

Since P is a ¢c— number matrix, eq (2.80) still holds and we obtain

R(A - :“')(‘Z(za ARI+I® 421\(2:,/1,) +hro_ ®oy) =
(A(2,\) @ I+ I ® A(z,p) + hooy @ o_)R(A — )  (3.65)
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where R(A — p) = 1 — ihr(\ — p). According to the correspondence principle

1 R0
1,_}{[ 9 ]'”'—’{ ’ }

eq (3.65) reduces to eq (2.82) in the classical limit. The terms kxo— ® o4+ and kor @ o
are the quantum corrections which arise due to the non commutativity of ¢ and 1.

Let us now turn to the quantum T-matrix:

f(m,y; A) =:T(z,y;A) : = :exp/ E(z,)\)dz : (3.66)

Y

and define the following two products of the T operators:

Ti(z,y:)) = T(2,53A) ®1 (3.67)
fz(may; A)=1® f(m,y; A) (3.68)

which represent particular embeddings of the T operators into the tensor product space.

Classically, we have

Ty (z,y; A) T2 (2, y; 1) = Ta(2, 45 1) Ta (2,45 A).- (3.69)

At the quantum level, however, this is no longer true. Therefore, if we succeed in find-
ing a relation between the two products in eq (3.69), we would determine the quantum
noncommutativity.

The result is the following:
RO — )T (e, y; N Do(2,y5 1) = To(z, 55 )T (2,5 D R(A — p).- (3.70)

This relation is of fundamental importance in the study of quantum integrability and is
the quantum analogue of eq (2.86).

The commutation relations for the infinite interval can be obtained performing the
limits £ — 400, y — —oo. Defining

Re(A—p) = (1 + E(T_%ﬂ ® or_) R(A—p) (1 + -2??:2'%’3;,—0—)0_ ® a+> (3.71)
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we can write
Ry(A = p (N Ta(p) = To(w) Ty (MR- (A — p). (3.72)

If we further recall the form of the transition matrix, namely

= a(d) b
700= () won) (3.73)

then the quantum commutation relations can be read out from eq (3.72). They have the

form
(@), 8(k)] = [@(2),@" (1)) = (B(N), 8" ()] = 0 (3.74a)
. ~ 1hk ~ .
[@(A), b(u)] = mb(#)a(/\) (3.740)
. ~ ihk PO
[@(X), 6" (n)] = “ma@)b?(/\) (3.74c)
[B(2), 51 (V)] = 2mx8(X — w)a(A)at(A)

_p22 ( 1 _ams(A — p)

(A=p)(A—p+i0) A—p+i0

Note that in the limit of # — 0, the relations in eqns(3.74) reduce to the classical relations
(2.97)

) B(ABY (k) (3.74d)

Furthermore, it follows from (3.74a) that log a(}\) is a commutative family of operators
and it can be shown that it includes the number of particles N, the momentum P and the
Hamiltonian H.

Let us next define the operators:

$(3) = (2mh | & | BT(N)E(N)) 2B () (3.75)
¢T(A) =B()) = (2nk | & | GT(N)E(N)) /2. (3.76)
Then we can show that
[#(2), (1) = [67(N), ¢ (w)] = 0 (3.77)
[B(2), 81 ()] = 6(X — p) (3.78)
as well as
hog 80,31 = log 1+ 55— - ) B (3.79)
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Thus we can think of ¢' and ¢ as raising and lowering operators and construct the Fock

space as

| kryka, s >= (k)@ (k2) -~ 81 (k)0 > (3.80)

where we assume the vacuum to satisfy
a(n)jo > (3.81)

so that all the conserved quantum numbers of the vacuum would be vanishing. In terms

of these new operators, the Hamiltonian of the system can be shown to take the form

H= / dk  k23t(k)B(k) (3.82)
so that
N
Hlky, kg oo by >= (Z kf) | kg, -eey b > . (3.83)
=1

We recognize these states to be nothing other than the Bethe ansatz states up to a constant.
Therefore we have seen why the QSTM can be really interpreted as the algebraiZétion of
the Bethe method. We shall not enter into more details since the solution of the s-d
exchange model in chapter 6 will provide a complete illustration of the method. Let us
only mention at this point that the Bethe equations (3.15) can be obtained recquiriﬁg that
the state (3.80) be an eigenvector of Tr T(A) and equating the remaining ’unwantec\iﬁ’:terms

to zero.
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Chapter 4

Integrable Statistical models

One of the most remarkable aspects of the Bethe’s Ansatz is that it also provides an exact
treatment of certain lattice models for which operators are defined on discrete lattice
sites. The various developments, starting from the famous Onsager’s solution of the two-
dimensional Ising model, were unified and extended in the remarkable works of Baxter.

Baxter constructed the solution of the ’eight-vertex model’ including all the previously
solved models as special cases, and put forward the method which became the ground of
the modern development of the Bethe Ansatz.

It has been found that certain operators which emerge in the formulation of the
QSTM are directly related to the so-called transfer matrix (to be defined below) of the
lattice models. Thus the study of soluble lattice models provides important new insights
into the nature of exact integrability in quantum systems.

For 2-dimensional statistical mechanics, we have two types of models: the vertex
models and the IRF (interaction round a face) models, which we shall introduce in the

following two sections.

4.1 Lattice models.
4.1.1 Vertex models.

Consider a square lattice. The fluctuating variables a = 1,..,n (’spins’ or ‘colours’) are

attached to each bond connecting the nearest-neighbour lattice site. The vertex Boltzmann

weight SZ::? (fig.4.1) correspond to each colour configuration around any lattice site.
1

Denoting the energy of the vertex by e(a;a}aza}), we have the relation:

5% — exp[—fe(araiazay)], B =1/ksT. (4.1)

’
0.10,1
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Figure 4.1

The (row-to-row) transfer matrix of a vertex model is the operator connecting the
configurations on the vertical bonds placed between the rows (n — 1,n) and (n,n — 1)

characterized respectively by the configurations {ix} and {jx}. Then

N
T=Tiiy = Y T sPpe (4.2)

{pr} k=1

aid the partivion fuuction for a lattice with M rows is given by
7 = Tr{T™}. (4.3)

This last equation shows how important is the knowledge of the eigenvalues of T. Namely

just the largest eigenvalue A, gives the free energy in the thermodynamic limit:

f=—_1lm !

NM—oco NM log 7

1
= 1 — log Amaz 4.4
Frow now on, let us assume for simplicity that the number of colours are only two, like in
the usual vertex models. Then the transfer matrix becomes of order 2 x 2.

Suppose we have two sets of different Boltzmann weights and corresponding transfer

matrices T' and T". Under what conditions do we have [T,T'] = 0 7 Can we answer this
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question in terms of Boltzmann weights only? The main idea is to embed the transfer
matrix into a family of commuting transfer-matrices and to try to diagonalize the whole
family simultaneously.

We introduce the so-called monodromy matrix

L(a) = L{jl""’jN}j(a;al, vy Q) =

fivrmin M
Sffjll(al - a)Silg?;z(az —a)- - Sf:;;;](a,\, - a) (4.5)

which is a 2 X 2 matrix with operators in Vy = ®iV=1 Vv(k) as matrix elements (V,,(k) is
the vertical space associated to the k th column and in our specific case A C?). The
summation over all p; indices is implicit.

It follows immediately that

T(a) = Tral(e) =Y L} (a), (4.6)

1

The variable « is called spectral parameter and can be considered as a coupling constant
also depending on the temperature.

Let us assume now that there exists a non singular matrix R = R%%(e, ') such that
R(a,a)[S(e) @ 5(a")] = [S(o) ® S(a)]B(ara’). (4.7)

Here, ® means tensor product of matrices acting on V. R acts on Vj, ® V.

More explicitely, this equation reads:
Rl(en )51 ()55 (o) = S0 () Sy () RE (eyel) (48)

In both equations, there is an implicit matrix product on the vertical spaces V,. This is
the Yang-Baxter equation for the vertex models. If we regard R%f as a Boltzmann weight
with state variables (a,e,b, f), we can represent the equation by the picture depicted in

figure 4.2.
It follows from the definition of the monodromy matrix L and the equation (4.8) that

R(a,o")[L(a) ® L(a')] = [L(e) ® L(a)R(e,a'). (4.9)
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Figure 4.2

This equation holds in Vi ® Vi ® V,. Leftmultiplying eq(4.9) by R™(e, ') and taking
the trace on Vi ® V3, yields

T(a)T(a') = T(a'YI(a) or [T(e),T(a')]=0. B “:('4.10)

We have therefore a one-parameter family of commuting transfer matrices. This equiva-
lence between the factorization relation (4.8) and the selfcommutativity (4.10), shown by
Baxter [Ba72], will be very useful later.

Let us conclude this section with the identification of the vertex models to quantum
theories in one-dimension. One can consider the space V, as a quantum space of states for
each site of a given horizontal line. The matrix T'(#) will be now a quantum operator in
the total space V of quantum states. It can be shown that the operators

5k
Qr = ~ gk In T'(8)o=0 (4.11)
couple (k + 1) nearest neighbours on the horizontal line. Usually @1 can be identified with
a quantum hamiltonian. The commutativity property of the transfer matrices implies that

[Qk, Q1] = 0 Vk, 1. So we have an infinite number of commuting and conserved magnitudes

and one can then conclude to have an integrable theory.
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4.1.2 IRF models.

In this way of defining lattice models, the state variables o; are located on the lattice
points (sites) of a square lattice. The Boltzmann weight is assigned to each unit face (or
plaquette) depending on the state variable configuration round a face, the energy of which

we denote by €(a,b,c,d). The corresponding Boltzmann weight is defined to be
wl(a,b,¢,d) = exp(—Be(a,b D)), B=1/k,T (4.12)

so that the partition function of a square lattice of N sites becomes

ZN = ZZ H w(O'iO'jO'kO'I). (413)

onN faces

4.2 Description of the principal models.

Almost all important two-dimensional models can be expressed in the form of IRF models.

Below, we give a brief description of the most important ones.
Nearest neighbour Ising model.

The Hamiltonian is

H=-J1 Y oioj=Jy Y, ok (4.14)

h.edges v.edges
where 01,-+-,05 = £1.
The minus sign before the interaction coeflicients J;, J, means we have ferromagnetic
interaction, i.e.the system prefers equal spin. This model, originally solved by Onsager

[On44] can be incorporated into an IRF model through the identification

1
e(a,b,c,d) = ——%Jl(ab + ed) — §Jz(bc + ad). (4.15)
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Siz- and Eight- Vertez models.

Let us first define the models as vertex models. If we consider two-state bond variables
characterized by an arrow, there are 16 distinct types of combinations of arrows at each
lattice point. Let us consider only those configurations of arrows where the number of

in-arrows at each lattice point is even. The eight allowed configurations are then

TSRS O G AR AP SR A
et e A S S W S
1 2 3 4 5 6 7 3

The R-vertex moael

Figure 4.3
where we assume that the energy is invariant under the simultaneous inversion of the

directions of all the arrows:
£1 = &2, E3 = €4, €5 = E6, £7 = €g. (416)

This defines the 8-vertex model. The 6-vertex model is obtained eliminating the last two
configurations corresponding to €7 and 3. Indeed, the 6-vertex model has been intro-
ducéd by Pauling and Slater to calculate the residual entropy of ice and to describe phase
transitions of ferroelectric and antiferroelectric systems. The oxygen atoms in ice are
tetrahedrally arranged, so that each atom is hydrogen-bonded to four others. But only
two H-atoms are attached to each O-atom and this gives an orientation to the bonds: the
two bonds where the H-atoms belonging to the water molecule are located, are represented
by incoming arrows, according to the so-called ice-rule. More recent is the application of
the 6-vertex model to surface phase transitions (roughening and surface melting) through
the van Beijeren’s construction [Bj77], which maps surface models to certain special cases

of 6V-modéls. The IRF identification of the 8V-model is given by
e(a,b,c,d) = —Jac— J'bd — Jsabed. (4.17)

The 6V-model can be thought as a special case of this model in which —J,—J', —J4 tend

to infinite, the appropriate differences remaining finite.
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Hard Hezagons model.

Here, the state variable can take on the value either 0 or 1, and the Boltzmann weight
is nonzero only if there are no neighbouring pairs with state variables equal to one. This

means

o; =0,1 0<0;+0; <1 for adjacent sites i and j. (4.18)

It is called hard hexagons because gluing the six triangles surrounding a particle they form
a hexagon and no two such hexagons can overlap. The energy can be shown to have the

form
e(a,b,c,d) = —Blog{z(2+Te+D/4(1 _ ap)(1 — be)(1 — ed)(1 — da)(1 —bd)}  (4.19)

where z is the activity. The model has been successfully applied to the adsorption problem

of a He* monolayer on a carbon surface.

a e\d:a/f g d
7S

Figure 4.4

These four exactly solved IRF models are the most significant ones. There are obvi-
ously other exactly solvable models. Among them we mention the next-nearest-neighbour
Ising model, the q-state model, the 3-spin model and the 6V with an external electric field.

Similarly to (4.8), we can obtain the Yang-Baxter relation for the IRF model. Writing
w(a,b,c,d) as 5%, we have

518(@)S55(a")Sg5(a'") = Si(a") S5 () Seé () (4.20)

g
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where summation over g is assumed. Relation (4.20) is also called star-triangle equation (a
term conied by Onsager in his work on the Ising model) and has a graphical interpretation

depicted in the figure 4.4).

4.3 Mathematical methods.

When the Boltzmann weights satisfy the Yang-Baxter equation ((4.8):vertex,(4.20):IRF),
the row-to-row transfer matrices commute and then the model is exactly solvable. This
fact offers a very powerful method to construct exactly solvable models through the two
following steps:

(1) Introduction of a model with appropriate physical requirements (symmetries, num-
ber of state variables, etc.)

(2) Solution of the Yang-Baxter equation fof the model.
Point (1) is crucial in order to obtain meaningfull solutions of (2). Let us take IRF models

for example. In order to solve the functional equation (4.20), we assume that
a=u, o =utv, a =v, (4.21)

SO thé,t
S 579(u)S% (w + )% (v) = 3 SEA(w)ST(u + v) S5 (v) (4.22)
g g

and reflection symmetry among the Boltzmann weights
Sai(u) = S5 (u) = Sag(u). (4.23)

Then the YBE (4.23) may be regarded as addition theorems for S%. The solutions are
expressed in terms of functions whose genus is less or equal than one. They are classified
into three cases: (1) elliptic (2) trigonometric and (3) rational. Recently, it was shown

that without assuming the additive parametrization, we obtain solutions with genus larger

than one [AY87].
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4.3.1 Hard square model with diagonal interactions.
The elliptic function parametrization.

In order to illustrate the strategies mentioned before, we use the hard square model with

diagonal interactions. This is a special case of IRF model where

w(a,b,c,d) = mp(atbtetd)/s Lact Mbdy—(a—b+c—d)
Hab=be=cd=de=0 (4.24)

=0 otherwise.

m is a trivial normalization factor; ¢ cancels out of the partition function; L and M are
diagonal interactions coefficents. The hard hexagon model is obtained by taking
m=1, L =0and M = —co.

Substituing these quantities into the YB equations and reducing appropriately the

seven equations obtained, we are left with the following three equations:
A;=AL i=1,2,3 (4.25)
where

Ay = z—l/z(l — zel M)
Ay = 222l 4 M — LM, (4.26)
A; = z——l/2(e—L + e~ M _ e—(L+M) _ zeL-%—M)’
and similarly for Al,2', L', M'.
In order to obtain nontrivial solutions of (4.25), we have to suppose that Ay, Ay, As

satisfy the constraints

A, =AY, Az = A1+ AT (4.27)

This implies that
(11— e~ L)1 — e™M)
T To(LHM) _ gL _ oM °

(4.28)
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Let us set A = A;. Then if two models differ in their values of z, L, M, but have the same
value of A and both satisfy (4.28), then their transfer-matrices commute. Note that (4.28)
is satisfied for all z in the limit L — 0 and M — —oo, which is the hard hexagon model.
Eliminating z between (4.27) and (4.28) gives

AT2HM — (el _1)(eM —1)(eFTM — eF — M), (4.29)

Given A, this is a symmetric biquadratic relation between e’ and e, which can be
parametrized in terms of elliptic functions (see [Ba82b], section 15.10). We denote the
elliptic theta function ©; by

©1(u,p) = O1(u) = 2p'/* sinu H(l — 2p®™ cos 2u + p*™)(1 — p*™) (4.30)

n=1
where ¢ is the nome and u the argument. Usually ¢ is regarded as a real constant, 0 < ¢ < 1,

while u i a complex number. Then we obtain for the Boltzmann weights:

01(3) —
wy = w(0,1,0,0) = w(0,0,0,1) = 9—1-6%-’3(%1)1‘—)-
1
O1(u)

ws = w(1,0,0,0) = w(0,0,1,0) = (4.31)

[©1(A)01(2X)]/2

0.(4X —
O1(2X —

where A = 7 /5.
If L',M', 2" are given for u' and the same with L",M", 2" for u", the YB equation

(4.25) are satisfied provided only that
utu +u' = % (4.32)

In fact, we can regard the parametrization (4.31) as a mapping from the variables L, M to

the variables p?,u. Taking p? and u to satisfy

~1<p’<l, —-7w/5<u<?2r/5 (4.33)
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this mapping is then one-to-one.-

The model has four regimes depending on the values of u and p. Defining A. =
(1 + V/5)]7%/2, we have

I:A> A, p? <0,—7/5<u<0, (4.34)
IT:0<A<A, p*>0,—7/5<u<0, (4.35)
IIT: -A. <A <0, p* >0, 0<u<n/5 (4.36)
IV:A<-A, p°<0, 0<u<m/5. (4.37)

The states in I and III are disordered. The ones in II and IV are ordered, in that the
translation invariance of the lattice is spontaneously broken. Therefore it results that the
system is critical on the boundary given by p? = 0 and A = +A.. For practical purpose,

it results convenient to define new parameters z and w in the following way:

I,IV: p? = —exp(—e¢), z = —exp(—n°/5¢), w = exp(2mu/e) (4.38)
II,IIT: p°

= exp(—¢), ¢ = —exp(—4n?/5¢), w = exp(—4nu/e). (4.39)

Therefore, we have seen that if two models have the same value of z, but different values of
u, then their row-to-row transfer matrices commute and the Boltzmann weights are entire

functions of u.
4.3.2 The corner transfer-matrices.

Analytical methods to calculate physical quantities have been developed. The free energy
can be obtained by the inversion method [Sh81,Ba82al. Another method which uses in-
tegration over Grassmann variables [Sa80] can be applied for some models and simplifies
in a very elegant way the computations, showing explicitely the fermion algebra hidden in
the problem.

The one point function (magnetization, density,etc.) is generally obtained by the
corner transfer-matriz method [Ba82b]. Let us introduce the corner transfer-matrices.

The lattice is divided into four quadrants. State variables on the boundary are fixed to
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C(¢" | ¢") B(¢' | ¢")

D(¢" | ¢) Alg | ¢)

Figure 4.5

their ground state values. For configurations in the lower-right quadrant, we define the

corner transfer-matrix A whose matrix elements are

A(gy, - somlal, o 00) = 8(o1,01) ) [T wlos,0,00,00). (4.40)
faces
3 #

The sets of variables ¢ and ¢’ are not summed over. We write A = A(¢,¢') and similarly,

we introduce B, C and D for the other three quadrants so that the partition function
(4.13) of the full lattice becomes (see figure 4.5):

Zn= Y A(¢|¢')---D(¢"|¢) = Tr ABCD. (4.41)
¢...¢,/u

The summation in (4.41) is over all spin sets ¢--- @' subject to the restriction that

o1 = oy = oy = o}". This can be taken into account writing A,B,C,D in the following

block diagonal form:
+ —

P A
-\0 //

and the same for B,C and D. Using these definitions, we can write

1
Mo =< 0 >="Z; z (5] H LlJ(O'i,U'j,O'k,O'l)
all all

spins faces
Tr SABCD I 0
- T T = . 4.42
Tr ABCD ’ (o I) (4.42)
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By using the analytic properties of corner transfer-matrices and the explicit form of the
Boltzmann weights, it is then possible to calculate the one-point function < o1 >. Let us
only recall the main steps leadind to the result.

First, because of the symmetries of the YBE, we can relate B,C and D to A and

write
A I SA%(u)A%(X — u)
T Tr AZ(w)AZ(A—u)

(4.43)

Then, since A(u) and A(v) commute in the thermodynamic limit, they can be simulta-
neously diagonalized by a u-or v-independent transformation and also normalized so that

their top left elements (the maximum eigenvalue) becomes one. Therefore

[A(u), A(o)] = 0 (4.44)
A(u)A(v) = scalar x X(u + v) (4.45)

and .
Aglu) = _1_’__&_:}(%@5, Xo(u) = fi—m%}—). (4.46)

The 1 =1 case implies that the scalar is 1; for < > 2, we have
ai(u)e;(v) = zi(u + v). (4.48)

These equations must be true for all complex numbers v and v in some domain and
constitute a very strong condition on c;(u). We prepare some mathematics to write down

the result. Define a function F(oy,¢) by

!
F(00,q) = F(a0) = Z gTriRoatioat (4.48)
where the sum Z’ is over 01,03, -- under the restriction
R: 6;=0,1 and 0<0;+ 0341 <1, 12>0, (4.49)

and two elliptic functions through

G(z) = F(0), H(z)=F(1). (4.50)
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In regime I, we can write that

o;(u) = RM 2o e e t2oatdmon) (4.51)
where
zG(z -
R? = — H((a:))’ —1<z<0, z=e (4.52)

Substitution in (4.43) yields

R*F(1) 6

= == = 4.53

and making further usage of identities found by Ramanujan, we finally arrive at

zG(z)H (z®)P(z3)
P(z)

, P)=[Ja-2"). (4.54)

n+1

My =

The one-point in other regimes and the free energy can also be obtained in a similar way

without any approximation [Ba82b].
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‘Chapter 5

A physical application:
the theory of magnetic alloys

5.1 Introduction.

The subject of this chapter is the description of some models applied to the theory of dilute
magnetic alloys.

The development of the theory started with the following questions: 'Under what
circumstances does a localized moment exist in a metal?’ and "What are the consequences
of the interaction between a localized moment and the conduction electrons?’.

Below, we shall discuss various model hamiltonians which can answer, at least par-
tially, these questions: the simple s-d exchange model (or Kondo hamiltonian) and the
more general Anderson model.

The great interest for these models is due to the following fact: they are quantum
many body theories characterized by the growth of an effective coupling at low energies.
As well known, the principal difficulty in solving these problems is that the relevant low
energy phenomena cannot be treated in the framework of conventional perturbation theory.

In order to avoid these problems, various approaches have been used. Among them,
phenomenological theories (Nozieres [N73]) and renormalization group tecniques
(Wilson[W75]). Remarkably, it has been shown in the last years that many of these models

are completely integrable and the relevant solutions have been obtained.
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5.2 Transition metals and their compounds.

An interesting group of solids is the family of materials containing transition-group ele-
ments whose atoms have incomplete d or f subshells. The transition metals are divided
into three large groups - d metals, f metals, and mixed d-f metals- which are further
divided as follows:

a. Jd metals Sc, Ti, V, Cr, Mn, Fe, Co, Ni (iron group).

b. 4d metals Y, Zr, Nb, Mo, T¢c, Ru, Rh, Pd (palladium group).

¢. 5d metals La, Hf, Ta, W, Re, Os, Ir, Pt (platinum group).

d. 4f metals Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er,Tm, Yb, Lu (rare earth
metals)

e. 6d-5f metals Ac, Th, Pa, U (actinides)

Metals and alloys in which atomic magnetic ordering (ferro-, antiferro- or ferrimag-
netic) is observed in a certain temperature interval requires that at least one of the con-
stituents be a transition element. In these materials, many-electrons effects are m;,hifest
very intensively and even when they possess no magnetic order, they still exhibit unusual
thermal, magnetic, optical, electrical and even mechanical properties. The nature of these
anomalies is due to the peculiar behavior of d and f states. |

Let us consider the atom of a transition element. First we have to pay attenéon to
the small radius of d electron and particularly f electron subshells in comparisiéﬂwith
characteristic distance between nearest ions in the metallic state of a relevant element.
Another interesting feature is that the filling of d and fsubshells proceeds in jumps at the
middie and end of each series. This indicates that the one-electron approach is inadequate
to describe the atoms of the transition elements. In particular, we have to take account of
the exchange correlation interaction, which leads to the formation of an atomic magnetic
moment.

What happens to electronic states as atoms are united into a crystal? We are con-
cerned primarly with the states of unfilled shells, for these states are responsible for almost
all the properties of the crystal. When atomic states form a band we have a gain in kinetic

energy and a loss in Coulomb repulsive energy. If the radius of a relevant electron subshell
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exceeds the nearest atom or ion distance, Bloch states arise. This situation occurs for
outer s - and p -shell electrons, giving rise to metals, covalent bonds or ionic crystals.

A different situation occurs in rare-earth metals for the states of f electrons, which are
believed to be well localized (~ 0.3 A) These electrons maintain their atomlike character
and do not form a band, so that their magnetic moment in compounds or in the metallic
state are normally close to those of the corresponding atoms.

Both cases may be realized for d states. The atomlike behavior of d -states persists in
many semiconducting compounds (f.ex. NiO). In other cases metal-insulator transitions
occur. But on the whole the problem as to the nature of d states is solved rather in favor

of their band character.

5.3 The Kondo problem : s-d exchange model.

The interaction of magnetic moments with conduction electrons and the magnetic forma-
tion in metals has been a topic of large interest during the last decades.

It is well known that a small amount of magnetic impurities dissolved in a non-
magnetic metal drastically affects its properties. The first striking experimental data on
this subject was the occurence of a resistivity minimum at low temperatures found in
certain, supposed to be pure, metals. Later it was realized that the effect was due to
transition element impurities and is proportional to their concentration.

Then detailed studies of dilute magnetic alloys have shown that in all alloys below a
certain temperature T} , called the Kondo temperature, the impurity part of the magnetic
susceptibility becomes temperature independent and remains finite at 7' = 0.

The properties of dilute alloys with localized moments are basically determined by
the exchange interaction between the conduction electrons of the metal and the magnetic
impurity. The conventional description of this interaction is based on the so-called s-d

exchange (or Kondo) model:

Hy—a = Z ekc;CUCk” +1 Z Claavga'ck'a"s“ (51)

k,o kk'oco!
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where c}: +»Cko are the conduction electron creation and annihilation operators, ey is the
electron kinetic energy, S* is the impurity spin operator localized at z = 0.

Some considerations have to be done at this level. First of all, in deriving the Hamil-
tonian, the spectrum has been linearized around e = 0 since we are interested only in
the low- temperature properties of the metal. As we will see later, this is fundamental for
having the integrability of the model. Only the s-wave states around the impurity are kept
and a cut-off D is imposed.

The Hamiltonian is thus built out of operators ckim with |k —ex| < D and I =m = 0.
Furthermore, in real alloys the exchange interaction is always antiferromagnetic:

I >0, with p(er)I < 1.

In 1964, Jim Kondo observed that the spin-flip scattering amplitude computed to sec-
ond order of perturbation theory rises as energy and temperature decreases. For example,
the resistivity due to the magnetic impurity is proportional to the scattering amplitude

squared:
D
R; ~ cI*(T) ~ c[I + pI*log T +0(p*IP))? - (5.2)
where ¢ is the concentration of magnetic impurities. "

When the temperature is of the order of the Kondo temperature
1 ;
Ty ~ Dexp(—~;—I—) - (5.3)

all the terms of the perturbation expansion are of the same order in magnitude and, despite
the weak bare coupling, perturbation theory no longer holds.

Another example is the impurity susceptibility which attains its free value
x=pT (4 = p2gS(S +1)) (5.4

up to corrections that vanish logarithmically at high temperatures:
2
T 1 InlnT/Tk 1 3
f=—(1- — O(——=)")-
X T( InT/T, 2In®T/T (lnT/Tk) )

we see immediately that at T ~ T}, perturbation theory breaks down and nothing can be

(5.5)

learned about the ground state. This crossover from the strong coupling regime (7' > T%)
with logarithmic behavior to the weak coupling regime (T' < T%) with Fermi liquid simple

behavior, is the essence of the Kondo problem.
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5.4 The Anderson model

The other interesting problem in the subject Magnetic impurities in non magnetic metals
is the description of the electronic mechanism leading to the formation of the magnetic
moment of an ion with an incomplete inner shell placed in a metal.

The experimental evidence is that various impurities in different hosts display widely
different behaviours. For instance, Mn, Cr and Fe in Cu, Au and Ag matrices, like Ce in
La, possess well-defined magnetic moments: the impurity susceptibility follows the Curie
law at high temperatures. On the other hand, Ni and Ti in the same Cu, Au and Ag
samples prove to be non-magnetic. Transition ions which proved to be magnetic in Cu,
Au and Ag samples, lose this property in Al (see, for example [Ri74]). Similarly, Ce in La
ceases to be magnetic after Th or Y is introduced (see [St77] for a review).

Whether the impurity is magnetic or non-magnetic, depends on the properties of both
the impurity ion and the host metal. A free 3d or 4f ion is obviously magnetic. However,
the metal overlap of the 3d or 4f electron wave function with that of the conduction
electron band of the host metal leads to the delocalization of the impurity electron states

and can destroy the magnetic moment [Fr58].
5.4.1 Derivation of the model.

The behaviour of the impurity is basically affected by two interactions: atomic Coulomb
and exchange forces in a free atom and the admixture of the wavefunctions with the
conduction electron band of the host. Let us consider the general form of the metal-

impurity interaction:

N
1 e? 1 dVimp(r;
H:HO'}‘Zme('I‘j)-!--Z‘ZT—”'—}-Zm d:j( J)(Lj-crj). (5.6)

j=1 iz =
Here Hy is a hamiltonian of electrons placed in the potential of the crystal lattice; m,L
and o, N are the mass, orbital moment, spin and the number of electrons, respectively;
Vimp(r) is a potential of the impurity stripped of all the electrons of the outer shell. The
third term in (5.6) is a Coulomb interaction, whilst the fourth term describes the spin-

orbit coupling caused by the impurity potential.
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A crucial observation, at this point, is that the [ = 2 (or 3) levels of Vj,, are very
close to the Fermi surface, thus forming the narrow resonance. Its small width is due to
the difference between the interatomic distance k;! and the Bohr radius r5 of the d(f)-
shell: kzrs < 1. This greatly simplifies the Hamiltonian (5.6) because the eigenfunctions
can be expanded ﬁsing as a basis the orbital and band wavefunctions. For the latter it is
convenient to choose a spherical wave with the centre at the impurity site:

U= 3" O (k,r)al,,, + D a(r)d,, (5.7)
lym,o m,o
Whefe k<rz! and asz » is a creation operator for the spherical wave with centre at the
impurity point:

Ui (k1) = rl(krmm(;). (5.8)

The operator di . corresponds to the localized components of the state with [ = 2,3:

Y4(r) = Riy(r/rB)Yigm(r/r), | (5.9)

where [y = 2 and 3 for the transition and rare-earth impurities, m is a z—componéht of the
angular momentum: m = ~ly,...,lp.

It must be noted here that the set of functions so chosen is not orthogonal. However,
it can be shown that the overlap integral relative to the non-orthogonality is sufficiently
small. When rewritten in terms of af,a and df,d the hamiltonian contains a rather large

numbers of terms.

(i) The terms with only @ and a! form the hamiltonian of the host metal:

Hoy= Y e(k)aln,akimo- (5.10)

k,l,m,o

(#1) The terms with only d operators represent the hamiltonian of a 3d(4f) ions in a

crystal field:

Ha.tom = Z €mm! djnadm'c‘{‘

’
m,m’,o

Z Umgaa;m4a4d1‘ dinzo’z dmsdsdm40‘4 —ALg -S4 (511)

mM1013M202 "M10
me,04
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Here €, is the one-electron atomic energy (measured from the Fermi energy chosen
at the origin). The second term is the non-relativistic part of interaction between d(f)

electrons. The last term represent the spin-orbit coupling:

L= Y dhoInmdms (5.12)

m,m’,o

is the total angular momentum of d(f) shell and

Sa= Y dl 000 dmo (5.13)

m,o,o’

is the total spin of the d(f) shell.
(iii) The terms with a a and a d operator represent the one-electron mixing interaction:

Hmiz = Y 020 (0l odmo + hoc.). (5.14)

Lm,m! o
Evaluating the hybridization matrix element, one can always neglect the crystal field and
spin-orbit effects. Therefore, we have spherical symmetry and this interaction involve only
conduction electrons in the partial wave [ = I, requiring it to have the following form

which conserves the angular momentum as well as spin:

Hmi:n = Z vk(ailomadma + hC)

kym,o

lom

V27 = b1ty Omm - (5.15)

(iv) Finally there are terms containing both d and a operators which have the following
form: (1) a'dfad describes the contact exchange coupling. This interaction is relevant
only for alloys which do not exhibit the Kondo effect.

(2) a'a'dd,d'daa terms describe processes that in the cases of interset may only be
virtual (the states with (ng, 4 2) corresponding to two additional orbital electrons or holes
lie sufficiently high).

(3) a'a'ad,d'd'da terms gives only trivial renormalization of virtual-mixing coupling

[Hi78)
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Thus, the behaviour of a magnetic impurity in a metal may be described by the

so-called semiphenomenological Anderson hamiltonian [A61]:

lo
1
Hy = Z Z e(k)a}:maakma + i Z 'vk(aiﬂwaf,m7 +dl _akmo) + Hatom, (5.16)

ko=1] m=—Ig k,m,o
where Hgiom is given by (5.11). Here we write only conduction electrons in partial waves
with | = I,
Aklgmo = Gkmo- (5.17)

The essence of this hamiltonian is that it describes the one- dimensional system. All
quantities entering it depend only on the modulus of k : |k| = k. This one-dimensionality
follows from the hypothesis about a spherical Fermi surface and impurity-ion potential.
Obviously, one-dimensionality is held only until one can consider impurities as independent
scatterers.

Let us now shortly discuss the energy scales involved in the hamiltonian (5.16). First
we ignore the hybridization term. ,

Let nfio) be the occupation number in the ground state of Hytom, |n¢(i0) > being the
subspace of atomic states with that occupation number. The hybridization term in (5.16)
R

couples |n;’ > to the subspaces ]nfio) + 1 > with the occupation number ngo) + 1. Since

the conduction band acts as a reservoir, one-electron energies corresponding to transitions
from |n§0) > to [ngo) + 1 > should be measured from the Fermi level. Typical ionization
energy for 3d and Ce ions. is ~ 2 — 3eV. Conversely, in some 4f compounds, one of these
ionization energies may be sufficiently small, while the other is large.

Within a given valency subspace, the various terms are split according to Hund’s rule,
and if L # 0 one should then consider the crystal electric field and the spin-orbit splitting.

In transition impurities, it results that all the energies involved in the above-mentioned
effects exceed the possible temperature interval. Therefore, one should consider in hamil-
tonian (5.16) only virtual transitions between the ground state of multiplet In((io) > and
the states of multiplets Ingu) + 1 >. The typical energy differences corresponding to these
transitions are denoted by E..

The hybridization mixes the states with different occupation numbers and may break

the localized moment. Resonances with adjacent occupation numbers acquire the width
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T ~ p(es)vi.

provided that

The real processes with change of occupation number can be neglected

T
— <L 1. 5.18
< (5.18)

If the above-mentioned condition holds, the system is in the local moment regime and
we have the Kondo effect. Indeed, Scrieffer and Wolff [SW66] have shown that, in this
limit, an exchange hamiltonian emerges as a result of projecting the Anderson model into
a sector with a fixed number of particles nglg).

In the opposite case, two configurations ln&o) > and Infio)il > have large probabilities
of occupation, with the result that the system exhibits an intermediate impurity-level occu-
pation, that is, a nonintegral valence. This state is non- magnetic and only the fluctuation
of the occupation numbers for different spins can result in a magnetic susceptibility.

Therefore, changing the relative values of U,I' and ¢4 the non-magnetic regime can go
over continuously to the magnetic one, but simultaneously, the impurity magnetic moment
is compensated by the conduction electrons due to the Kondo effect. Hence, the Anderson
model provides a unified description of the narrow many-body and the broad single-particle

5.4.2 The Anderson model for rare earth alloys.

Not all variants of the Anderson model turn out to be integrable. Some parameters in
the model must be constrained in order to have an Hamiltonian diagonalizable by Bethe’s
ansatz.

In this section, we sall consider the so-called degenerate Anderson model which de-
scribes the Cerium or Ytterbium impurity in both the localized-moment and mixed valence
regimes.

In this case, the strong e~ — e~ repulsion in the f -shell enables to restrict ourselves
to very large values of U. The f -level is then either empty or occupied by only one
electron. The possible transition correspond here to 4f° 1S, « 4f? 2F5/2 for Ce and
4f° 18, < 4f1% 2Fy ), for Yb. We denote the siglet (non-magnetic) state by |0 >. Due to

the spin-orbit coupling, the magnetic state is characterized by the total angular momentum

82



J and its projection j. Furthermore, we assume the matrix element of hybridization
< J,j|Hmizl0 >=V (5.19)

to be constant.
Let us define the operators Xg;,X ;o changing the configuration of the impurity shell

as follows:

0> = Xo;lj > (5.20a)
[] > = onl() > . (5201))

The other matrix elements of these operators are set to zero. These X operators satisfy

the following parastatistics:
X;0Xoj + Xojs Xjo = Xjj0 + 655 Xoo (5.21)

or more generally

Xk Xpg = 6kpXjg (5.22)

and have matrix representation X'fo = barbg;. In terms of X, the Anderson Hamiltonian

takes the form:

Hy = Z e(k)a};jakj +V Z(aljxoj + Xj0ak;)
k,j kg

J
-+ Z éfij. (5.23)

j=—J

where we omit the subscript J in axs;. Now, the infinite Coulomb repulsion in the f-shell is
hidden in the algebra (5.21), since Xy creates an f -electron subject to the condition that
the f -level is empty. Depending on €;/T', the impurity has a magnetic moment (¢; < T),
has a mixed valance (ef ~ I'), or is non-magnetic (5 > T').

We shall discuss the Bethe Ansatz equation of this model in section (6.2).
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Chapter 6

Solutions of the models.

6.1 Bethe Ansatz for the s-d exchange model.

In section (5.3), we formulated the canonical hamiltonian describing a magnetic atom in

a non-magnetic host metal, the so-called s-d ezchange model:

Hs—q= Z ekc;tdcka +1I Z c;'wcrf,‘c,,ckrorS“. (6.1)

k,o kk'oo!

Shifting the hamiltonian to the coordinate representation,we obtain

Hy g= / dz <—~iZci(m)-aa—xca(m)+I6(z)2ci(z)a"fa,ca/(m)5“ . (6.2)

We consider the eigenstate in which there are electrons with spin components oy,...,0n
and a localized moment with the components s = —§, ..., S:
3s+Sn
1@ >= /‘I’al,,,,aN,s(ccl,...,a:N)c‘;l(ml)...cI,N(zN)(ST) I dos 10>,  (63)
j=1

where | 0 > is the state without particles and with a component of the impurity moment
equal to —S.

The wave function ¥, . o, s satisfies the Schrodinger equation

N 9 1 X
(-—’I, Z 5—; - E)\I‘Uu..o‘)\r,a + _2—12 5(1:.7.)0-:;' 0’;’ S:LS"I’UI’"C"JU"UNJ, = 0. (64)
j=1 "7

=1
Bethe’s hypothesis enable us to write down the solution of this equation for arbitrary NV.
Let us mention one more time the arguments anticipated in section (4.1) with a little

modification:
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Suppose that @ = {qo,...,qn} is a permutation of the numbers {0,1,..., N} while
Q' = {4}, qn'} and P = {py, ..., py } are permutations of the integers {1, ..., N}, with Q'
coinciding with @ from which ¢; = 0 is excluded, then in the region X¢g = {z4, < 74, <
. < gy }, the wave function is Bethe Ansatz (see eq.(4.2)):

N
\chl,..o'N,s(ml, ""7wN) = ZAa'l..aN,.s(Q) Q, l P) exp{i kaj m.‘l} (65)
P j=1

where {k;} is a sequence of different values of k; and zo = 0. The state (6.5) is the
eigenstate of the hamiltonian (6.2) with the energy

E= i k;. (6.6)

The factors As,..o,,s are obviously not independent. First we must require that ¥ be

antisymmetric under permutations in the pair (z;,0;). As a result

Acrl..o'N,a(Q; Q' I P) = Aaq;..aqu,s(Q; Q'P)(“‘I)P) (67)

where Q'P is the product of the permutations and (—1)F is the parity of the permutation
P. The factors A for different regions are linked through the Schrédinger equation (6.4),
which determines the discontinuity of 4 on the boundary of the region X¢g. If Xg and X 3
only differ by permutation of the particle z; and the impurity zo = 0, then:

A...Uj,-..,&(@) = R:::'aj A...a;...,s’(Q)‘ (68)
where
oot I
R = Res = xp (15005 9)) (6.9)

Here we define (o - S) as o#S*. If two regions differ by permutation of the particles z; and

~

z;, then the factors A(Q) and 4(Q) are connected via the permutation operator, i.e.:

A...cr;...crj,...(Q) = P;i:;%A...UZ...U;,...(Q)

where

o~

oioh 1 _
P —2-(1 -1+ Taial aaj,,;) = 50,.0;,5%0: (6.11)

O‘J'O’.

.o~
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is the permutation operator.

Let us consider the scattering of two particles by the impurity. There are two ways in
which we can go from the region z; < z5 < 0 to the region z; > z, > 0. The first path,
say

T1 <23 <0 =2 <0<z —=0<<z1 <2y 2 0< 2y <2y
transforms A into P12 R319R20 A. The other path, namely
1 <22 <0 > z2:<0<2; —m22<0<z; =20<22<2;
leads to A — RyoR19P124. It is easy to check that now
P12R1oR20 = RoR10P12. (6.12)
This so-called factorization condition , together with the unitarity conditions
P;P;; =1, R;oRo; =1, ‘ (6.13)

guarantees that all ways of factorizing @ into products of pair transpositions lead to the
same result, ensuring the applicability of the Bethe hypothesis. Thei‘efore, the general
solution of the Schrodinger equation (6.4) is given by the formula (6.5) together with the
conditions (6.7),(6.8) and (6.10) [An80;Wi80,81].

6.1.1 Periodic boundary conditions.

The parameters {k;} of the wavefunction (6.5) are so far arbitrary quantities. In order
to find the spectrum of the hamiltonian, we put the system on a box with lenght L and

impose periodic boundary conditions (PBC):
U(z1,y.ey@jyeny) = ¥(z1, .0y + Ly oy Ty). (6.14)

forany j =1,..,N.
The equation (6.14) means that the particle at z; must be shifted through all other
particles in the same order as they are spatially arranged. Each ’shifting through’ corre-

sponds to an exchange of the spatial order of two particles or one particle and the impurity
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and involves the operators P;; and R o respectively. Between collisions the wavefunction
acquires the phase shift k;L.
The resulting equation for the coefficients A(P | @) leads to the following eigenvalue
problem
exp(hsD)E =Tje, €= A(I|I) (6.15)

where

T; = ij+1...PjNRjon1.;.ij__l (6.16)

Due to. the factorization conditions (6.12) and (6.13) the operators T; commute with each
other and this guarantees the existence of a common set of the eigenvectors of the operators
T;. In fact, due to their special form here, T; do not only commute but are simply equal

to each other:

' [N
T_al""’N”
jo1...0N;s

V3. (6.17)

12
— s3
- 50"10’250"10‘2 o 6°’N—10'NR0N0'1

In order to diagonalize the matrix, we identificate our problem to a vertex model and
use the strategy pointed out by Baxter [Ba72]. Namely we build a parametric set of
commuting operators T(a), the T; being members of this set and we employ the quantum

inverse-scattering method.

’ ﬁnlez TL.!_

0]
]

{

« ~d

~

f

¥

of commuting operators.

For an arbitrary impurity spin the factorization equation includes matrices of different

rank. For this reason, we separate the matrices that refer only to the particles, T::Z} ,
2

from those that refer to a particle and an impurity, R?% (a)(o = 1,2) and (s = -5, ..., 5).

With these notations, we obtain

rij(a)Rio(a+ o' )Rjo(a') = Rjo(a')Rio(a + a')rij(e), (6.18a)

rij(a)rip(a+ o rjr(a’) = rjn(@)rik(a + o' )rij(a), (6.18b)
with the condition that at some op:
v
Rjo(co) = exp (25(0 . S)) . (6.19)
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This condition automatically ensures that within an arbitrary factor, P;; = r;;(0), that is
P;; belongs to the set r;j(a).
Let us write down the main steps leading to the solution of the eqns (6.18). First we

generalize the unitarity conditions (6.13):
rij(a)rji(—a) =1, (6.20a)

Then we write R(ayg) in the form

exp (ig(a . S)) = wy + 2w'(o - S) (6.21)
where . ’
T (6.22)
o — eiIS/2 _ e~ I(S+1)/2 (6,23)
2(25 + 1)

Using the O(3)-invariance of the condition (6.19), the matrices r and R must be sought

for in the form

R3Z (c) = wh(@)fsorSusr + 20'(a)(00er - Sy (6.24)
i (@) = wo(@)8aa Sy +0(@)(Gaor - Tupr) = boiot 6001 (6.25)
For convenience, we introduce the following notations:
a=wy+ w, b=wy—w, c=2w (6.26)
and the same for primed indices.

Substituing (6.24-5) into eqns (6.18), we find that

bla) _ ¥(a)

M) = e = ()

(6.27)

and
b'(a)c'(a+ a')e(a') + c'(a)c'(a + a')b(a) = c' ()b (a + a')e(a'). (6.28)
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In terms of h(a) , we obtain
h(a)+ h(a') = h(a + ') (6.29)

and without loss of generality, we can assume that

h(e) = — (6.30)
g
where g is a parameter to be determined from the initial conditions at the points a = 0

and a = ag. Choosing g = 1 and respecting the unitarity conditions (6.20) for any «, we

obtain
b(a) = = —(:ig a(a) (6.31a)
(a) = - :iga(a) (6.31b)

and
g=3 52+ - tan(I5/2 +1/4). - (6.32)

6.1.3 Diagonalization of the monodromy matrix.

Let us construct the monodromy matrix

{jl f";jN-{—l}ak
{il 1'";2'N+1}$l

(a5, anpa) = ri (0n — @)

kn_1k
T,ll:c;jkzz(az - a) ..... 7‘1;;:7; N(CZN e a)ngile+1(aN+1 - a), (6.32)

which is graphically represented in Figure 6.1. For convenience, we rewrite it as
L(osar,.cyayg) =raa(ag —a) - ron(ay — @)Rag(ay, — a), (6.33)

where * corresponds to operator and matrix indices.

Then, it follows the important relation [Be79]:

T(a7 (23 PR )aN+1) |rx=a1=---=aN=0,aN+1=a0: TJ (634)
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Figure 6.1
Let us then denote the matrix elements of the operator matrix L as
L = A, L; = B, L} =C, L =D.
The matrix r(a — a') in (6.33) according to formulae (6.24) and (6.26) is
P89 (@) = b(a)8qq Sk + c(@)8ghs Sigr
where b(a) and c(a) are given by (6.31). Rewriting (4.9) in components we have

bo — o')L{(a")Lii (o) + e(a — o' )Li (') L ()

= b(a — o' )LE(Q)LI(&) + ¢(a — &' Lf(a)Li ().

We need only the following commutation relations from (6.37):

[A(a), A(8)] = [B(a), B(B)] = [C(a), C(B)]
= [D(a), D(B)] = [A(a),D(B)] =0,
bla — B)A(«)B(B) = a(a — B)B(B)A(a) — c(a — B)B(a)A(B),
b(8 — a)D(a)B(F) = a(f — a)B()D(f) ~ ¢(f — a)B()D(§),
The commutativity of traces of the L matrices,
[A(a) + D(a), A(B) + D(B)]
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(6.38a)

(6.385)

(6.38¢)
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is the consequence of eq (6.38a).
Let us consider the state () with all particle’s spins up, the impurity spin projection
being +S5. The matrices ryj(a; — a), Rw(ant1 — @), when applied to the vacuum ,

become triangular matrices:

it = () 27 )0 0.40

_((S4+1/2)a'(a) — (5§ —1/2)b () 2d (@) S~
Rro()fo = ( 0 (5 —1/2)a'(a) + (5 + 1/2)¥'(a) ) -
(6.41)
The action of the diagonal elements A and D of the matrices r,; and R, to the

vacuum will be

A(a)Qo = AA(Q)Q,(], D(OL)QQ - AD(&)QQ, (643)
where
N
Aa(e) = H a(a; — a)[(§ +1/2)a' (awss — @) — (8 — 1/2)b' (ansr — @)] (f6.44a)

N
j:l i
Other eigenstates can be constructed by successive applications on Qg of the "annihilation”

operator B(ay) which decreases the total spin projection by one:

M
Qpr(aly ey anr) = H B(ag)Q. (6.45)
B=1

It is possible to show that Q5 is an eigenvector of the operator A(e) + D(a), if {aj}
satisfy a certain system of transcendental equations. Let us note that by virtue of (6.38a)

and (6.38b), carrying A(a), D(a) through all the B(ey), we have

M M
(Aa) +D(a)) [] Blap)20 = Aa, {ap}) ] Blep)
B=1 B=1

M M

+ > Ay(e,{ap}) ] Blap)B(a)0,  (6.46)
=1 B=1
B#~y
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where

0 fo a(a — ap) a(al — @) . ]
A(e, {ap}) —ﬁl:[ o a,ﬁ)AA( )+£3[;Il Hal — o) Ap(a); (6.47a)
M
' cla — o a(al, — o) ,
Arte toph) = bEa O‘Ly; ﬁI—Il b((a'—y a'ﬁ)AA( 7
ﬂ;v
o(ed, —a) 5 ala—ap),
~bal, —a) ﬂgl b(a — a'ﬂ)A"(““f)' (6.470)
B#~

The first summand on the right-hand side of (6.46) is obtained when we carry A(a), D(«)
through B(ay), using only the first term on the right hand-side of (6.38ab). The second
summand is obtained from the remaining commutations. The fact that the 2 terms
arising from the subsequent commutations reduce to only M terms is due to the special
form of the functions a(a),b(c) and ¢(a). A proof by induction of the equations (6.46-47)
will be given in Appendix (A).

As a result we have that Q({ap}) is an eigenvector of A(a) + D(a) with a spin
projection S* = N/2 — M + S and eigenvalue A(a,{ap}) if {ap} satisfy the following
system of equations:

H (aj —a ) [(S +1/2)a (enys — @) = (S = 1/2)b' (owys — o))]
blaj — a) bla; — a)[—(§ —1/2)a'(ays — o )(5 +1/2)b'(awss — aiy)]

M
a(ag — o) b(el, — ag)
I__—_[ a(al, — ajp) b(ak—a'v)' (6.48)

Setting
ap = g(—X+1/2), a=0, aj = 6N+1,j (6.49)
and using eqns (6.46) and (6.47a) with 5(0) = 0, we obtain

A +1/2
—1i/2

The condition removing the 'unwanted terms’ yields the following equations for A,:

exp(ik; L) = exp(iIS5/2) H( ). (6.504)

Aa +1/2 5, Aa +1/g+zS —dg+1
50B
( —1/2) (/\ +1/9— Hx\ —-Ag—1 (6:508)
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The Bethe Ansatz equations (A) and (B) solves the problem of diagonalization of the s-d
exchange hamiltonian and completely describe its spectrum.
The energy eigenvalue is determined by the momenta {k;} of the charge density waves

and by the rapidities {Ay} of the spin density waves:
N
E=) k; (6.51)
j=1
and the spin projection is given by
S*=N/2—-M+S. (6.52)

Equations (6.50-52) for S = 1/2 were obtained by Andrei [An80] and Wiegmann [Wi80a,381]
and for arbitrary S, by Fateev and Wiegmann [FW81la] and Furuya and Lowenstein [FL82].

6.2 The Bethe ansatz for the degenerate Ander-
son model.

Rewriting the Hamiltonian (5.23) in coordinate space, we obtain

Hy = EJ:/d:c {—ic;(w)—a—a;q(m) + V5(m)[c}Xoj + XjOCJ‘(:B)]} + EJ: erX;;.  (6.53)

This Hamiltonian is an integrable variant of the degenerate Anderson model. As in the
Kondo model, two approximations used are crucial for the integrability: the linearization
of the spectrum and the contact interaction. Other approximations like the exclusion of
the multiple occupancy of the flevel can be avoided but would considerably complicate
the solution. As known, to prove the integrability of the hamiltonian and therefore the
validity of the Bethe hypothesis, it suffices to find out whether the two particle S-matrix

satisfies the factorization conditions.
The one particle problem.

Consider one electron with momentum k and spin m. This electron is either localized at

the flevel or propagates through the crystal. The one-particle wavefunction has the form:
|¥em(z) >= (/ dxgk(w)cL(w) + ekao) 0> . (6.54)
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Recquiring the Schrodinger equation H |y >= E|¥rm > to be satisfied yields

~i§—gk(z) + Verd(z) = Egr(z)
T (6.55)

Vgr(0)+eres = Eer,  gx(0) = [gk(0+)+gk(0 )]

The wave function gi(z) is a plane wave for ¢ > 0 and =z < 0 with a discontinuity at the

origin:
gr(z) = exp(ikz + isignzdr), (6.56a)
ér = tan™? LV (6.560)
k=t 2 k —_ ef )
v
er = gx(0), E =k. (6.56¢)
k—ef

The two-particle problem.

The two-body wavefunction consists of three terms,
¥ >= /dmldzzgmlmz(wl,mz)cfnl(:cl)c;z(a:z)m >

+/d21€mi Inl(:l:l)szolo > +\/d$26$; ;z(wg)Xml()]O >, (657)

the first one corresponding to two traveling electrons and the other two to one electron
being localized. The amplitudes gpm,m,(z1,22) and emn’
[=i(82y + 02,) = Elgmym, (z1,72) + V(en? (21)8(22) — e} (22)6(21)) = 0
(=102, + €5 — E)en?(21) + Vgmym,(21,0) =0

(=i0z, + €5 — E)eqt(22) = Vgmym,(0,22) = 0

satisfy the equations:

(6.58)

E =ki + k2, Gmama(21,%2) = —gmym, (T2,21)
The solution for gm,m, is a superposition of plane waves in all six regions shown in
fig 6.2. First, it is discontinous at the lines z; = 0 and z, = 0 where one of the electrons
crosses the impurity; the jumps are given by the one-particle phase shift (6.56b). For the

half-plane z; < z, the function gm,m,(z1,%2) can then be written as

gm1m2(zlﬁm2) = Amlmz (1a 1)9’61(31)9% (m2)
+Am1m2(1a2)9701(332)9702(:81)' (659)
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The six sectors in the two-electron problem. The dash—dotted line represents a trajectory. X. = x, = const.

Figure 6.2

A similar expression holds for the other half-plane z, < .a:l, where we call the coeflicients
Amimy(2,2) and Armym,(2,1), respectively. By antisymmetry of the wavefunction we have
Amima(L,1) = =4, m,(2,1) and dmym, (1,2) = —Am,m, (2,2), such that the coefficients
with interchanged spin indices are completely determined. The constants A, m,(7,7) are
the amplitudes of the wavefunction when both electrons are to the left of the 1mpur1ty
The continuity of g(z1,z2) and the discontinuity of its derivative across the bo‘ﬁndary
line z; = z, yields two relations among the four constants. The relations among the
amplitudes for z; < z5 and z, < z; determine the scattering matrix. The solutions of the

system (6.58) are finally given by the following expressions:

Imim (T1,22) = (Gk, (21)9k, (22) — gk, (22) gk, (21))
(Am1m2 (:131 232) =+ szm:(klakZ)Am' m), ( T2 — :131)); (660)

emi(Z) = (grr ks — ghs €k )(Amym, 0(z )+5m’m2(k1,kz)Am'm 0(==)), (6.61)

where the functions gi(z) and ey are given by (6.56) and the two-particle S matrix has

the form
(p—Fk+ 211"Pm2m2)

m,m,(k P)= (p— k + 2iT)

(6.62)

It can be verified that the matrix (6.62) satisfies the factorization condition.
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The N-particle problem.

The above arguments are straightforwardly generalized to the N -particles problem.
In each domain X¢g = {X,, < --- < Xy, }, the wavefunction gm,...my (1, -+, 2x) is of the

form:

. N
Imyeomy (T1, 00y 2y) = Z Amx,'",mN(Q | P) H Gkp (mJ) (6.63)
P i=1

where m; are the spins of the particles, {k;} is a set of unequal numbers and gi(z) is given

by (6.56). The energy of the state with the wavefunction (6.63) is:

N
E=> k. (6.64)
j=1

There is a number of constraints imposed on N!x N! matrix A(Q | P) by the Schrodinger
equation, continuity conditions at the boundaries of the domain Xg and antisymmetry.
The number of these constraints exceeds the number of elements of the matrix A(Q | P).

The consistency of these constraints is guaranteed by the factorization condition which
proves the Bethe hypothesis. Let I = {1,---, N}, then A(Q | P) is related to A(I | P) by
the matrix S(Q | P):

Ay (@ | P) = ST (Q | P)Amg oty (I | P): (6.65)

Then S(Q | P) is a multiple scattering matrix. Due to the validity of the factorization
condition, it is the product of two-particle S matrices.
The coordinate Bethe Ansatz for this problem , in a similar manner as for the sd-

exchange model, leads to the eigenvalue problem of the operator
Tj =Sjj41-SjnSj1-+-8j5-1  Sij = Suj(ki kj) (6.66)

with the S given above.
The eigenvalues of the operators T are given by the so- called Bethe ansatz hierarchy.

Let us denote by Ny the number of particles with spin component m = —j + k and define
n—1

mo=N, mp=0, mi=» N, (i=1,--+,n—1) (6.67)
k=1
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such that N > my > my > -+ > my; > 0. Then the nested Bethe ansitze yield the

following sets of coupled equations:

' Tk 2T + A —i/2
exp(ik; L) (—_——1—11;) I1 i/20 + %5 f/ , (6.68a)
ef i k20 + 08 /2

/\(J) (a+r> L9 5) .

T=+1 B=1 o /2

where ,\ff) = —kqo/2T. The Bethe-Ansatz hierarchy for the degenerate Anderson model
was constructed by [Sch82].

6.3 Exact solution of the s-d exchange model.

In order to illustrate some standard procedures which are often used to solve Bethe-like
equations, we finish this chapter with the main steps leading to the expression for the
impurity magnetization.

In general, the solutions of the eqns (6.50A-B) lie in the complex plane of A. However
it can be shown that the ground state with a given spin projection S* is formed by the
real solutions. |

Taking the logarithms of these equations, we get

kiD= 2] Z(@(Aa) v+ IS (6.694)

/\+1/g

N3\ + 8(—=2) = 27, +E‘I>( ) (6.69B)

where ®()) = 2arctan(2),
Jo integer if M is odd, J, + 1/2 integer if M even, | 2J, |< N — M. Each allowed choice
of the integers N; and J, uniquely determines an eigenstate of the Hamiltonian. We shall
refer to the {N;, J,} configurations as the quantum numbers of the state they determine.
First let us discuss some properties of the derived equations. In the absence of the
MHL/g+iSy 1o

impurity, they describe a non-interacting electron gas. The impurity term ( SFi7g=is

equal to unity for either ¢ = 0 or § = 0 where the interaction vanishes. Equation (6.50A)
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describes the ’scattering’ of the charge subsystem particles with momenta k; on the spin
subsystem particles having so-called rapidities A\y. Equation (6.50B) describes the spin-
spin scattering. Both systems are fermionic since the wavefunctions vanish if any two
values of either A, or k; coincide [YY66]. The number of particles in the spin subsystem
is equal to the number of flipped spins M.

We note from eq (6.69A) that all electrons are equally shifted from their free value.
In other words the phase shift of the electrons due to their interaction does not depend on

their momentum and the spin and charge excitations do not interact.
6.2.1 The ground state.

Let us find the configuration {N;, Jo} corresponding to the ground state by minimizing
the charge and spin parts of the energy. Two important propositions hold:

(i) The solutions of eq(6.69) are monotonous functions of the integers Jq.

(ii) The integers J, are bounded by the interval [(—N + M)/2,(N — M)/2)]. The
boundaries correspond to A = Foo.

According to (ii), the spin part of the energy is bounded. Therefore the integers
Jo should begin with the highest: J1 = Jmez = (N — M)/2 and form a consecutive

configuration:
N-M
2

Ja+1 == — QO a = 0,1,....,M - 1. (670)

Furthermore, according to (i), the solution of eq (6.69B) for N, M large form a non-uniform
dense distribution between A = 400 and A = —B, where A = —B corresponds to the lowest
integer Jpr = (N — 3M)/2. When S% =0 (M = N/2), Ji = —N/4 and we have B = co.

Obviously, the spectrum is not bounded from below, since the integers N; can take
arbitrarly large and negative values. To define the model, we introduce a cutoff by imposing
that all charge energies should not exceed the Fermi energy ez = w/N/L. It means that
the minimum integer should be N; = —N/2. Therefore, N; are successive integers from
—N/2 to N/2 and E°* = 0.

The modification of the ground state configuration is obtained by putting holes on it,

where by hole we mean an integer omitted from the consecutive sequence.
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We shall name holes rapidities all those values of Xﬁ (8=1,...,N—2M) corresponding
to a permissible quantum number coinciding with any number of {J,}. Therefore, for the
ground state J~/3 = ((N —3M)/2) — . It is obvious that for the ground state with a given
spin S#, the rapidities take their values on (—oco,—B). Thus, X/g = 0 when A > —B and
p =0 when A < —B. For M = N/2 holes are absent and B = oo (p = 0).

As we are interested only in the thermodynamic limit (N, M,L — oo, 7rN/L = €r),

we define densities of particles and holes induced by each configuration{J,} as follows:
Np(A)dX = number of A's in dA

Np(A)dX = number of holes in dA.
The discretized version is written as

1
PO = N —ha)

(6.71)

Putting p in eq (6.69), going to the continous limit and differentiating respect to A, we

obtain the following integral equation:

P+ + [ (¥ = NN = () + ash 4 1/0)  (672)
where
1 n

The energy and the spin per particle for the ground state are

FE7 =T [ @0+ mp)ar (6.74)
. /:(@(A) +m)dA. (6.75)

The last three equations describe all the magnetic properties of the impurity. Using

the linearity of the equations (6.72), we can write

1

—pi 6.76
v (6.76)

p=pr+t

corresponding to the host metal and impurity.
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These functions satisfy the following equations
pr(N) = a3 o(A) — / a1 (N — A)pa (N )dX . (6.77a)
—-B
pi(}) = as(A+1/g) — / a1 (N = A)pi(N)dN (6.778)
-B

and one can decompose the spin in the same way:

1., 1 [
ﬁSh = '2— - [-B ph(A)dA (678&)
Sr=§— / pi(A\)dA. (6.785)
—-B

In the leading order respect to 1/N, the total spin in presence of a magnetic field is

determined by the magnetism of the conduction band. Therefore

1 H ’
8% = . 6.79
N 5 dep ( )
Our task then is to solve for the A density p(A). By minimizing the energy, we shall
determine the parameter B in terms of the magnetic field H and thus finally find the
magnetization curve M = M(H).
At this point, it is instructive to solve the equations for the case M = N/2 where
holes are absent and B = oo (p = 0). Defining po as the ground state distribution, we have
ey 1
P+ [ @V = ()N = 1o () + s+ 1/9) (6.80)
In Fourier space, we get

o 1 1 . e—(2s-Dlul/2
7 (w) = / e pg(A)dA = ————— + —eiwleS (6.81)

—oo 2 cosh %w N 2 cosh %w

Therefore, at H = 0,

1, 1
=3 Py (0) =0 (6.62)

as it should be, and the equation(6.78b) gives

1
M;=85-p)(0)=5— 5 (6.83)
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The impurity spin thus is only partially screened and the ground- state is 25 fold degen-

erate.

The case H # 0 and B # oo.

For what follows, it is more convenient to count all physical quantities from their ground-

state values. Let us make the following shift:
o(3) = p(> — B)
5()) = 5(A - B)

(6.84a)
(6.84b)

so that o(A) = 0 for A > 0 and 5(A) = 0 for A < 0 and define the following functions:

pt(w) = /0°° e a(N)dA

p(w) = / ei‘”AEO)d)\.

— o

pT(w) are analytical in the upper (lower) half plane of w.

Making the Fourier transformation of eqns (6.77-78), we obtain

. 1 _
(1 + e (W) + p~(w) = eB(e 1412 We—slwle—zw/g)
1, 1.8
R
and returning to the M-space, we obtain

or(A) +or(A) — /0

—00

ai(A) + (N — /_0 R(N — MMM = S5(A— B +1/9),

0
H/2%, = / Fa(N)d),

—C0

M;=5 1+1/0 F:(\)dA
i = 5 5 “000'1. 3

where

" or

RO) = o= [ exp(-id)(t +exp() " do,

Sas(A) = % /_°° exp(_iw/\)exp(;(fi;wl/)zlwl/Z)dw‘
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(6.85a)

(6.85b)

~ (6.86)
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(6.89)
(6.90)

(6.91)

(6.92)
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This form of the equations is more convenient because all the characteristics of the
system are expressed in terms of the excited states only (i.e. the tilded functions).

Let us deal with a magnetic field small in comparision with the Fermi energy (H < €5
or S*/N « 1). This means that B >> 1 and it is sufficient to solve eq.(6.88) in the first
order of exp(—wB). Since

1 —nA _nB
~ e Te" .94
2 cosh (A — B) ¢ ¢ (6.94)

we write o5(A) = e"™Br()) and thus

H(B) _ =5 / 0 7(A)dX (6.95)

2ep —o0

where 7 is the solution of the equation
0
r(A) +7(X) — / RO\ = XM)F(A)dN = e™. (6.96)

— o0

These two equations allow us to find the relation between H and B and to calculate then
the magnetization through eq (6.91).

6.2.2 The Wiener-Hopf method.

The equation (6.96) may be solved by the Wiener-Hopf method. Let us outline the general
features of this procedure [MF53].k
Counsider the following linear integral equation:
0
b2(@) + @)+ [ (@)K (e - o) = F(a) (6.97)

—0o0

where ¥4 = 0 for z < 0 and ¥ = 0 for z > 0. 4 and ¥_ are then complementary

functions. Performing the Fourier transformation of (6.97), we obtain
(@) + 9 (@)1 + R()) = Flo). (6.98)
Next we rewrite the kernel as a product,

1+ K(w) = G (w)G™ () (6.99)
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wher G*(w) is analytic in the upper (lower) half-plane and G*(c0) is a constant. Eq(6.98)

can then be written as
P4 (w)/GH (W) + b (w)G (w) = F(w)/G* (v) (6.100) .

where now the first (second) term on the left-hand side is analytic in the upper (lower)
half w-plane.
A similar separation can be made on the right-hand side of (6.100) by means of a

Cauchy transformation:

Tk = @)+ 1) (6101)
where ~
(o) = igi; : éi(g’w?)w _‘i“f'i = (6.102)
This leads to ~
Aw) = 2 _ ) = —F_ ()6 (@) + ¢ (@). (6.103)

)
The left-hand side is analytic at Imw > 0, the right-hand side is analytic at Imw < 0. The
two sides are equal in an infinitesimal strip around the real axis so that one side can be
undestood as the analytical continuation of the other. Morever, H(z) is an entire function

and tends to zero at large w. The solution of (6.98) is then

b (w) = gF ()G () (6.104a)
$o(w) = 4 (@)/C () (6.104b)

and ¥4 (w) and ¥_(z) are obtained by inverting the Fourier transform.
The tmpurity magnetization.

Let us now apply the method to our specific example. Here, from (6.96), we have
P(A) =r(d), P-(A) =7(A),
K(z) = —R(z), F(}\)=¢e™ (6.105)
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and the kernel is given by

Rw) = — 6.106
- R(w) = 2coshw/2’ (6.106)
Using the following two factorizations:
: . +iw
el Fiw +0
T = f @), fale) = (TR (6.107)
™
_ . ; 1
po— I'(1/2 —iz)I'(1/2 + iz) (6.108)
we obtain for the functions G* factorizing the kernel
1
Gt (w) =G (—w) = —= 2m)T(1/2 — iw /27 6.109
(@) (—w) \/ﬂﬁ(w/ T(1/2 — iw/2m) (6.109)
with the normalization G*(c0) = 1.
From the equation (6.102), the solution of (6.96) is
9 (w) - -1 1
—(w) = = . 110
p-() = gk = (@ ()G (m) (6.110)
Using (6.95) and (6.110) we find the relation between B and H:
H 2\ /2
A _ = 6.111
T = exp(—nB) () (6.111)
which we use to define a new scale T} in the following way:
B — ! = l111 —Ti (6.112)
g wm H

Specifying the ’Kondo temperature’ Ty as the quantity related to magnetic susceptibility
at H=T=0

2
Ty = (2mx:) "' = —?exp(—w/g) (6.113)
and therefore the scale Ty is related to Tk as follows:
1/2
T, = (5’11“-) T,. (6.114)
e

Then using eq(6.93) and (6.112), we obtain the universal formula for the impurity magne-

tization at 7' = 0:

1 I e |
Mi(H)=S~§+m[-wdw

r(/2 + iw)f2

x exp(—2iwln H/Tx) +S(w)fis"1 (w). (6.115)
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Figure 6.3
The integral (6.115) has two different representations and asymptotic expansions for dif-
ferent ratios of H/Ty. If H > Ty, the contour of integration envelops the lower half-plane
and one should calculate the integral over the contour encircling the cut f+(w) and pole
w = —10 (see Fig.6.3a). In this case, one does approach the single-spin magnetic moment,
but very slowly. Defining a so-called ’invariant charge’ z(H/Tg) defined through

1 1 H
-z = ln — 6.116
p 21112 In T ( )

we obtain from (6.115) a power-series expansion in z

M,;(H > TH) =5 <1 + i an(S)z”(H/TH)) . (6.117)

The first term of this expansion a; = —1/2 coincides with the term obtained by means of
the perturbation theory [AMT70].

The most interesting region H < Ty is inaccessible by perturbation theory. fS=1/2
the only singularities of the integrand in the upper half-plane are the poles, leading to the

power series in (H/Tx):

2 & (n+1/2\"T ()t H ann
M'(I/Z) H<T — p el - {— . 6.118
i ( H) ﬁ; e n!(n+l/2)(TH) ( )

We can deduce from (6.118) that the magnetization increases linearly for small f, in con-
trast to an isolated magnetic moment, for which M; would be p signH with a discontinuous

jump at H = 0.
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In the case S # 1/2, the integration over the cut f_(w) in the upper half-plane
contributes to the low magnetic-field behaviour (Fig.6.3b). The poles of the I' function
now give only the exponentially small contribution to the impurity magnetization.

For more details about these calculations and the thermodynamics of the model we

refer to [TW83] and [AFL83].
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Appendix

In this appendix, we show by induction the validity of the Bethe equations (6.46-47)

in section 6.1.3. For this purpose, let us rewrite eq (6.38b) in the form

A(e)B(B) = f(a — B)B(B)A(a) — g(a — B)B(a)A(B)
where

a(e) )
(e = %)’ (o) = Ba)
fla) =1+g(a).

(41)

(A2)

The proof will be done, carrying only the operator A(a) through all the B(ag). Obviously,

the proof for the operator D(a) goes in the same way. We keep the notation of chapter 6.

The identity (6.46) is trivial for M = 1. Let us look therefore at the step M — M + 1.

We have:

A(a)Ban+1)0ur = fla — anm1)Blans)[A(e)Qum] — gla — anmi1) B(e)[A(an+1)0m].

We assume that

M
A(e)r = A, {ap}) n + Y Ay(, {ag}) Qm(a),

v=1

where

M
A(a7 {aﬁ}) = H f(a - aﬁ)AA(a)v

B=1
M
Ay(os {op}) = —g(a —ay) ] flay — es)halay),
o

and we have defined

M
E H OL)B aﬁ)Qo.

ﬁ—r‘
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(43)

(44)

(45)

(48)



Substituting (A4-7) in (A3), we obtain

M+1
A(@)as1 = [ fla—ap)ha(e) Qaria
B=1
M

—g(a —am1) [] flemir — ap)Aa(emsr) Qu
p=1
M

= > l9le — ay) fla — ari1) — g(ansr — ay)g(a — anrir)]

H Floy — ag)Aa(ey)Bar1(a). (48)
ﬁ#'r

We have to compare this expression with A(a)Qar41 given by the equation (A4). We
conclude that the last two terms on the right-hand side of (A8) must be equal to

M+1 M+1
- Z gla—ay) [T flay — ag)ha(ar)Rarsa(e). (49)

B=1

B#y

Since the second term of (A8) is recognized to be the term in (A9) given by v = M + 1,
the condition to be verified by the functions f(a) and g(e) results to be

g(anms1 — ay)g(a ~ OlM+1) ;
o) (410)

fle —ami1) = flay —appr) =

These are the functional equations for the functions f(a) and g(a) which define the non-
commutativity of the operators A(a), D(a) and B(«a) given generally by the quantum
R-matrix. |

In our case, the identity (A10) is then easily verified, using equation (A2) together
with the additivity and the antisymmetry of the function h(a) = 1/g(a).
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