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CHAPTER ZERO

INTRODUCTION AND NOTATION

We deal with the periodic boundary value problem (BVP)

(1.1 x = F(t,x)
(1.2) x(0) = x(w),

where F:[0,0]XC—Rmis a continuous function, CCR™ and ®>0.
Our aim is to prove the existence of a solution x(-) to (1.1)-(1.2) such that, for all te [0,w], x(t)

belongs to a given subset of C.

The periodic boundary value problem plays a central role in the qualitative theory of ODEs
for its significance in the physical sciences. Biology, mathematical economy and
hydrodynamics provide models for situations in which the set C is not the whole space.

We use topological methods. Generally speaking, solutions to (1.1)-(1.2) are obtained as
fixed points of operators defined in function spaces. Following a classical procedure, one first
performs (conditions leading to) a-priori bounds for the solutions of (1.1)-(1.2) (or, more
precisely, for the solutions of certain related equations) - the so-called "transversality
conditions"; secondly, the Brouwer degree of a suitable autonomous map is required to be
nonzero. If C = R™M, two main approaches have been used.

The first one goes back to the Leray-Schauder theorem. Indeed, one writes

F(t,x) :=1{(t,x;1),

where f = f(t,x;A) : [0,0]XR™X[0,1]—=>R™, and imbeds (1.1) in a family of parametrized

equations
x = Af(t,x;0N),

Ae (0,1); then, one requires some suitable a-priori bounds for the solutions of these

parametrized problems. Subsequently, one considers the averaged map




i

w .
Fo00) = - Oj £(s,x;0)ds.
[}

and asks that its Brouwer degree (relatively to some open subset of R™) is nonzero. The
existence of at least one solution to (1.1)-(1.2) is proved by imbedding the given problem in an
abstract functional-analytic framework via the Liapunov-Schmidt reduction. Along these lines,
J. Mawhin has obtained theorem 3.1. We point out that in this result a more refined type of
degree is used - the "coincidence degree" - and, furthermore, a condition more general than a-
priori bounds - the "bound set condition” - is introduced.

On the other hand, M.A. Krasnosel'skii developed a method (see theorem 3.2) which consists
of the search of fixed points of the translation operator (Poincaré-Andronov map)
T X(0)—x(w). Besides the "w-irreversibility condition" (which concerns the solutions of
equation (1.1) with initial value on the boundary of a given subset of R™m), it is required that the
Brouwer degree of the map F(x) := F(0,x) is nonzero.

Along this direction, R. Srzednicki has recently given a contribution to the periodic BVP in the
framework of Wazewski's method (see th. 3.3 and cor. 3.1).

In recent years, some results were obtained in the case when the underlying space does
not have a linear structure. For instance, in [4,19,20], [12,18,22] the case in which the set C is
a regular manifold, a convex set or a conical shell, respectively, are studied.

Our work fits into the above framework. Instead of the Brouwer degree, we use the fixed
point index, first for maps defined in subsets of R™ and secondly in a more abstract situation
(which we explain below).

Our first result (theorem 4.1) is a continuation theorem for the existence of periodic solutions
lying in convex sets. More precisely, let C be a closed convex subset of R™ and let GEC be a
bounded set, open relatively to C; we prove the existence of a solution x(-) to (1.1)-(1.2) such
that x(t) belongs to the closure of G relatively to C for all t. This result is in the lines of the first
method sketched above, i.e. the Liapunov-Schmidt reduction and Mawhin's continuation
theorem 3.1, which we generalize to the case of convex sets. The proof is carried out using the
concept of invariance (cf. Nagumo's theorem, cone conditions) and the properties of the fixed
point index. In the corollaries and in the applications we use the concept of "block" (cf. [9]) and
Srzednicki's theorem 2.1.




This first part of our work shows (as was also pointed out in [38]) that with some simple
changes in the proof of theorem 4.1 it is possible to obtain a generalization of Krasnosel'skii's

theorem too.

As a further step, we produce our main result, i.e. a continuation theorem for the periodic
BVP in flow-invariant ENRs (theorem 4.2). We recall that a metric space X is an Absolute
Neighbourhood Retract (ANR) if and only if X is homeomorphic to a subset Y of a Banach
space B and Y is a neighbourhood retract of B. In the particular case B = R™, the set X is called
an Euclidean Neighboufhood Retract (ENR). Our result is unifying, both regarding the
methods we use and with respect to the properties we require for the set C. Indeed, on the one
hand we imbed our problem in a functional-analytic framework (which, however, is not the
same as in [38]) and we study, again, the family of parametrized equations x = Af(t,x;A),
Ae (0,1); on the other hand, we use the properties of the translation operator. Furthermore,
since regular manifolds, closed convex sets and conical shells are ENRs, our result contains all
the situations mentioned above. Nevertheless, we point out that, in the particular case of convex
sets, theorem 4.1 is slightly more general than theorem 4.2; in any case, the two proofs are
completely different.
In the functional-analytic framework in which we imbed (1.1)-(1.2), which is inspired by the
study of the Poincaré map 7, we use the definition and properties of the concept of "process".
We refer the reader to the proof of theorem 4.2, since details are too long to be repeated here.
As in our previous work, we find solutions to (1.1)-(1.2) as fixed points of an operator defined
in Z:= {x:[0,w]—>C, x continuous}. A crucial result (see [31]) ensures that Zis an ANR if and
only if C is an ANR. In this situation, we can use the fixed point index theory for ANRs as
introduced by A Granas in [23]; more precisely, through this concept we define (as in [20,49])
the "index of rest points”. This very notion, which plays the role of the Brouwer degree,

illustrates the meaning of the word "unifying" that we used above.

Chapter 1 is devoted to the fixed point index for ANRs. After some algebraic topology
preliminaries (essentially, the definition of Lefschetz number), we give, following [23], the
axioms of the fixed point index. In section 1.6 we study the Euler-Poincaré characteristic of an
ENR, which turns out to be quite an useful tool for the computation of the index of rest points.

Chapter 2 contains the definition and some properties of the index of rest points.

Chapter 3 is a survey of a number of theorems on the existence of periodic solutions to
(1.1)-(1.2) that we often recall in our results.
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Chapter 4 contains our main results (theorem 4.1 and theorem 4.2) and some corollaries,
which extend theorems quoted in Chapter 3. We point out that, since the proof of theorem 4.2
is based on processes, we need the uniqueness for the solutions of the Cauchy problems which
we consider. Hence, we assume for simplicity that all the vector fields we deal with are locally
lipschitzian in the space variable. This regularity assumption was not required in [20,38].
However, we point out that in such cases a "continuous" version of our theorems can be
obtained by means of a standard perturbation argument based on Weierstrass-Stone and Ascoli-
Arzela theorems. We also notice that, without loss of generality, we can assume (if it is
convenient) F : [0,w]XA—R™, with A any open set such that CCAcR™ (see remark 4.5).

Chapter 5 contains an extension to the case of ENRs of the Krasnosel'skii method of
guiding functions; besides, we compute an analogous of the "index of nondegeneracy" for a
potential function (see [33, p.84]).

Chapter 6 is devoted to the applications. In section 6.1 we consider equations arising
from biological models (e.g. the Lotka-Volterra system) and we prove the existence of solutions
lying in the convex set C := er (i.e. non-negative solutions). In section 6.2 we study a

situation in which it is natural to work in a domain with holes. This situation occurs, for

example, in hydrodynamic applications.

The m-dimensional real euclidean space R™ is endowed with the usual inner product (-I-), norm
-l = (:I)% and distance d(:,-). We denote by {e;, i = 1,...m} its canonical basis and we define
;\(i D= (X15e0X1.0,X415-.X). Ry (resp. R*) is the set of nonnegative (resp. positive) reals.
Given any metric space Y, we denote by B(x,R) (resp. B[x,R]) the open (resp. closed) ball of
center x€ Y and radius R>0. For ACBCY, by intgA, frgA, clgA we mean, respectively, the
interior, boundary and closure of the set A relatively to B; cardA is the cardinality of the set A.

We omit the subscript whenever no confusion occurs and we also set S(x,R) := frB(x,R).

For a closed convex set KCR™ we denote by A{u,K) the set of outer normals to K at ue frK.
We recall that ne AQu,K) if and only if e R™{0} and Kc{xeRm: (x-um)<0}. If X is a
normed space, |-lx denotes its norm. For V : RmM— R and -ec<a<b<+co we define
[a<V<b] : = {xe RM: a<V(x)<b} and [V=a] : = {xe Rm: V(x) = a}.




Let >0 be a fixed constant. For a continuous vector function x(-) : [0,0]—=R™, we set
(1] [OV]

IXloo := sup {Ix(t)l, te [0,w]}, Ixl; := [Ix(s)lds (L{-norm) and X : = L |x(s)ds. Furthermore, for
0 ®0

w

a function y = y(;A) : [0,w]X[0,1]=>R™, we write ¥, := -I-Jy(s;l)ds.
)

Finally, we denote the Brouwer degree by dg.




CHAPTER 1
THE FIXED POINT INDEX AND RELATED TOPICS

1.1. This chapter is devoted to the fixed point index, which is one of the most important
concepts in this thesis; it is widely used expecially in Chapter 4, where we prove our main
results.

We introduce in an axiomatic way the fixed point index for a rather general class of spaces
and maps. To this aim, we follow [23;24,40].

1.2. First, we must point out that some knowledge of algebraic topology is needed. More
precisely, we use (singular) homology theory. We refer to the Eilenberg-Steenrod axioms as
stated, for example, in [51]. For brevity, we do not recall explicitly the axioms and main
properties of homology theory. (See also [5,13]).

1.3. Now, we introduce the class of spaces for which we define the fixed point index.

DEFINITION 1.1. A metric space X is an ABSOLUTE NEIGHBOURHOOD
RETRACT (ANR) if and only if for every metric space Y, for every closed subset M of Y and
for every continuous map f: M — X there exists a continuous extension t of f which is

defined in an open set containing M .

REMARK 1.1. We point out that, equivalently, X is an ANR if and only if X is
homeomorphic to a subset Y of a Banach space B and Y is a neighbourhood retract of B.

DEFINITION 1.2. If X is an ANR and the Banach space B in the above remark is
R™, then X is called an EUCLIDEAN NEIGHBOURHOOD RETRACT (ENR) .

Now we recall some elementary properties and examples of ANRs (for a general
treatment of ANRSs, see [31]).

(@ (Dugundji) [14]. If X is a closed convex subset of a normed linear space, then X is an
ANR (indeed, X is a retract of the space).




(b) If X isaclosed subset of a normed linear space Y and if there exists a family {Cj}je ;

of closed convex subsets of Y such that X = UC; and {CJ»}AE is a locally finite covering of

X ,then X is an ANR.

(¢) Aretract of an ANR is an ANR.
(d) Every open subset of an ANR is an ANR.

This latter fact implies that any ANR is locally ANR. The converse of proposition (d) is also
true; namely: :

() (Hanner) [28]. If X is a metric space and every xe€ X is contained in an open
neighbourhood N, which is an ANR, then X is an ANR.

In particular, a metrizable Banach manifold is an ANR (this fact will be extensively used in the
sequel).
Finally, we recall:

(f) (West) [53]. Every compact ANR is homotopically equivalent to a compact polyhedron
(see also Section 1.6 below).

(g) ([31]). Let X be a compact metrizable space and Y a metrizable space. Let d be a
distance which defines the topology of Y . Consider the function space Q ={f: X =Y,

continuous} , endowed with the distance d*, where d*(f,g):=sup d(f(x), g(x)) . Then,
xe X

Q with the d*-topology is an ANR if and only if Y is an ANR.

1.4. Before writing the axioms for the fixed point index, we introduce the notions of
generalized trace and Lefschetz number as given by J. Leray (see [35]). Indeed, the Lefschetz
fixed point theory is an useful preliminary to the fixed point index theory. Moreover, the fixed
point index theory contains, as a corollary, the Lefschetz fixed point theorem for compact
ANRs (see [23, p. 222]).

In what follows, all the vector spaces we consider are over the field of rational numbers Q .
oo

is of finite type if:
q=0

We recall that a graded vector space E = {E,}




(i) dim Ej<e foreach q;
i) E;=0 for all except finitely many q.

In the sequel, we denote by H(X) the g-th dimensional (singular) homology group, with

coefficients in the field Q of rational numbers, of a space’ X .
We also recall that, if f:X—X is a continuous function, then the induced linear map:

fai= (£ 1 Ty Hy(0) = HyX)

is defined.
If the graded vector space H(X) = {Hq(X)}°°0 is of finite type, then we can consider the
q:

ordinary trace tr(f,) of the linear map £, for each q, and give the following:
q P Iq

DEFINITION 1.3. The Lefscherz number of the map f is given by the formula :

A = D1 ().

q=0

Since {Hq(X)}‘”0 is of finite type, the above sum is finite and the definition is meaningful.
q'.:

Indeed, we can give the definition of Lefschetz number also in a more general situation. More

precisely, if {I—Iq(X)}""O is not of finite type, then we can define, for each q,
q.—.

N (fq) 1= nkzjl Ker (fq)rl

and
H (X)
Hy) : = N(f )

Since fq(N(fq))cN(fq), then we can consider the induced endomorphism:
fq : Hq(X)—qu(X).

Now, if dim ITIq(X) <+oo for each q, we can give the following definition:




DEFINITION 1.4. The Lefschetz number of the map f is given by the formula :

AD = 2D ).

q=0

~

We remark that if { Hq(X)} is of finite type, then tr(f,) = tr(fy), and the two definitions of

o0
q=0
Lefschetz number coincide.

EXAMPLE 1.1. If Xisa corﬂpact ANR, then {Hq(X)} is of finite type and A(f) is

q=0
defined for all continuous f:X—X.

1.5. THE FIXED POINT INDEX.

Let X be an ANR and let W be an open subset of X . Let f: W — X be a continuous
function. We begin with the following

DEFINITION 1.5. The triple (X,W,f) is called ADMISSIBLE if the set

S = {xe W: f(x) = X} is compact (possibly empty) and there exists an open neighbourhood V
of S suchthat cIVNCW and f .y is compact.

REMARK 1.2. Frequently, the axioms of the fixed point index are given in a less

abstract framework, i.e. one assumes that W 1is a (bounded) open subset of X and
f:clW—X is a compact map such that f(x) # x for all xefrW . Indeed, if this is true, then

the triple (X,W.,f) is admissible.
THE AXIOMS.
To any given admissible triple (X,W.f) we associate an integer

iX (f,W)

called the fixed point index of f on W (relatively to X) satisfying the following properties:




I. EXCISION
Let W' be an open subset of W with ScW' and let ' = le' : W'— X . Then,

ix(EW) = ixg(f,W") .
(Note that the triple (X,f,W") is admissible.)

II. ADDITIVITY
n
Assume that W= W; and let f;:=f, ,S;:=SnW;.If §1S;=0,i#j, then
: 1

i=1

n

ix(EW) = 2, ix(F, Wy .

i=1

III. FIXED POINT PROPERTY
If ix(fW)#0,then S#@,i.e. themap f has a fixed point.

IV. HOMOTOPY
Let H: WX[0,1] — X be a continuous homotopy, and let H, : W — X be defined by

H,(x) := H(t,x) . Assume that S := U {xe W: H,(x) = x} is compact and there is an open
te [0,1]

neighbourhood V of S such thatclV < W and Hjcjyx[o,17 is @ compact mapping. Then,
ix(f,Hp) = ix(f,H;) = constant with respect to t.

V. MULTIPLICATIVITY )
If the triples (W,X1,f1) , (W, X,,f,) are admissible, then

iX1XX2(f1Xf2’W1XW2) = ixl(fl’wl) . ixz(fz,WZ) .
VI. COMMUTATIVITY

Let U,, U, be open subsets of X, X,, respectively; assume that f; : U; — X, ,
f,: Uy— X, are continuous maps and that the map f; is compact in a neighbourhood of

{xe U;: fof;(x) = x} (or the map f,is compact in a neighbourhood of {xe Uj,: f(x) = x}).

Consider the composite maps:




ff; 1 51Uy = X,
f1f, : 5'(Up) = X, .

If one of the triples

(7 (UD.X 16, (6 (U Xpf31f)

is admissible, then so is the other and, in this case,

ine, (Baf 1.7 (Ug) = i (£, 65 (UY)) .

VII. NORMALIZATION
If W =X and the map fiscompact, then the Lefschetz number of f is defined and

ix(£;W) = A(D) .

REMARK 1.3. We point out that the axioms given above are not independent. For
instance, axiom III (fixed point property) is an easy consequence of the additivity axiom.

Now, we recall a useful property of the fixed point index which follows from the commutativity

axiom:

PROPOSITION 1.1 (Contraction property of the fixed point index). Let W be an
open subset of X and f: W—X a continuous map for which the index ix(f,W) is defined. If a
metric ANR Y is a subset of X such that the inclusion j:YC X is continuous and f{(W)CY,

then

IX(ﬂW) = iy(f|wmy,WﬁY).




REMARK 1.4. First of all, we point out that if we assume that X is a compact ANR
and we denote by Id the identity map, then ix(Id,X) = A(Id); this number, which depends only
on the set X itself, has many important topological properties, which we recall in section 1.6.
Furthermore, we remark that the normalization axiom is, essentially, the Lefschetz fixed point

theorem.
It seems interesting to recall also the "weak" form of the normalization axiom (and to compare it

with the analogous property of the Brouwer degree):

VI BIS. "WEAK" NORMALIZATION
Assume that W = X if the triple (W,X,f) is admissible and f(x) =p forall x, then

1 if pe W

ix(f,W)={
0 if peW

The proof of the existence of the fixed point index for ANRs is omitted for brevity. See [23,
th.7.1, th.10.1] for details.

1.6. THE EULER-POINCARE' CHARACTERISTIC.

The Euler-Poincaré characteristic of a set is another important tool in this thesis. Although it is
defined in algebraic topology, in recent years it has turned out to be very useful from the point
of view of analysis too. Accordingly, after the abstract definition, we briefly give an intuitive
explanation of this important concept; as a consequence, we outline the way in which it can be
viewed, and used, by analysts. Let CcR™ be a compact ENR (indeed, it is sufficient to

consider a set which has the homotopy type of a polyhedron).

DEFINITION 1.6. The Lefschetz number of the identity map Idc is called the
EULER-POINCARE' CHARACTERISTIC of the set C, and it is denoted by x(C).

From the definition of Lefschetz number, it can be seen that

20 = 2, (<1)*dim Hy(©) ,
gq=0




where by : = (=1)* dim Hy(C) is called the g-th Betti number of C.

From the definition and from the homotopy axiom of singular homology it follows that the
Euler-Poincaré characteristic is a homotopy invariant i.e. if C;, C; are compact ENRs and if
they have the same homotopy type, then ¥(C,) =%(Cy) .

Actually, if C is a nonempty pathwise connected space, then
Ho(O) = Q ,

so that by(C) = 1 (see [51]) .
Indeed, by(C) is the number of connected components of the set itself. In the same way, one
may view the Betti numbers bq ,q 21, as the "measure” of a form of higher-dimensional
connectivity.

Another important property of 7 is the following:

if the set C is a CW-complex [13], then

WO =2 Doy,

=0

where o is the number of "g-cells" which partition the set C . In particular, ¢(C) is
independent on the CW-decomposition of the set C.
For example, the m-dimensional sphere S(0,1) isa CW-complex , and for m =2 a possible

decomposition is the following:

S(0,1) = {P}u{Q}u §; LU S5 LU S3 US, ,where
S, = {(x,y,.20e5(0,1): z=0, x>0},
S, = {(x,v.2)€S(0,1): 2=0,x <0},
S5= {(xy,2)€S(0,1) : z> 0},
S.= {(x,y,2e5(0,1) : z< 0},

so that %(S(0,1)) =2 (form =2).

Thus, the computaton of the Euler-Poincaré characteristic is, roughly speaking, a generalization
of Euler's polyhedron formula, which asserts that (form =2) og—0o; + 0y =2 for every>
decomposition of S(0,1) into disjoint celles (¢; = number of i-cells).

Obviously, we are interested in calculating %(C) in more general situations; to this end, we

recall that (see [13, p.105]), under rather general hypotheses,




X(Cp) +x(C) - x(CiNCy) = x(C,UCy) .

The following useful formulas can be proved by the axioms and properties of singular
homology:

X(P) =1, x(BOID=1, %(SO,D)=1+CDm,
%(Sy) =2—2h

where S;, denotes an orientable surface of genus h (see [13, p.106]).

Furthermore, we recall that if M is a compact manifold and if the dimension of M is odd, then
xM) =0 (see [51]).

We now outline the way in which the Euler-Poincaré characteristic, a purely algebraic topology
object, can be used in order to apply topological methods in the search of periodic solutions to
differential systems.
Roughly speaking, in many cases the Euler-Poincaré characteristic of certain subsets of R™
turns out to be equal to the "index of rest points” which we define in Chapter 2. In other words,
in this thesis (expecially in the applications) the Euler-Poincaré characteristic "plays the role" of
the topological degree and/or the fixed point index, 1.e. the hypothesis ¥(C) #0 in some cases
implies (the existence of fixed points of suitable operators and consequently) the existence of
periodic solutions of (1.1)-(1.2).
In some sense, we establish a link between the topological nature of a manifold (or, in general,
of a compact ENR) and the possible kinds of singularities of a vector field on such a set.
Actually, this link is in the classical Poincaré-Hopf theorem; indeed, if we denote by i,
-the "index of isolated singularities" x of a given vector field on a (sufficiently regular) manifold
M , then

2 iy=xM) .

Let T(M) denote the tangent bundle of M. The famous Poincaré-Hopf theorem states that if
x(M) # 0 then any smooth vector field v : M—T(M) must vanish somewhere.
In the case m = 2, for example, since %(S(0,1)) =2, a vector field defined on S(0,1) has at

least one singular point.
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The results we present in this thesis include the Poincaré-Hopf theorem as a particular case.

Before ending this section we observe that, among others, H. Groemer, V.A. Efremovic and
Yu.B. Rudjak [15,25] have given a characterization of the Euler-Poincaré characteristic for

compact polyhedra by means of the following axioms:

1. ADDITIVITY
X(CLUCy) =x(Cy) + x(Cp) = x(C1NCy) .

2. NORMALIZATION :
x(@) =0, x({P}) =1.

Indeed, we point out that since compact ANRs are homotopically equivalent to compact
polyhedra (see [53]) then we have a characterization of the Euler-Poincaré characteristic for
compact ANRs by adding to the additivity and normalization axioms the following property:

3.  HOMOTOPY EQUIVALENCE
If C; and C, have the same homotopy type, then

X(Cyp) =x(Cy).

In this way, the Euler-Poincaré characteristic is determined by a number of axioms, just as in
the case of the Brouwer degree and the fixed point index, independently of its construction

through singular homology.
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CHAPTER 2
THE INDEX OF REST POINTS

In this chapter we introduce another important concept for this thesis, the index of rest
points, by means of the fixed point index (see Chapter-1). In our results (Theorems 4.1, 4.2
and Corollaries) the "index of rest points" plays the role of the Brouwer degree in classical

theorems for the periodic BVP (see [33,34,38]).
Let X be an ENR, and let ®© be a dynamical system in X . Assume that there are no rest

points of ® in ffU and U is relatively compact. Then, we know (see Chapter 1) that the
fixed point index ix(n,U) (where =, :x +— m(t,x)) has a constant value for 0 <t<eg,
provided that € is sufficiently small. In this situation, we can give the following:

DEFINITION 2.1. (see [49]). The INDEX OF REST POINTS of the dynamical
system T inthe set U is given by the formula:

I(w,U) : = lim ix(w,U) .

e—0*

In what follows, we often deal with a dynamical system = which is induced by an

(autonomous) differential system of the type
2.1) x = f(x),

where f: Rm — Rm is locally lipschitzian. More precisely, since the aim of this thesis is to

study the (non autonomous) periodic BVP

{k=Fam)
x(0) = x(w) ,
it will be quite natural (see Section 4.3) to deal with the (autonomous) vector fields

?(x) : =§)—Dj F(s,x)ds

or
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Fo(x) : = F(0,x) .
REMARK 2.1. We point out that in Section 4.3 we use the "index of rest points" in a

situation which is slightly more general than the one of Definition 2.1. Roughly speaking, we
will consider a "flow invariant” ENR CcR™ and a bounded set G=C , open relatively to C.

Now, we recall (following [49]) some properties of the index of rest points.
PROPOSITION 2.1 [49, prop.4.3, th.5.1, th.6.1].

(i) Assume that Uand W are open, UCW, clW is compact and there are no rest points in
(cIWNU, then:

I(r,W) = I(n,U).

(i) Assume that Uy,U,,...,U; are open subsets of Xsuch that UNU;=O for i#j and there

T
are no rest points in X\ ( VU, ); then,
i=1

I(n,X) = Y, I(n,Uy.

i=1
(i) Assume thdt X is compact; then, H
I(,X) = x(X).
(iv) Assume that there are no rest points in the set clU; then,

I(n,U) = 0.

(v) Assume that T is generated by the equation x = Ax, where A is a real nonsingular matrix;
let k denote the number of its eigenvalues having positive real parts; then, for any open
set U, 0eU,

I(r,U) = (-1)¥.
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(vi) Assume that T is a dynamical system in R™ generated by a function f: R™ -R™.
Suppose that £ is locally lipschitzian. Let UCR™ be an open bounded set and suppose
thar f(x) # 0 for xe frU; then,

(2.2) I(m,U) = (-1)™ dg(f,U,0).

(vil) Assume that there is a compact subset K of X such that, for every xe X,
n([0,0o[,x)NK # &; then,

- Xs of finite type;
- K has a rest point proizided that x(X) = 0;
- Ifthere are no rest points in frK, then

I(w,intK) = x(X).

A homotopy property for the index of rest points has been proved in the particular case of
tangent vector fields by Furi and Pera in [20]; for the general case, we refer the reader to lemma
5.1 below.

The actual computation of the index of rest points can be performed, in some particular cases, in
a rather straightforward manner. Before recalling Srzednicki's result in this direction we need
the following

DEFINITION 2.2. A subset S of X is called a SECTION of the flow 1 if there
exists 8>0 such that 7| _s 5)xs is an homeomorphism with an open range.

Let B be a compact subset of X and let S*, S” be sections such that

clISTNclS =g
and
n((-8,8),8") N n((-8,8),87) = .
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DEFINITION 2.3. The ser B is called a BLOCK i the following conditions are
sansfied: - '
(1) (cIS\S*) "nB=2:
) w((-8.8),5") N B ==([0.5),S"" B),
7((=5.8),S7) n B = {(-3,01,S” n B);
(3) for each xe frB\(S™US") there are €1,6,€ R, €,<0<&,, such thar (e, x)e S,

(e, x)eS and
n([€,,6,],x) < frB.

The picture below eives an inwuitive explanation of the above definidon.
(& x )

(e <)

P ST
REMARK 2.2. A slightly different definition of block can also be found in the
literature; namely, roughly speaking, one may require that each point of frB is (in Wazewski's
terminology) either a "strict ingress point"” or a "strict egress point”, i.e. "sliding" points are not
allowed. Nevertheless, we point out that, although the two definitions are not equivalent, the
existence of a block according to definition 2.3 is equivalent to the existence of a block of this
"second type" (cf. definition 3.1 and corollziry 3.1). In what follows, we denote the set of

"egress points” by:

b™:={xeB: 3 (t))>0, ;=0 s.t. "(t,x)eB}.

Now, we can state Srzednicki's result, which we will often recall in the next chapters. Namely,

we have:
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THEOREM 2.1 [49, theorem 4.4]. Let B be a block and b~ the set of "egress
points" . Assume that B, b™ are ENRs. Then,

I(n,B) = %(B) - x(b").

A concept analogous to the index of rest points has been introduced by Furi and Pera in [20] for
flows on manifolds satisfying suitable assumptions. More precisely, for a vector field f(-) as
in (2.1) they define %(f) , the "Euler characteristic of the vector field f"; the properties of this

characteristic are analogous to those of the fixed point index (i.e. the solution, excision,
additivity, homotopy, normalization properties hold). Indeed, if 7 is the dynamical system
induced by (2.1), then we have:

I(m,U) = x(-) .
Finally, it is worth mentioning the following

PROPOSITION 2.2 [20]. Let M be an m-dimensional manifold as in [20] and let {
be a smooth tangent vector field with a compact set of zeros. Then,

(2.3) x(H = D)™ x(.
REMARK 2.3. Under the assumptions of (v) in proposition 2.1 and proposition 2.2,
we have that (2.2) and (2.3) imply

x(f) = dg(£,U,0).

For further discussion about the computation of the index of rest points, see Remark 4.4.
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CHAPTER 3

THE PROBLEM OF THE EXISTENCE OF PERIODIC SOLUTIONS TO FIRST
ORDER DIFFERENTIAL SYSTEMS

3.1. In this chapter we recall the theorems that constitute the main literature for the results we
prove in Chapter 4. While quoting such results, we will make the reader acquainted of the
framework in which we work and of the techniques we use. For brevity, we omit all the
proofs. Let CcR™ be a closed ENR, for example a closed convex set with nonempty interior.

The main purpose of our work is to prove the existence of a solution x(-) to the periodic BVP:

(3.1) x = F(t,x)

(3.2) x(0) = x(®)

such that, for all te[0,w], x(t) belongs to a certain subset of C.

We also recall that whenever F:RXRM—R™ is w-periodic in the first variable then any solution
of (3.1)-(3.2) is the restriction of a classical ¢! w-periodic solution of (3.1), defined on the
whole real line.

Among the topological methods, two main approaches, which we now discuss, have been used
when C=Rm.

3.2. The first approach has its origin in the Leray-Schauder theorem. Indeed, (3.1)—(3.2) is
transformed into an equivalent coincidence equation in function spaces

(3.3) Lx =Nx,

with L a linear (not necessarily invertible) operator and N a (nonlinear) Nemitzky operator
([8,21]). Then, under rather general hypotheses, (3.3) may be replaced by an equivalent fixed-

point problem:

(3.4) X =Mx.
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This procedure is usually accomplished by the Liapunov-Schmidt reduction or its
generalizations. More precisely, one writes

F(t,x) = f(t,x;1),

where f = f(t,x;A) : [0,0]xRmx[0,1] — Rm™m; then, one imbeds (3.1) in the family of

parametrized equations

(3.1y) x = M(tx;h) , e (0,1).

In this direction, the most important result is due to J. Mawhin. Namely, we have:

THEOREM 3.1 [38]. Ler f:[0,0]xRmx[0,1] —» R™ be continuous and let GCRm™

be an open bounded set. Assume:
(al) ("bound set condition")

for any x() solution of (3.1,) with x(0) =x(w) and x(t)eclG for all t, it follows
that x(Y)eG forall t;

(a2) fo(z) =0 for zefrG , with

— 1 &
fo(z) : == [f(s;2;0)ds ;
w o

(a3) dg(fy,G,0) =0 .
Then, there is a solution x(-) of (3.1)-(3.2)such thar x(t)eclG for all t.

Some analogous results have been obtained in recent years in the case when the underlying
space C does not have a linear structure. More precisely, under the further requirement that the
solution remains in a cone (or, more generally, in a convex set) a natural assumption is that the
operator M in (3.4) maps the set C onto itself. In this line, R.E. Gaines and J. Santanilla have
proved the existence of solutions to (3.1)-(3.2) lying in a convex set (see [22,45,46]).
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In Section 4.2 we prove a continuation theorem for periodic solutions in convex sets which
generalizes the results quoted above. The proof is performed in the functional-analytic
framework of Mawhin's coincidence degree.

3.3. A second point of view was developed by M.A. Krasnosel'skii (see [33,34]); it consists
of the search of fixed points of the translation dperator (Poincaré-Andronov map)
Ty - X(0)—x(w) .

In this setting he proved, for the case C = Rm, the following:

THEOREM 3.2 [33]. Let F: [0,0]<xR™ — R™ be continuous and such that
uniqueness and global existence for the solutions of the associated Cauchy problems is

guaranteed. Assume:
(bl) (" w-irreversibility condition”)

there is no solution x(-) of X = F(t,x) such thar x(0) = x(k)e frG for some
O<k<ow;

(b2) F(0,z) #0 for zefiG;

(b3) dg(F(0,),G,0)#0.

Then, there is a solution x(-) of (3.1)-(3.2)such thar x(0)e clG.

Along the lines 6f Krasnosel'skii's theorem, the sifuation in which the set C 1is a convex set or
a conical shell has been studied, for cxample‘, by K. Deimling, M.L.C. Fernandes and F.

Zanolin. See [12,18,22] for the details.

Besides the Krasnosel'skii theorem, further developments were achieved by R. Srzednicki

along the lines of WaYewski's method (see [52]). Namely, we have:

THEOREM 3.3. [50, Theorem 1] Ler p be an w-periodic process on a melric space
X . Let P, P-be subsets of X such that:

(c1) P and P- are compact ANRs and P~ CP;

c2) ( Wa?z ewski's condition)
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PR = {(x,NePxR : 3(e,) >0,&, = 0, p(ep,x,t) & P} ;

(€3) xP)-x@P)=0
(% denotes the Euler-Poincaré characteristic).

Then, there exists xoeP such ‘that p(t,xq,0)eP and
p(t,x0,0) = p(t + ®,%X(,0)

forany t20.
Before stating an important cofollary of Theorem 3.3, we recall the following:

DEFINITION 3.1 [50]. Consider the Cauchy problem:
(3.1) x = F(t,x)
(3.5) x(ty) = Xg
where F : RxQ — R™M s continuous, Q is an open subset of R™ and xpeQ . Let p,q be
nonnegative integers, p+q>0.Let Lk, k=1,..,p+q,bep+q functions of class C!

in Q. Wedefine:

B:=clo{xeQ:Lkx)<0,k=1,.p+q},
nw:={xeB:Lix)=0},j=1,.,p+q.

The set B defined above is called a BLOCK of type (p,q) if the following conditions are
satisfied:

*1) (VLK) | F(t0) >0,  (txeRxrk, k=1,.p;
(*2) (VLEx) | F(t,x)) <0, (tx)eRxnk, k=p+1,.,p+q.

We also denote (in WaZewski's terminology) by
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the set of "egress points”.

REMARK 3.1. As we noticed in Remark 2.2, the above definition is not equivalent to
Definition 2.3; we point out that the former corresponds to the definition of block of "second
type" we mentioned in Remark 2.2. Accordingly, given a block as in definition 3.1 we can
always obtain a block as in Definition 2.3. '
For a complete discussion about blocks, see [9].

Now, we can state the following:

COROLLARY 3.1 [50, th.2] . Assume that Q is an open subset of R™and
f: RxQ—>Rm js of class ¢! and w-periodic in t.Let B be a block of type (p,q),
according to the above definition. If B and b~ are compact ANRs and ¥ (B) —x(b~) #0, then
there exists a point xg€ intB such that the solution x(t) of the Cauchy problem (3.1)-(3.5) is
w—periodic in t.Moreover, x()eintB for each teR. ’

Finally, we consider the case in which the set C is a manifold, possibly with boundary. We
denote by T(C) the tangent bundle of C.This situation has been studied by M. Furi and M.P.
Pera in [19,20]; in [20] they use the Euler characteristic ) of a vector field. This object is
equal, up to a minus sign, to the index of rest points of the dynamical system induced by the
given vector field (see Chapter 2). In [20], Furi and Pera prove a bifurcation theorem which
implies the following: '

THEOREM 3.4. [20, th. 2.4] Let F:RxC — T(C) be a w-periodic continuous

vector field and let F be the averaged vector field associated to F. Assume that:
(dl) theser {peC :?(p) =0} is a compact subset of intC;

(d2) the Euler characteristic x(f:) is nonzero ;

(d3) all the possible w—periodic solutions x(*) of the parametrized equation:
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x = AF(t,x) , Ae(0,1],
lie in a compact subset of intC .
Then, (3.1)-(3.2) has a solution.

Theorem 4.2 extends the quoted results; moreover, we give a proof which, in some sense,
unifies the two approaches we have sketched in this chapter. We will return to this remark in
Section 4.3.

3.4. A final preliminary to our results is needed.
We have already mentioned that we want to prove the existence of solutions lying in some
subset C of Rm . To this aim, a key hypothesis is the flow-invariance of the set C itself, so

we end this chapter by recalling some well-known facts about invariance.

Let CcRm be a closed set and F: JxC — R™ be a continuous function, where JCR isa
nondegenerate interval with interior I.
We denote by

T(z;C) : = {ve R™: liminf d(z + hv,C)/h = 0}

h—07*

the (Bouligand) tangentconeto C at z.
Recall that, according to a classical theorem of M. Nagumo ([39]), for each (ty,xg)e IXC the

{5{ = F(t,x)

X(to) = XO

has a solution x(-) = dom x(-) — C defined on a right maximal neighbourhood of t; if and
only if

Cauchy problem

(3.6) F(t,2)e T(z;C) forall tel, zefrC.
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Equivalently, if F*: JXR™ — R™ is any continuous extension of f, then (3.6) ensures that the
set C is (weakly) positively invariant with respect to the equation x = F*(t,x) , i.e. for each
(tg.Xg)e IXC there is at least a solution x(-) of x = F*(t,x) with x(tg) = x¢ and such that
x(t)e C in its right maximal interval of existence.

Accordingly, since we are interested in solutions lying in the set C, there will be no loss of
generality if we assume F(t,-) defined on the whole space R™m whenever (3.6) is assumed.
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CHAPTER 4

- THE MAIN RESULTS

4.1. In this chapter we present our main results.We will examine, essentially, two cases.
First (Section 4.2), we deal with the case in which the set C is a closed convex subset of R™
with nonempty interior. The study of this situation is contained in [6].

Secondly (Section 4.3), we prove the main result of this thesis, i.e. a continuation theorem for
the periodic BVP in flow-invariant ENRs. This theorem and other related results are contained
in [7].

We point out that in the case of convex sets the former result (Theorem 4.1 below) is slightly
more general than the latter (Theorem 4.2). Moreover, we notice that the two proofs are

completely different.

4.2. Throughout this section, we suppose that CcR™ is a closed convex set with intC # @,

and denote by

r:Rm—C
its canonical projection (r(x) is such that Ir(x) - xI = dist(x,C)). It is well-known that r is non-
expansive. For brevity, we denote by A((u) the set A[(u,C) . Let @ # GcC be a bounded
set which is open relatively to C and let f =f (t,x;A) : [0,0]xRmx[0,1] - R™ bea

continuous function.
We want to find solutions to the differential system

4.1) x = f(t,x;1)
verifying the boundary condition
(4.1 x(0) = x(w) .

Such functions will be called ®-periodic for brevity.
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We will further want to prove that at least one solution of (4.1)-(4.1") takes values in the set
clcG for all values of t.
We now state our first result.

THEOREM 4.1. Suppose that the following conditions are satisfied :
(el) foreach uefrCNG, thereis MyeN(u) such that

(ftuD) Iny) <0

for all te[0,0] and Ae[0,1] ;

(€2) forany x(-), w-periodic solution of

(4.15) x = M(tx;A), Ae (0,1),

such thar x(Y)eclcG, for all te[0,w ], it follows thar x(1)e G for all te[0,w];
(€3) the fixed point index ic(r(1 + fy), G) is defined and

ic(r(l+ fp), G) # 0,

W

where ?O(Z) : L [f(s,z;0)ds (zeRm) , I:=1d__ .
®0 R

Then the equation x= f(t,x;1) has at least one w-periodic solution x(-) such that x(t)eclcG
for all te[0,w].

REMARK 4.1. We observe that (el) is equivalent to the (apparently more restrictive)

condition:

(el") foreach uefrCNG and for each ne A (u), (f(t,u;1)In) <0
for all te[0,w] and Ae[0,1].
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Indeed, obviously, (el') implies (el). On the other hand, assume that (el) holds and let
ue frCNG . Take £ >0 suchthat K:=CnB[u,2e] cCNG.

Observe that K is a compact convex set with intK # @. By Urysohn's lemma, there is a
continuous function ¢g: RMm— R, such that ¢.(x) =1 for xeBlu,e] and ¢ (x) =0 for

x& B(u,2¢). Define
fo(tx;A) 1 = 0p(x) f(tx;A) .

It can be easily checked that, by (el), for each vefrK there is 1,€ A((v,K) such that
(fo(t,v;A) Im,) < 0, foralltand A . Note that AL(v,K) = AL(v) for every ve frCNB(u,2¢).
Then we can apply a flow-invariance result for convex sets (see, for instance, [17, cor.3]) and
get that K is weakly positively invariant for the equation x = f,(t,x;\) . By the Nagumo
theorem (see [39,55]) we know that (f.(t,v;A) | 1) <0 for every mne A[(v,K) . Hence, for
v=u we obtain (f(t,u;A) M) <0 for each me A (u). Therefore, (e1") is proved. |

In the sequel, the following result will be used.

LEMMA 4.1. Let uefrCand z=0 be such that

(4.2) (zIn) 20 forall neN(u).
Then
4.3) (r(u+2z)-ulz)>0.

Proof. Indeed, for any ye C we have r(y+z)e B[y+z,zl] , and so (r(y+z)-ylz)=0.
Moreover, (r(y+z) - y | z) =0 if and only if yefrC and r(y+z) =y, so that ze A(y) . As,
by (4.2), z& A (u), then (4.3) follows. |

Now we are in position to prove our main result.

Proof of Theorem 4.1. First of all, we observe that, since intC # @, we have
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(p-ulmn) <0 forany peintC, uefrC and me A (u).
Choose a point peintC and consider the functions

f(LxA) i = f(tx;A) +nl(p-x) , (neN).
We are going to prove that, for ne N large enough, the equation
(4.4) x = fy(tx;1)

has a w-periodic solution x,(-) and x,(t)e clcG for all t. Then, as f; converges to f
uniformly on compact sets, there will be a subsequence of (x,) converging uniformly to a

® - periodic solution x(-) of (4.1) and so x(t)eclcG forall t.

To this end, it is convenient to introduce an abstract framework (following J. Mawhin [38]) and
use a continuation theorem for the coincidence equation Lx = Nx.

Let Z: = C[0,w] with the sup-norm and let X := {zeZ: z(0) = z(w)}. Define L:x X, a

linear Fredholm mapping of index zero, with domLcX, domL = {xe X: xe C1[0,®]}. The
()

linear projectors Q:Z —Z, Qz: = (l/w)[z(s)ds, and P=Qx: X— X are considered too.

) 0

We denote by Kpg:Z — KerPndomL the generalized inverse of L (see [38, p.7]). Finally,
let N, N, (neN) be the Nemitzky operators from Xx[0,1] to Z induced by f, f;
respectively. Then, equations (4.1) and (4.4), with the periodic boundary conditions, are

equivalent, respectively, to the fixed point equations
4.5) x =Px + KpgN(x;1) + JOQN(x;1)
(4.6) x = Px + Kp gNp(x:1) + JQN;(x;1)

where J = Idgm (see [21,38]).

Now we introduce the set
Q:={xeX: x(t)eGnintC for all te [0,w]} .

It is clear that Q is an open bounded subset of X.
Moreover, clQc{xeX :x(t)eclcG forall te[0,0]}, ‘so that
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I c Slu Sz
with

S;={xeX:Vt x()eG and 3tys.t. x(tp)efrC},
S, = {xeX: Vt x(t)eclcG and 3tys.t. x(tp)efrcG} .

Observe that S, is closed and $;NS, =@.
It is a standard fact to check that N and N, are L-compact on clQx[0,1] (see[38, p.12]).

We want to prove that for n sufficiently large
4.7) x # Px + AKp gNp(x;A) + JQN, (1)

holds for each (x,A)e frQx[0,1].
Without loss of generality, we can assume that (e2) holds for Ae (0,1]. Then, (€2) and (e3)

imply that

(4.8) x # Px + AKp oN(x;A) + JQN(x;A)

for all Ae[0,1] and xe S,. In fact, (e3) ensures that QN(x;0) = ?O(X) # 0 for
xe S,MKerL = frcG . Now we claim that there is n; such that for every n 2 n;, (4.7) holds
for all Ae[0,1] and xeS,. Indeed, it is sufficient to observe that the sequence of operators
(N,) convergesto N uniformly on clQx[0,1] and that

inf {Ix - Px - AKp oN(x;A) - JQN(x;M)lx : x€ S5, A€ [0,1]} > 0

(recall that Kp N and QN are compacton S [0,1] and S, is closed).
Furthermore, we note that, for every ne N, (4.7) holds for all A<[0,1] and xeS;; this

claim follows at once arguing like in [38, p.74-75] since, for every n,
(4.9) (f(twA) Imy) <0

for all te [0,w], ue frCNG, Ae[0,1].
Therefore, we have proved that, for n sufficiently large, (4.7) holds on frQ2x[0,1] and so,

equivalently,
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(4.10) Lx # AN, (X;A) on (domL N {frQ)x[0, 1],
“4.11) QN (x;00 =0 -, on (KerL N {rQ).

Now we want to use the Mawhin continuation theorem ([21, Theorem 4.1]), and so we need

only to prove that

(4.12) dg(JQN, (- O)ker L » QNKer L, 0) = dg( f, ¢, GNintC, 0) # 0,

[0}

where f,0(2) : = (1/0) G[fn(s,z;O)ds.
Setting for simplicity G': = GNintC , we have _fn,o(w) # 0 for wefrG' and
(-DMdg( £, 0, G, 0) =dg(- £, G, 0) =
= igm (I+f,0, G) = igm((I+f,0)1,GC) .
Since r: RM\C — frC and G'cintC, then
igm((L+ o) 1, G) = iRm’((I + fa0) T, HG)).
Furthermore we can write, using the commutaﬁvity property of the index,

igm(( +f,0) 1, T1(G)) =ic(r A +f,4) , G).
We point out that for every n=n,
(4.13) u = r(u +£,, o(u))

holds for all ue GNfrC . In fact, by (4.9) and Remark 4.1, we have that (?n,o(u) In) £0 for

all ne AL(u). We know that _fn.o(u) #0 by (4.11); then, by Lemma 4.1, r(u +?n,0(u))-u¢0.
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We also note that (4.13) holds for all ue frcGNfrC, providéd that n is sufficiently large (n2ny).
Indeed, by (e3), inf{Ir(u+ fo(u)) - ul: uefrcG} >0 and so the same is true replacing

with f, for n large enough.
Hence, we can use the excision property of the index and write, forn2n;+n,,

ic(r(I+f,0) » G) = ic(r(I +f,0), G).

Finally, ic(r(I + Tp0) » G) = ic(r(1 + T),G) for n sufficiently large (as £, o— o uniformly
on clcG) and (4.12) follows from (63).

The validity of (4.10)-(4.11)-(4.12) provides, for almost all ne N, the existence of a solution
X, () domLNcl€ such that

>
Il

n Px, + Kp oNy(xp31) + JQN (x5 1)
Px, + KpoN(xp;1) + JQN(xp;1) + Kp o[ Ny(xy; 1) - N(x; DI +
+ JQ[Nn(xn; 1) - N(xn; 1)]’

By the previously listed properties of the operators, it is clear that the sequence (x,) is relatively
compact and so, passing to the limit on an appropriate subsequence, we get x,— x* with
x*e domLclQ and
x* = Px* + KP‘QN(x*;l) + JQN(®x*;1),
that is
Lx* = N(x*;1).

The proof is therefore complete. |

REMARK 4.2. We observe that the assumption

(4.14) fo(z) =0 for zefrcG
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is not sufficient to ensure that ic(r(I + fy) , G) is defined."Indeed, from Lemma 4.1, it is clear
that the index is defined if and only if (4.14) and

fp@eN(2) for zefreGNfrC

hold. Moreover, we note that in the hypothesis (e3) the function fo may be substituted by any
map f* with f*(z) = (j)(z)-?O(z) and ¢ : Rm— R+ a continuous function. In this case, we have

ic(r@ + fg) , G) = ic(r T+ %), G)..

We note that (e2) easily follows provided that we find a-priori bounds for the w-periodic
solutions of (4.1,) lying in C. In this case, take G = B(O,R)"C with R large enough.

We point out that our result makes sense in the case when GeintC. In fact, if GcintC

condition (e1) is vacuously satisfied and (e3) reduces to

dg(fp, G,0) = (-D™ ic (e(I+£y),G) = 0,

'so that in this case theorem 4.1 reduces to Mawhin's theorem 3.1.
On the other hand, if C is compact and G = C then condition (e2) is vacuously satisfied,

whence (e3) holds with ic =1, since r(I + ?0) : C = C and C is contractible. In this case
theorem 4.1 reduces to a classical result of existence of periodic solutions in convex sets (see
[26]1.,[33, th.3.2],[36, cor.2.1]).

In many concrete situations, the actual computation of the fixed point index may be performed
using the operator of translation along orbits. Namely, assume that the autonomous differential

equation
x = f(x)

induces a local flow t in R™ (e.g. TEO locally lipschitzian) and C is flow-invariant with respect to

this flow, i.e. (fy(u) IM) <0 for all ue frC, ne A (u). Then, for € > 0 sufficiently small, we

have

(4.15) ic(rd + fg) , G) = ic(rng, G),
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where Tz : W — T (E,W).
The proof of this claim follows a standard procedure (see [33,49]), showing that the continuous
homotopy '

r(x + -1(n(te,x) —x)) O<ts<1
h(t,x) : =
r(x + ef g(x)) t=20

is fixed point free on frcG (use Lemma 4.1). From (4.15), it is also clear that

im ic(me,G) = ic(r(I +fg) , G) .

g0

Therefore, we can use Srzednicki's theorem 2.1. If B = ¢lcG is a block (according to C.

Conley [9]) with b~ the set of "egress points" of B then

ic((L+fp), G) =x(®B) - x(b) ,

provided that B, b- are ENRs. (As before, we denote by % the Euler characteristic). For

analogous results, see also theorem 3.4 and [19].

In some applications it is convenient to deal with a set G which is defined as intersection
of sublevel sets of suitable Liapunov-like functions. Such possibility has been widely
developed in [21,38], dealing with the so-called "bound sets".

In the light of our result and as an example in this direction, we investigate the case in which the
set G is the part of the convex set C lying between two level surfaces of a functional V. More
precisely, the following situation is considered.

Let V: Rm — R be a continuous function and suppose that for -ee <a <b <+eo, the set
G: = {xeC:a < V(x) <b} is defined. It is clear that G is open relatively to C. We suppose that
G is bounded.

It can be seen that

clcGclasV<b]




-32-

and
- freG c [V =a]u[V =b].

Suppose that there are closed (possibly empty) sets H.KcC, with HNK = @, such that
frcG =HUK and let V be of class ¢! in a neighbourhood of frcG, with

(4.16) VV(@)#0 for uefrcG.

Furthermore, we require

A

(4.17) (VV(@)In) £ 0, for each ue HNfrC and me Al(u) ,
(4.18) (VV@)In) = 0, foreach ue KNfrC and me A (uw)
Finally, let  : Rm — R be any continuous function such that
(4.19) W) =1 forxeH, ) =-1 forxeK.
Now we have
COROLLARY 4.1. Suppose that F :[0,0]XxR™ — R™ is a continuous function
which satisfies the following conditions :
(f1) for each uefrCNG, there is ne A (u) suc)i that
(F(tw)In,) < 0, forall te[0,m] ;
(f2) (F(t,u) I VV(u) =2 0 forall (tue[0,w]xH,
(F(tu) | VV()) €0  forall (tue[0,0]xK;

(£3) ic(r@+yVV),G) = 0 .
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Then the equation x = F(t,x) has at least one w-periodic solution x(-) such that x(t)e clcG for
all t.

Proof. We define f(t,x;A) := (1-A)h(x) + AF(t,x), Ae[0,1], where
h(x) == r(x + y(x)VV(x)) - x.
We show that (el), (€2), (e3) of theorem 4.1 are fulfilled with respect to the function f.
In order to verify (el), it will be sufﬁchient (by (f1)) to show that

(4.20) (h(w)Im,) <0 forall uefriCNG

holds. But, as r{u + y(u)VV(u))e C, then, by a general property of convex sets,
(r(u + y@VV@)) -u | M) < 0 forany neA((u) and (4.20) is achieved.

To prove (e2), we observe that if x(-) is a ®-periodic solution of (4.1;) with x(t)e clcG for
all t and x(tp)e frcG, then (by a standard argument) the function v(t) : = V(x(t)) verifies
v(0) = v(w) and has a local maximum (or minimum) for t = t,. Furthermore, v is differentiable
at ty. Hence, by chain rule, we have (F(tg,x(tg);sA) | VV (x(tg) ) = 0. Then, it is clear that (¢2)

will follow from
(4.21) (f(t,u;A) | VV(u)) = 0 forall uefrcG , Ae(0,1).
Let ue H and observe that, by the properties of T,

(hw) | VV() = (r(u+y@VV@) - ul V) =

= y@)(r(u + y(@VV@) - u Iy@Vvw) = 0.

If (h(u)! VV(u)) =0 then, arguing as in the proof of lemma 4.1, ue HNfrC and
W(u)VV(u)e A(u). Then, by (4.17), (VV(u) | y(u)VV(u)) <0 and so y(u) < 0 contradicting
the definition of the function . Thus, we have proved that

(4.22) (h(u) | VV(u)) > 0, for ueH.

In the same manner, one shows that
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(4.23) (hw) |VV(@)) <0, foruek.

Finally, (4.22), (4.23) and (f2) imply (4.21) and (e2) is verified.
At last, we must check (e3). We observe that, as f(t,x;0) = h(x), then —f-o(z) = h(z) =

=1(z + Y(2)VV(z)) -z and so r(I+fg) = =r(I+ r(i +yVV)-1) = r(I +yVV). Now, it
is sufficient to verify that the index is well defined, that is h(z) # O for all ze frcG. In view of
the preceding remarks (see lemma 4.1 and remark 4.2), this property follows since VV(u) = 0
for all ue frcG and y(w)VV(u)e N(u)‘_for ue frcGNfrC by (4.16), (4.17) and (4.18).

Then, theorem 4.1 applies and the result is achieved. |

REMARK 4.3. In recent years, several results have been obtained concerning the
computation of the topological degree or the fixed point index associated to nonlinear maps of
gradient type (see [3,11,30,33,44]). Here we just present a simple example in which the index
is found in the situation examined in corollary 4.1.

LEMMA 4.2. Suppose further that [V £b] is bounded and let the sets [V > b],
[V <a] (resp., [V <b], [V >a]) be contractible. Moreover, assume that
V(r(x + y(x)VV(x))) > b (<b) for xe[V=b] ,
V((x +yx)VV(X)) < a (>a)for xe[V=a] .
Then, ic (L +yVV),G) = -1 (=1, respectively).
The proof is omitted since it is a straightforward application of contractibility of sets and
homotopy invariance and additivity of the index. E

A situation similar to that described in corollary 4.1 and lemma 4.2 has been examined in [50]

using the Wazewski approach [52].
For a further result on the computation of the index for gradient maps, in the spirit of
Krasnosel'skii's approach [33, lemma 6.5], see lemma 5.2.
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From corollary 4.1 and lemma 4.2 it is possible to obtain and improve various results from
[22,45,46]. For instance, we have :

COROLLARY 4.2. Ler g: [0,0]xRm— R™ pe continuous and suppose there are
constants 0 < a <b such that for all te [0,0] : '

(4.24) (gtx) 1x) <0 (0) for Ixl=a, x20
(4.25) (g(t,x) 1x) =20 (£0) for xi=b, x=0

Finally, assume that for each i= 1,...m andte[0,0]:

A

(4.26) g(tX)20  for a<xi<b , &20
1 1

Then, equation x = g(t,x) has at least one w-periodic solution with values in the set

{xeRT :a<Ixl < b}.

Proof. The result can be easily obtained from corollary 4.1 by setting : F=g, C = RT ,

and V(x)=Ixl. Observe that uefrCif and only if u= Gl for some i and, in this case, ne A (u)
if and only if N =.ZJ u; €, where y; =0, .}:J u;>0,and J=(j:u= Gj}. (f1) and (f2)
- 1€ 1€

follow from (4.26) and (4.24), (4.25). In particular, H = [V = b] and K = [V = a] (resp.,
H=[V = a] and K = [V = b]). Then, using lemma 4.2, we find ic@ +yVV), G)=-1
(=1, respectively). '

The proof is complete. |

For the last step in the proof (computation of the index) we can use, alternatively, theorem 2.1
by Srzednicki. Indeed, it is sufficient to observe that x(clcG) =1 and x({(clcG)) =2 (=0,
respectively), where the Euler characteristic is computed for the flow induced by
X = y(x)VV(x), with W smooth enough.

Corollary 4.2 improves [22, th.3.1], where, instead of (4.25), g(t,x) = - x was assumed. On
the same line, it is easy to find improvements of other results (e.g. [45, th.4.1], [46, th.3.2]).
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A careful reading of the proof of theorem 4.1 shows that variants of this result may be obtained
by suitably changing the definition of the open bounded set QcX: ={x: [0,0] = Rm,
continuous and verifying (4.1")}. In particular, it is possible to produce various results
analogous to the classical theorems of M.A. Krasnosel'skii [33, Chap.6]. For brevity, we do
not give the proofs of these theorems, but we refer the reader to corollary 4.5 below, where we
extend - with a different technique - Krasnosel'skii's theorem to ENRs.

We end this section by observing that it is possible to obtain an (equivalent) variant of

theorem 4.1 by reversing the inequality in condition (el), and replacing ?0 with —?0 in (e3).
Indeed, this can be achieved with the standard change of variable t — ®-t which transforms
equation (4.1) into y'=- f(s,y;1) where s = w-t, y(s) = x(®-t).

All the corollaries can be modified accordingly.

We also point out that the results may be extended to the second order differential systems

-x = F(t,x,X)

and to some classes of differential-delay equations .

4.3. Throughout this section, we suppose that CcR™Mis an ENR.

As usual, we deal with the periodic boundary value problem

(4.27) x = F(,x) ,
(4.28) x(0) = x(), (@>0),
where

F(t,x) : = f(t,x;1)

and f = f(t,x;A):=[0,w]xRmx[0,1]—Rm is a continuous function which is locally lipschitzian
in x. Once for all, we point out that such assumption is not strictly necessary in our proofs, but
it avoids the requirement of the uniqueness of the solutions to all the Cauchy problems which
will be considered henceforth.

In what follows, we denote by X the complete metric space of the continuous functions
x(-):[0,w]—=C endowed with the distance d*, d*(xy,X,):=Ix;-x,l... From [31, p.186], we know
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that (X,d*) is a (metric) ANR. We want to prove the existence of solutions to (4.27)-(4.28)
belonging to certain subsets of X.
To this end, we produce a continuation theorem (on the line of [37,38]) involving the averaged

system
(4.29) x = fo(x)

Observe that the map ?0 is locally lipschitzian; accordingly, (4.29) induces a local dynamical
system T with phase space Rm. Weﬁ.. also note that if the set C is positively invariant for

X = f(t,x;0), then the same property is true for T (see Lemma 4.3 below).
We further remark that if GcC is a bounded set, open relatively to C, such that

(4.30) fo(x) # 0 for all xe frcG

holds, then there is €3> 0 such that the map 1—1:8 : x—T(g,x) is fixed point free on frcG, for all

.0 < € £ gj. Therefore, whenever C is positively invariant for 7 and (4.30) holds, the fixed
point index ic(m,,G) is defined and it is constant with respect to €, for all 0 < € < ;. In this

situation, according to Chapter 2, the index of rest points

(4.31) 1I(n,G) : = Im ic(n,, G)

e—07t

is well defined.

REMARK 4.4. Concerning the computation of the index I(%,G), we consider some

special cases (see also Chapter 2).
(i) If G=C (C compact), then I(?t,G)=x(C), (see [20,49]).
(i) If clGcintC, then I(n,G) = (—l)mdB(_fO,G,O) (see [33,49]).

(iii) If C is a closed convex set with nonempty interior, then I(t , G) = ic(r(I+£),G),
r: Rm—C being the canonical projection (see section 4.2 above and [6]).
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(iv) More generally, if B = clG is a block (according to C. Conley [9]), with b~ the set of
"egress points" of B, then I(;:,G) = %(B) - x(b"), provided that B and b~ are ENRs (see

theorem 2.1).
(v) Finally, if wis dissipative, i.e. there is a compact set %=C such that for each xe C there is

t,20 with E(t,x)e X for all t 2 t,, then C is of finite type and I(—JE,G) = %(C) for every GO X

(see proposition 2.1).

Now we are in position to state the main result of this thesis. In what follows points of C are

identified with constant functions.

THEOREM 4.2. Assume
(gh) C is positively invariant for x = f(t,x;\), Ae [0,1].

Let QX be an open bounded set such that the following conditions are satisfied:

(g2) there is no x(-)e frxQ, with x(0) = x(w), such that
(4.27,) x = Af(t,x;A), Ae(0,1);

(g3) '-?0(z) #0 for all ze CnfrgQ;

(g4) I(1,QNC) = 0.

Then, (4.27)-(4.28) has at least one solution x(-)& clx €.

Observe that in the particular case C = R™ assumption (g1) is trivially verified, while condition

(g4) is equivalent to dB(fO,QmRm,O) # 0, so that we obtain theorem 3.1. Actually, in [37] the
local lipschitzianity of f is not supposed; however, in the special case C = R™ we can relax such
regularity assumption on f using a standard perturbation argument.

The following result is crucial for the proof.
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LEMMA 4.3. Assume (gl). Then, for each o, 20 and 0 <A; <1, i=1,2, Cis

flow-invariant for x = of(t,x;Aq) + B ?M(x).

Proof. At first, we observe that the function af(t,x;A;) + B?Lz(x) is locally lipschitzian

in x, so that the uniqueness for the solutions of the associated Cauchy problems is guaranteed.
Recall that, by the characterization of flow-invariant sets in terms of tangent cones (see [2,10]),
(gl) implies that f(t,z;A)e T(z;,C), for all te [0,w], ze frC and Ae[0,1], where T(zC) is a
suitable tangent cone to C at z. Without loss of generality (see [41, Th.3.9]), we can assume
that T(z;C) is closed and convex (for instance, the Clarke tangent cone can be chosen). Then,

by the mean value theorem [2, p.21], ﬁ(z)e T(z;C) for all ze frC and Ae[0,1]. Finally, the

convexity and the cone property of T(z;C) imply that af(t,z;A;) + B?;‘Q(z) e T(z;C).

The proof is complete. |

Proof of Theorem 4.2. At first, we prove our result under the supplementary
assumption that there is a constant A > 0 such that

(4.32) If(t,x; ) < A

for all te [0,w], xe Rm, Ae [0,1]. The general situation will be examined at the end of the

proof.
Without loss of generality, we also suppose that (g2) holds with Ae (0,1] in (4.27,)

(otherwise, the result is already proved for xe frx2).

We begin with some technical preliminaries.
Let ee (0,m) be arbitrarily small but fixed. We define the following functions:

6(?»):=(kco—e)/(co-—e), gfo<A<1;
oO,0):=[e+6(w-¢)] (t/w) , 0<06<1, 0<t<6;
f(sw/6(8,w),y;A(8)) , 0<08<1,0<s<6(0,0),yeRm,
g(s,y;0) : =
f(w,y;A(0)) , 0<86<1,s>¢(0,0), yeRm .
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Observe that g:R , xR™x[0,1]—-R™ is continuous and such that uniqueness and global existence
for the associated Cauchy problems are guaranteed. Accordingly, if we denote by u(c,z,-;0) the

solution of

(4.33) y = g(s,y;9)
y(©)=z

then a one-parameter family of processes is defined. Using (g1), it can be easily checked that,
for each 6e[0,1], the set C is positively invariant for the corresponding process u. We further

note that, since
A =A(0) = ¢(6,0)/w,
then the function y(s) is a solution of (4.33) for se [0,0(6,w)] if and only if the function

(4.34) x(1) : = y(0(8,0)t/w) = y(¢(8,1))

is a solution of (4.27,) with te [0,®].

The existence of solutions to (4.27)-(4.28) will be achieved producing a fixed point for a
suitable operator defined on X. We will carry out this programme using the properties of the
fixed point index for compact operators in metric ANRs (see [23]); more precisely, some

admissible homotopies will be constructed. ‘
As a first step, we introduce a nonlinear operator M defined on Xx[0,1] as follows:

M(x,8) : = u(0,x(®),0(6,-);8) , B<[0,1].

By the flow-invariance of C, M : Xx[0,1]—X; moreover, by the Ascoli-Arzela theorem, M is
compact on clxQx[0,1]. Using the definition of u and (4.34), it is immediately seen that x is a
fixed point of M(:,0) for some 8¢ [0,1] if and only if x is a solution of (4.27,) with Ae[e/w,1]
and x(0) = x(w). In particular, (4.27)-(4.28) is solvable if and only if M(-,1) has a fixed
point. Hence, this claim and assumption (g2) imply that M(x,0) # x for xe frxQ2 and 6<[0,1].

Therefore, M is an admissible homotopy and so

(4.35) i (M(,1),Q) = ix(M(.0),9).
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Secondly, we denote by v(c,z,;11) the solution of

y = (1-p) fo(y) + pgs,y;0)
y(0) =z,

with pe [0,1].

As before, a one-parameter family of processes is defined. By Lemma 4.3 we have that, for
each pe [0,1], the set C is flow-invariant for the corresponding process v as well. Now, we
consider another nonlinear operator N(x,u), defined on Xx[0,1] as follows:

N(x,1) ¢ = v(0,x(0),0(0,-);1L).
Arguing as before, N : Xx[0,1]—X and it is compact on clxQx[0,1]. Moreover,
N(x,1) = M(x,0).

‘We want to prove that N is an admissible homotopy. To this end, we observe that x is a fixed
point of N(-,u) if and only if x(-) is a solution of

(4.36) x = (€/)[(1 - ) fo(x) + Pt x;e/@)]

with x(0) = x(c).

We claim that there is £y > 0 (small enough) such that N(x,pt) # x for all xe frxQ and pe[0,1],
provided that e (0,g]. (Recall that the function g and, consequently, the operator N depend on
the constant € chosen at the beginning of the proof). In fact, assume the contrary, i.e. that for
each ne N there are £,€ [0,0] with lim g, =0, pu,e [0,1] and x,€ frx€ such that
N(x,,l,) = X,. Then, from (4.36) and (4.32) we have:

(4.37) kol < (B /A .
Moreover, as Q is bounded there is a constant R > 0, independent of n, such that Ix |, < R. By

the Ascoli-Arzela theorem, we get that there is x*e fryQ such that (up to a subsequence)
X,(-)—x*(-) in the d*-metric.
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Clearly, x*(t) = constant = x*e CfrxQ (use (4.37)). We can also assume (passing, possibly,
to a further subsequence) that lim |1, = u*e[0,1]. Taking the mean value of (4.36) and dividing
by (g,/w), we obtain, for each n,

®

) [0)
1 | = 1
0= [(1 —u) = f fo(x,(0)dt + un—gff(t,xn(t) ; en/m)dt] )

o 0]

Passing to the limit as n—-eo, we get
—_ 1 © —_
0=(1—-pu*) fox*) + u* = [f(t,x=0)dt = fy(x*), with x*efryQ.
®0 -

Thus, a contradiction with (g3) is reached. Hence, the claim is proved and we can write:
(4.38) ix(M(,0),2) = ix(N(-,1),Q) = ix(N(-,0),Q2).

‘Finally, we define a third homotopy. Let 7: RXRmM—R™ be the dynamical system induced by

ﬁc=?0(x) and observe that, with the notation introduced along the proof,
n(t,2) = v(0,z,50).

By Lemma 4.3, C is positively invariant with respect to . A nonlinear operator H is defined on
Xx[0,1] as follows:

H(x,B) : =n((1 - B)e + Bo(0,),x(w)).
As before, H : Xx[0,1]—X and it is compact on clxQX[0,1]. Moreover,
N(x,0) = H(x,1).

In this case, xe X is a fixed point of H(-,B) if and only if x(t) = y((1 - B)e + Be(t/w)), with
y:[0,e]—C an e-periodic solution of
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y = fo(y)
y(0) = x(w).

We claim that there is €& (0,5] such that H(x,B) # x for all xe frxQ and Be [0,1], provided
that € (0,&;]. Assume the contrary; then for each ne N there are €, [0,0] with lim g, =0,
B,€[0,1] and xe frxQ such that H(x,,B,) = x,. We consider the auxiliary functions z,€ X

defined by z (t):=y, (€, t/w), where y, = fo(y,) and y,(0) = yu(€,) = x,(®). For such z, we

have:

(4.39) 7, = (8,/0)fo(z,),
z2,(0) = zy(®) = x,(w)

and
(440) Xn(t) = Zn((l - Bn)(’) + Bnt)~

‘Arguing as in the preceding claim, we easily get Izl < (€,/®)A and |z, (0)| SR (withR>0 a
suitable constant independent of n). Again, the Ascoli-Arzela theorem implies that (passing,
possibly, to subsequences) z,(-)—z*(:) in the d*-metric, with z*(-) = z* = constant and
limp, = B*e [0,1]. Furthermore by (4.40) x,(-)—z* in the d*-metric, with z*e CNfrxQ.
Taking the mean value of (4.39) and dividing by (g,/w) we get

«
L [f(aondi=0;
wo

hence, passing to the limit as n—+e, we have ?O(Z*) = 0, with z¥e CNfrxQ and a

contradiction with (g3) is reached.
Therefore, the claim is proved and we can write:

(441) 1X(N("O)7Q) = IX(H('vl)?Q) = IX(H(°7O)’Q)~

By definition of H, we have:
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H(x,0) =n(E, x(®)) = T(x(w)),

where -ﬁg is the e-Poincaré map (0 < € < g;). Hence, since H(:,0):X—C, by the contraction

property of the fixed point index (see proposition 1.1) we have:
(4.42) ix(H(-,0),Q) = ic(H(-,0),2NC) = ic(n,Q2NC).

(Observe that, as a consequence of the last claim, =, is fixed point free on
fro(QNC)cCnirx ).

In conclusion, we have proved that, via (4.35), (4.38), (4.41) and (4.42), the integer
ic(M(-,1),Q) = ic( ©,QNC) is constant with respect to &, for € > 0 small enough.

Then,

ix (MG, 1),Q) = lim ic( 7, QNC) = I( 1,2NC) .
e—0"

Assumption (g4) provides (see Chapter 1) the existence of a fixed point xe £ of M(-,1).
Therefore, the conclusion is established.
In the case when (4.32) is not satisfied, the proof can be repeated for the equation

(4.43) x = f(t,x;1)-p(xI),

where p:R,—[0,1] is lipschitzian and such that p(x) = 1 for IxI <R, p(x) = 0 for Ix| 2 2R and
clxQcB(O,R).

Of course, the local flow 7 induced by (4.29) coincides with the flow induced by

X = .fo(x)p(lxl) in a neighbourhood of QNC and, moreover, any solution of (4.43)-(4.28)
such that xe clxQ is also a solution of (4.27)-(4.28).

The proof is complete. |

REMARK 4.5. As we mentioned in Chapter 3, the flow-invariance condition (gl1)
may be stated in an equivalent geometrical manner using tangent cones. Indeed, (gl) holds if

and only if
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(h1) f(t,z;M)e T(z;C), for all te [0,w], ze frC, Ae[0,1]

is satisfied (see [2,10]). Hence, if f(t,x;)) is defined only for xe C, then (h1) ensures that all
the processes considered in the proof of Theorem 4.2 are defined.

A standard situation in which the function f(t,:;A) is defined just on the set C occurs, for
example, when C is a regular manifold; in this case, f(t,z;A)e AN-A, where A = T(z,C),
whenever f is a tangent vector field and so (h1l) holds. Accordingly, our result is general

enough to be applied to the setting considered in [4,19,20].
If C is a convex set like in section 4.2, then (h1) reduces to (f(t,z;A)In) < 0 for each

ne N(z,C).

REMARK 4.6. It is possible to obtain a variant of Theorem 4.2 assuming, besides
(g2) and (g3), the following conditions which replace (g1) and (g4):

(g) C is negatively invariant for x=f(t,x;\), A& [0,1];
) im ic(re,QNC) % 0.
-0~

This can be accomplished by the standard change of variables t~— -t which transforms
equation (4.27) into 5<=-f(s,x;1), where s=-t.
Observe that if, furthermore, the critical set

Z={zeC: ?O(Z) =0}

is compact and QNC>DZ, then lim iC(T_te,QﬁC) is exactly x(_fo), the "characteristic of the
e—0~

vector field" ?0 defined in [20] (see section 3.3 above). It is also clear that (g,) is equivalent to

(hp) f(t,z;\)e -T(z;C), for all te [0,w], ze frC, Ae [0,1].
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so that the situation considered in [20] fits our hypotheses (see also Remark 4.8).

Now, we present, as immediate corollaries of Theorem 4.2, an extension to ENRs of two
classical results of existence of solutions for the periodic problem (4.27)-(4.28). Namely, only
a (suitable) different choice of the set QX is needed.

In what follows, GcC denotes a bounded set which is open relatively to C. Observe that
clcG = clG.

In the lines of theorem 3.1 we can prove the following:

COROLLARY 4.3. Assume (gl) and suppose that the following conditions are
satisfied:

(h2) for any x(+), solution of (4.27;)-(4.28) such that x(t)e clG for all te [0,w],
it follows that x(t)e G for all te [0,0];

(h3) £4(2) = 0 for all ze frcG;

(h4) I(%,G) = 0.

Then, (4.27)-(4.28) has at least one solution x(+) such that x(t)e clG, for all te [0,w].

Proof. In the setting of Theorem 4.2 we define:
Q ={xe X: x()e G, Vte [0,0] }.

It can be checked that Q is bounded and open relatively to X.
Furthermore, the following facts hold true:

QNG =G;
clxQ c{xe X: x(eclG, Vte [0,0] };
fryQ < {xe X: x()e clG, Vt and Ity with x(tg)e frcG}.

Hence, (h2) and (h4) imply (g2) and (g4), respectively. Finally, (g3) follows from (h3) since
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froG < CnifrxQ.
Therefore, Theorem 4.2 applies and the proof is complete. |

REMARK 4.7. Hypothesis (h2) is a transversality condition at boundary points as

considered in theorem 3.1. However, in (h2) not all the boundary is concerned, but only points
of frcG are taken into account. This advantage is balanced by a weak boundary condition

which is implicitly requiréd in (g1). As we already observed in the previous section, the flow-

invariance assumption (gl) is equivalent to the cone condition (h1). However, since in
Corollary 4.3 we study solutions lying in clcG, we realize that it is possible to obtain a slight

improvement of Corollary 4.3 by relaxing (h1). Namely, we have:
COROLLARY 4.3'. Besides (h2), (h3), (h4), assume

(h)) f(t,z;2M)e T(z:C)

for all te [0,0], ze frCACIG, Ae [0,1].

Then, the same conclusion of Corollary 4.3 holds.

The proof of this result can be achieved via a standard perturbation argument based on the
Ascoli-Arzela theorem (see [18] for an analogous situation).
In the particular case when C is a closed convex set with nonempty interior, Corollary 4.3' can

be seen as a consequence of theorem 4.1.
A simple application of Corollary 4.3 is based on the fact that assumption (h2) is fulfilled

whenever a-priori bounds for the solutions of (4.27,)-(4.28) can be produced. Accordingly,

we have (recall Remark 4.6):

PROPOSITION 4.1. Assume that, for all te [0,0], ze frC and Ae[0,1],
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ft,zM)e T(z;C) (respectively, f(t,z;A)e -T(z;,C)).

Suppose that there is a compact set KC containing all the solutions of (4.27,)-(4.28) and such

that {ze C: ?0(2) =0}cK. Let GcC be a bounded set, open relatively to C, such that KcG and

suppose that

lim ic(T_tg,G) #0 (respectively, lim iC(EE,G) #0).

g—0" e—0"

Then, (4.27)-(4.28) has at least one solution with values in K.

Observe that, by the excision property of the fixed point index, the limits 1im+ iC(Tte,G) # ( are
£—0-

independent of the choice of GoOK. The above proposition clearly contains Theorem 3.4 by

Furi and Pera; in fact, according to the notations introduced in [20], Lim iC(ES,G) = X(?o)-
e—0~

We note that there is no loss of generality, in our setting, if we take K = B[0,Ry]NC and
G = B(0,R)C for any R > R,. In this way, we obtain a generalization to arbitrary ENRs of
an useful principle due to Mawhin [37, Th.4].

Finally, we remark that Proposition 4.1 is suitable for C non-compact. Indeed, if C is compact
then we can choose K = G = C and f(t,x;A) = F(t,x). Accordingly, Proposition 4.1 recovers a

classical result on the existence of periodic orbits in compact positively (negatively) invariant
ENRs with non-zero Euler characteristic (cf. Poincaré-Hopf theorem).

Secondly, by means of another choice of the set Q in Theorem 4.2, we prove two corollaries of

our main result which are in the lines of the well-known Krasnosel'skii theorem [33, Th.6.1].

COROLLARY 4.4. Besides (gl), (h3) and (h4), assume further

(h,) there is no solution of (4.27,)-(4.28) with x(0)e frcG;
(h5) If(t,x; M)l < Alxl + B, for all te [0,0], xe C, Ae[0,1].
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Then, (4.27)-(4.28) has at least one solution x(-) such that x(0)e clcG.

Proof. First of all, we note that (h5) ensures the global existence for all the Cauchy
problems associated to (4.27;) with initial valuesin C.
Then, there is a constant R > 0, independent of A, such that Ixl,, < R for every x(-) solution of
(4.27,) with x(0)eclG.
In this situation, the appropriate definition of the set Q (in order to apply Theorem 4.2) is the

following:

Q:={xeX: x(0)eG, Ixl. <R}.

Obviously, € is bounded and open relatively to X. Observe that QNC = G and
frxQ c{xe X: x(0)e frcG, Ixl,, < R}Ju{xe X: x(0)e clG, x|, = R}. Then, by the choice of
R, it is immediately seen that (h,'z) implies (g2). Since frcG < Cfrx(, arguing like in the

proof of the previous corollary, from (h3) and (h4) we obtain (g3) and (g4), respectively. Then
we can apply Theorem 4.2 and the proof is complete. |

As a consequence of Corollary 4.4 we immediately get an extension of Krasnosel'skii's
theorem to arbitrary ENRs. Precisely, we consider the equation:

(4.44) x = g(tx)

with g : [0,0]xRm—Rm continuous, locally lipschitzian in x and such that the (forward) global
existence for the solutions of the associated Cauchy problems with initial values in C is

guaranteed. Then, we have:

COROLLARY 4.5. Suppose thar the following conditions are satisfied:
kD C is positively invariant for equation (4.44);

k2) there is no solution x(-) of (4.44) such that x(0) = x(k)e frcG,
for some 0 <k <w;



-50-

k3) 2(0,z) # 0 for ze frcG.
Let 710 be the (local) flow induced by x = g(0,x) and assume:

(k4) I(n9,G) = 0.
Then, (4.44)-(4.28) has at least one solution x(-) with x(0)e clG.

According to Krasnosel'skii's terminology, assumption (k2) means that the points of frcG are
points of "w-irreversibility".

Proof. By the global existence, there is a constant R > 0 such that Ixl..< R for every x(-)
solution of (4.44) with x(0)e clG. Let p:Rm—[0,1] be a locally lipschitzian function such that
p(x) =1 for IxI £R and p(x) = 0 for Ix| = 2R.

Now we define, for Ae [0,1], f(t,x;A):=p(x)g(At,x) and observe that (by the choice of R, p(-))
xe X is a solution of (4.27;)-(4.28) with x(0)e froG if and only if y(t):=x(t/A) is a solution of

57 = g(t,y) with y(0) = y(Aw)e frcG. Then, (h'2) follows from (k2). We also remark that (k1)

implies (g1) and (k3), (k4) are nothing but (h3), (h4) respectively. Finally, (h5) is fulfilled with
A =0 and B =sup{lg(t,x)l, te [0,w], xe C, Ixl <R}. Then, Corollary 4.4 applies and the

result is achieved. , |

An analogous result was obtained by R. Srzednicki (see theorem 3.3 and corollary 3.1) where
g:RxRm—Rm™m is w-periodic in the t-variable.

Instead of (k2), in corollary 3.1 it is assumed that there exists a set BcR™ which is a block
(according to definition 3.1) with respect to the vector field g(t,), for each t. However, we
point out that corollary 4.5 is not contained in corollary 3.1, as the following example shows.

EXAMPLE 4.1. Let ¢:[0,0]—R* be a function of class ¢! such that the following

properties are satisfied:
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(4.45) 0(0) / 6(0) = d(w) / d(c)
and
(4.46) d(o/2) H(0) < 0.

Let y:R—R be continuous, w-periodic and such that

W) = (1) / o)

for each te [0,mw].

Now, consider the Cauchy problem
(4.47) X = Y(H)x
(4.48) x(0) = xq.

We claim that if ¢(0) # ¢(w), then (4.47) has a unique w-periodic solution which is identically

ZET0.
Indeed, the solution of (4.47)-(4.48) is given by

x(t) = (xo/ $(0))o(0),
and it is easily seen that, if x, ;ﬁ 0, then
x() = (x0/ 6(0)) 9(®) # xg;
thus, the claim is proved.

Now, if we take C :=R, G := B(0,R), R>0 and g(t,x):=y(t)x, then we can prove that all the
hypotheses of corollary 4.5 are satisfied. Indeed, if we further assume ¢(t) < ¢(0) for all t, then
(k2) is straightforward; moreover, g(0,z) # O for each ze frcG and I(n0, G) is defined and
different from zero. Thus, corollary 4.5 is applicable.

On the other hand, we have, by (4.45) and (4.46), that there is t*e [0,®] such that

O(t*)/o(t*) = 0.
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Thus, (*1) or (*2) in definition 3.1 of block with respect to the vector field x—y(t)x may be
violated, and so the assumptions of corollary 3.1 are not satisfied.

We finally note that the set clG is a block with respect to g(0,-). (See also Remark 6.1 and
Remark 6.2).

REMARK 4.8. Straightforward variants of Corollaries 4.4 ard 4.5 may be easily
obtained following Remark 4.5 and Remark 4.6. In particular, the case of C negatively
invariant may be treated as well.

The above result clearly generalizes [33, Th.6.1]; in the special case in which C is a manifold
and g is a tangent vector field Corollary 4.5 reduces to theorem 3.4.

Finally, we point out that when we deal with arbitrary closed ENRs, it is not possible to extend
the results of this section to second order differential systems

-x = F(t,x,X)

in a straightforward manner.
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CHAPTER 5§
FURTHER RESULTS.

Let CcR™ be a closed ENR.

We consider the equation

(5.1) x = g(t,x),

with g : [0,0]xRm™ — Rm continuous, locally lipschitzian in x and such that the global existence
for the solutions of the associated Cauchy problems, with initial values in C, is guaranteed. Our
aim is to obtain a consequence of Corollary 4.5 in which the transversality condition (k2)
follows by means of some explicit geometrical hypotheses on the vector field g. More precisely,
we examine an extension to ENRs of the concept of guiding function (see[33,34]).

Now, we introduce the concept of guiding function relatively to the set C.

DEFINITION 5.1. Let ®:R™ — R™ be a continuously differentiable function with
V® locally lipschitzian on C. We say that ® is a guiding function for the equation (5.1)
relatively to C if there is Ry> 0 such that B(0,Rg)NC # @ (to avoid trivialities) and
(5.2) (Vo) | g(t,x)) >0

for all te [0,w], xe C and x| 2 Ry,

In particular, it follows that {xe C:VD(x) =0} < B(O,Rp)NC.
We confine ourselves to guiding functions satisfying the additional condition:

(@1) C is positively invariant for
(5.3) x = VO(x).
Then, if we denote by n® the (local) flow induced by (5.3), we have that, by (5.2) and (¢1),

the index of rest points I(nd’,B(O,RO)nC) is defined for any R = R, (see Chapter 2) and it is
constant with respect to R 2 R, by the excision property. Hence, the integer
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(5.4) Jo(®@,0) : = lim I(n®,B(0,R)NC)

R—+oe
is well defined.
REMARK 5.1. Up to now, we have just followed, verbatim, the corresponding
definition of guiding function in Rm given by Krasnosel'skii ([33, § 6.3]), modulo the natural

modifications due to the more general setting. Now, we explain the meaning of (5.4) in some
particular cases. If C = R™, then (®1) is vacuously satisfied and

(5.5) Jo(@,00) = (-1)mY(D,%),

where v is the "index of non-degeneracy" of @, according to [33, p.84]).
If C is a (regular) manifold, it turns out that

JC(®:°°) = X(_V(D)9

‘where % (-V®) is the characteristic of the (tangent) vector field -V®, according to [20, p.325].

If C is compact, then
Jo(®@,%0) = 1(n?®,C) = x(C),
where %(C) is the Euler-Poincaré characteristic of C.

For the proof of the next theorem, we need a preliminary result relating homotopic fields with

the indexes of the corresponding flows.
Let h = h(x;1):Rmx[0,1]—Rm be continuous and such that, for each A€ [0,1], the solutions for

the Cauchy problems
(5.6) x = h(x;A)
(5.7) x(0)=z

are unique. We denote by m* the local flow induced by (5.6).

Then we have:



-55-

LEMMA 5.1. Let G be a bounded subset of R™, open relatively to C. Assume tha,
for each A [0,11, C is positively invariant with respect to equation (5.6). If

(LD h(x;A) #0
holds for all xe frcG and ?»e [0,1], then
(5.8) I(n9,G) = I(n,G).
Particular cases of this result have been already examined in [20]. For the reader's convenience,
we give the complete proof in the general situation.
Proof. We set
M : = inf{Ih(z;\)): ze frcG, Ae [0,1]};

by (L1), n> 0. We define x(t,z;A) to be the solution of (5.6)-(5.7) and observe that, according

to the notations previously introduced:

x(&,z;A) = jt::(z).

First of all, we note that there is K > 0 such that x(-) is defined on [0,K], for each ze frcG and
Ae[0,1]. Then, the set

B = {x(t,z;\): te [0,K], ze frcG, Ae 0,11}

is a compact subset of C.
Finally, let M > O be such that

th(w; )l <M

for each we B and Ae[0,1].
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Fix g such that 0 < € < K. Then, for any g€ (0,g¢], we have:

1
x(e,zZA) —z =€ Jh(x(@e,z;k);?\) de

1 .
—¢ J[h(x(es,z;k);k) _h(zA)] d6 +eh(z) .
Since
[x(Be,z;A) - zl <ggM

for every 6e[0,1], e (0,&¢], ze frCG and A€ [0,1], by the uniform continuity of h on Bx[0,1]

we have:
Ih(x(0e,z:M)i0) - vl <n/2
for g, small enough. Hence, we obtain:
(1/e)lxE,zz\) - zl 2 lh(z; M) -n/2 2172

for all ze frcG, Ae[0,1], g€ (0,e0].

Then, we have proved that
ic(x(e,;A),G) = constant

for all Ae [0,1], €€ (0,&p]-
Therefore, (5.8) follows immediately. |

Now we are in position to state the main result of this Chapter. As before, we denote by X the
complete metric space of the continuous functions x(-) : [0,0]—C endowed with the distance

d*, d*(x1,%,) = IX1-Xglw.

THEOREM 5.1. Ler @ be a guiding function for equation (5.1) relatively to C and
suppose that C is positively invariant for (5.1) and (5.3).



-57-

Then, there is a solution x(-)e X to (5.1)-(3.2) (i.e. an w—periodic solution), provided that

(@2) To(@,00) # 0.

Proof. We apply Corollary 4.5 with respect to the set G = B(0,R)NC, where R > R¥,
and R* : = sup{x(t): t,toe [0,w], X = g(t,x), x(tp) < Ry}. Then, (k2) and (k3) follow from the
definition of guiding function, arguing like in [34, p.48]. Finally, we observe that (5.2) implies
that the function h(x;A): =(1 - A)g(0,x) + AVO(x) satisfies (L1) of lemma 5.1, so that

I(n,G) = I(r%,G) = I(r},G) = Io(@,)
Then, (®2) implies (k4) and the proof is complete. ‘ |

Clearly, Theorem 5.1 is an extension of Krasnosel'skii's result [33, Th.6.5], [34, Th.13.1] to
the case of a flow-invariant ENR. In [33,34], various criteria are proposed in order to evaluate
Y(®D,e=) for C = Rm, In particular, it is proved that

'Y((D,m) = (_1)m s for Iim @ (X) = — o0

IXl—>+o0

and

Y D,0) =1, for lim D (x) = + oo.

X400

On the same line and combining arguments from [33,49], we can prove an analogous result for
Jo(@,00).

LEMMA 5.2. Let @ be a guiding function relatively to C, verifying (®1) and

(D 3) lim @ (x) = —eo.
IX1= + oo
xe C

Then, C is of finite type and Jo(@,o0) = % (C).
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Essentially, this result follows from (vii) in Proposition 4.1. However, according to our
hypotheses, equation (5.3) does not induce a dynamical system as required in [49] but just a
(local) semi-flow on C. Thus, we give the details of the proof for the reader's convenience.

Proof. Obviously, if C is bounded then (®3) is vacuously satisfied and Remark 5.1
immediately gives the result. Hence, we consider the case of C unbounded.
First, we observe that

(5.9) Vo) =0
for all xe C, Ixl = Ry. Now, we fix c*e R such that
c* <inf{®(x): xe C, Ixl < Ry}.

Then, for any ¢ < c*, we consider the sets:

K¢ :={xeC: ®(x) 2 c},
L.:= {xeC: O(x) =c},
M, : ={xe C: ©(x) <c}.

By (®1), (P3) and (5.9), it follows that for every ¢ < c*, we have: K, is compact and flow-
invariant for (5.3), L¢ ='frCKC = frcM, and each xe L is a strict egress point for Mg
(according to WazZewski [52]). Let x& M¢*; we want to show that there is t, 2 0 such that
n®(t,,x)e Le. Indeed, let us assume ®(x) = ¢ < c*; then, there is 1 > 0 such that IVD(y)l 2 n
for every ye K\K#. Following [33, Lemma 6.5], the function ¢(t) : = @(n®(t,x)) is such that
®(t) = ¢ for all t > 0 and ¢(t) =2m?2 for all t 20 such that n®(t,x)e KK . Then, arguing by
contradiction, it can be seen that the solution of (5.3) with initial value x meets L at a time t,,
with t, < (c* - c)/n2 Note that such t, is unique. If xe L¢x, the claim follows with t, = 0.

By WazZewski's Lemma, we know that the map x—t,, X Mg, is continuous (see [9,52]) and
so K is a strong deformation retract of C via the homotopy

(x, M) TTP(AL,,X), x€ Mcx*

(xX,AM)—X, xe K¢x*.
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Then, K.+ is a compact ENR and C and K¢* have the same homotopy type. Accordingly, C is
of finite type and

X(C) = x(Kex) = X(Kc)

for every ¢ < c*.
Now, it is clear that n®(t,x) # x for every xe M+ and t > O (see also the proof of Theorem

5.1); hence, for any € > 0, ic(fcz,B(O,R)mC) is defined whenever B(0,R)>K . Fix such an R

and let ¢ < c* be such that K; D B[0,R]JNC. Then, using the excision and contraction properties

of the fixed point index, we can write:

. b . b . . ]
1(3(15E ,B(O,R)NC) = 1C(ﬂ:8 ,intcKe) = ig o Ke)

On the other hand, ni’ is homotopic to the identity Id on K¢ (moving the points along the semi-

orbits); consequently,
. ® )
ig C(ns ,Ko) =ik C(Id, Ko) = %K) -

From the above inequalities, letting £—0*, R—+o< and recalling the definition of J(®,o), we

have the conclusion. ' |

REMARK 5.2. A simple application of Lemma 5.2 can be performed when C is
convex and flow-invariant with respect to (5.3). Indeed, in such a case }(C) = 1 and so (D2)
holds. We notice that, even in this simple situation, the validity of (®2) is not ensured if

(5.10) lim & (x) = +oo
IXl—= + oo
xe C

is assumed instead of (®3). For instance, it is easy to prove that when C\B(O,R) (R large
enough) is contractible, then (®1) and (5.10) imply Jo(®,00) =0.
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We finally notice that in the proof of lemma 5.2 we have shown that the flow n® is dissipative;
indeed, one can prove (suitably modifying the arguments in [49,29]) that I(TL,B(O,R)NC) =
x(C), for R > 0 large, whenever II is a dissipative semi-flow on C.

If, furthermore, g:R ,xR™ — R™M is w-periodic in the t-variable, then, with a few changes in the
proof of Lemma 5.2, one can also show that the process induced by (5.1) is dissipative on C,
provided that (®1) and (®3) are satisfied. Hence, in such a particular case the existence of an
w-periodic solution may be obtained using some extensions to ENRs of the known theorems

for periodic dissipative processes (see [27, Ch.4]).
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CHAPTER 6
APPLICATIONS

6.1. In this chapter we apply the results of Chapter 4. More precisely, in Section 6.2 we
prove the existence of non-negative solutions to first order differential systems by means of the
results of section 4.2; in Section 6.3 we examine a situation in which it is natural to choose the

set C as a domain with holes, and we use the theorems of section 4.3.

6.2 . We deal with the problem of the existence of periodic solutions to the differential system
(6.1) x = F(t,x) = f(t,x;1)

lying in the convex set

C=RT={xeRm:xiZO,i=1,...,m}.

Throughout this section, we will assume that F: R,x R™ — R™ is continuous and ®-periodic
in the first variable, i.e. F(t+®,x) = F(t,x). Then, the solutions of (6.1) such that x(0) = x(w)
(obtained by means of Theorem 4.1 and its corollaries) may be extended to R, as classical (C1)
-periodic solutions.

Observe that in our case each ue frC is ﬁi for some ie {1,....m} and ne A (u) if and only if

n=Y-Ue;, ;2 0, 21;>0,J={i:u=0}. Hence, (el) of theorem 4.1 holds for all
ie] ieJ

ue frC if and only if fi(t,0;A) = 0 for all ie {1,...,m}, te [0,0] and A& [0,1].

Our first application may be considered as a variant of a theorem by R. Reissig (see [43, th.2])

in the context of positive solutions, and it applies for F(t,x) = g(x) + h(t), where g : R — Rm,

h:R, — Rm are continuous and h is w-periodic. Then we have :

EXAMPLE 6.1. Suppose that

(6.2) gRy+h® 20 , i=l..,m forall t and x20 ;

(6.3) gi(x) < -h; , i=1,..m forall x>0 suchthat x;2R.
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Then, equation x = g(x) + h(t) has a non-negative w-periodic solution.

Proof. We define f(t,x;A) : = (g(x) + h(t)) and we want to apply again theorem 4.1.
Since assumption (el) is trivially satisfied, we want to find a suitable set G in order to obtain
(e2). This is achieved by means of the a-priori bounds performed by Reissig. Indeed, for the
i-th component x; of a -periodic solution of the equation

(6.15) x = f(tx;A),
Ae (0,1), let M; = x,(t*) = max{xi(t)}:‘ Assume M; > R, and observe (taking mean values on

%= A(g;(x) + hy(t)) that x,(t) <R for some Te[0,w]. Let t; be such that x(t;) =R and
x(t) > R for all te (t;, t*]. Using again (6.3), we obtain

¥

X (%) < x;(t;) + A f(hi(s) ~h)ds < R+lh-hl;:=c.
i

Therefore, M; <c. Then, we have proved that, for any c¢' > c, the set G =[0,c)™ is suitable

for the validity of (e2).
The proof of (e3) is straightforward, since, by (6.3), we have

ui+ gi(U) + _Hl = + (?O(U))i < Uy

for all ue frcG and therefore there is a compact m-dimensional rectangle R <G such that

r(I + fg) : frcG — ®.. Then, ic (r( + fo),G) = 1 and the proof is complete. |

Using a standard perturbation argument, the inequality (6.3) can be easily relaxed.

Secondly, we consider the non-autonomous differential system of Lotka-Volterra type

(6.4) x; = x;(e{() —gi(x)) , i=1,.,m,
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which represents a possible model for the interaction of m species in a seasonal varying
environment.

Systems of the form (6.4) have been widely examined in the recent years ([47,48]), expecially
in the case of g linear (see [1,16]). Here we confine ourselves to the case in which the
functions e; are periodic of a common period ® > 0 and we look for non-negative and non-
trivial o -periodic solutions to (6.4). More precisely, we suppose that
e : =col(e;) : R,—» Rm is continuous and w-periodic and g : R™ — RmM is a continuous

function. We further assume that

(6.5) g0 =0 ,

(6.6) e; >0 ,i=1,.,m .

These conditions imply that the intraspecific interactions and the limiting factors have negligible
effect at small densities of the populations and that the (possibly non constant) growth rates
have positive average during, for example, the year. Such conditions are usually considered in

the most natural models.
Observe that in such a situation (F(t,u) Im) =0 for nefrC and neA(u) and (e1) holds for

any possible choice of the set G. Adapting again the proof of Reissig theorem, the following
result can be achieved, under (6.5)-(6.6).

EXAMPLE 6.2. Suppose there is R > 0 such that for each 1= 1,...m

(6.7) g(x)=¢; , forall xeRT with x; 2R .

Then, equation (6.4) has at least one w-periodic solution x(-) with x(t) 20 and Ix(t)l >0 for

every t.

Proof. It is sufficient to define fi(t,x;A) : = x;(&;(t) - g;(x) - (1 - X)3x;), where 6 > 0is a

fixed but as small as necessary constant, and construct an appropriate set

G = [0,M)™\BJ[O0, €] ,
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for suitable M = R and € > 0. The detailed calculations are left out for brevity, since they do not

differ from the argument exposed above. |

We remark that, under the same assumptions, it can be proved that the one-dimensional

subsystems

x. =x;(e;(®) - (0, .., 0, %, 0, ., 0)) , i=1,.,m

have non-trivial periodic solutions. Therefore, a drawback of our result is that we cannot
prevent that the solutions we find in cl¢G are different from these elementary ones. However,

there are some examples in which (under suitable quite reasonable hypotheses) the existence of

non-elementary solutions is ensured. In this direction, we have :

EXAMPLE 6.3. Consider the two-dimensional system :

x; = xq(e1(t) — g1(xy, X9))

(6.8)

X, = Xp(ex(0) — g2(X1, X2))

where g = (g1,22) : R2 = R2and e = (ey,e9) : R, = R2are continuous functions, with g(-,)
locally lipschitzian and e(-) w-periodic. Besides (6.5) and (6.6), we suppose that there are
positive constants R, K , € such that

(6.9) lg ()l <K, VxeRZ,i=12;

(6.10) gx)<e;, for xizR, xj=0, j#i;
(6.11) g(x)>e; , for =R, xj2e, j#i;
(6.12) gix) > lef..  for x;<e , x2R, j#i.

Finally, suppose that there are two continuous functions Yy, Y2 [ R, +o0) — R* such that

€i= g,(x) for x;2R if and only if x;= Yi(x), j # 1.
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Then, system (6.8) has at least one non-trivial w-periodic solution which is non-negative. If,

furthermore, g,(x) < e—i forall x;20, x;=0(@=12),j#1, then such solution a is positive in

both components.

Proof. First of all we remark that from all the assumptions we have

(6.13) g(x)>e;, for =R, x;>%x) , j=i ,

(6.14) g(x)<e, for ;2R , 0Sx;<vy(x) , j=i .

We define fi(t,x;A) = x;(e;(t) - gi(x)), i=1,2, so that system (6.1) becomes

(6.15) x, = Axi(ei®) —gix)) , i=1,2,%e(0,1).

Along the proof, x(-) is a w-periodic solution of (6.15) with x(t) = 0 for all t and x(-)# 0. By
the uniqueness for the Cauchy problems, we know that x(t) # O for all t. Moreover, if x;(t) >0

for some t, then the same inequality holds for all t. Let 6 >0 be such that g(y) < (gi / 2) for

y 20, lyl<d. Suppose 0 < x;(t) <d for all t. Then by X/ AX; = € - gi(x) = ¢ - e/ 2, we get
immediately a contradiction taking the mean value in a period. Therefore, x; (t;) 2 & for some t;,
provided that x;(-) # 0. Then, arguing like in [43], we have that

(6.16) x, /x; = Me; — gi(x)) 2 — , with ¢ : =lel,, + max {lg(x)!, IxI <38},

holds, for all t such that 0 < x;(t) < 8. Hence, we immediately get x;(t) >m; >0 forallt, with
m; < dexp(-cw).

Now, assume that x;(t) >R for all t. We distinguish the following cases : either xj(t) > ¢ for
allt or xj(f) < ¢ for some 't (with j #1). In the latter situation, (6.12) implies that xj(t) <eg
for all t, and so, if x(t) >0, we geta contradiction computing the j-th equation at the minimum
point of X;. Therefore, the preceding alternative turns to : either x;(t) >R and xj(t) >¢ forallt,
orxi(t) >R forall t and %= 0. In both cases, we reach a contradiction taking the mean value
of (6.16) and using (6.11) and (6.10), respectively.
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Thus, we have proved that there is t; such that x;(t;) <R, and hence x;(t) <M, for all t, with
M; > R-expw(le;l.+ K), by (6.9). Therefore, the set

G = ([0,M)x[0,M)) \ ([0,m,]x[0,m,])

fulfils condition (e2).
Finally, (e3) follows from (6.13)-(6.14) using theorem 2.1. Indeed,

ic @+ fg) ,G) = xB) - xb)=-1,

as B = ([0,M;] X [0,M,]) \ ([0,m;) X [0,m,)) and b is the disjoint union of two closed
intervals on the lines x; = M , X = M, respectively (see remark 4.2).

The final claim in our statement follows by direct computation. |

REMARK 6.1. We point out that through the assumptions considered in example 6.3

the existence of periodic solutions on the axis cannot be predicted anymore; ?0 may even
vanish on frCNG. Hence, the usual approach based on topological degree cannot be directly
vapplied. We finally note that neither theorem 3.3 by Srzednicki can be used in this example (see -
also example 4.1).

6.3. In this section we present some applications of the results of section 4.3 to the periodic
BVP

(6.17) x = F(t,x)
(6.18) x(0) = x(w),

with F:R ,x(RmMS)—Rm continuous, w-periodic in the first variable and S a closed subset of
Rm. We recall that the solutions of (6.17)-(6.18) may be extended to R, as classical w-periodic
solutions.

We examine the case in which it is natural to choose C as a domain with holes. Such situation
occurs, for example, in hydrodynamic applications (see [32,42]); for instance, F may denote
the velocity field of the flow and x = x(a,t) the position vector at various times t of the
"element" of fluid identified by the label a.

For simplicity, we confine ourselves to the case
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(6.19) S = {X{,X9,.0sXp} -

We point out that, with simple changes in the proofs, the case in which S is the finite union of

disjoint compact sets can be considered as well.

In order to apply our theorems, we also suppose that F is locally lipschitzian in x. However,

we stress the fact that all the results contained in this section are still true even if F is just

continuous, as can be seen by standard perturbation arguments.

For any S like in (6.19), we define

N : = max{lx;],i=1,.,n},
8 : = min{Ix; - xjl, ij = 1,...n, i #j}.

The first result of this section is the following:

EXAMPLE 6.4. Ler AUB = {1,..,n}, ANB =@ and g€ (0,6/2) be such that for all

te [0,0)] and Ix - x| = &

"(6.20) (F(t,x) 1 (x-x)) 20, forieA
(6.21) (F(tx) | (x-x)) £0, forieB.
LetR>n+¢ be_» such that for all te [0,0] and Ixl =R,
(6.22) (F(t,x) 1x)=20

holds.

Then, (6.17)-(6.18) has at least one solution x(-) with x|, <R, provided that one of the

following conditions holds:

(6.23) meven, n#l

(6.24) m odd, card(A) #card(B) + 1.
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Roughly speaking, our hypotheses mean that the flow enters in the holes surrounding x;, i€ B,
and escapes from B(0,R) and from the holes around x;, ie A. In such a situation, we only need

conditions on the number of such holes.
Our example is a generalization of a similar one considered in [19, p.169], where m = 3 and

n=cardB = 1.

Proof. We apply Corollary 4.3. First of all, we note that there exist two lipschitzian

functons

k:Rm>Rm p:R™—[0,1]

such that

x —x; for ieA,Ix —-xl=¢

k(X)=9x - x; for ieB,Ix —x;l =¢

X for Ixl =R,

0 if JieB :Ix —x;1 £€/2,
p(x) =

1 if VieB Ix — x;l 2 €.

Then, we define:

C:=Rm\ (U B(x,e) UU B(x,e/2)) ,
i€A ieB

G:=[C\ (U Bix.eD] n BOR)

i€eB

and
f(t,x;A) 1 = p(x)(AF(t,x) + (1 - Mk(x)).

We observe that, using (6.20) and the definitions of k and p:
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(fitx;A) Ix-x)20 forieA, Ix - xl=¢,
(fex;A) 1x-x) =0 forieB, Ix-x;l =¢€/2.

Then, the set C is positively invariant and (g1) is satisfied.
We note that '

frcG = S(O.R)U( S(x;,€))
ieB

and, by (6.21), (6.22) and the choice of k and p,
fex;M1x)>0  forlxl=R,
(ftx;A) 1x-x) <0  forieB, Ix-xji=¢

hold for all te [0,®] and Ae (0,1). Hence, the homotopized field Af is transversal at frcG and
so, by standard arguments, (h2) is satisfied.

Moreover, _f-'O(Z) = p(z)k(z) = k(z) for all ze frcG so that (h3) holds.
Finally, (h4) may be computed by means of theorem 2.1 as clG is a block, with fr¢G its set of

"egress points". Therefore

I(t , G) = %(clG) - x(frcG).

As clG is a closed ball with n holes, we have:

1-n,m even

x(clG) = {

1+n,m odd.

On the other hand,

0o , m even

xX(frcG) ={
2 + 2card(B) , m odd ;

hence,
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1-n , m even

KEA3={
cardA —cardB -1, m odd

and, using (6.23)-(6.24), (h4) is proved.
Thus, we can apply Corollary 4.3 and we obtain the existence of a solution x(-) of x = f(t,x;1)
satisfying (6.18) and such that x(t)e clG for all te [0,w]. At last, we observe that p = 1 on cIG,

so that f(t,x;1) = F(t,x) and the proof is complete. L]

It is easy to see that if we reverse the inequality in (6.22), then the result is true provided that
(6.24) changes to
m odd, cardA #cardB - 1.

As a second example in this section, we consider the case in which the nonlinear field F splits

as

(6.25) F(t,x) = g(x) + e(t).

Without loss of generality (possibly adding to g and subtracting to e(-) the mean value e), we

can assume

(6.23) e=0.

We study a situation in which (6.22) is no longer satisfied but, nevertheless, the existence of
periodic solutions is ensured for any forcing term e.
We confine ourselves to the case m = 2 in order to make the geometry of the problem more

transparent.

EXAMPLE 6.5. Let m = 2. Suppose that, for each i = 1,...,n,

(6.27) lim (g(x) 1% —x;) / Ix — xjl = +oo ;

X=X
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assume there is R > 1 such that

(6.28) g()#0,  for IxI2R, j=12.

Then, (6.17)-(6.18) has at least one solution, provided that

(6.29) n=2.

Proof. We apply Proposition 4.1 with f(t,x;A):=F(t,x). By (6.27), there is € >0 with
2e <min{d,R - 1} such that

(F(tx) 1 x-x) =(gx) +e®) I x-x%x)>0

forIx - x;/ =€ and all t.
Then, the set

C:=R2\ (L B(x,€))

i=1

is positively invariant for (6.17). Now, we produce some a-priori bounds in order to find a
compact set K as in Proposition 4.1. Let x(-) be an w-periodic solution of
x = AM(tx;A) = X(g(x) + e(t)), for some Ae (0,1). Fix je {1,2}; taking the mean value on
kj = Mg;(x) + e;(t)) and using (6.26), we get gj(x(?)) = 0 for some t e [0,w]. Then, (6.28)
implies lxj(?)l <R.LetM;= max{xj(t)} = x;(t%), with t* > t.If M; < R, an upper bound for
the j-th component of the solution is found. Assume Mj > R; then, there are t;, t, with
t; <t* <ty <ty + @, such that xj(tl) = xj(tz) = R and x(t) > R for te (t;,t;). Now, we use
an argument from [43]. Indeed, for oe {t;,t;} we get:

t*

x(t*) < x;(0) + Jgj(x(s))ds + wlel, ;
(e}

by (6.28) and choosing, alternatively, ¢ = t; if g;(x) <0 and O =ty if gi(x) > 0, it follows
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xi(t*) <R + wlel., : =c.

Then, in any case, we have proved that MJ- <c.

If we repeat the same calculations for mj = nﬁn{Xj(t) }, we get m;j 2 -C.

Thus, if we set K := [-¢,c]2NC and, for any d > ¢, G := (-d,d)?NC, then we are in the setting
of Proposition 4.1. Observe that frcG is the perimeter of [-d,d]2. Now, it is enough to prove

that I(x,G) # 0, when T is the flow induced by
(6.30) x = g(x).

Since clG is a block, the index I(,G) may be computed by means of theorem 2.1. By (6.28),
we know that g; (respectively, g,) has constant sign on each vertical (resp., horizontal) side of
frcG. Then, if we denote by b~ the set of "egress points” of clG with respect to (6.30), we

realize (by an exhaustive investigation of all the possible cases) that
x(b)e {0,1,2}.

‘Therefore

I(m,G) = x(cIG) - x(b7) = 1 - n - x(b).
Then, by (6.29), we can apply Proposition 4.1 and the proof is complete. |

REMARK 6.2. The result is still true in the more general situation in which {1,...,n}
= AUB (ANB = @) and, instead of (6.27), we require

lim (gx) | x = x;) [ Ix =% =40,  icA

X=Xy

and

lim (g(x) | x —x;) / Ix — x;l = o, ieB.

X=X
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It seems also worthy to notice that the set clG defined along the proof of Example 6.5, which is

a block for the "averaged" flow 7t induced by (6.30), need not be a block for the process
induced by (6.17). Consequently, the results in [5S0] cannot be applied to this situation.
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