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CHAPTER I

MACROTONIC SOLUTIONS-PHYSICAL PROPRTIES

AND THEORETICAL MODELS

1l.Introduction:

Colloid science started with the discovery of mixtures of certain

1 .
) studied the

insoluble substances in liquids. In 1845 Selmi'
pseudosolutions in water of sulpher, silver chloride and prussian blue,
and he included them in the same class as solutions of albumin and
starch. Michael Faradaym), by the end of his life, made extensive work
on colloidal gold sols (particles of about 3nm radius) called Faraday
sols, which were prepared by reduction of gold chloride with
phqsphorus, Grahamﬂ), who coined the term colloid (glue-like),
emphasized the low rate of diffusion and drew the correct conclusion
that colloidal particles are fairly large.

The colloidal scale 1is not very precise; colloidal particles
should be large enough to have some global average characteristics such
as size or shape and at the same time one requires that such particles
should be small enough to be subjected to vigorous Brownian motion
which prevents sedimentation under normal gravity(“.

Some colloidal systems which are thermodynamically stable, called
Lyophilic (liquid-loving) colloids, contain particles soluble in
solvents 1like polymer solutions. Others, which are called Lyophobic

(liquid-hating) colloids, contain particles insoluble in the solvent

and need the existence of a stabilizing substance during preparation



(e.g. AgCl, Au, S, or oil in water)(m.

Sols have found numerous fundamental applications, as in studies
of Avogadro’s constant by Perrin(m, where particles acted as very
large, visible molecules; or very recently concentrated colloidal
suspensions were used as models for liquid state!”).

The rapid rate of coagulation of colloids was clarified in 1916 by
Von Smoluchowski'®: each Brownian encounter between two particles
results in permenent contact. Refinements to the theory, which take
into account that during the last approach between two particles or
molecules they are slowed down because it is difficult to squeeze out
the last layers of liquid from between them, recently were formulated

(8-12)

by  several authors and confirmed experimentally on the

. . 13
coagulation of latex partlcles(‘).

Phase transition  between
concentrated liquid-like colloidal dispersions and crystalline
arrangements of particles have been observed and discussed
theoretically in the framework of the statistical thermodynamics of
such systems(lhlsx

Colloidal systems have interesting optical properties (colour,
turbidity and - birefringence), which are also important for
applications. Some of these properties are special because the
colloidal size lies in the visible-light range of wavelength. Many
colloidal vparticles carry an electric <charge due to surface
dissociation or to the adsorption of ions: such electric charges are
very important in stabilizing colloidal dispersions, in characterizing
the particles and their types of interaction which can give rise to

crystallization and several other phenomena.

In this chapter we will discuss types of colloids in section 2,



the mnatural and synthetic colloidal crystals, as well as the
experimental methods for studying colloidal systems. In section 3 we
will review the types of particle-particle interactions that occur in
colloidal suspension starting with the hard sphere interaction, the
electrical double layer, van der Waals attraction, steric stabilization
and ending with the combination of interactions and concentrated
systems. Crystallization of colloidal particles will be discussed in
section 4, taking into account crystallization under different types of
interaction and referring to different theoretical and experimental
approaches. The role of Coulombic forces in first-order phase
transition in the systems of present interest will be focussed upon in

section 5.

2.Types of colloids:

Thermodynamically stable colloids of the simplest types are formed
by solutions of macromolecules (polymers with 10* to 10° atoms),
including biopolymers such as proteins, nucleic acids and
polysaccharides. All these belong to colloid science since their sizes
fall in the colloidal size range (any aggregate of 10° to 10% atoms) .
On account of the great technical importance especially of man-made
polymers, polymer science has developed as a science of its own.

The mnext class of colloids consists of solutions of soaps and
other amphipolar substances. These molecules are characterized by a
large non-polar part (hydrocarbon or fluorocarbon) and a

water-compatible polar part. The polar part may be anionic, e.g. in



(%ZHZSOSOaNa, or cationic, e.g. in ClJ%mN(CHS)aBr, or mnonionic as in
Cngg(C5H4)O(CHZCHZO)3H'

Micelles are particles that are formed from aggregation of 20 or
more molcules in water above a certain concentration (the lower, the
larger the non-polar part).bAs the hydrocarbon (flurocarbon) part is
insoluble in water the non-polar groups are driven together, without
forming a separate phase because the particle growth stops when the
non-polar nucleus is sufficiently surrounded by polar groups, thus
minimizing the water-hydrocarbon contact area (see fig.1l.1). 1In
noanolar solvents the same substance may form the other way around
(polar part inside), giving inverse micelles.

Colloidal dispersions of insoluble substances, called Iyophobic
(hydrophobic) colloids, are not in thermodynamic equilibrium, but, if
well prepared they may have lifetimes of many years. One way of
preparing such colloids is known as the condensation method, where the
insoluble material is precipitated from solution of small molecules or
ions under circumstances in which high rate of nucleation of the new
phase is combined with relatively slow rate of growth of the nuclei®’.

The process may be carried out in such a way that the nuclei are
formed in a very short time early in the process, whereas the growth to
larger particles occurs over a longer time without further nucleation.
Under these circumstances all particles grow at the same rate, which
leads to monodisperse systems. Monodisperse colloidal particles are
capable of forming long-range ordered crystals: these exist in nature
and were discovered by Stanley in 1935. Tobacco and tomato viruses

(fig.1.2) provide excellent examples of natural monodispersity.



2.1 Natural colloidal crystals:

2.1.1 Viruses: Ordered colloids and colloidal crystals have
attracted the attention of physicists for the last forty years, due to
their wunusual mechanical properties (e.g. bentonite sols) or their
optical properties. Going back to Stanley’s discovery, it was followed
by the identification of other viruses responsible for a number of
animal or plant diseases. These virus particles organize themselves
into crystals when concentrated by centrifuging from dilute water
suspensions, and can be examined by diffraction method.

It was noticed that rod-shaped particles of tobacco mosaic virus
(TMV) could become parallel to each other and form a two-dimensional
triangular lattice. On the other hand, the X-ray study of Bushy stunt
virus showed the occurence of b.c.c. order for such almost spherically
shaped particles. Using a high magnification 1light microscope

R.C.Williams et al. (18)

reported the discovery of crystalline order in
suspensions of Tipula virus (fig.1l.3). From square and triangular
arrays occuring on crystal faces, they deduced an f.c.c. type of close
packing of virus particles. The Tipula virus crystals when observed by

the nacked eye have the appearance of an opal with small regions

reflecting the incident light quite brilliantly.

2.1.2. Opals: The precious opals, which sparkle with flecks of
pure spectral colour, were examined by X-ray and mineralogical methods,
showing that opal is nothing but a hydrated amorphous form of small

tiny spherical silica, the most common material on earth, cemented



together (fi.1.4).

The voids between the silica spheres are filled with a strongly
hydrated form of amorphous silica. Because of the difference in
reflective index between the spheres and voids, the Bragg reflection of

17)

light makes opals to sparkle (Darragh et al. ).

2.2. Synthetic colloidal crystals:

Due to pathological properties or rarity, neither opals nor
viruses have really been used extensively in physics laboratories. The
recent sudden arrival of a huge quantity of results in the physics and
physical chemistry of colloidal crystals was brought on by elaboration
of very simple, low-cost methods of preparing synthetic monodisperse

colloids.

2.2.1. Polymeric monodisperse (Lyophobic) colloids: The method of
production of such colloids 1is wusually based on free radical
polymerization of vinyl and/or butadiene monomers in an emulsion or
solution containing soap or soaplike substances, which act as
stabilizers for the polymer. Particles of radius 100nm are formed from
a purely chemical point of view the polymerization of monomer M
(styrene, methylmethacrylate ...) in most cases occurs in the presence

of an initiator X-X according to the following steps: (fig.l1l.5)



T=60 °C

X-X——2X free radical formation
M4-X—XM initiation
XM +M—XM propagation
n n+1
M A4M X——XM X termination
n m . mtn

The tricky aspects of the émulsion polymerization technique are
physicochemical and can be stated briefly as follows: the monomer is
insoluble in water, but with the surfactant's help an emulsion will
form. The initiator X-X gives free radicals X soluble in water, the
initiation and propagations reaction take place in water and end by
termination. The solubility of oligomers XMn decreases rapidly with the
length of the insoluble tail Mn, and each of the polystyrene chains
starts and ends with an initiator group X. For large n, the solution of
XMn has a tendency towards segregation resulting in the formation of
small colloidal particles. Their growth is slow so that statistical
dispersion of the number N of incorporated chains decreases with N.

The wuniformity of size of such particles depends on many
parameters such as the reagent concentration and the physicochemistry
conditions of reaction‘®.

2.2.2.8ilica monodisperse colloids: Several methods of preperation
of monodisperse silica have been elaborated. One of these was proposed

by Strober et a1.*®

(1968): a method of hydrolysis of alkyl silicates
and subsequent condensation of silicic acid in alcoholic solutions,

gives very reproducible results provided that the water and ammonia



concentration are chosen carefully. In optimal conditions the reaction
proceeds rapidly in about three hours, yielding monodisperse silica
particles about 0.3pum in diameter. If this suspension, prepared without
any other treatment, is allowed to stand for a few weeks in a glass
recipient then an opal-like sediment will form at the bottom.

The choice of physicochemical conditions for the reaction is
tricky in the sense that if all input products of reaction are soluble
in alcohol at certain concentrations, then amorphous silica is the
result of condensation of silicic acid groups. Since the silicon atoms
are tetravalent, a three dimensional network of (SiOz)n macromolecules
is built up, which is stiff and more solid than a coil of polymer
chains. Due to this fact silica particles do not dissolve in organic

- - : (4)
nor 1n most 1inorganic solvents .

2.3. Experimental methods for studying colloidal system:

Various experimental techniques are wused in order to study
colloidal solutions. In particular, owing to the length scale involved
in these systems, the properties of colloidal dispersions can be
studied optically. In this section we will give some examples of
different types of experimental methods used to study the structure of

dilute and concentrated solutions.

2.3.1. Light scattering: The theoretical devolepment behind light
scattering studies goes back to more than a centuries, with notable
contributions from Maxwell, Rayleigh, Einstein, Mie, Deby and many

others. The experimental development of conventional (time averaged)



light scattering started around 1940: basically, one measures the
absolute intensity of light scattered by the suspension as a function
of scattering angle. In 1961 great progress of light scattering
techniques was brought about by the invention of the laser, an intense
and well-collimated light source. This led to the development of a
totally mnew technique, 1i.e. dynamic 1light ~scattering, providing
information about the dynamics (i.e. the Brownian motions) of the
particles in colloidal suspension. In what follows a breif outline is
given of conventional light scattering followed by a description of
dynamic light scattering.

The scattering of light by independent particles can be divided
into three classes''®:

(i) Rayleigh scattering, where the scattering particles are small
enough to act as point sources of scattered light;

(i1) Debye scattering, where the particles are relatively large
and there is small difference between the refractive index of the
particles and of the dispersion medium;

(ii1) Mie scattering, where the particles are relatively large and
their refractive index differs significantly from that of the
dispersion medium.

(m): The electric field 1is

2.3.1a. Conventional light scattering
associated with a beam of light incident on a colloidal suspension,
which oscillates at frequency v=c/A, where c is the velocity of light
and A the wavelength in the suspension. As there is a difference

between the refractive index n of the particles and that of the medium

n, this electric field induces in a particle a dipole moment which



also oscillates at frequency v and hence causes a reradiation or
scattering of the light in all directions. Assume the electric vector
of the incident light to be polarized perpendicular to the scattering
plane, the scattering radiation with this same polarization is observed
at a detector set at scattering angle 0, at a distance r from the

sample. The intensity I, of light scattered by an isolated particle of

R

size R much smaller than A (i.e. Rayleigh scattering) is

)

- 2
, 4 8 n“-n° 52
I - 6 R [ : ] . (1.1)

R 2 4
r A n 4n

N [

2

We can see that IR is independent of the scattering angle 6. It depends
on the refractive indeces niand o, it si zero for n-=n, and goes as
A%, the well known Rayleigh scattering law.

In the second class,i.e. Debye scattering, the electric field
scattered at nonzero angle § from different parts of a particle, whose
size 1s comparable to X, will suffer relative phase shifts. Thus
interference between the different element scattered fields occurs at
the detector and the scattered intensity is reduced relative to IR in

eq.(1l.1). Then the intensity measured here in the Debye limit
[(ni-nZ)R/A< 1] is
I, = I;.B(8) | , (1.2)

where P(§) is a shape factor with properties P(§=0)=1, P(§>0)<1l for a

homogenous sphere. Its form is
P(0) = [3(sinQR-QRcosQR)/(QR)°]? . (1.3

where Q is the scattering vector given by

10



Q = (4n/X)sin(6/2) , (1.4)

when the Debye limit is not fulfilled, i.e. in the Mie scattering
class, the incident light wave can be distorted on passing through the
particles and the theoreticél situation is more complicated. For wvery
large particles (R»X), a complex angular dependence of scattered
intensity is found and the angle-dependence of the intensity is a very
sensitive measure of particle size and structure.

9. The devolepment of dynamic

2.3.1b Dynamic light scattering
light scattering followed the invention of laser. The important
property of laser 1light is that it is coherent so that phase
relationships are maintained in the scattering process. Hence the
particles in a suspension can be regarded as forming a random
three-dimensional diffracting array which gives rise to a random
diffraction consisting of small bright spots (largely constructive
interference) and dark areas (where destructive interference occurs).
The particles suspended in the medium are not stationary but having a
Brownian motion ‘caused by collisions with the thermally agitated medium
molecules. The phase relationships, determining the diffraction,
reflect the movement of the particles and the pattern itself changes
continously through a series of random configurations. Thus the

detailed nature of temporal fluctuations in the scattered intensity

contains information on the particle motions.

2.3.2 Dilute and concentrated suspensions: For sufficiently low

concentration, the position of particles in a suspension are

11



essentially uncorrelated. Using conventional (incoherent) 1light the
intensities scattered by different particles are simply added at the
detector whereas with a coherent (laser) source, temporal fluctuations
are observed in the scattered intensity; however if this intensity is
averaged over many fluctuation times it is again simply the sum of the
intensities scattered by individual particles.

For a concentrated suspension, in X-ray scattering, laser
scattering and other types of experiments a broad single peak in the
small angle region 1is observed, where the peak has been taken to
suggest that the solute macroions form an ordered strcture in the

. 21)
solutlons(

There is a close formal analogy between the random
diffraction pattern formed by laser 1light scattered by particle
suspension and the diffraction pattern of X-ray scattered by a crystal.
The main difference is that the atoms in crystal are constrained to the
neighbourhood of sites of a regular lattice; thus the diffraction
pattern consists of an ordered array of spots whose intensity hardly
fluctulates. Secondly, when a particle suspension is illuminated 5y
light from a conventional source, due to its lak of coherence, phase

relationships are only maintained over few interparticle spacings

rather than over the whole scattering volume.

2.3.3 Experimental work: The crystal structure of an ordered
suépension of polystyrene spheres was determined using Bragg scattering
of laser light. At low concentrations a body-centered-cubic structure
is found, whereas both body-centered and face-centered structure are
found at high concentration. In table 1.1 the lattice constant

- . - . -3 . -
(microions) as a function of latex sphere density N(em ) is given

12



where both experimental measured wvalue and calculated wvalue are

22 . . .
(227, The intermolecular  ordering distance 2D was

presented
exp

calculated using the Bragg equation by analysing the small angle X-ray
scattering measurements and it was found that 2Dexp decreases with
increasing polymer concentration and the values obtained were smaller
beyond experimental error than theoretical distance 2DO calculated from
the concentration by assuming uniform distribution of macroions
throughout the solutions. Figure (1.6) shows typical scattering curves
of sodium salts of polystyrene sulfonate (NaPSS) at various polymer
concentrations as a function of scattering wvector, and in table (1.2)
some of the data are shown which are related to the same figure

23 . . .
¢ ). We shall return to a discussion of theoretical

(Fig.1.6)
developments related to these observations at the end of this chapter.

Among different methods of crystal structure determination by
light diffraction, the Kossel technique is probably the most direct
one. The Kossel lines observed in colloidal crystals are similar to
those in X-ray diagrams. With a point source of monochromatic light
situated close to the colloidal monocrystal, consider a family of
lattice planes (hkl) and a light ray incident on these planes. At the
Bragg reflection angle # (for a given light wave length )\) one expects
that due to Bragg reflection the transmitted light intensity will be
different from other rays which do not satisfy the Bragg condition. All
rays incident on the plane (hkl) at the same Bragg angle § will form
the Kossel cone with axis [hkl] and cone angle M=F/2‘9 (Fig.1.7).

The Kossel line is an intersection of the Kossel cone with the

projection screen, and the set of Kossel lines on the projection screen

forms the Kossel diagranfh). The analysis of Kossel lines of highly

13



charged polystyrene paricles in semidilute aqueous solutions was made

}ZM(Fig.l.S) in an invastigation of the

by T.Yoshigama et al
properties of these colloidal crystals which have typically lattice
spacing of order of visible-light wave lengths. The lattice constant
were again found to be systematically smaller than those calculated
from uniform particle distribution throughout solution (table 1.3). It
is interesting also to note that only the intensity of Kossel lines
decreases as a function of their Miller indices whereas their angular
width does not change with (h?¥k2+1z): this shows that the crystal
ordering is of long range.

By Bragg reflection of visible 1light, an aqueous colloidal
suspensions of charged polystyrene microsphere was studied by Aastuen

25
et al.( )

body centered cubic crystalline were shear melted into the
metastable liquid phas. Recrystallization occurs via nucleation and
growth of single crystallites at dilute sites with nearly spherical
growing crystals (Fig.1.9).

(26) .
is also one of the

The small angle mneutron scattering (SANS)
experimental techniques used to study different properties of the
atomic order to obtain information about various parts of the particle
and to study for example, molecules absorbed on the particles. For this
reason SANS offers many advantages over the more conventional light
scattering (i.e. a shorter wave length is needed for such studies).
Ghuan-Fu Wu et al. had used the SANS technique to study concentrated
proteins in mixed DzO/HZO solutions: they extracted from the data three

basic properties, the dry volume, the hydration, and the amount of H/D

exchange of the protein in DZO-containing solvents.

14



3.Types of particles-particle interaction:

In this section we will introduce at a qualitative level some
elementary mnotions on the different interaction models that are
relavant to colloidal particles. We shall also mention highly charged
particles in suspension, that we shall be dealing with in more detail
later.

In a sol with a low concentration of particles in an intermediate
electrolyte, the particles are allowed to move freely in the large
volume of the dispersion medium. Such Brownian motion involves
translational diffusion of particles. In such dilute dispersions only
occasional contacts occur between the particles. Hence, as was examined
experimentaly by Perrin and theoretically by Einstein in the early days
of the twentieth century, the diffusional motion 1is only very
marginally restricted.

As the number concentration of the sol increases, the probability
of interactive contact between particles increases, since the volume of
space occupied by the particles relative to the total volume increases.
It is in such situation that the forces between particles play an
important role in determining the overall properties of the
dispersior527)

It 1is coustomary and to some extent useful to discuss the
different types of interactions which can occur between particles in
terms of the energy of interaction between a pair of particles as a
function of the distance separating their centres. Then considering

only spherical particles having radius a, say, and separated by a

15



distance R, we will discuss the different types of interaction in
brief, keeping in mind the following; the actual volume of a

particle,v , is given by
P

v = & waa , (1.5)
p 3

and the total volume of N particles in the system is v:
P
v=Nv » ) (1.6)

with the total volume of dispersion taken to be v. The actual volume

fraction is V=u/v.

3.1 Hard sphere interaction:

It is the simplest model, as one thinks of colloidal particles as
hard and electrically neutral. At a certain distance of separation, R',

the energy of interaction rises very steeply to infinity, hence

(Fig.1.10)

R' = ZaHs , (1.7)

where a, is in general greater than the physical radius of a single
S

particle, but in some cases 1is close to it. Then from a theoretical

point of view, the hard sphere system is described by a dimensionless

parameter VH , the excluded volume fraction, defined as
S

vV = ) (1.8)

with vy the total wvolume of particles with radius a - It is clear
S S

16



that VH:>V since a is greater than the actual radius.
S S

3

3.2 Electrical double layer repulsion:

The majority of colloidal particles have an electrical charge on

the surface, which will give rise to a surface electrostatic potential

¢S(28), and to a potential enefgy of electrostatic ¢R. For small

spherical colloids one usually writes (Fig.l.11)

€ azmzexp[—n(R—Za)]
r s

¢, = = . (L.9)

with € the relative permittivity of the medium, and x the reciprocal
Debye-Huckel electrical double layer thickness, which is related to the
concentration of symmetrical electrolyte ¢ by

ZzezNAc

2 = , (1.10)

e kT
r B

Here, Z 1s the wvalency of the ions, ké the Boltzmann constant, T the
absolute temperature and NA Avogadro’s number.

It is clear from eq.(1.5) that the change in the interaction
energy with R is dependent on the term exp[-m(R-Za)]/R, and the rate of
decrease of repulsion with distance is strongly dependent on x. Then at
low electrolyte concentrations, the electrostatic repulsion provides a
long range term whereas at high electrolyte concentration the repulsion
energy decays rapidly.

The force of repulsion between particles is determined by the

gradient of ¢R. It can be seen from fig.(1.11l) that the repulsive force

17



becomes so strong at certain distance of approach that any closer
approach is improbable. This provides the wuseful concept of the
effective radius: the particles can be viewed as hard spheres with an

effective radius that is larger than the actual radius.

3.3, Van der Waals Attraction:

The explanation for attractive (Van der Waals, or dispersion)

(29) . The

forces between neutral particles was given by London in 1930
instantaneous dipole p on one particle generates an electric field E,
.which has a strength of order ,u/R3 at distance R. If there is another
particle at this point the field polarises it and creates a dipole By
of strength ;ﬁ=aE where o is the polarizability of the particle. The

field at the first particle thus is of order p,l/R3 and hence the two

particles interact via a potential
¢ = -C/R® . (1.11)

where C is a constant characteristic of the particles in the system.
London solved the problem for the simplest case of two atoms.

The interaction ¢A between two spherical particles of equal radius

30)

was originally given by Hamaker' in the following (fig.1l.12);

2
s - -A [ 1 + 1 + X +2x ]

NaleT , (1.12)

x*+2x x2+2x+1 x2+2x+1
where x=(R-2a)/2a. A 1is the composite Hamaker constant for the

particles in the medium, given by

18



1/2 1/2
12_ \U

2
11 zz) ’ (1.13)

A= (A

with A.ll the Hamaker constant of the particles and A.22 that of the

medium. In general the Hamaker constant is defined as:

A =
123 il 733 i23

LN

% 4q.9.2
hi

where 9,,» 4,, are number of i or j atoms per unit volume in the
i J
material 1 and 3 of the two particles; X 1is their interaction

i23

parameter in the medium material 2.

3.4 Steric stabilisation:

The tendency of particles to aggregate in a colloidal dispersion
is the most important physical property of such dispersions. Encounters
between particles dispersed in liquid media occur frequently and the
stability of dispersion is determined by the interaction between
particles during these encounters.

If the Coulomb effects between particles are not important, then
the main reason for aggregation is the van der Waals attractive forces
between particles, whereas stability = against aggregation is a
consequence of repulsive interactions between similarly charged
electric double layers and particle-solvent affinity. Particle-solvent
affinity promotes stability mainly by mechanical means, which can be
considered in terms of the positive desolvation free energy change

AGd » which accompanies particle aggregation (i.e. a stabilizing
es

. . A . 19
mechanism; steric stablllzatlon)( ﬁ

19



The name steric stabilisation is commonly used to describe several
different possible stabilizing mechanisms involving absorbed
macromolecules, such as desorption of stabilizing agent with negative
free energy change AGmh. Desorption with positive free energy change
AGdes correspond to particle-particle repulsion and enhanced stability.

Whenevere specific Coulomb effects are uniﬁportant, van der Waals
attraction plus hard sphere repulsive potentials are a resonable model
to decribe colloidal dispersions. The forces between sterically
stabilized particles have been meésured and have been shown to be short
range, with a range comparable to twice the contour length of the

Lyophilic chains. For sterically stabilized systems the total

interaction energy can be written as

$ =9+ ¢ . (1.14)

where ¢A is the van der Waals potential, ¢ 1s the steric potential
s

that can be considered for simplicity as a hard sphere interaction with

an effective radius a plus the thickness of the absorbed layer §

(fig.1.13).

3.5 The combination of interactions and concentrated systems:

In the real world it is possible to obtain colloidal dispersions
in which wvarious combinations of different interactions occur. A
schematic picture of particle érrangements is shown in fig.(1.14).

If the repulsive forces are the dominant ones, there is a strong

20



dependence on the range of repulsion a . As we increase the number of
particles, then each particle will interact with others with the
consequent formation of a dispersion with high degree of order: in such
system each particle will have a high coordination number, which could
approach 12 as in the formation of an f.c.c. array. The particles are
still separated by the dispersion medium, thoﬁgh forming an ordered
system (crystal or solid phase). Thus in the <case of aqueous
dispersions at low eleétrolyte concentration, a . can be greater than
a.

In a concentrated dispersion, when the attractive force mow is the
dominant one, the particles will stick on coming into an attractive
energy well, with a result of formation of highly disordered system
(fig.1.14b) with high void volume and low coordination number for each
particle<z”.

In what follows we will discuss crystallization that might occur

in colloidal suspension from experimental and theoretical points of

view.

4.Crystallization of colloidal particles:

Different crystallization processes are possibble because of the
different types of interaction, mentioned in the previous section, that
can occur between colloidal particles in suspension. From purely

thermodynamic considerations solid-liquid coexistence is characterized

by
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T =T ; P =P ; GS(P,T) = Gl(P,T) . (1.15)

These three conditions correspond to thermal equilibrium, mechanical
equilibrium and chemichal equilibrium between the two phases (s=solid,
and l=liquid). Each of the‘quantities, temperature, pressure and the
Gibbs free energy per particle, must take the same value in the solid
phase as in the liquid phase.

With present-day icomputers one can simulate accurately the
properties of a few thousand intéracting particles and obtain accurate
values for thermodynamic properties over the whole density range. But
the difficulty still remain of knowing what the forces in real
materials actually are.

In this section, we are going to discuss some crystallization
models for differeﬁt types of interaction between the particles and we
will start with the simplest idealization of intermolecular forces, the

hard sphere potential.

4.1 Crystallization under purely repulsive forces

approaching the hard sphere potential:

In the general case of the inverse-power repulsive potential given

by
$(x) = e(a/x") . (1.16)

the particles are considered as point centers of repulsion with the
force on any particle being a vector sum of contributions -d¢/dr from

all the other particles. The strength of the interaction is measured by
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a microscopic energy e¢. The diameter of the particles is the length o
and the hardness or stiffmess of the particles ‘increases with n. For
the Lennard-Jones potential n=12, while n=« for the hard sphere model.
For any of the inverse power potentials the thermodynamic
properties are easy to calculate because once a single isotherm,
isochore or isobar is knmown all the others can be determined from it.
This follows from the way that the configurational Helmholtz free
energy depends on thei density and temperature. The Helmholtz free
energy H=U-TS, rather than ‘the Gibbs free energy  function
G=U-PV-TS=H+PV, is more convenient in statistical calculations because
volume (rather than pressure) is the convenient independent variable in
theoretical calculations. From statistical mechanics the dependence of
the Helmholtz free energy on the volume and temperature is given by the

. . . 31
canonical partition function ZN(V,T)( ):

1 n € -n N
ZN = exp(—H/kaT) = ——~“~*J6XP(-U X T Z rij) dr

N1p®Y B
VN 3 € - N
= %Jexp(-pn/ E—-T- Z Sn) ds s (1.17)
N1A®Y B 3
where
p=N03/V ; s=r(N/V)1/3 ;  and A?=hz/(2wkaT)

The sum is over all N(N-1)/2 pairs of particles. The reduced distances
(s} have been introduced to show that the non-ideal part of the free
energy, given by the integral multiplying VN/(N!A?N) in eq.(1.17),
depends only on the single density-temperature variable X=p(e/kBT)wn,
rather than on V and T -separately. This remarkable simplification of

the partition function occurs only for invers power potentials.
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Along any isotherm, isochore or isobar the liquid-solid transition
is characterized by discontinuities in (BP/BV)T, (GP/aT)V, (6T/3V)P
respectively. In order to locate the phase transition, in a computer
experiment the pressure or energy data for the two phases have to be
integrated to get the free energy. The Helmholtz free energy for each
phase can be determined by either a volume or a temperature

integration, using
(aH/BV)T = -P ; (a[ﬁ/T]/aT)v = -U/TZ (1.18)

then the phase boundaries, along which the solid and 1liquid
temperature, pressure and Gibbs free energy per particle are equal, can
be determined. Note that the inverse power repulsive potentials are the
simplest to use, but not sufficiently realistic at low temperatures.
More importantly, attractions must be taken into account in order to
find that the fluid phase admits in fact two phases, namely liquid and
gas. This 1is shown in fig.(1.15) in which the Lennard-Jones

. . 31
density-temperature phase dlagram( )

is plotted and has superimposed
on it the phase diagram for the purely repulsive soft-sphere model
(with n=12).

In the simulation of the hard-sphere model by Hoover and Ree®®
two different pﬁases are demonstrated, wusing a thermodynamical
reversible path linking the solid and liquid phases with a periodic
external field to stabilize the solid phase at low density. Define the
volume fraction as ®=nv where n is the number of particles per unit
volume and v is the volume of one particle, and the reduced pressure

3
P7=P/n kBT, where n =® /v is the density of close packing limit
cp c cp

P

%
(® ). Crystallization occurs at P’=8.27 for liquid phase

cp
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(topologically disordered phase) of volume fraction @l equal to 0.50 in
equilibrium with a solid phase (long range ordered phase) of @S equal
to 0.55 (fig.1.16).

According to this model crystallization will occur in a
concentrated suspension with volume fraction larger than 0.5.
Unfortunately in experimental techniques for preparation of polymers
the concentration of monomer or the silicic acid esters must be less
than 10% in weight, otherwise the particles in suspension would stick
during the reaction and the suspension would floculate (fig.1l.14).

The desired densification may be obtained by other methods such as
sedimentation.

4.2 Sedimentation studies:

To see how sedimentation comes about, consider a particle of
volume v and density P, which is submerged in a fluid of density Pl and
is under the influence of gravitational forces. The particle
experiences a force Fg due to gravity (positive in the downward
direction); at the same time a buoyant force Fb acts in the opposite
direction. A net force equal to the difference between these forces

results in acceleration of the particle:

Fnet= Fg— Fb = V(pz—pl)g . (1.19)

This force will pull the particle downward, that is if Fnet will have
the same sign as g, if pz>p1’ and the particle is said to sediment. On
the other hand if p1>p2 then the particle will move upward, which is
called creaming.

Consider a cylindrical container filled with a monodisperse
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colloid, with a relative density of colloidal particles P=P 01l Psol’

where p and p stand for the densities of the solid and liquid
coll sol

contents of the colloid. Let dz be the thickness of a layer in the

container, which is under the influence of a gravitational force per

unit area (fig.l1.17) given by
dP = -pgddz . (1.20)

where @ is the volume fraction at pressure P and satisfies the equation

of state of two phases, the solid and liquid phase, as
% *
o = @l(P ) ; o = @s(P ) , (1.21)

combining equations (1.20) and ((1.21) on gets the differential

equation

%
dp
dz

_ 30 L @22

with dimensionless wvariable E=z/h , where h.=kBT/V;g and 5=®/@ .
o o cp

- %
Knowing @(P7) from equation (1.21) on gets by integration

P dP*
Z = = \[ _—*—‘ f (123)
* :
P ‘Q(P )
_ crit
with 2z=0 at the interface between the solid and liquid phases and

o

P:'t=8'27 from Hoover and Ree. We can see that at the top of the
r1

liquid phase the pressure decreases exponentially with height,

according to the perfect gas approximation valid at very high dilution,

.

P ~ exp(-z) . (1.24)

The overall hight of liquid phase above the solid-liquid interface is

of order h . Now with p=50 Kgrn-3 (polystyrene in water) and T=300 K one
(e}
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gets h0 in the range 1.6cm-16um for O0.lum<2a<l.Oum. For silica
particles in water ;).=103Kgm—3 so that hois reduced by a factor of 20.
The sedimentation method is an experimental technique by which one
is checking the validity of crystallization of the hard sphere system
provided that the column (fig.1.17) is sufficiently high, and that
sedimentation equilibrium is obtained, keepingiin mind that the time

needed to have equilibium in a coulmn of height h is of order

T o~ h/used N y (1'25)

sed

where u = V—/;g/(67rna), as calculated from Stokes formula in a liquid
of viscosity 7. Then a month is needed to attain sedimentation
equilibrium in a test tube of a few centimeters hight containing
polystyrene latex, and might reach one year in other experiments.
Takano et al'®® in their experiment attempted to measure the pressure
using the sedimentation method for monodisperse latex. A phase
transition phenomenon from an ordered state to a disordered state was
achieved. The transition pressure, Pm’ expressed in terms of the
reduced pressure, PmV/NkBT’ at melting point was 13 to 15 as the
electrolyte concentration was around lO_Zmole/liter. These values are
close to the computed value 11.6 (PmVO/NkBT.V/VO=8.6><1.35=ll.6‘, where
V0 is the system volume at the state of the closest packing and the
point of melting is V/V=1.35) by Alder et al®’ for hard sphere
system, hence indicating that the particles in the experiment of Takano
et al. behave as a hard sphere system in sedimentation. At low
electrolyte concentrations, the value of the reduced pressure was
(35)

larger and in accord with the result of Hoover et al. for soft core

system. In table (l1.4) values of the reduced pressure and volume
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fraction @m=pﬂa3/6 (where p, a are the number density and diameter of
the particle respectively) are given for Takano et al. work together

with those of Alder et al..

4.3 Crystallization in Coulomb liquids:

Ionic crystals are the first example that comes to mind in
relation to crystallization under Coulombic interactions. In an
idealized picture, an ionic‘crystal is made up of positive and negative
ions and the interaction between the different types of ions is the
long range electrostatic term iqz/r (attraction between ions of
opposite charge and repulsive between ions of same charge). The
electrostatic interactions of these point like charges give rise to a
net binding (Madelung energy), as each ion is preferentially surrounded
by ions of opposite charge. In typical crystal, the Madelung energy is
in fact close to the observed cohesive energy, which is required to
disassemble the crystal into its consistuent ions.

The interaction Uij between ions i.-and j; at distance R is the sum
of a short range core-core repulsion potential and a Coulomb potential,

written as

U“ _ Ucore<R) + UCoul
1]

(R) , (1.26)

where the positive sign is taken for the like charges and the negative

core

sign for the unlike charges. It is clear that U (R) describes the
fact that each ion resists overlap with the electron distribution of

neighbouring ions. In the absence of overlap forces, the crystal would
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collapse.
From phenomenological point of wview, the role of Coulomb

(38) by

interactions in the freezing of molten salts is demonstrated
noticing that a critical wvalues of a suitably defined coulombic
coupling strength appears to be involved, at least for the alkali
halides freezing at atmospheric pressure. The cdupling parameter may be
defined as

ez/r0
_ kBT X , (1.27)
weher r_ is the interparticle spacing. Clearly, this parameter measures
the ratio between the Coulomb energy and the thermal kinetic energy and
the data show that freezing occurs at I'=70.

However, the most marked similarity between colloidal crystals and
other systems of charges that show crystalline order, would be found
with metals and the (classical) Wigner crystal. In both cases the
charges of one sign are localized on a crystal lattice and the charges
with opposite sign are delocalized in a "neutralizing background".
Within the idea of Wigner crystallization, Fuchs’®”’ calculated the
Madelung energy for an f.c.c. and a b.c.c. lattice and found that the
difference between Coulomb ground state energies is extremely small.

Table (1.5)%%

shows different values of Madelung constant a for
neutralized Bravais lattices and ionic crystal structures, in which the

Madelung energy is defined as -am(Zez)/a where Z is the largest common

factor of the ionic valences and a is the nearest neighbour distance.
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5. Crystallization and Liquid gas transition under pure Coulombic forces.

For colloidal particles one needs not only the Madelung energy to
discuss crystallization from energy considerations, but needs also to
take into consideration the entropy of particle motions. The theory of
melting and freezing has a long history. Kirkwood and Monroe®®®
developed a theory of the liquid-solid transition which was based on
the BBGKY hierarchy for inhomogenous systems and requires at least the
knowledge of the pair potent‘:ial V(r) and the homogenous pair
distribution function g(r). Ramakrishnan and  Yusouff (RY) (40)
constructed a theory of freezing using the grand canonical ensemble,

and Haymet and Oxtoby("l)

» in the course of studying the structure of
the crystal-liquid interface, recast the RY theory into the language of
density functional theory and the direct correlation function c(xr). In
this theory the solid-phase density, which is a periodic function of
position r in the crystal, is expanded in its Fourier components which
allowed to wvary so— as to minimize the free energy, subject to the
symmetry constraints of the crystal under investigation. The order

parameters of' the phase transition are the mean density

P Y/p. . and the Fourier components which are zero in

(psolid- Liquid’/ Pliquid

the liquid, but take spontaneously finite values at freezing.

The classical plasma on an inert background is known from
simulation work to crystallize in a b.c.c. lattice when its Coulomb
coupling constant I‘=ez/rsekBT equals approximately 180. Freezing
occurs, of course, under purely repulsive Coulomb forces and the
density is maintained at any chosen value by fixing the density of

background. The density-wave theory of- freezing, developed by RY for
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classical 1liquid was analyzed in detail in relation to the
crystallization of a classical plasma on a neutralizing background into

“2 It was pointed out that the

a body-center cubic lattice
equilibrium between solid and liquid at coexistence was maintained in
this model system by an interfacial dipole layer. There still are
difficulties in a full microscopic theory of the crystallization of the
classical plasma, owing to a relevant role of non-linear (three-bod&)
correlations. However,'in relation to macroion solution one must keep

into account the role of counterions (giving an "active background"

through screening) and possibly also an active role of the solvent.

5.1 Debye-Huckel theory:

In the Debye-Hiickel (D-H) approach one selects an arbitrary ion of
charge Ze out of the assembly as a reference ion and considers the
water molecules as a continous dielectric medium with dielectric
constant € whereas the remaining ions of the assembly enter the
analysis as an excess charge density pr(r). Thus the problem is reduced
to a simple one, how to find the excess charge density pr(r) which
varies with distance r from the reference ion. The electrolyte solution
as a whole is electroneutral, i.e. the net charge density is zero.

One solves Poisson’s equation for such system,

S (B LA T 2] . .28)

r dr dr o i

using the Boltzmann distribution law of classical statistical mechanics

31



ni(r) = rﬁoexp(-zie¢(r)/kBT) , (1.29)

for the number n (r) of ions i per unit volume arround the chosen ion.
1
Notice that
p (r) =) n(r)Ze . (1.30)
r - i i :
1
An analytic solution is immediately found on the assumption that the

electrostatic interactions are weak compared to the thermal energy,i.e.
Z ep(r) < kT
i

expanding the exponent in eq.(1.29) one finds that for a point-like
ions the electrostatic potential is

-KY

$(x) = A —— . (1.31)

where

A ,  (1.32)

Ze being the charge on the chosen ion, and & is the invers Debye
screening length givrn by

2
2 4re 2
K = T]:C—B_T— Z niozi - . (1.33)
o]

i

For a colloidal suspension of volume V with N particles
(macroions) of charge -Ze and the equivalent number ZN of counterions
of charge e, the free energy is the sum of the perfect gas contribution

=Fp and the free energy Fel of electrostatic interactions in the

(4)

Debye-Hlickel approximation Omitting terms that are irrelevant for

phase transitions, we have
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v \Y
Fp = -kBT(N In T +ZN 1n _ZT y (134)

and

2

1 e 2
Fel = -”‘““3‘—’ "e— & (NZ +NZ)
o]
- L Tk (nEen) (1.35)
h 3 B g’ ’ .

where LB=ez/el%T with dimension of length (known as Bjerrum length).
o

5

We can see from eq.’'s (1.34) and (1.35) that the perfect-gas part Fp~
-1nV decreases with increasing the volume V, which means that the

system considered as a perfect gas has a tendency to explode. On the

-1/2

other hand the electrostatic part Fe o -V increases with increasing

1

V. One can measure the relative importance of the two competing

contribution by calculating of the pressure P=-(6F/8V)T, i.e.

— 2
_ N+ZN J NZ“4+NZ .3/2
P = kBT v - 3 [LB v ] , (1.36)
In the case where Z»1l one gets
P=LkT Zn (1 - —JBLJ L'n 2% , (1.37)

where n=N/V is the density of macroions. Hence one finds a critical

density at which the bulk modulus n(BP/an)T vanishes

4 1
ncrit - T ( 3,4 )
B Z

By analogy with phase diagram for ordinary fluids (liquid-gas
coexistence curves), the above result has been considered by wvarious
authors as an indication that the present model may undergo a

phenomenon of condensation under pure Coulomb interactions. With

33



LB=74AD and Z=230 one finds n .tlelz particle cm °. We shall return
cri

to this question in section (5.3) below after reviewing work on

crystallization in an effective repulsive potential of the form of

eq.(L.31).

5.2 Crystallization in the Yukawa potential:

A study of melting in aqueous suspension of polystyrene spheres

was presented by Shih et a1t

, where their approach was based on
the assumption that the intersphere interaction can be represented as
screened Coulomb. At this level the presence of counterions enters only
through the screening length and the role of the medium enters only
through the static dielectric constant € - The main calculation of Shih
et'al. considered also the question of the possibility of reentrant, by>
which they mean that the polystyrene sphere suspension first freezes
and then remelt as the density of spheres is increased at constant
temperature and PH. They found that if the interaction between the
spheres is appréximated by the Debye-Huckel potential that corresponds
to point charges a reentrant melting does take plase, whereas if a
size-corrected Debye-Hlickel interaction is used as a more reliable
description, the reentrant phenomenon disappears.

Consider a colloidal suspension of N particles, each of radius a,
in volume V, at absolute temperature T. Each of the N particles has an
effective charge of Z electronic charges. If the suspension is not too
dense and the temperature is not too low, then the interaction between

ions (macroions) can be treated within the Debye-HUckel approximation.
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If the spheres are regarded as point-like then, as we have seen in

section (5.1), the interaction takes the form

z%e? KT
=——— e . .38
p(r) — ———e (1.38)
[}
Following J.0'M. Bockris™® an account for finite size of the
particles can easily be introduced as follows. The linearized

Poisson-Boltzmann equation for the electrical potential generated by a

charged sphere in the system reads

12 3 (rz aﬁb(r)) _ K,zgﬁ(r) , (1.39)
r dr ar

and its general solution is
-KY -
$(r) = A —— . (1.40)

where the physical requirement that ¢(r)——0 as r— o is satisfied.
In. evaluating the constant A in eq.(1.40), the point-like D-H
approximation has been made. In order to take the size of the ions
(macroions) into consideration, we recall that the charge dq in any
particular shell of thickness dr at distance r from the origin of the

ion is
dq = pr4wr2dr . . (L.41)

where p 1is the charge density obtained as
r

1 a d
o o 2
r ar ar

€

)] = - kRee) L (1.42)

and as ¢(r) is known from eq.(1l.40) one obtains

p o= — kip 8 . (1.43)
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Thus, the charge dq is
dq = -eAmz(e—nrr dr) ) (1.44)

and the total charge in the ion cloud (g L d) must be equal to -Ze by
cLlou

electroneutrality. Hence for a sphere of radius a we have

(o] (ee]
q, = -Ze - J dq = —Anzef e ®Fr dr . (L.45)

a a
clearly one is assuming that the ion cloud starts from the surface of
the macroion. Eq.(l.45) yields

ka
Ze e

A= € l+ka
o]

(1.46)

(43,44)

From this argument Shih et al considered the effective

interaction between macroions to take the following form

2 2 Ka 2
Z e e -kr
e
€T l+ka

(o]

¢(r) = o (1.47)

such interaction takes into account the fact that part of the volume of
the suspension is not available to the screening counterions, since it
is occupied by the macroions.

To locate .the coexistence line in the phase diagram, it was
calculated by comparing the Helmholtz free energy of different phases
(b.c.c.,f.c.c.,hep and liquid) at the séme temperature. The Helmholtz

free energy per particle F takes the following form:

Ka 2 2 2
F = %ﬁ‘[‘f%;;“} y-Zze o 1 o klr -zl +E_ -TS , (1.48)
fe) lri—r,l o
J

where Ek and S are the kinetic energy and entropy per particle, < >
in

denotes the thermal average over the canonical ensemble, and r is the

position of particle i. Eq. (1.48) includes only terms of the free
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energy which depend on the arrangement of particles. The FEinstein
oscillators and the hard sphere fluid were used as the reference

4
). The authors show

- - . . 4
systems for the solid and liquid, respectlvely(
that solid phases are stable at low salt concentrations: b.c.c. is

preferred only at high charges and low densities while f.c.c. is

dominant at higher densities. The solid phase ==1t upon addition of

salt: b.c.c. may or may not transform to £ - . zfore melting,
depending on the particle number densities I=..,..  Fig.(1l.18) shows

results in the D-p plane (where p 1is the salt concentration) at
different values of Z, one can see that the colloidal suspension
freezes when the particle number density is sufficiently high. The
f.c.c. phase is formed in most of the high density region, whereas the
b.c.c. phase is stable only in a very narrow region of lower densities.
The density range of the f.c.c. phase shrinks as electrolytes are added
to- solution, and the b.c.c. phase completely disappears when the salt
concentration is greater than about 2.5%x10 °M. Beside this, the
addition of electrolyte will also make the crystalline phases become
less favorable and eventually melt into liquid.

Defining fhe effective temperature as 1= ‘,:?T/(Zzez/eoas) and
measuring the screening strength in terms of the dimensionless
parameter ka_, where as=(V/N)1/3 is thé average nearest neighbour
distance, the phase diagram can be plotted in the ”f-nas plane
(£ig.1.19). The liquid phase is stable at high T and large Ka_ (i.e.
small Z and high salt concentration). At low T, b.c.c. phase 1is
preferred at small Kka_, and the f.c.c. phase at large Kka_. Finally in
fig.(1.20) they plot the density range of the three phases as a

function of the particle charge Z at zero salt concentration. The
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b.c.c. region becomes narrower and finally closes up when Z is
decreased. It is also clear from this figure that a large charge can

retain the crystalline phases to a low density.

5.3 Oscillatory screening:

In general, oscillatory screening phenomena should be expected
when the Debye length 1/k is in cémpetition with another characteristic
length of the system. In colloidal suspensions, one type of ions
(macroions) 1is of large size a, which can compete with the Debye

) that finite ion size could

length. It was recognized by Kirkwood*®
drastically alter the physics of electrolytic solutions at high ionic
strength. In the case of point ions, the test charge is surrounded by a
cloud of oppositly charged ions which effectively screen the test
charge and neutralize it when viewed from distances much larger than
the screening length. Increasing ionic strength simply decreases the
screening length. If the ions have a finite radius, the density of ions
in the screening cloud can not increase indefinitely, and at a critical
ionic strength the ion cloud surrounding a test charge stratifies. At
this point alternate layers of positive énd negative charge form around

. . 47
the central ion. Hastlngs( )

applied Kirkwood’s theory to solutions of
macroions in the presence of counterions, and discussed the predictions
of the theory in the context of experimental results.

Kirkwood’s  approach consists of considering the ions as

impenetrable charge spheres which interact via the potential
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V {(r) = r<a =Ra+R

af

- _aB
= - ra . (1.49)

where Ra is the radius of an ion of type a and Zae is the charge on
this ion. In this model he neglect the solvent-éoluble interaction and
assume that the ions are immersed in a medium of dielectric constant e.

In the theory screening of the bare potential arises in the
effective pair interaction betwee£ ion 1 and 2 of species o« and S which

is given by the integral equation

__afB v y7e
waﬂ(rlz) h €T Z ek T
12y B

z7Ze® nzze’ NUPNC
Jd 8(xr -a )Y6(r -a_ )

- 13 oy 23 By

(1.50)

where n7 is the concentration of the ionic species -+, and the 4
functions in the integrand are to exclude the regions of particle
overlap from the domain of integration. The pair correlation function

for species a and g is given by

= exp[-W_,(r )/kT] . (1.51)

Eap 8

By making the subsitution

ZaZﬁe2
Waﬂ(rlz) = — ¢aﬁ(rlz) : ; (1.52)

€T
12

and carrying out the angular integration in eq.(1.50), one gets

2 ® [4 t !
45&5(1:12) = l-% myl dr Fay(rlz,v )¢ﬂ7(r ) , (1.53)
By

where

4rn Z7e

=t

,  (1.54)
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is the contribution to the screening from the ionic species v, and the

Kernel Fa7 is given by

F ) = a <r<r’-
ay(ToE) = T B %oy
1 1 . ! '
= —— (r+r'-a ) , r'-a <r<r'+a
2 oy ay ay
=r' ’ , Tr'4+a <r<w . (1.55)
ay

\

Equation (1.53) may be solved wusing Fourier inversion techniques,

provided that one imposes the condition ¢aﬁ(r)=¢ﬂa(r)' The solution
takes the form
Pop(t) = L Ajze ., (1.56)

d

where k are the roots of a secular determinant
J
Det[k*1+M(k)] = 0 . (1.57)
and the elements of the matrix M(k) are given by
2
M (k) = k" s(ka . 1.58
aY( ) n7 cos( 07) | ( )

This solution is wvalid in the region r>2amm€ where a is the
diameter of the largest of ionic species, since it is the longe range
behaviour of the potential that is important. In this region solutions
of eq.(1.57) with a positive imaginary part are acceptable since the
potential must be regular as r——w,

For binary solutions of ions of equal diameter a, eq.(l.57)

reduces to the transcendental equation
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K+x’cos(ka) = 0 _ . (1.59)

For values of xa<l.03 there are two pure imaginary roots and a pair of
complex roots of the form k=iki+ik2 (the complex conjugates of these
roots also satisfies eq.(1.59), but are irrelevant due to their
negative imaginary part). For values of ka<l three of four roots have
large imaginary parts and therefore give a negative contribution to the
potential, while the remaining root is the Debye-Hiickel solution k=ik.
As ka increases the pure imaginagy roots approach each other and merge
at xa=1.03. In the range 1.03<ka<2.79 all solutions of eq.(l.59) are
complex and the potential in this region is oscillatory and damped. For
values of xa>2.97 eq.(1.59) admits two purelv real solutions, which
give rise to an undamped oscillatory potential. .ch solutions cannot
satisfy the original integral (eq.l1.53) since the integral over an
undamped potential is undefined. Hence ka=2.79 is the critical value
which signals a transition to a state in which the potential is long
ranged and oscillatory, with alternate layers of positive and negative
charge forming around a given ion. At the critical value of «ka
eq.(1.59) has réal solution with ka=2.46. Therefore the wavelength of
oscillation in the potential at critical point is AC=2wa/2.46=2.55a.

Hasting(“) assumed that the new staﬁe acquired by the system is a
crystal with lattice constant roughly equal to AC and obtained an
estimate for the unknown effective charge. From eq.(l.54) at the
critical point

ka = 2.79 = [—-——“”n22"’2 }llza . (1.60)

ek T
B

where n is the concentration of binary salt, n=1/(4/3wr3), where r 1is
o [e]
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the average ion separation. At T=300°K and with =80 one find from

eq.(1.60)

_a 21 0. 1/2
2.79 = —— Z(——}—— A7) , (1.61)
[e] [s]

Hasting took r for a binary salt to be half the wavelength of the

o

oscillatory potential and obtained

Z =0.88/ a (a in A°, T=300°K) , (1.62)

(o]

However, the same argument applied to a molten salt like NaCl would
lead one to predict crystallization at a value of the effective ilonic
valence much less than unity (or, more appropriately, at an excessively
high temperature). The identification of Kirkwood’s critical point (for
insurgence of oscillatory screening) with crystallization appears to be
false. These situation will be clarified by the discussion in the next

section.

5.4 Liquid-gas coexistence in systems of charged hard spheres:

The classical fluid of point charges ambedded in a uniform
background (one-component plasma, or OCP) is often taken as a prototype
model for understanding the behaviour of real charge fluids. Computer

. . (48,49)
simulation work

on its thermodynamic properties shows that the
"compressibility" of the OCP becomes negative with increasing plasma
parameter I'. At approximately the same value of I, oscillations are

found to appear in the charge-charge radial distribution function

gq(r).
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A mnegative value of the compressibility is commonly associated

(m). In the OCP, instead,

with a mechanical instability of the system
one is observing a change in the character of the screening, from
exponential to oscillatory, as I' increases, while mechanical stability
of the model is preserved through the boundary condition imposed on the
simulation runs.

The next model in order of complexity is a fluid of two types of
equi-sized, charged hard spheres with charges +e and -e (restricted
primitive model, or RPM). This médel possesses a true compressibility
in combination with classical screening properties. Stell et a1.b
gave evidence for a liquid-gas coexistence curve and critical point in
the RPM, using various representation of the equation of state. The
result are shown in fig.(1.21) while different approximate equations of
state lead to qualitatively different results, they all agree 1in
showing the existence of a critical point. In addition, there is a
change in character of the screening from monotonic to oscillatory as
one goes from low-density ("gas-like" or "plasma-like") to high-density
("liquid-1like") states.

A similarAcalculation for the RPM, carried out in the MSA, is

52 . .
( ). The isotherms have the classical van der Waals

shown in fig.(1.22)
shape with a liquid-gas critical point. Phase separation is again found
below critical pressure. The two phases are characterized by values of
the inverse screening length (ns) which are imaginary for the high
density (liquid) phase and real for the low density (ionized gas)
phase. These correspond, respectively, to an oscillatory and
exponential asymptotic screening behaviour. The critical point is

. . . 2
between the locus of points in the pressure density plane where &«
5
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changes sign and the locus of points where oscillations in gq(r)
appear. The equation of state is given analytically by the MSA (which

we will discuss in some detail in chapter 3) as

Lntn” kT 172 2 3/2, 2
P = onk T — -1 4 =[xl - (120 S
(1-) bro (1.63)

where n is the number of ion pair per unit voiume, = % mo° is the
packing fraction, o is‘the hard sphere diameter, and x=r_ 0 with Ko
the Debye-Huckel inverse screening length.

An analytic expression for: n: can be obtained from the low «

expansion of the charge-charge structure factore Sqq(k) defined as
1
Sqq(k) = [S++(k) + 5 (k) —ZS+_(k)] , (1.64)

by using the fluctuation-dissipation theorem to relate Sqq(k) to the
response function xqq(k,O)

kT
S (k) = - k,0 , 1.65
i = I Xgg (60 (1.65)

(53)

and from the Ilong-wavelength expression for the static charge

responce function

e k

lim x_ (k,0)= —— (1 + ,
k——0 d Aﬂez nz

(1.66)

after compairing the expression (1.64) and eq.(l.66). The result of

this lengthy calculation is

2 -1

[ 1 1 1
2

I é < (1+2x) Y%+ %(l+2x)1/z]

(K.SU)z = X 12
(1.67)

w

with the limiting values & = for x——0 and lc2=-l2/a2 for x————o,
s 5
Finally, in relation to highly asymmetric polyelectrolytes,

structural and equilibrium properties of a two component liquid of
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charged hard spheres with very different charges and sizes have been
studied recently in the hypernetted chain approximation (HNC) by

54 . . .
¢ ). As the concentration is decreased the osmotic

Belloni
compressibility increases and seems to diverge at a fixed (sufficiently
low) temperature (see fig.1.23). The cut-off concentration is a point
of the so-called spinodal line which is the f?ontier of an unstable
region. Inside this region, negative compressibility leads to spinodal
decomposition, i.e. phase separation. The spinodal 1line and the
eritical point were obtained fgr different charge dissymetries. In

fig.(1.23) the normalized osmotic compressibility x/x;ﬂ%T(ap/aw)T is

plotted for [Zl/Zzl=20 versus the volume fraction &= g ppaz at
different values of the reduced temperature T*=aekBT/ez, where a=ap/2
is the polyion radius, and P, is the number density of the polyions.
The "phase diagram" T* vs @& is given in fig.(1.24), showing
different curves at constant osmotic compressibility. The special curve
x=t+o which defines the spinodal line is obtained by extrapolation. In
the infinite-dilution limit the compressibility differs from the ideal
part by a positive term propotional to the square root of the
concentration as given by Debye-Hlickel low. Thus X/xo increases rapidly
from 1 at low concentration and diverges rapidly for T*<'I'frit (see the
begining of curve e fig.1.23). As a conseéuence, the rare phase is very
dilute and occupies a very narrow part of the phase diagram (fig.1.24).
We will discuss the liquid-gas transition in this type of model using

the MSA in chapter 3 and comment on the differences between our work

and Belloni’s work.
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5.5 Summary and conclusion:

Throughout this chapter, we have briefly reviewed colloidal
suspensions, the various types of particle-particle interactions and
the crystallization of colloidal particles. In the last section we have
focussed on crystallization under pure Coulomb forces and or liquid-gas
coexistece in systems of charged hard spheres.

From what we have seen we should like to stress the main points
that we are going to deal with in the following chapters. First, it is
clear from experimental work of Ise et al. on colloidal suspensions to
measure the intermolecular ordering distance 2Dexp (discussed in
section 2.3.3.), that "condensation" occurs in such systems, in the
sense that the dense phase has density higher than allowed by the
container volume. Hence there are effective attractive forces in these
systems, which are ignored in models involving purely repulsive forces
(i.e. the Yukawa potential). Secondly, from the work of Belloni(m), it
is clear that "condensation" occurs in a simple model having a
gas-to-liquid transition under pure Coulomb forces, and this again
presupposes the‘existence of effective attractive forces.

In chapter 2 we will elaborate on a theoretical model suggested by

. (55
Sogaml( .

We shall examine the equation of effective
macroion-macroion potentials within linear response theory and examine
the sensitivity of the results to the nature of the short range
macroion-macroion interactions using the Poisson-Boltzmann
approximation. Within this scheme one always finds an effective ion-ion

repulsion of the Yukawa type as long as one looks at the Helmholtz free

energy to define this effective interaction, and the only quation that
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we shall be able to discuss will be the strength of this repulsion (the
constan A discussed in section 5.2).

In chapter 3 we are instead concerned with constructing a
liquid-gas coexistence curve for strongly asymmetric charge hard
spheres using the MSA approximation. We shall aim at comparing our

results with those predicted for the spinodal line by Belloni®®®

giving in addition the "liquid-gas" equilibrium coexistence curve.
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N(cm_a) a (micron) ab(micron) ‘ af(micron)
ox10%° 0.46 0.54+0.05 0.55+0.06
1x10" 0.58 0.56+0.06 0.68+0.07
6.7x10" 0.67 0.614+0.06
5%10" 0.74 0.70+0.08
2x10™? 1.00 0.77+0.08
Table 1.1%%’: Lattice constant as a function of latex sphere

density N. a 1is the lattice constant for a b.c.c. lattice, calculated
[} .
. . . 1/3° .
from the sphere density, using the relation a =(2/N) & a is the
e}

measured lattice constant for the b.c.c. lattice. af is the measured

lattice constant for the f.c.c. lattice.
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Expt. M Conc(9/m1) S2(A°-1) ZDZXP(AO) 2D° (%)  Temp.(C°)
1 [74000| 0.01 0.040 157 231 25

2 74000  0.02 0.052 122 183 25

3 74000  0.04 0.073 87 145 25

4 |74000]  0.08 0.096 65 115 25

5 74000  0.16 0.134 47 92 25

Table 1.2¢%%.

Smale angle X-ray scatering data of sodium
polystyrene sulfonates in aqueous solutions.

Mw= molecular weight os sample.

S;= Scattering vector at the peak.

2D:xp= Intermacroion distance obtained from Sm on the assumption
that the Bragg equation holds.

2D = Intermacroion distance calculated for a simple cubic
[=]

distribution.
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volume fraction ak(& ) aDs(Ao) structure
1002
0.6 7118%07 7248%20 b.c.c.
0.8 6705%30 6759%30 b.c.c.
1.0 6025+100 6283140 b.c.c.
2.0 4939160 4875180 b.c.c.
3.0 5542450 5552+10 f.c.c.
4.0 49651100 f.c.c.
6.0 4344%70 | f.c.c.
8.0 4141430 f.c.c.
9.8 4061+80 f.c.c.
Table 1.3 Crystal structures and lattice constant a

k

determined by the Kossel rings, compared with the lattice comstant a
S

determined by Debye-Scherrer rings.
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? Takano et al. values Hard sphere values
Alder et al.
Mole/L 107 10° 107
P =P V/NKT 15 49 230 11.6
=P V /NKIXV/V
m o o
) 0.48 0.40 0.13 0.55
electrolyte KOH
and T=307°K,
Diameter=5630A°
%
P 13 14 26 11.6
& 0.49 0.33  ——— D.55
electrolyte KCI.
and T-293°K, r
Diameter=5000A°

Table 1.4 Results of Takano et al. experiments together with the

data of Alder et al..For the reduced pressure P and the volume

fraction &.
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Structure Madelung constant

Neutralized s.c.lattice 1.41865 (0.88008)
Neutralized f.c.c.lattice 1.62099 (0.89587)
Neutralized b.c.c.lattice 1.57583 (0.8953)

Sodium Chloride (NaCl) 1.74756

Cesium Chloride (CsCl) 1.76267

Zincblende (Zn$) 1.63805

Wurtzite (ZnS) ’ 1.64132

Fluorite (Can) 5.03878

Table 1.5: Madelung constant o for neutralized Bravais lattices
and ionic crystal structures, refered to the first neighbour distance
(first column) values in parantheses for the three Bravais lattices are
refered to the distance a=(47r1'1/3)_1/3 where n 1is the number

density(sgﬁ
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Fig.l.1l: Schematic representation of a spherical or cylindrical

micelle.

N

F;/J p;,1‘_;ﬂ?i€j:’

[=1 [} f—H

[ :

13}

Fig.1l.2.: Tobacco mosaic virus: (a) architecture: each shell is
built of huge number of identical copies of one protein
macromolecules. Globaly TMV is rod-shaped. 150-1704° in diameter

and about 3000A° length. (b) Two-dimensional crystalline order.
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Fig.1.3.: Tipula virus: this larger imsect virus has a protein
shell, the approximate diameter of the whole virus is about 13004°
~(a) an architecture design. (b) triangular and square arrays

compatible with f.c.c. close packed structure observed by light

microscope.

Fig.l.4.: Opal structure, tiny spherical silica particles cemented
together, with voids filled with strongly hydrated form of

amorphous silica.

54



. -~ -
Ve @ ® A
s 2 -
N ¢ ° N
AT - ® -
< e ® ,’27
YA [ (R
) C
M3 - 7 e T
! a e | ‘7 -7
N /o ~
NN _ o
\/ ] « [
/ o V' N
l\: 8~ > ‘1 RN
~ J
‘ *

Fig.1.5.: Emulsion polymérization reaction. Mecnomer droplets (MD),
insoluble in water. Initiator e is already soluble in water. The
reaction starts by forming oligomers. As they are large enough, a
strong tendency towards segregation results in formation of
colloidal particles. [surfactant molecules have been omitted from
the drawing].
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Fig.1l.6.:Concentration dependence of scattering curves of NaPSS.

M =74000, polymer concentration; curve 1:0.01 g/ml, 2:0.01 g/ml,

3:0.04 g/ml, 4:0.08 g/ml, 5:0.16 g/ml.
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Poh\t Sourt e

Fig.1l.7.: Different rays from a point source forming a Kossel cone

from ray OA.

Fig.1.8.: Backward Kossel images with dark and bright fine
structure from a colloidal crystal in polystyrene latex solution
(1.5 volg). The indices of the Kossel rings show that the crystal

structure is b.c.c. and the incident divection of the laser beam

is [101].
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Fig.1.9.: A single b.c.c. colloidal crystal growing in a

metastable liquid phase. Two seconds separate each frame and the
fit frame occurs eight seconds after the cessation of rocking. The
bar in the lower right-hand corner corresponds to a length of mm.
The flattening of the bottom edge of the crystal in the last frame
correspond not to the formation of a facet, but rather is the
limit of growth in this direction as it has intersected with
another crystal domain not in the Bragg condition. The crystal
will continue to grow in the other directions until similar

intersections occur.

poleatk: nl .
Energy

r = Distance 37 Sepuration

Fig.1.10.: Hard sphere interaction, a=actual radius, %ﬁshard

sphere radius, R= separation between particles.
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Fig.1.11l.: Schematic plot of (a) ¢R. (b) hard sphere potential

with soft tail.

Capture Diszance

Fig.1.12.: Schematic plot of the attractive van der Waals

interaction, concidered with a strong repulsion (a=a ff).
e
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5%

Fig.1.13.: Schematic plot of the total interaction energy; gz‘)A is

the van der Waals potential, ¢ the steric repulsion potential.
s
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Fig.1.14.: Schematic plot of particle arrangement in a) stable
system (ordered phase), b) flocculated system (disordered
phase) .—— particle radius a, ---- a .
e
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Fig.1.15.: The Lennard-Jones phase diagram, as determined at Orsay
and Los Alamos. Superimposed on this diagram is the soft-sphere
phase diagram resulting when only repulsive forces are used. The

fluid-solid two-phase region for the soft-sphere potential 1is

lightly shaded.

Fig.1.16.: Reduced pressure P as a function of volume fraction &

in hard sphere model. Melting and crystallization occur at

P =8.27. The corresponding volume fraction are & =0.55 and
E

 =0.50.
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Fig.1.17.: The column of <colloidal suspension 1s under

gravitational forces effect. The pressure P decreases with z and

at P .t,EzO, the density shows a discontinuity and a phase
cri

transition is located.
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Fig.1.18.: D-psalt phase diagram where D is the particle number
and Poit is the added salt concentration in molar units; (a) for
a particle diameter 2a=0.109x10 °m and charge Z=400; (b) in a
different scale for Z-400 and 2a=0.109x10"%,  0.234x10°°
0.400x10 °m. The beec-fec phase boundaries are the same for the

three cases while the liguid-solid phase boundaries are pushed to

lower densities as particle size is increased.
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Fig.1.19.: The T-ka phase diagram for particles with diameter

2a=0.109x10 °m. Where T,< and a as defined in the text.
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Fig.1.20.: The D-Z phase diagram for particles with diameter
02=0.109%10 °m and at zero salt concentration. bcc phase appears
only when the charge Z is high and the particle number density D

is low.
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Fig.1.21.:

the critical point for the
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Liquid-gas coexistence curves
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in the mneighborhood of

restricted primitive model

in the

various approximations. The straight line is the locus of points

marking the onset of long-range charge-density oscillations in

the lowest-order gamma-order approximation.
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Fig.1.22.: Isotherms (broken lines) and coexistence curve (full

line) of the model. Curves K and G give, respectively, the locus

points

where
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oscillation in g (r) appear.
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Fig.1.23.: Normalized compréssibility vs wvolume fraction at

different temperatures for Z=20. Curve a, Tw=a/1h=3.27; curve b,
3.50: curve ¢, 3.73; curve d,3.97; curve e, 4.20; curve f, 4.32;

curve g, 4.43; curve h, 4.67; curve i, 5.83.
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Fig.1l.24.: Phase diagram T"vs ® for z=20. The different curves
correspond to different values of the normalized compressibility.

The last curve (crosses) represents the spinodal line.
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CHAPTER II

EFFECTIVE ION-ION POTENTIAL IN POLYELECTROLYTE SOLUTIONS

FROM LINEAR RESPONSE THEORY

1l.Introduction:

It is the aim of much theoretical work to establish an expression

. . . . ££ . .
for the effective pair interaction v° (r) between macroions in a
colloidal suspension. The most widely known and used expression is the

DLVO potential“a), given most simply by

v () = 4w <o (2.1a)

Zz/L e~m(r-2a)
o B

- - o , (2.1b)
(1+ka) T °

where the index o represents the polyion, a=ao/2 is the polyion radius,
n=(4wlb§piZj) is the ionic inverse screening length due to the small
ions, and Ié=ez/ekBT is the Bjerrum length. This expression was already
given in eq.(l.47),where the derivativé of the "amplitude factor"
ezna/(1+na)2 was reported.

This effective potential has been determined by using the
Debye—chkel equation for the small ions arround a colloidal particle.
Thus within the DLVO there are three approximation:

(1) infinite dilution limit (p ——0).
=]
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(ii) point-like counterions.

(iii) weak polyion-ion interaction.

At the level of great simplification at which these systems can be
treated theoretically, one should still try to determine the effective
macroion-macroion potential by starting from the primitive model

() )

for the solution as a mixture of charged hard spheres immersed
in a continuous solvent of dielectric constant e. Thus the "bare" pair

potentials v (x), between ions i and j are
i
Bv (r) = += r<o =(o+oc )/2 (2.2a)
i 1] 1 J

z.z L
- —2 = > ) (2.2b)

r ij

This model can be treated in its own right (as we shall do in chapter
3), in which the small ions would be treated on the same footing as the
ma;roparticles. 0f course, when this model is applied to real system,
some questions arise, for example: what is the true significance of the
hard-sphere size o, or a charge Z for a micelle?. This is an Important
point which we will not discuss in detail but only comment upon by the
end of this chapter (section 3).

In section 2 of this chapter, we will give a short description of
a theoretical model suggested by Sogamiwiﬁs{ Firstly, they removed
the assumption of hard cores (eq.2.2a) for Tmacroion-microion
interactions, taking ﬂvu(r) as negative constant inside the macroion
"core". The electrostatic interactions were next treated by solving a

generalized Poisson-Boltzmann  equation  with the linearization

approximation. Thermodynamic properties were calculated, 1i.e. the
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Helmholtz and Gibbs free energies for a general distribution of the
macroions in space. Aside from an additive constant, these functions
are sums of two-body macroion-macroion terms, which are identified with
effective potentials. It was claimed that, while consideration of the
Helmholtz free energy leads to purely repulsive effective interactions
between macroions, consideration of the Gibbs-free energy yields an
effective attractive well at large distances. Thus, without any
consideration of van der Waals attractions, their model can yield
condensed phases for macroions (in the sense discussed in section 5.5
of chapter 15.

In section 3 we shall consider in somewhat greater generality the
problem of the effective interactions between polyions, still assuming
a soft core for the polyions and using a framework of linear response
theory. Our main focus will be on the Helmholtz free energy and how
different assumptions on the soft core affected the strength of the
effective Yukawa repulsion between macroions once the Poisson-Boltzmann
(or Debye-Hiickel) approximation is made.

Finally, in section 4 we shall consider the transition from
Helmholtz to Gibbs free energy. We shall see that, if one adopts the
route followed by Sogami, then one finds similar predictions on
condensation. However, we shall record aﬁ this point a recent critique
of Sogami’s work by Ovebeek(y), claiming that in fact there is exact
cancellation between microions and solvent on the contribution given by
Coulomb interaction to the difference between Gibbs and Helmholtz free
energy. This will open the way for our work in chapter 3, where we

shall attempt an approach to condensation which transcends the notion
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of effective macroion-macroion interactions on a model system where the
solvent is, however, still restricted to the purely passive role of a

uniform dielectric medium.

2 .Theoretical model for effective macroion interactions in colloidal

supensions:

(23) postulates the following:

The model of Sogami

(i) Macroions with uniform spherical shape of radius a carry an
equal amount of electric charges Ze (Z<0) distributed uniformly on the
surface.

(ii) The motion of the macroion particle 1is assumed to be
addiabatically cut off from that of ions. The configuration of
particles in suspension 1is determined so as to minimize the
thermodynamic potential of the system which is derived by applying the

58 . .
©8 and expressed in terms of particle

adiabatic approximation
coordinates.

(iii) The ﬁarticles and the ions are so dilute in suspension that
the electric energy zie¢(r) of an ion with wvalence z, is much smaller
than the thermal energy kBT, and consequently the number density ni(r)

of the ions of type i is determined by the linearized form of the

Boltzmann distribution, i.e.
n () = n_[1-(ze/kT)$(x)] ,@3)

10

where n. is the average number of ions of type i per unit volume.
i0
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(iv) The effect of water as medium arises only through the
dielectric constant e.

The electric potential ¢(r) in the suspension satisfies the
Poisson-Boltzmann equation, and the Helmholtz free energy F, is
calculated from the total electrostatic energy of the system as a

function of particle coordinates Rm' Then F is written as
F=F+F" = F'+E . +Y V' +1/2 Y UF , (2.4)
self n n mn
n m

where F’ is the energy with all the particles and small ions discharged

and F*' is due to the charging process. For spherical particles with

radius a
2
_ (Ze)
Eself N z 2ea
n
. (z e)2 -2Ka
V = —— (1l-e T 2ka )
n 2 n
Lega
n
and
5 ) -kR
- mn
F - _(Ze) ( sinh na] e R 204 | (2.5)
mn € Ka R mn
mn

where x is the inverse screening length based on the average
concentration of small ions (n ) with charge number Z , that
10 1

compensate the charges on the macroions:

2
2 4dre 2 2 1
k" = —zE;T— Z n, z and Z n z + ——), Z=0 . (2.6a,b)
i i

V being the volume of solution. It is clear that the E Le and V' are
se n
independent on the positions of the particles, whereas U contains the
mn

relative positions of particles explicitly (R =|R.—R l). It is
mr m n
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interpreted as an effective macroion-macroion potential.

Sogami calculated next the Gibbs free energy G from the relation

Z R . an v, 1lv=v(r, ) o @D

including a contribution from macroions on account of the charge
neutrality condition (eq.2.6b). Then for N identical macroions, eaqch

with charge Z, G is written as

Z L S an byrz N2 G )y ! ' , (2.8)
which leads to
G = G'+2E__ +}:v + 1/2 ZU . (2.9
m7n
where
v - -—@-e)— (3/2(1-e 2%y 1xae 2% _iga) . (2.10)
n 4ena
and
0 - F (1+ka coth xa- —%u KR ) o (2.11)
mm mn mn

This is negative above certain value of R , implying attraction
mn

between particles, and has a minimum at
R = (ka coth ka +1+[(xa coth xa +1)(ka coth «a +3)]”2)/n
mm

which moves depending on « and a.
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J.Linear response and effective potential from Helmholtz free energy:

In this section we will show how the definition of the effective
interactions between polyions can be given within a general framework
of . inear response theory, allowing for polyion-counterion interactions
which are not merely electrostatic in nature at short distance (through
Fourier-trasformable) and without necessérily involving the
Poisson-Boltzmann equation. The relevant information needed for this
work is the structure of the counterion fluid, as summarized in its
partial liquid structure factors.~

We consider for simplicity a macroion-counterion interaction which

is given by

zZe? 1
v (r) = ) 9(lr-Rl|-a>+ca<a-]r-Rll> , o (2.12)

where Z(z) are the valency of the macroion (counterion) respectively,
and Rl is the position of the L™ macroion. The above potential
represents Coulomb interactions outside the macroion core and a
constant interaction (denoted by C) inside the core. The Fourier

transform of V (r):
ext

ext

Vv (k) = j e‘ik'rvext(r) dr

2 >
V_ () = T2 (140 cos ka + O sin ka)] o R L (2.13)
ext ekz k 1

If v t(r) is weak enough that we can work within linear response
ex

theory, then the change of the counterion charge density 6q(k)(m) is

6q(k) = Zex(K)V_ (k) v (2.14)
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Here, x(k) is the density-density response function, which is directly
related to the structure factore S(k). The relation between S(k) (a
direct measure of the density fluctuations in the system) and the
static response function x(k) follows for a classical system from the

fluctuation-dissipation theorem, and reads

2 2
1 LrZ” e
2 2—
= 1__.4_7"2_212_ S (k) . , (2.15)
k kBT

where n is the average density of the counterioms. Thus, knowing S(k)
one can calculate the induced charge density 6q(k) and hence the
electrostatic energy of the solution as a function of the configuration
of the macroions. |

In the Debye-Hﬁckel limit one has

kZ
S(k) ————————ﬁ-SDH(k) - , (2.16)
k" +k

with the Debye screening length K2 Hence, from the Poisson equation
ek2¢(k) = 4nZe), p (k) + bmzex (K)V (k) , (2.17)
1 1 DH ext .

one finds

. 2 )
(k) = AWZj [Sln ka zn 2 {(1-aC)coska+ —%— sinka)z e‘lk'RL
ek ka k" +k 1 (2.18)

where C has the dimension of length, and it will be considered as three
different values (1/a;0;-1/a), where in the case with C=l/a we will
recover Sogami’s work with a negative constant effective interaction

(ﬂvlz(r)) inside the macroion "core".
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. P 1
From equation (2.17), this is clearly the sum of a term ¢ (k) due
to the macroions and a term ¢2(k) due to the screening ions. Hence, the
electrostatic energy E of the system as a function of particle
c

coordinates Rl is given by

E = —%-f dr §q(r)é>(x)+ —%—f dr pl(r)¢1(r)+J dr §q(r)V___(r)/ez

c

(2.19)
Explicit evaluating yields
E=-1—Z U@R _)H)+ )V : (2.20)
c 2 c 11 c ' ’ :
11’ 1
where
Zze2 2 -2ka 1 -2ka
V= [(1-aC){ar’e “"F.3k(1+ —— & %73y
[ 46 2
— +C%(ae "2k, :2L,c (1-e'2'“a)}+C(1-aC){,cae'z’“a-e'z’“a}] ,(2.21)
and
Zze2 -kR 2 .2 1
U (R) = e [(1-aC)"ch"ka(l- —=— kR + xa tghka)
c eR 2
2 sinhz a 1 1 :
= +2G 2 i (- % kR + 5 ka cothka)
K

_ . 26(1-aC)

p chka sinhka(l - kR + ka cothka + ka tghka) ]

(2.22)
The Helmholtz free energy follows by integrating E =e2(6F/8e2)v T
c ’

. 2 2
with respect to e” from 0 to e

(o]

F- 17 VR ) TV, . (2.23)
1 1

where
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2 2

2
Z e -kR 2 .2 2 sinh ka
UF(R) iy e [(1-aG)"ch™ka + 2C T
+ ZEL%;EQl sinh ka ch ka] , (2.24)
and
Zzez 1 -2ka C2 -2ka -2ka
VF= ; [2(1l-aC)k(-1- - e )+ —;T——(l—e )-C(1l-al)e ]
(2.25)

At this point we would like to illustrate the effect of the "amplitude
factor" in the Yukawa potential f;r different values of the constant C,
comparing with the value adopted in the work of Shih et al. discussed
in section 5.2 of chapter 1. Figure 2.1 represents various results for

the amplitude factor f as a function of xa, in the following cases:

(1) £ = ch’ka for C=0
sinh’ka 1
(2) £ = ——~———§—— for C = e (recovering Sogami’s work)
(ra)
. 2
(3) £ = 4ch’ka + sinh ';a . —% hka sinhka for C = - —-i—
(ka) ka
ena
(4) £ =|———— for Shih et al. work
1 + ka

It is clear from the figure that there is great uncertainity in the
strength of the effective repulsion (i.e. the effective charge) between
macroions.

In spite of the sensitivity of the "amplitude factor™ to the
detailed assumption on the short-range interaction between macroions

and counterions, we note that, if we follow Sogami’s procedure to
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evaluate the Gibbs free energy and hence the effective potential
between macroions, the position of the minimum in its attractive well

i1s essentially insensitive. This is shown in table (2.1).

4.From Helmholtz free energy to Gibbs free energy:

In order to calculate the Gibbs free energy G, one need to know

the chemical potential p given by
j

3T
By [GNJV,T,N _ . (2.26)
J i7€j

where F is the Helmholtz free energy and N is the number of molecules
J

(or ion) of component j. Then G is given by
G-y Nu . (2.27)

the sum being over all components of the system.

In section 2 we have seen that Sogami’s calculation for the Gibbs
free energy, the chemical potential of the solvent is ignored, results
in an attractivé potential between macroions in their Iﬁg(R) (eq.2.10).
Recently it was claimed by Overbeek”’ that one should include the
role of the solvent in the Gibbs free energy and on doing so the

attractive part in UG(R) will disappear. He writes
mn

G =N +) Nu +G = F + PV , (2.28)
N i i part
i

solv'usolv

where G . is the contribution of macroions. Using
par
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b= [—-g%-] + P[ a ] . (2.29)
’ 7P, T BT
and dealing first with the contribution of the solvent and the

counterion, he writes

aF

Nsolv“solv—*_z Ni'u’i= Nsolv{ dN
i

)

solv

[

+), N,
P,T i *

aF
3N

]PT

1 )

el el
+ PNV +P), NV 4N [——-—-——‘gg ] +), N,[ 2; ]
solv solv : i i solv co1v/ P, T 1 i . JP.T
el 2
_ , oFt FICaN
solut solut 2 solv solv dV
d(k ) solut
2 2
a(k") a(x")
+ z Ni(vi av + aN ))
i solut i
el 2
_g o+ gy & + k) = .(2.30)
solubt 2 solut V solut
a(lﬁ ) solut

Here, the Helmholtz free energy has been writen as
F = F/4+F"

F' being the free enrgy of the discharged system and F* being due to

charging process. The subscript (solut) includes the solvent and the
counterions, but not the macroions. V_ represents the molecular volume
3

of j. Note that FEL;ﬁO, but Vel=0, since V°'means the change in volume
during the charging process conducted at constant numbers of ions and
solvent molecules, with all macroions at fixed positions,Rn.

This result shows that the solvent and the small ions together
give a zero contribution to ¢**. The same result can be obtained from

Gibbs-Duhem relation in the solution which states that
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solv solv © solv * solv

e=e
el el el el
7 +Z Nﬁﬂ, = f (N du +Z Nﬁﬂ )P,T =0 . (2.3D)
i i
e=0

The term -xkR in eq.(2.11), which resulted in the attraction
between the particles has its origin in the term mz(afﬁl/a(mz)),
derived from ?Nﬁﬂ in eq.(2.28). Now this term is exactly canceled by
the corresponding term derived from the contribﬁtion of the solvent as
shown in eq.(2.30) and (2.31) and thus the attraction in G disappears.

Adding the contribution of the macroion to G, one has

=G’ +G' +a%
total solut part  part
=F'+PV 4PV +F°= g+  4p°! . (2.32)
solut part total

and thus

el el el

Gpart(_ctotal) = F ’ (233)
and in particular

v = . (2.34)

mmn mn

Thus the interaction between the macroions is the same at constant T
and P as it is at constant T and V and thus the interaction is a pure
repulsive (within the Debye-Hiickel theory; ofcourse).

In conclusion, it appears that, as long as one is relying on the
Debye-Huckel approximation and linear response theory, the condensation
phenomena do not have a simple explanation. A possible line of further
study is to see whether an effective attraction between macroions may

arise from the Helmholtz free energy alone once the character of the
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screening becomes oscillatory. This question could be examined within
linear response theory, but clearly transcending the Debye-Hiickel
theory. A more appealing approach of immediate interest involves
treating the macroions and microions on equal footing, returning to the
hard core potential and treating the solvent as a uniform dielectric

medium. Such a study of condensation (gas-liquid) coexistence will be

the main subject of chapter 3.
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U (Rmin) eV Rmin x10°A° R x10°a°
G exp
KA C=l/a C=0 C=-1/a C=1/a C=0 C=-1/a
0.48|-0.5 -0.42 -0.36 17.7 18.7 19.5 18
0.58|-0.56 -0.44 -0.37 15.3 16.5 17.4 15
0.921-0.74 -0.46 -0.37 10.0 11.5 12.5 10
1.501-0.74 -0.41 -0.40 7.0 8.6 9.3 8

w

Table 2.1: Comparison of the calculated distance Rmin and the
observed interparticle distance R ‘%% in dilute collidal suspension
exp
of charged (charge number Z=l+><103) and spherical (redius a=1705 A%)

polymer particles for different particle concentration and different

values of the constant C.
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CHAPTER III

GAS-LIQUID TRANSITION IN HIGHLY ASYMMZITRIC POLYELEGCTROLYTES

1l.Introduction:

The aim of this éhapter is to construct gas-liquid coexistence
curves for a two-component 1iqu£d of charged hard spheres with very
different charges and sizes. We use the mean spherical approximation
(MSA), which has the advantage of providing analytical expresions for
the thermodynamic quantities. Recalling the discussion of the existence
of two phases in section (5.4) of chapter 1, Belloni®" had studied
highly asymetric polyelectrolytes using the hypernetted chain
approximation (HNC), by which he was able to construct a spinodal line
between two phases, interpreted as a plasma-like phase (at low density)
and a liquid-like phase (at high density). In this chapter we will
compare the results of Belloni with our predicted wvalues for the
critical temperéture and the spinodal line. In addition, however, we
shall give the liquid-gas coexistence curve. We shall be using the same
values for charges and diameter in the chérged fluid as Belloni did.

Fluid systems of charged hard spheres have been intensively
studied in the past for their intrinsic statistical-mechanical interest
and for their ability to represent physical systems. Fluids of charged
hard spheres in a neutralizing background have been studied and the

. . . . . 62 .
solution of the mean spherical approximation is known' ), first of
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all, for the case of a one-component system. The extension of the model
to mixtures of charged hard spheres in a uniform background has been
concidered by Bhuiyan and March® in a limiting case. The general
solution of the MSA for an arbitrary multi-component fluid of charged
hard spheres in a uniform neutralizing background was obtained by

. . (64 . . . .
Parrinello and Tosi' ), by a method which relies on the factorization

(65) (66)

scheme of Baxter as extended to charged fluid by Blum

)
for a

In section 2 we will use the general solution of the Msa ‘%
two-component system, by which‘ we shall construct the liquid-gas
coexistence curve for the system of present interest. In section 3 we
shall discuss the effect of the size ratio between macroions and
counterions on the critical temperature and the critical volume
fraction, and how the MSA fares in 1its predictions relative to

Belloni’s HNC work. Finally in section 4 we shall discuss the problem

of coexistence between the two phases of the system.

2.Thermodynamic properties in the mean spherical approximation:

The model system that we consider is a two-component system of
charged hard spheres (macroions) and point—like or almost point-like
charges (counterions), both embedded in a dielectric medium which is
taken into account by a dielectric constant ¢ which reduces the bare
Coulombic interaction between particles and counterions. The macroions
have a diameter g charge z, and number density P whereas the

counterions have diameter g, charge z, and number density P, The
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constraint imposed by the overall electroneutrality is plz{h2z2=0. The
MSA imposes the following conditions on the total correlation function

h (r):
1]
h (r) = -1 ’ (r<o ) , (3.1)
ij ij
and the direct correlation functions c (r)
1]
c, (¥) = -z z pe’/er (x>0 ) : (3.2)
ij i3 i3

where a£j=l/2(ai+oj) and ﬂ=l/k3T: Condition (3.1) is exact for hard
spheres. A quantity of direct physical measuring in the MSA is the
parameter I, which has the dimension of an inverse length and 2r
approaches the Debye inverse length K from below for infinite
dilution.

The parameter I' is to be determined by solving the equation

z - (n/2A)o?Pz ;)12
i n
' = o [ Z pi[ 17 To ] ] , (3.3)
1 1
selfconsistently, where
T
A =1 - = ¢, | (3.4)
2
m
S, =2po, . (3.5)
i=1
o = 4ﬂﬂe2/e° 3 (3.6)
and
_l 2
P =Q" ) [pzo/(l+To)] (3.7)
n - i1 1 1
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with
-1 2 3
Q' =1+ (n/28) ) [p0,/(1 + To)] (3.8)
i=1 i1 1

The numerical solution of equation (3.3) can be obtained from either
the Newton-Raphson formula or by simple iteration starting from some
guessed initial value of T.

The MSA provides an analytic expression for the excess internal

energy AE, which is given by

e AE

2
e

2
2 L 2
= -[ F‘Zl[piai/(l + Fai)] + A 9] P;] , (3.9)
i= ,
as well as for the excess free energy,
BAA = BAE + T°/3m . (3.10)

Finally, the excess pressure can be obtained from the following

relation
L ( 8(BBA/E )
BAP = §O {———55——~——J , (3.11L)
o T
and the results reads
BAP = -T°/3n - (az/BAZ)P: . (3.12)

In order to calculate the equation of state one needs to add the
hard sphere contribution, P, calculated from the PY compressibility of
o

the hard-sphere fluid;

3

¢ 3¢.¢ 3¢
6 [ ° 4 R 2 3] (3.13)
1o, oot -y

then the equation of state 1s
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BP = . - T%3p - (aZ/SAz)Pi | . (3.14)

Q

using this equation of state we can now obtain the isotherms of the

sustem for different temperatures.

3.Numerical results for isotherms and liquid vapour critical points:

We consider first the case zin which the macroions have diameter
al=60°A and valency zl=20, whereas the counterions have valency zz=-l
and diameter az=0 (micelle=system 1). The equation of state (eq.3.14)
is plotted for different values of temperature (using reduced pressure
P*=6Pai/e2 and reduced temperature T*=27ral/a2) as a function of the
volume fraction occupied by the macroions which is &= _16r__ plai.

The isotherms of the model have the classical van der Waals shape
with a 1liquid-gas critical point (fig. 3.1). We can see that the
predicted critical temperature is lower than the one predicted using
the HNC by Belloni; whereas the critical volume fraction in our
calculation is Higher (table 3.1). Also in figure (3.1) we have plotted
the spinodal line. From the charged hard sphere fluid studies"?’ using
the MSA it was concluded that the MSA yields good values of the
critical temperature and density, and yields instead a value of the
critical pressure that is too low when compared with best available
estimates Y.

In figure (3.2) we illustrate how the shape of the isotherms is

modified on varying the ratio al/orz. It is clear that the critical
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temperature increases as the ratio crl/a2 increases for the same valency

ratio !zl/z2{=20.

67)

Belloni' has considered another valency ratio for different
diameter ratio (012=50,5; z, = -40,1), using the mixed integral
equation proposed by Zerah and Hansen'®™®  to highly asymmetrical

polyelectrolytes within the primitive model. This approximate theory
interpolates continuously between the Percus-Yevick and the Hypermetted
chain theories for charges of the same sign and between HNC and MSA for
charges of opposite sign. In his\results the two-phase region in the
phase diagram was shifted towards lower temperatures.

Considering mow the same valency ratio and diameters ratio as in
ref.(67) (=system 2), we show the isotherms given by the MSA in figure
(3.3). Hence with point-like (almost point-like) counterions, with
different valency ratio (system 1 and system 2) the critical
temperature is increased, while the gas phase lies in a mnarrower
region.

In the following section we will discuss the way that we used to

locate the coexisting curve for the different cases.

4 .,Coexistence curve:

The coexistence curve can next be determined by imposing the
equality of the chemical potential u in both phases. Knowing the excess
free energy per unit volume from equation (3.10), and the excess free

energy of neutral hard spheres obtained by integrating equation (3.13)
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with respect to the volume (at constant temperature), i.e.

ex ﬂP dp

/3§; - J‘ ( ° 1) 1
1 pl 1

388, ¢, S: 3g§
= -(l~zl)1nl1-g‘3[ + ( ) - - =) . (3.15)
s, 1-¢, s 2(1-¢ )
where
S=0-2z¢ ; S=0"- 2z 0o ; S=0-2z 0 ,
1 1 2 2 3

then the Helmholtz free energy pef unit formula is given by

A 8X
. BAA L BA (3.16)
ideal Py N1

BF = BF

where ﬁP}d L is the Helmholtz free energy per unit formula for the
ea

ideal system given by(sm

BF = lnpl+ zllnpz+ £(T) . (3.17)

ideal

The function f(T) is only a function of temperature and will cancel out
when equilibium between two phases at the same temperature is imposed.
Finally, p=G/N where the Gibbs free energy is obtained as

G =F+ PV , (3.18)
using equations (3.17,16,15,10,9 and 3.14).

With the aid of equation (3.18), ‘we were able to impose the
equality of the chemical potentials of the two phases analytically, and
hence to plot the coexistence curve (fig. 3.1 and 3.3).

In summary, using the MSA we have studied the condensation of a
highly asymmetric polyelectrolyte in the transition from a plasma-1like

phase to a condensed liquid-like phase. We have explicitly demonstrated
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that there exists a coexistence curve governing the thermodynamic
equilibrium between the two phases. The predicted critical temperature
and volume fraction depend very much on the approximate fluid-state
theory being used for a given model system.

We replot our results for the coexistence and spinodal curves of
system 1 in figure (3.4) on a plot where the vafiables 1-T*/Ti and @/@c
are used. This type of plot very sensitively display§ the behaviour
of the curves near thebcitical point. Clearly, we shall have to refine
our numerical procedures in this %egion (T*/Tj —— 1) and to extend the
calculations closer to the critical point. The aim will be to evaluate
the critical exponent B in the asymptotic relation;

® -

1 g %% 'B
—% = constant.| 1 - T /TC (3.19)

C
which is valid close to the critical point. We expect that the MSA
theory, being a mean field theory which does not take proper account of

critical fluctuations, will yield g=1/2.
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MSA [ HNC

* *

ol=60°A; 02=O°A 1.056 0.03 4.25 0.006

o.=50°A; o =5°A] 1.818 0.0008

Table 3.1.: Predicted reduced temperature and volume fraction compared

with the HNC values " .
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Fig. 3.1.: Isotherms (full curve) for different reduced
temperature, as labelled. For the ratio al/az=oo (system 1) and

lzl/zzl=20. (----) the coexistence curve, and (-.-.-.) the

spinodal line.
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Fig. 3.2.:Isotherms (full curve) of the model for the ratio
|zl/zz|=20; with different size ratio al/a2 as labelled and

reduced temperature T"=0.895.
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]zl/z2l=40. (----) the coexistence curve; and (-.-.-.) the

spinodal line.
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Fig. 3.4.: Liquid-gas coexistence curve (----). Spinodal line
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