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Abstract

A simple model for electron-vibron interactions on charged buck-
minsterfullerene Cgy" ", n = 1,...5,is solved both at weak and strong
couplings. We consider a single H, vibrational multiplet interacting
with 2;, electrons. At strong coupling the semiclassical dynamical
Jahn-Teller theory is valid. The Jahn-Teller distortions are unimodal
for n=1,2,4,5 electrons, and bimodal for 3 electrons. The distortions
are quantized as rigid body pseudo-rotators which are subject to ge-
ometrical Berry phases. These impose ground state degeneracies and
dramatically change zero point energies. Exact diagonalization shows
that the semiclassical level degeneracies and ordering survive well into
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the weak coupling regime. At weak coupling, we discover an enhance-
ment factor of 5/2 for the pair binding energies over their classical val-
ues. This has potentially important implications for superconductivity
in fullerides, and demonstrates the shortcoming of Migdal-Eliashberg
theory for molecular crystals.

PACS: 31.30,33.10.Lb,71.38.+1,74.20.-2,74.70.W

1 Introduction

The soccer-ball shaped molecule Cgy (buckminsterfullerene) and its various
crystalline compounds have ignited enormous interest in the chemistry and
physics community in past two years [1]. Ceo is a truncated icosahedron.
From a physicist’s standpoint, the charged molecule is fundamentally inter-
esting, because the high molecular symmetry gives rise to degeneracies in
both electronic and vibrational systems. Thus, the molecule is very sensi-
tive to perturbations. In particular, electron-phonon and electron—electron
interactions are expected to produce highly correlated ground states and
excitations.

Superconductivity has been discovered in alkali doped buckminsterful-
lerenes A3Cqp (A=K,Cs,Rb), with relatively high transition temperatures
(T. =~ 20°-30°K). There are experimental indications that the pairing mech-
anism originates in the electronic properties of a single molecule. The pair
binding energy is a balance of electron-vibron interactions [2, 3, 4] and
electron-electron interactions [5]. The relative contributions and signs of
the two interactions is under some controversy.

The electron—vibron school has identified certain five-fold degenerate H,
(d-wave like) vibrational modes which couple strongly to the ¢, Lowest Unoc-
cupied Molecular Orbital (LUMO) [2, 3, 4, 6]. Varma, Zaanen and Raghava-
chari [2] as well as Schluter et al and, more recently, Antropov et al proposed
that these modes undergo a Jahn-Teller (JT) distortion and calculated the



induced pair binding energies at several fillings. They used the classical ap-
prozimation, and restricted their calculation to unimodal distortions (defined
later). The general conclusion of this approach is that, while the calculated
A is sizeable, one still requires a large reduction of the Coulomb pseudo-
potential ©” in order to explain the highest transition temperatures. On the
other hand, Gunnarsson et al independently estimate a large p* =~ 0.4, i.e.
there is no mechanism providing such a reduction.

However, estimates of the electron-vibron coupling constant g do not
justify the classical JT approximation. Cgy is estimated by frozen phonon
calculations to be in the weak coupling regime g < 1 where quantum correc-
tions are important.

In this paper (Part I) we study the isolated C§; charged molecule. In par-
ticular, we shall reconsider the same JT model, but diagonalize the quantum
Hamiltonian for the full range of the coupling constant. We shall find that
quantum corrections to the classical JT theory introduce novel qualitative
features, and are quantitatively important for the pair binding energies.

The quantum fluctuations involve interference effects due to geometri-
cal Berry phases. Berry phases appear in a wide host of physical phenomena
[7, 8]. Here we find it in the context of a “Molecular Aharonov-Bohm (MAB)
effect”, originally discovered by Longuet-Higgins [9]. The MAB effect has
important consequences on the vibron spectrum. For example, it produces
half-odd integer quantum numbers in the spectrum of triangular molecules
[9, 7], an effect recently confirmed spectroscopically in Nag [10]. This kind
of Berry phase is important also in scattering of hydrogen molecules [11].
Recently, it has been suggested that a geometrical Berry phase may be rele-
vant in fullerene ions [12, 13, 14]. Here we show that Berry phases produce
selection rules for the pseudo—rotational quantum numbers and kinematical
restrictions which effect the pairing interaction between electrons. Although
the semiclassical and Berry phase description is appropriate in strong cou-

pling, the level ordering and degeneracies are found to survive for arbitrary




coupling, particularly in the weak coupling regime, which is closer to actual
Cgo. For this reason we devote a large portion of this paper to the semiclas-
sical theory, which helps to build physical intuition for further extensions of
the model.

This paper is organized as follows: In Section 2 the basic model is intro-
duced. Section 3 calculates the JT distortions in the classical limit. Section 4
derives the semiclassical quantization about the JT manifold. The geometri-
cal Berry phases are calculated, and their effect on the semiclassical spectrum
is obtained up to order g~2. Section 5 describes the exact diagonalization
results, and compares them to the semiclassical theory, and to weak coupling
perturbation theory. The pair binding energies are determined in Section
6. In Section 7 we summarize the paper and discuss our main result: that
the effective pair binding energies are larger by a factor of 3 than the pair
interaction energy in Migdal-Eliashberg’s theory. In a following paper [15]
we shall extend the model to all A, and H,; modes with realistic physical
parameters. This will allow us to explore the experimental consequences of

the electron—vibron interactions.

2 The Electron—Vibron Model

The single electron LUMO states of Cgp arein a triplet of ¢;, representation.
We consider the H, (five dimensional) vibrational multiplet which couples
to these electrons. ¢, and H, are the icosahedral group counterparts of the
spherical harmonics {Yi}!,__, and {¥2ar}3,-_, respectively. By replacing
the truncated icosahedron (soccer ball) symmetry group by the spherical
group, we ignore lattice corrugation effects. These are expected to be small
since they do not lift the degeneracies of the L = 1,2 representations.
The Hamiltonian is thus defined as

H =H" +H", (1)



where,

B =y (b}\,bM + 5) e e ems - 2)

Al
bf\[ creates a vibron with azimuthal quantum number M, and ¢, creates an
electron of spin s in an orbital Yj,,. By setting g4 — € we can discard the
second term.

The H, vibration field is
1

where () is a unit vector on the sphere. The t,, electron field is

( 27\1(@)5?\1 + Yorr(Q)bas) (3)

() = i Yim (Q)ms - (4)

m=-—1

The electron—vibron interaction is local and rotationally invariant. Its form is

completely determined (up to an overall coupling constant g) by symmetry:

B g f A0u() 329 1(D)(0) (5)
Using the relation
/ € Y021 (82) Vi, () Yimy () o (—1)M (L, —M|lmy; lms) ,  (6)
where (---) is a Clebsch-Gordan coefficient [16], yields the second quantized
Hamiltonian
ar = g ()" (th + (1))
(2, MLy, M 4 m)enrme  (7)

The coupling constant g is fixed by the convention of O’Brien, who studied
first this kind of dynamical JT problem [17]. Representation (7) is convenient

for setting up an exact diagonalization program in the truncated Fock space.
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2.1 The Real Representation

The semiclassical expansion is simpler to derive in the real coordinates rep-

resentation. The vibron coordinates are

Z My (b}, + (—=1)"b_m) (8)

m——2
where
Myumzo = (2 sign(p))™? (6m + sign(p)6—m),
Jl’[uy() - 5#'0. (9)

{q,} are coeflicients of the real spherical functions
£.(8) = My Yo (©
u(§2) \/— > My mYom(9)

= % Yao(2) p=0 . (10)
5 Im (Yu(®)  p=-1,-2
We also choose a real representation for the electrons

cy = :}—5 (el +¢h)

i
ys - ’L‘\/_ (Cls C—ls)

cis = CUs . (11)
Thus the Hamiltonian in the real representation is given by

H = H° +H™

# = "5 (5q)

H

Cys

w+v3e —V3q.  V3q Cas
H*™Y = g——_ Z(C'xs’ LN C:s \/—q" qu_\/qu “\/gq*l
—/3q; V3q- —2g,

Czs

(12)



This form of the JT hamiltonian is well known [17, 2]. Since the Hamilto-
nian is rotationally invariant, its eigenvalues are invariant under simultaneous

O(3) rotations of the electronic and vibronic representations.

3 Jahn-—Teller Distortions (Classical)

In the classical limit, one can ignore the vibron derivative terms in (12), and

treat ¢ = {g,} as frozen coordinates in H°™*. The coupling matrix in H®™?

is diagonalized by [18]:

z —+/3r 0 0
T Hw) ( g z ~i—0\/§r ()2 ) T(w), (13)

where

cos® siny 0 cosf 0 sind cos¢p sing 0
T = | —sintY cosyp 0 0 1 0 —sing cos¢ 0 |. (14)
0 0 1 sinfd 0 cosé 0 0 1

w = (¢,0,9) are the three Euler angles of the O(3) rotation matrix 7. In
the diagonal basis of (13), the electron energies depend only on two vibron

coordinates:

q(0) = (13)

O N O3

<o

By rotating the vibron coordinates ¢ to the diagonal basis using the L = 2

rotation matrix D) [16], one obtains

2

Gulr,z,@) = > MunDS (w)M5h..(0), (16)

mm! p'=-2

where M, ,, was defined in (9).




By (16), and the unitarity of D and M, |§]’ is invariant under rotations
of . Thus, the adiabatic potential energy V depends only on r, z, and the

occupation numbers of the electronic eigenstates n;, where 3>, n; = n.

V(z,r,[ni]) = Zi;(f + %) + ZL%)_Q (nl(z —/37) + na(z + V3r) — n32z) .
(17)
V is minimized at the JT distortions (2, 7n, ;), at which the classical energy
is given by
Ed = min V(Zn,7n, ). (18)
The JT distortions at different fillings are given in Table I. We define b,6
as the longitude and latitude with respect to the diagonal frame (“principal

axes”) labelled (1,2,3) (3 is at the north pole). z,7 parametrize the Jahn-

Teller distortion in the real representation (10), as

(3cos?f —1) + V3

sin’ 6 cos(2¢). (19)

VAR

(w'7(8,8)) =

In Table I we present the values of the ground state JT distortions at all
electron fillings. We see that electron fillings n = 1, 2, 4, 5 have unimodal
distortions which are symmetric about the 3 axis, while n = 3 has a bimodal,
about the 3 and 1 axes. The two types of distortions are portrayed in Fig.
1. we depict the distortions of (19) for the unimodal and bimodal cases.

4 Semiclassical Quantization

At finite coupling constant g, quantum fluctuations about the frozen JT
distortion must be included. In order to carry out the semiclassical quan-
tization, we define a natural set of five dimensional coordinates r,z,w. @
parametrize the motion in the JT manifold (the valley in the “mexican hat”
potential V) and 7, z are transverse to the JT manifold, since V' depends on

them explicitly. The transformation ¢(r,z,w) was given in (16), and was



derived explicitly in Ref. [18] to be

1 1
g = zix/_?:sin29cos2¢+r§(1+c0529)cos2q§c052¢

—7 cos 0 sin 2¢ sin 29
g = z%\/g sin 26 cos ¢ — 7’% sin 26 cos ¢ cos 27
+7 sin 6 sin ¢ sin 2
Q@ = z%(?) cos?f — 1)+ 'F-;—\/gsin2 6 cos 2%
g1 = z% 3 sin 26 sin ¢ — 1‘%— sin 26 sin ¢ cos 27
—7sin 0 cos ¢ sin 2¢
1 ) ) 1 :
g2 = zix/g sin® fsin 2¢ + 7'5(1 + cos? §) sin 2¢ cos 2
—7cos 6 cos 2¢sin 27 . (20)

The velocity in R® is given by
g(r(t), 2(2), @ (t)) = 8.G7 + 0:4% + 0. - . (21)

Using (20) and (21), we calculate the classical kinetic energy in terms of the
JT coordinates. After some cumbersome, but straightforward, algebra the

kinetic energy is obtained in the compact and instructive form:

]_ 4o 1 .2 %) 3 2

=q1* = = |z2*+7 —g—ZI,'w- )

2 2 =1 l
wy = —sin¢é+COST/JSin 9¢7
wy = cos 1,[19 + sin ¢ sin 9&’:
wy = ;[-)—l—cos@ql.s

(I, 1, 13) = ((v32+7)%,(VBz — )%, 4r%) . (22)

For finite JT distortions, we can identify the Euler angles terms as the kinetic

energy of a rigid body rotator [19], and the quantities I;(Z,7) as moments of
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inertia in the principle axes frame 1,2,3. Thus, the Euler angles dynamics
follows that of a rigid body rotator [16].

The unimodal and bimodal cases will be discussed separately.

4.1 TUnimodal Distortions

For the unimodal cases (which we found for the ground states of n = 1,2, 4,5,

7 = 0 on the JT manifold. The “moments of inertia” in (22) are given by

the tensor
) 1 0 0
I'=3210 1 0]. (23)
0 0 0

This corresponds to the rotational energy of a point particle on a sphere,
which is described by the angles 6, ¢, and moment of inertia 3z%. Since axis
3 has no “mass”, its angular velocity is dominated by 1/1 This implies that

we must keep the term r29)% but can discard the smaller mixed terms '¢¢
This yields

1‘2,\,1-2 ) 200,712 =2 (a2 20712

5141 Ni(z +72 4 r2(2)? + 327 (62 + sin? 04°)) . (24)

The angular velocity P couples to r? as in the kinetic energy of a three

dimensional vector r parameterized by the cylindrical coordinates

r = (rcos(2y),7sin(2¢),z — 2). (25)
For |r| << Zz, the potential is simply

V() ~ Sl (26)

Thus, the semiclassical Hamiltonian of the unimodal distortion is

Huni e Hrot + Hho

hw -
rot — L2
H 622
3., 1
H" = hw > (ala, + 5) , (27)
r=1
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where L is an angular momentum operator, and H"® are the three harmonic

oscillator modes of r. The energies are given by

The rotational part of the eigenfunctions is

rOt (q_') - }Lm(Q) |[n13]) > (29)

where (0 = (,4) is a unit vector, and |[nis])g is the electronic adiabatic
ground state. It is a Fock state in the principal azes basis. In terms of the

stationary Fock basis |[n,s]) where a = z,y, 2z, the adiabatic ground state is

[nidde = 2 ([naslllni]) g l[nas))- (30)

["as]

Each overlap is a Slater determinant which is a sum of n products of spherical

harmonics

([Ras]lmisl)g = % Y1 (Y1 () -+ Y, (9) (31)

where C) are constants.

Now we discuss how boundary conditions determine the allowed values

of L. A reflection on the JT manifold is given by
Q — -Q. (32)
Spherical harmonics are known to transform under reflection as
Yim = (—=1)"Ym (33)

Thus, by (30) and (31), the electronic part of the wave function transforms

as

[nisl) g = (=1)"[na]) g - (34)
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The reflection (32) can be performed by moving on a continuous path on
the sphere from any point to its opposite. (See Fig. 2). It is easy to verify,
using (16) or (20), that this path is a closed orbit of § € R’:

q(0) — q-Q) = 4() . (35)

Thus we find that the electronic wave function yields a Berry phase factor of
(—1)" for rotations between opposite points on the sphere which correspond
to closed orbits of . In order to satisfy (29)) using the invariance of the
left hand side under reflection, the pseudorotational Y7,, wavefunction must

cancel the electronic Berry phase. This amounts to a selection rule on L:

(-1 =1. (36)
Thus, the ground state for n = 1 and 5 electrons has pseudo-angular mo-
mentum L = 1 and finite zero point energy due to the non trivial Berry
phases.

4.2 Bimodal Distortion

The analysis of the bimodal distortions n = 3 proceeds along similar lines.

The distortion obeys
z=+/37. (37)

From Eq.(22) we see that the kinetic energy is given by

1 - 1 .2 3
5\@12 =3 (22 + 7 4 ZIiwf) , (38)

=1

where the inertia tensor is
A 4 0 0
I=2z10 1 0]. (39)
0 0 1

The quantization of the pseudo-rotational part is the quantum symmetric

top Hamiltonian. Fortunately, it is a well-known textbook problem (see e.g.

12



Ref. [20, 16]). The eigenfunctions of a rigid body rotator are the rotational

madtrices
DY (), (40)

where L, m,k are quantum numbers of the commuting operators I”:Q,LZ,L1
respectively. L* and L' are defined with respect to the fixed z axis and the

co-rotating 1 axis respectively. The quantum numbers are in the ranges

L = 0,1,...0
m,k = —-L,—-L+1,...L. (41)

The remaining coordinates are two massive harmonic oscillators modes
r=(r—7,z— z). (42)

The semiclassical Hamiltonian is thus

Hbi ~ Hrot+Hho,
hw - 3hw
Hrot — __LQ . Ll 2
472 1622( )
1
H"* = hw) (ala, + —2—), ‘ (43)
v=1
and its eigenvalues are
E¥ =h iL(L+ 1) g2 + ‘i( + 1) (44)
v 622" T T )

The rotational eigenfunctions are explicitly dependent on w as

Uil = DEN@) IT Inas) = - (45)

4.3 Berry Phases of a Bimodal Distortion

Unlike the unimodal case, in the bimodal case no single reflection fully clas-

sifies the symmetry of the wavefunction. However, one can obtain definite
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sign factors by transporting the electronic ground state in certain orbits. We
define the rotations of 7 about principle axis L' as C;, which are schemati-
cally depicted in Fig. 3. The Berry phases associated with these rotations
can be read directly from the rotation matrix T in Eq. (14). For example:
for ¥ — 1 + 7 (C3), the states |1) and |2) get multiplied by (—1).

Since Dﬁf;L transform as Yz, under C,, it is easy to determine the sign

factors of the pseudorotational wavefunction. The results are given below:

Cy:11,0,2)x — |1,0,2) Ci: Dfﬂv o (—-l)kp,(,i)k
Cy:1,0,2)m — —|1,0,2) s Cy: DY), — (=)t D),
Cs:11,0,2)e — —[1,0,2) s Cs: DM, — (-1)ED . (46)

g are coefficients in an L = 2 representation, and therefore are invariant

under Cy,C,,C3. C; describe continuous closed orbits in R®. In order to

satisfy (46) and using the degeneracy of E% for k— —F, we find that
L = odd, k = even. (47)

In particular, the ground state of (45) is given by L=1, and k=0.

4.4 High-Spin Polarized Ground States

It is possible to repeat the semiclassical analysis assuming that the spins are
maximally polarized. These high-spin states are important, as they tend to
prevail for strongly repulsive intra-level Hubbard U (Hund’s rule) situations.
In this case, we determine the JT distortions considering the Pauli exclusion
between likewise spins. In Table II the JT distortions of the spin polarized
ground states are listed. Our results for n=2,4 (S=1), and n=3 (5=3/2)
cases are presented. The latter is trivial, since in that case ny = ny, = n3 =1,
and therefore there is no JT effect at all. For n=2, (S=1) there is unimodal
distortion of Z = —g which is smaller than the unpolarized ground state,

and is equal to the distortion of the n = 5 case. Inspection of the orbital

14



energies €; = €, = —g , €3 = 2g provides a clear explanation for the identical
distortions of the n=2 (S=1) and n=>5 (S = ) cases, since in both cases €;
is occupied by a ”spin up hole®.

Electronically, however, the two states are very different. First, we do not
have a Berry phase for even number of electrons, as the individual contribu-
tions from each of the two electrons cancel out. Second, there is a nonzero
electronic orbital angular momentum. For example, the symmetry of the
two-electron state prior to JT distortion is *P (i.e. 3f1,), and so it remains
following dynamical JT [21]. At finite coupling the two electrons in their
ground state are still coupled in a 3P electronic state, with L..,=1, where
Lorb is the electronic orbital angular momentum, not to be confused with the
pseudorotational quantum number L. Due to the absence of a Berry phase L
must in fact be even, in contrast with the single electron case, and in agree-
ment with Eq. (36). Thus although both cases have threefold degeneracies,
they arise from different physical motion: purely electronic (for the n=2,

S=1 case) versus mixed electron—vibron motion (in the n=5, §=1/2 case).

5 Exact Diagonalization

The above semiclassical scheme gives a clear and intuitive picture of the
behaviour of the system in a strong coupling limit. This limit is appropriate
for describing, e.g., Naz [10]. However,in Cgy the actual range of the coupling
parameter - g &~ 0.3 for a typical mode [22, 15] - suggests that the electron-
vibron coupling is actually in the weak to intermediate regime.

Here we diagonalize the electron—vibron Hamiltonian (7) for single H,
mode in a truncated Fock space. This approach yields accurate results unless
the coupling strength is too large, and the higher excited vibrons admix
strongly into the low lying states. We compare the results to the asymptotic
large g expressions of the semiclassical approximation. The ground state

energy for n = 1 has been previously computed in this fashion by O’Brien

15




[18]. Here we present detailed results for all electron occupations, and also
for the excitation spectra.

Our basis is the finite dimensional Fock space of electrons and vibrons,

{ ]nx\hnms) : Nv < Nmaa:, ana =7 } ) (48)

where N, = > 5; nas is the total vibron occupation. By gradually increasing
N™% we have found empirically that accurate results can be obtained for g <
N™e= /9 for levels with unperturbed energy below AwN™2%/2. In particular,
we have chosen N™@* = 5 (for n = 2,3) which yields an accuracy of better
than 0.05Aw for g < 0.6 and levels with N, < 1. The effect of truncation is a
general upward shift of the levels, which gradually increases for higher excited
levels. Level splittings and excitation energies are therefore less sensitive to
the cutoff error.

In Figures 4, 5 and 6 the ground state and a few of the excited states
energies are plotted for one two and three electrons respectively. The four
and five electron spectra are related to the two and one electron spectra by
particle-hole symmetry. Energies are plotted as functions of g?. We compare
the results to the semiclassical expressions (28) and (44) for large coupling,
and to second order perturbation theory at weak coupling. We discuss the

different cases in detail, below.

51 n=1,5 electrons

The ground state for one electron or hole in the ¢;, shell is a threefold-
degenerate state (all degeneracies given do not include spin) of the same
symmetry: this fact is in complete analogy with what happens in the e ® F
coupled system, where the final dynamical JT coupled ground state has again
E symmetry [21]. Additional splitting of this ground state could occur via
spin-orbit coupling, not included in the present treatment. Recent spectro-

scopic data [23] of Cg, embedded in solid Ar-confirm indirectly the presence
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of the pseudorotational L = 1 ground state degeneracy, through direct obser-
vation of spin-orbit splittings of about 30 and of 75 cm™! for the ¢;, ground
state and for the ¢, excited electronic state ~ 1 eV above. The decrease
of ground state energy is initially fast, and becomes gradually slower for
increasing g. We shall return to this point in detail in [15].

As shown in Fig. 4, for large g, the n=1 ground state energy correctly
approaches the strong coupling limit

EN—%gZ%-g%—ngz, (49)

except for a small shift due, as mentioned above, to a finite-cutoff error.
Above the ground state, there are families of excitations, corresponding to
increasing values of IV,. The lowest, for NV, = 1, comprises 3 X 5 = 15 states,
since for n=1, N,=1 there are just 3 electron states and 5 vibron states
available. These states correspond to a direct product of a P (electronic)
and a D (vibrational) manifold. As elementary angular momentum theory
requires, they split into L = 3, 2 and 1 levels, which are found, in order of
increasing energy. The splitting initially is proportional in g%, for small g,
with significant deviations from linearity at g? =~ 0.2. As coupling increases,
we note the slower downward trend of the even L states, than both the ground
state and the associated ”soft“ odd-L excitations. This clearly reflects the
Berry phase selection rule (36) that no even L should appear among the low
lying excited statesin strong coupling. The lowest excitation from the ground
state is L=1— L=3, anticipating already at very weak coupling the strong
coupling result that this excitation energy should fall fastest, and collapse as
?3; Unlike the L=3 state, the L=2 and L=1 excited states do not show any
tendency to collapse onto the ground state in the large g limit. Therefore
they can be seen as modes involving essentially radial massive vibrations.

The next group of excitations is for N, = 2, and comprise 3 x 15 = 45
states. This multiplet splits into seven levels corresponding to L = 5, 3,

1, 4, 2, 1 and 7. The lowest (L=5) level crosses two levels of the lower
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(N,=1) multiplet in its downwards motion to become the second excited state
above the L=3 level, eventually constituting the low energy odd-L rotational
multiplet of the strong coupling picture. The same route is followed by the
lowest level of N, = 3, which is an L=T state. In fact, all the lowest split
levels from each N, multiplet appear to have L=2N, +1 and follow the same
route.

For N, = 2 we can similarly follow the movement with g of the L=4 level
which decreases slowly towards the L=2 state from the lower N, =1 to add

to the group of massive radial vibrations.

5.2 n = 2,4 electrons

Figure 5 has several features which contrast sharply with the one electron
case. The N, = 0 multiplet, has 15 two-electron states. The spin singlet sub-
space constitutes of a 6-fold degenerate multiplet that splits into an orbital S
and a D multiplet. As the semiclassical Eq. (36) suggests, the ground state
and lowest excitations in the strong coupling limit have orbital degeneracies
of even angular momenta. In fact, the lowest two among these states (L =
0, 2) both come from the N,=0 multiplet, in contrast with the one electron
case. The next pseudorotational level (L = 4) originates in the 6 x 5 = 30-
fold degenerate IV, = 1, spin singlet multiplet. Actually, at weak coupling it
starts out being second in the ordering (L= 2, 4, 3, 2, 1, 0), but already at
very small g it crosses the lower L=2 partner and approaches the pseudo-
rotational asymptotic level. The convergence with increasing cutoff N is
worse than in the n=1 case, which can be as due to larger JT distortions
associated with two electrons. The spin triplet (S=1) states of n=2 have not
been plotted, as they behave in exactly the same fashion as the n=1 states
(see Fig. 4). This figure can be read in terms of n=2 S=1 states simply by
replacing the spin multiplicity label 2, as was in the case n=1, with 3. By

comparison of Fig. 5 and Fig. 4 we notice that the low-spin 'P state of N, =1
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is exactly degenerate with the high-spin D state in the same multiplet. This

degeneracy seems accidental.

5.3 n =3 electrons

For three electrons, the results are shown in Fig. 6. The 8-fold degenerate
N, = 0 multiplet splits into two states characterized by degeneracies 3 and
5 (*P and ?D). The ground state has the correct symmetry for an L=1, k=0
state, which is predicted to be the ground state in the semiclassical limit.
We also expect the lowest excitations to be classified as L=3, k=2 (14-fold
degenerate), and L=3, k=0 (7-fold degenerate). In fact, three levels from
the N, = 1 multiplet move down toward the ground state for increasing g.
The one which moves lowest is 9-fold (?G). In the g — oo limit, it must
therefore merge with the 5-fold levels from the N,=0 multiplet to produce
the expected L=3, k=2 pseudo-rotator excitation. The next excitation of
L=3, k=0 state can be identified as an asymptotic limit of the *F 7-fold
degenerate state seen in Fig. 6.

A remarkable feature of the n = 3 case is the presence in the N, = 1
multiplet of a state (the ?S) whose energy is independent of g! This state is
degenerate with the S=3/2 state *D which has no JT distortion.

6 Pair Binding Energies
The pawr energy for an average filling of n electrons is defined as
U'n - En+1 + En-—l - 2En ) (50)

where F,, are the fully relaxed ground state energies of n electrons. Formally,
U is the real part of the two-electron vertex function at zero frequency. If
this energy is negative for odd values of n, it means that electrons will have

lower total energy if they separate into (n — 1) and (n + 1) occupations of
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different molecules, rather than occupying n electrons on all molecules. For
odd values of n, this is an effective pairing interaction often called “pair
binding” in the literature [5]. In Section 4 we found that for all odd n, the
pair energies are negative, and given by the large g asymptotic expression
Uporss ~—4 +1 =5 +0(g™) (51)
3g°
The first term is the classical energy. The second term is due to reduction
of zero point energy along the JT manifold, since only radial modes remain
hard. This term is independent of g and positive. The last term is due to the
quantum pseudo-rotator Hamiltonian, and the Berry phases which impose a
finite ground state energy associated with odd L for odd numbers of electrons.
This term, although nominally small at large g, becomes important at weaker
coupling. If (51) is extrapolated to the weak coupling regime the last term
would dominate the pair binding energy. The exact diagonalization shown in
Figure 7, indeed shows a significant enhancement of the pair binding energy
over the classical value in the weak coupling regime.

In the weak coupling limit, we can obtain analytical expressions for U,(g)
for ¢ << 1 by second order perturbation theory. The unperturbed Hamil-
tonian is the non interacting part HY with eigenstates (48). The perturbing
hamiltonian is H¢™* of Eq. (7), which connects Fock states differing by one
vibron occupation. All diagonal matrix elements vanish, and the leading or-
der corrections to any degenerate multiplet are of order g?. These are given

by diagonalization of the matrix [24],

A gy = (0 | H

1
NMms.Nmy

mﬂe—vlo,nim% (52)

in the degenerate 0-vibrons subspace. The sum implied by the inverse
operator (E(") — H")~! extends just to the N,=1 states. The eigenvalues
of A yield the ground state energies and splittings for different electron
fillings. These results, for all H, and also A; modes, and extended to the

N,=1 multiplet, will be discussed more extensively in [15].
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Here we refer only to ground state energetics. In particular, using the
perturbative expressions, we obtain, for a single H,, mode the small g pair

binding energy
Un:l 3,5 5 2 4
U= e O(g*). 5
“1az - g 4 o(g') (55)

The dependence strictly on powers of g% alone, with absence of all odd powers,

is a consequence of the already mentioned AN, = %1 selection rule of Eq. (7).
The origin of the 5/2 factor that characterizes the perturbative result (53)
with respect to the classical pair binding energy (Table I) will be discussed
in Ref. [15].

The molecular pair binding energy can be considered as an effective
negative-U Hubbard interaction for the lattice problem, provided that the
Fermi energy er is not much larger than the JT frequency scale w. A
mean field estimate of the transition temperature for the negative-U Hubbard

model in the weak coupling regime is [25, 5]
T. % ep exp [(~N(er)|U]) '] (54)

In Refs. [3] and [26], the results of Migdal-Eliashberg approximation for the
superconducting transition temperature was given. Without the Coulomb

pseudopotentials this approach yields

T. ~ wexp[(=N(er)|V])7]
5 2

Vo= ——4%. 55
69 (55)

By comparing (53) to (55) we find a striking discrepancy between the values

of the effective pairing interaction:
U =3V. (56)

That is to say: in the weak coupling regime, the correct molecular calculation

yields a pairing interaction which is three times larger than the results of

Migdal-Eliashberg theory.
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7 Discussion

In this paper, we have solved the problem of a single H, vibron coupled to
t,. electrons in a CZ; molecule. The model is too simplified for quantitative
predictions for Cgy, but it contains interesting novel physics which will be
important for further studies of this system.

Semiclassically, a dynamical Jahn-Teller effect occurs. For n = 1,2,4,5,
the molecule distorts unimodally, giving rise to a pseudo-angular momentum
spectrum, plus three harmonic oscillators. For n = 3, there is a bimodal
distortion, which generates a spectrum of a symmetric top rotator, plus two
harmonic oscillators. The pseudo rotations are subject to non trivial Berry
phase effects, which determine the pseudo-angular momenta L, and thus the
degeneracies and level ordering of the low lying states. Strong Berry phase
effects seem to survive even at moderate and weak coupling as shown by the
exact diagonalization results.

We find at weak coupling that the pair binding energy is a factor of
5/2 larger than the classical JT effect, and a factor of three larger than the
pairing interaction of Migdal-Eliashberg theory of superconductivity. This
enhancement can be interpreted semiclassically as due to large zero point
energy reduction of the pseudo-rotations. From the weak coupling point
of view, this effect is due to degeneracies in both electronic and vibronic
systems.

Migdal’s approximation neglects vertex corrections in the resummation
of two—particle ladder diagrams. This is justified only in the retarded limit
w << €p. Here we have considered the opposite limit, where the molecular
ground state energies are solved first, assuming that the JT relaxation time
is of the same order, or faster than the inter molecular hopping time. In this
regime, we have found therefore that Migdal’s approximation substantially
underestimates the pairing interaction, and T, for these ideal molecular solids

[27]. This large effect suggests that some of the enhancement is likely to carry
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over to the real case of A3Cgy metals, where electron hopping ¢ and vibron
frequencies are of similar strength.

In Part II we shall consider a more realistic model which includes all
important vibron modes of Cgy. We shall present quantitative predictions

for the electron—vibron effects on the spectroscopy of Cgp ions.
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0| S| (znyn) [ (R1,72,75) | Bn/(hw) TN
0000 | (000

1 % (ga 0) (0,0,1) _%QQ + % -+ 35, ——92 +1 32?
210 (2970) (0,0,2) —292 +%

3111 (29, %g) | (1,02) |2 +145s | —g*+1—5%
410 | (—2g,0) (2,2,0) 1—292 +% 0

5 '12" (—970) (2,2,1) _592 + % + Eé"? —g%+1 322
6|0](0,0) (2,2,2) 2

TABLE I. Semiclassical ground state distortions and energies for a single
H, coupled mode of frequency w. n is the electron number, S is the total
spin, Z,,7, are the JT distortions, 7i; is the occupation of orbital z, E, is the
ground state energy and, and U, is the pair energy (Eq.(50)). Energies are

calculated for strong coupling to order g~2.

Table II
n S (zny":n) (ﬁl,ﬁz,ﬁa) En/(h&))
211 (=g,0) (1,1,0) | —1g7+2
3135 ((0,0) (1,1,1) 5
411 (g,0) (uni) (1,1,2) | —1g° 42

TABLE II. High spin ground state properties, in the same notation of

Table I.
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Figure 1: A polar representation of the Jahn-Teller distortions uJT(é,&;),
Eq.(19). The distortion is measured relative to a sphere. (a) The unimodal
distortion for the ground states of n = 1,2,4,5 electrons (b) The bimodal
distortion for n = 3 electrons.

Figure 2: Berry phase calculation for unimodal distortions. An path between
reflected points on the unit sphere corresponds to a closed orbit in the five
dimensional g-space. According to Eq. (34), such a path acquires a Berry
phase of (—1)" from the n-electron wavefunction.

Figure 3: Berry phases calculation for the bimodal distortion (n = 3). w
are the three Euler angles which rotate the principal axes of the bimodal
distortion. C; denote rotations by 7 around corresponding axes. On the
right we depict the electronic Berry phases associated with the three closed
orbits in g-space, given by Eq. (46).

Figure 4: Exact spectrum for one electron as a function of the square
electron—vibron coupling constant g?>. The vibron occupations are truncated
at N™* = 5. The semiclassical energies (Eq. (28)) are drawn by dashed lines
for the lowest three pseudorotational multiplets (n,=0, L=1, 3, 5). The unit
of energy is the vibron quantum Aw.

Figure 5: Exact spectrum for two electrons (S = 0). The semiclassical
energies (Eq. (28)) are drawn by dashed lines for the lowest three pseudoro-
tational multiplets (n,=0, L=0, 2, 4). The two-electron S = 1 spectrum is

the same as forn =1, 5 = —;—

Figure 6: Exact spectrum for three electrons (S = ;). The semiclassical ener-
gies, Eq.(44), are drawn by dashed lines for the lowest three pseudorotational
multiplets, n.=0, (L, k)=(1,0), (3,2) (3,0).
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Figure 7: Pair binding energy U (thick solid line), compared to weak coupling
perturbation theory for g << 1 (dotted line) and semiclassical theory for
g >> 1 (dashed lines). U, is found to be the same for n = 1, 3,5 electrons.
The Migdal-Eliashberg approximation V (thin solid line) is also drawn for
comparison. g©® is the range of physical coupling strength for Cgp.
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Abstract

The ground state energy shifts and excitation spectra of charged
buckminsterfullerene Cgy, n = 1,...5 are calculated. The electron-
vibron Hamiltonian of Part I is extended to include all A; and H,
modes with experimentally determined frequencies and theoretically
estimated coupling constants. Complex splitting patterns of H vibra-
tional levels are found. Our results are relevant to EPR measurements
of spin splittings in C2; and C3; in solution. Spectroscopic gas-phase
experiments will be of interest for further testing of this theory. As
found in Part I, degeneracies in the electron and vibron Hamiltoni-
ans give rise to a dynamical Jahn Teller effect, and to a considerable

*Email: manini@tsmil9.sissa.it
t Email: tosatti@tsmil9.sissa.it
!Email: assa@phassa.technion.ac.il

SISSA REF: 5/34/Cn /hB




enhancement of the electronic pairing interaction. This helps to over-
come repulsive Coulomb interactions and has important implications
for superconductivity in K3Cgy and the insulating state in K ,Cgp.

PACS: 31.30,33.10.Lb,33.20.E,33.20.F,71.38.4+1,74.20.-2,74.70. W

1 Introduction

This paper continues the investigations of the electron-vibron interactions
within a fullerene molecular anion, Cgy . In Part I (Ref. [1]) we considered
in great detail the idealized case of a single H;, vibron mode coupled to
the electronic degenerate ¢y, orbital for n=1,..5 electrons. By solving the
problem for strong, intermediate and weak coupling regimes, we have shown
the existence of Berry phases for odd n, and their importance in determining
ground state energies and degeneracies. The Berry phase effects are clearest
in strong coupling, where the parity of the pseudorotational orbital angular

momentum L, is related to the electron filling n by
(—1)k = 1 (1)

The effects on the energies however are relatively stronger in weak coupling
where quantum corrections enhance pair binding which is a factor 5/2 larger
than the corresponding classical Jahn-Teller (JT) relaxation energy E7T.
This leads to larger electron-vibron pairing interaction than previously cal-
culated using Migdal-Eliashberg theory. Moreover, this enhancement is of
direct importance to Cg, where the electron-vibron coupling is weak to in-
termediate. These encouraging results clearly call for a more realistic study
of the full electron-vibron problem of Cgy . This is the purpose of this paper,
where we will address both the vibronic spectrum, and the pairing energies,
in quantitative detail.

The full molecular Hamiltonian describes the dynamics of 60 carbon

atoms plus 240+n valence electrons. The problem is substantially simpli-
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fied by assuming the knowledge of the non interacting spectra for electronic
levels [2, 3, 4] and for molecular vibrations, both from theory [3, 4] and exper-
iment [5, 6]. For n=0, the electrons form a closed shell. This allows a Born-
Oppenheimer decoupling of the vibron and electron systems. For n=1,...5,
however, the extra electrons partly fill the threefold degenerate Lowest Un-
occupied Molecular Orbitals (LUMO) states of t;, symmetry, which gives
rise to a linearly coupled JT system. Other orbitals, such as the Highest
Occupied Molecular Orbitals (HOMO) states of h, symmetry, at ~ —2eV
below the LUMO states, and the t5, (LUMO+1) states at ~ +1eV, intro-
duce weaker quadratic electron-vibron couplings which we presently ignore.
Further complications may arise from anharmonic effects.

Fortunately, neglect of all these higher order effects is expected to be a
very good approximation in Cg; , where the ¢;, level is very well separated
from others, and the C-C bonds are rather stiff and harmonic. Detailed
Hartree-Fock calculations have shown, for example, that the energy gain by
going from Iy to Dsq, D34, Dop symmetries via static JT distortions, are
in fact identical to within 1% [7]. Therefore, restricting to the ¢;, orbital,
to linear JT coupling and harmonic vibrons is very well justified in Cfj .
Neglecting also Coulomb interactions (they will be discussed separately in
Section 3), the full electronic problem is therefore replaced by a 3x3 matrix
linearly coupled to vibromns.

Thus our Hamiltonian is an extension of the single mode mode solved
in full in Part I. Here we shall include the eight H, vibron modes of real
Cgu, instead of only one. Also we shall include two A, vibrons which also
couple linearly to the LUMO electrons, even though they do not split its
degeneracy. Symmetry prevents all other vibrons different from A, and H,
to interact linearly with the ¢;, orbitals. If we further neglect higher order
interactions, all other vibrons are decoupled and unaffected by changing the
electronic filling n.

Generally speaking, even with these drastic approximations, a realistic
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description of the dynamical JT state of a C§; ion is a more complicated af-
fair than the single mode treated in Part I. For a general coupling strength,
there is in fact no linear superposition between effects produced by different
H, vibrons coupled to the same t;, orbital. Luckily, however, linear superpo-
sition turns out to be valid in the weak coupling perturbative regime, which,
in turn, applies, even if only approximately, to fullerene.

In this paper we apply perturbation theory to the full electron-vibron
problem of C%;, with n=1 to 5 in a ¢, orbital, and including all 4, and
H, modes [8]. As in Part I, we make the further approximation of replacing
a spherically symmetrical coupling to the true icosahedral hamiltonian on
the Cgp ball. Analytical expressions correct to second order in the electron-
vibron coupling strengths are found for ground state and excitation energies,
as well as for electron pair binding energies ("effective Hubbard U’s“). Using
realistic coupling constants from Local Density Approximation calculations,
we obtain numerical estimates for these vibron-induced pair energies and
find them to be unexpectedly large and negative (= —0.2¢V) for n=1,3,5,
and even larger but positive (= 0.4eV) for n=2,4. This finding is discussed
in qualitative connection with superconductivity in A3Cqy [9, 10, 11], and
with the insulating state of A;Cgy (A=K,RD).

The calculated vibron spectrum of Cg; is also presented in detail. Not-
withstanding the uncertainty in the physical coupling constants, large split-
tings of all H, modes are predicted. These are expected to be observable for
example in gas phase Cg, and C&; ions. This part is organized as follows:
Section 2 defines the multi vibron model. Section 3 describes the perturba-
tive calculation of the spectrum. Section 4 presents the relation of the results
to experimental measurements of vibron spectroscopy of Cgy anions. Section
5 discusses the interplay between electron-vibron and Coulomb interactions
for the ground state and pair binding energies. We conclude with a short

summary.



2 The Hamiltonian

The single electron LUMO states of Cgp arein a triplet of ¢, representation.
The important vibrational modes which couple to this electronic shell are of
two representations: A, (one dimensional) and Hj (five dimensional). A, t1,
and H, are the icosahedral group counterparts of the spherical harmonics 1,
{Yim}t—_,, and {Y3,}2,__, respectively. By replacing the truncated icosa-
hedron (soccer ball) by a sphere, we ignore lattice corrugation effects which
are expected to be small for the electron-vibron interactions, since they do
not lift the degeneracies of L = 0,1,2 representations.

The Hamiltonian includes the terms
H =H° +H +--. (2)

where electron-electron interactions, anharmonic interactions between phonon
modes, and anharmonic coupling terms have been neglected. The non inter-

acting Hamiltonian is

, | N S
k

Al=—Ly.Ly ms

bZ:M creates a vibron of mode k and energy wy in the spherical harmonic
state Y7, as, where Ly denotes the angular momentum of mode k, either 0 or
2 according to whether k is an A, or an H, representation respectively. e .
creates an electron of spin s in an orbital Y},,. This Hamiltonian operates

on the basis

I Imkar)e IT Inms)e (4)

KAl ms
where |ngnr)y (|70ms)e) is a vibron (electron) Fock state. By setting p — € we

discard the second term in (3).
The electron—vibron interaction is local and we assume it to be rotation-

ally invariant. The nuclear vibration field of eigenvector k is

A~ 1 * a i s A =
up(Q2) = %: %(YL,CM(Q)Z’L,,A!I; + Y7, 00(§2)br,ark) (5)




where € is a unit vector on the sphere. The interaction between the vibrations

and electron density is

B o D g [ (@) 41D (6)

where the electron field operators are

’Sbs(Q) Z }lm(ﬂ Cms (7)

m=—1
Using the relation
[ a0 Yiar () ¥im, (Q)¥ima(©) o (~1)M(L, = Mlmuima),  (8)
where {---) is a Clebsch-Gordan coefficient [12], yields the second quantized
Hamiltonian
H™Y = HYC 4+ H

HY® = \[ hz grwr > (—1)™ (bho + bro)

ms

x (0, 0[1 —m;1,m)el e

ms

‘[higkwk > (=" (b,iﬂ,+(—1)“bk )

AN =—-2 ms

x(2, M|1,—m;1,m + M)c, mgc,,H.Ms , (9)

c—U
Hy

L

where the numerical constants are fixed by the requirement that the classical

JT energy gain of a single mode k is g7/2 [1].

3 The Multi-Mode Spectrum (Weak Cou-
pling)

The perturbation hamiltonian (9) written in the Fock basis (4), connects

states whose number of vibrons N, (k) of mode k differs by exactly 1. Thus,
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first order corrections to the energies vanish. ‘Second order corrections are
obtained by diagonalizing the matrix [13]

AL = (0l B —g— HE ), (10)
where |a) and |b) are members of the same degenerate manifold, i.e. they have
the same number of vibrons N,(k). The sum implied by the inverse operator
(E® — H°)™! extends just to those states whose N, ’s differ only by £1 from
that of the multiplet being perturbed. This means that to second order in
the coupling constants gx there are no direct inter-mode interactions, and the
modes can be treated separately. The only second-order inter-mode coupling
is a consequence of all the modes having a common ground state (N,=0). The
effect of vibron k affects this IV, =0 state either with a pure shift or through
both shift and splitting. However all other modes k', having their ladder
built on the same N,=0 state, are shifted or split by vibron k, according to
the same structure of this N,=0 multiplet. This effect takes place through
additive contributions proportional to g to the diagonal matrix elements Affc)z
relative to the &’ ladder, without involving off-diagonal inter-mode couplings,
which would be related to g* and higher order corrections.

A single A, mode coupled to a ty, level is the simple polaron problem,
which is exactly soluble [14]: the second order energy is exact. Since the A,
representation is one-dimensional, it does not split the electronic degeneracy.
The only effect is a downward shift of the whole spectrum. The amount of
Ag-related energy shift is found to be —E}?, —4EJT and —6E]", for n=1,
2 and 3 respectively (where Ej7 is the classical JT energy gain = g;hwy/2
of that mode A,(k)). Obviously, these results hold for both unpolarized and
polarized spin states, since the ¢, levels remain degenerate.

For the H, modes the situation is more complicated. For n=1, the degen-
erate vibronic ¢, ground state is not split by JT coupling, as it conserves its
L=1 symmetry. For this reason, the only contribution of the vibron H,(k)

to the spectrum of another vibron Hy(k') is just a constant energy shift of
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-5/4 g%, which obviously does not affect energy differences in the spectrum
of vibron k’. This is perfectly analogous to the effect of a single A, mode on
all the other vibromns.

By contrast, the n=2,4 and n=3 lowest vibronic multiplets (N,=0) are
split (into 'S, !'D, 3P, and *P, ?D, *S levels respectively). Correspondingly,
the levels of an interacting vibron k receive different diagonal contributions of
order gi from different interacting vibrons k', giving rise to a more intricate
pattern of splittings.

For the sake of simplicity, and also since Cg, seems easiest to obtain in the
gas phase [15], we will concentrate on the many-modes spectrum for n=1.
The perturbative results for all Hy and A, modes will be presented in Section
4. In principle, the full spectra for n=2,3,4, can be determined following the
same method.

The spectrum for a single H, mode is given in Table I for the degenerate
multiplets N,=0 and N,=1, and for n=1, 2, (§=0) and 3 (5=1/2) electrons.
In Figures (1, 2, 3) we replot on an expanded scale the results of exact
diagonalization of Ref [1] for 1, 2 and 3 electrons, along with the straight
lines corresponding to present perturbative results for the lowest few states.
These figures confirm that perturbative results retain quantitative validity
up to g ~ 0.3. In the special case n=1, moreover, the perturbative results
lay within 0.05hw of the exact value up to g < 0.4.

We have therefore an approximate analytical estimate of the splittings
induced by JT coupling, valid in weak coupling. For example, for n=1 the

H, vibron excitation, originally at energy 1 above the ground state, splits
3 9
8 8
of hw of that vibron). Table I contains the complete list of these low lying

into three vibronic levels with relative shifts —%gz, g* and 2g” (in units
excitations energies, accurate to order g°.

Because the effects of all A, and H,; modes can be linearly superposed,
there are two ingredients only, which we need to have in order to transform

the analytical shifts of Table I into actual numbers for Cg; : the frequencies
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hwy and the coupling constants gj of each individual H, and A, mode. For
the frequencies, there are both calculated and measured values. We can
avoid uncertainties by choosing the latter as given, e.g. for neutral Cgp in
Ref.[6]. In doing so, we neglect the well known small systematic frequency
shifts associated with bond-length readjustments and other electronic effects
going from Cgp to Cg; [16, 17]. They also depend on the environment of the
Cgy ion.

There are several calculated sets of coupling constants gr [3,10,9, 18], but
no direct measurement. Since the agreement among the different calculations
is far from good, in Section 4 we present the results of several selected sets,
which provides an estimate of the relevant uncertainties. We will eventually
adopt the most recent values of Antropov et al. [18].

As seen in Table II, almost all of the couplings g; are weak, gr < 0.4. As
discussed, in this range the perturbative results are accurate within ten per
cent or better for all the low lying states. As the discrepancies among the
various estimates of the g; is much larger, these perturbative formulas are at
this stage more than adequate, and particularly good in the n=1 case, where
the distortion is smallest.

This is fortunate, since exact diagonalization is computationally rather
demanding if all H; modes are included. Better knowledge of frequencies

and coupling constants might warrant a calculation of higher orders in gs.

4 Vibron spectroscopy of Cg, anions.

The electron aflinity of Cgq is large (2.7 €V) and experimental evidence has
been found that the Cg, [15] and CZ; [19] are stable ions in vacuum. In
solution a wider spectrum of ionization states has been demonstrated elec-
trochemically, up to and including C3; [20, 21, 22]. As an adsorbate on a
metal surface, the electronegative Cgy molecule naturally picks up electrons

[23, 24], and recent evidence has been provided of charge transfer which can




be as large as n=6 [17]. In the solid state, finally, there are compounds,
covering a wide range of charge transfers, from n=1, as in TDAE*-Cg, [25]
or Rb;Cgo [26], n=3, as in K3Cgy or Rb3Cgp [27], n=4 as in K Cey [28], n=F6
as in RbgCgo [29], or even higher as in Li;2Cg [30, 16].

Among these systems, our calculations so far address concretely only the
gas phase case. Unfortunately, to our knowledge no investigation appears
to have been made of the vibrational excitations of isolated Cg, and CZ;.
QOur calculated excitation spectrum for Cg, therefore constitutes a prediction
which we hope will stimulate new work.

In Table II we report the excitation energies predicted by perturbation
theory, applied to the eight modes in the Cg, case. Selection rules are not
discussed here for any particular spectroscopy. We simply give the symmetry
assignments.

As is seen, the predicted splittings due to dynamical JT coupling are
generally quite large, and should be well observed spectroscopically. However,
as indicated by comparison between different sets of g;’s, there is a large
uncertainty in these predicted splittings of the same order of magnitude as
the splittings themselves. As remarked earlier, the same uncertainty does not
affect the energetics of the following section, which is on safer grounds. Our
calculated spectrum is therefore of qualitative value, and we rather expect it
to work backwards. That is, a future precise measurement of the splittings
should provide an accurate evaluation of the actual couplings.

As a further caution, we should stress that our spherical representations
in the Hamiltonian (9) neglect interactions due to the icosahedral lattice of
carbons. For example the vibron multiplet of L = 3 decomposes due to the
lattice into Ty, ® G, [31] , etc. In addition to neglecting lattice effects and
anharmonic interactions, we also ignore spin-orbit coupling. As remarked in
Part I, it has been shown [32] to yield splittings of the order of 50 cm™! to the
L =1 ground state (in Ar matrix), which is not a negligible amount. Thus we

estimate that the splittings obtained by our Hamiltonian should dominate
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the splittings found in the real spectrum.

As pointed out by Bergomi and Jolicoeur [33], experiments on anions in
matrix may be relevant to the vibronic effects. Near infrared and optical
spectra of C%, ions in solution are available [21]. A major ¢;, — ¢, optical
transition near 1 eV is present for all n values. It is accompanied by additional
vibronic shake-up structures, typically near 350, 750, 1400 and 1600 cm™l.
This limited information seems as yet insufficient for any relevant comparison
with our calculations. Well defined vibrational spectra are instead available
for chemisorbed Cg; [17] and for A,Csy alkali fullerides [29]. In this case,
however, interaction of the electronic £y, level with surface states or with
other ¢, states of neighbouring balls must turn the level into a broad band,
and our treatment as it stands is invalid. One can generally expect rapid
electron hopping from a molecule to another to interfere substantially with
the dynamical JT process, in a way which is not known at present. The
spectra of charged Cgy adsorbates and solids, in any case, do not present
evidence of any dynamic splittings such as those of Table II, but rather of
a gradual continuous shift most likely due to a gradual overall change of
geometry, as suggested also by LDA calculations [4].

Summarizing, we are yet unaware of detailed spectroscopic confirmation
of the electron-vibron effects. We expect however these effects to be observ-
able in the gas phase of Cgy and Cgy. In particular for Cg, an observation
that the lowest H, vibron splits into a near 7-fold degenerate multiplet (i.e.
from the L = 3 = Ty, & G, pseudorotation level) would be an important

confirmation of the electron vibron theory and effects of Berry phases.
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5 Ground state energetics and effective Hub-
bard U’s.

Perturbation theory allows us to write analytic expressions for the energy

gain of the ground state at different n, and therefore for the pair energy
Lrn - En-}—l + En—-l - 2En ) (11)

as discussed in Ref [1]. Comparison with exact single-mode results shows
a systematical perturbative overestimate (Figures 1, 2, 3) of the H,-related
ground state energy shift. The error is however relatively small and quite
acceptable for the couplings in Table II. The shift is 5/2 times larger than
its classical value, as discussed in Ref. [1]. This factor 5/2 is important,
because it leads in turn to a surprisingly large energetic lowering even for
small g’s, making JT vibronic coupling a much more important affair than
it was understood so far. The physical reason for the large energy gain is
that the dynamically JT distorted molecule undergoes a dramatic decrease
of vibrational zero-point energy. This adds an extra ——%ggﬁw (in the n=1
case, say) to the static JT gain —%gzhw of each H, mode. The zero-point
energy decreases faster at small g probably because the mexican-hat potential
well is more “square-well”-like than the original harmonic potential. We also
note that the proliferation of excited states upon coupling H, with ¢, is of
fermionic origin, and does not add to the zero-point energy.

Within second order perturbation theory the ground state energy is a

sum of all the 248 contributions of the 4, + H, modes:
) 2 B 10
Ein(n) = Ea, + En, = an By, + b, B =0, > BT +6,Y BT, (12)
k=1 k=3

where

ET = Z gy, (13)

N
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We already discussed in Section 3 the JT ground state energy gains due to an
A, mode, with coefficients a,=-1, -4, and -6, for n=1, 2 and 3 respectively.
Table I gives the corresponding energies for the Hy(k) modes (k > 2). These

are given by

5
~10E)% n=2
15
——2~E§’7,; n=3 (14)

the appropriate coefficients being therefore by=-5/2, by=-10, b3=-15/2.

These expressions allow us to compute the individual contribution to the
pair energies U, (Eq. (11)) due to the A; and H, modes. We give these
formulae in Table III. The corresponding numerical values are reported in
Table IV, based on the ground state energy gains as given by the set of
coupling constants of Eq. (11).

We consider the unpolarized spin sector. Similar subtractions could easily
be done, if needed, for high-spin states, or high- and low-spin, using, for
example F,(n=2,5=0), with E,,;(n=3,5=3/2). Although, as we pointed
out, the values of the individual g;’s of Ref. [18], [10] and [9] are significantly
uncertain, the global Ey, is much less author-dependent, amounting to 102
meV, 84 meV and 78 meV respectively (n=1).

As Table IT shows, the coupling with the A; mode pushes U; further
towards negative values, but has the opposite effect on U, and Us.

The overall enhancement factor 5/2 in the ground state H, shift ends up
producing a much larger pair energy than expected so far based on classical
JT energies [9]. In particular, our calculated JT energy gain of ~ 0.4 eV for
n=2 and 2 0.3 eV for n=3 (low-spin) is almost one order of magnitude larger
than the currently accepted values! This has important implications, first of
all, in determining whether the simple Cg; ion, in vacuum, in a matrix or in

solution, will choose to be high-spin or low-spin.
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In order to discuss this point, we recall the existence of an intra-ball
Coulomb repulsion U (not to be confused with the pair energy of Ref [1]),
which for a ¢, level is a matrix, specified by two main values, U} (two elec-
trons in the same orbital), and U, < U} (two electrons in different orbitals).

Using the JT energy differences between the high- and low-spin states as

5

B, - EE), = (U — 4B — 10EY]) — (U ~ 4E] — D E))

= (U -UuP)- lngi,Z ~ (U - UP) - 03ev (15)
BY, - B2y = (U +20 ~ 65y - -lé‘r—’E,Jg) ~ (83U —6E]T)

= (U -ul) - %E;’IZ ~ (U - Uy~ 0.3eV , (16)

where we have used the fact that the JT energetics for n=2, S=1 is identical
to that for n=1, S=1/2 [1], while for n=3, §=3/2 there is no JT distortion.
We have also used the ¢;, orbital unimodal and bimodal splitting patterns of
Part I to identify the filling (ny,n2,n3). In particular the fillings assumed are
(0,0,2) for n=2, §=0; (1,1,0) for n=2, S=1; (0,1,2) for n=3, S=1/2; (1,1,1)
for n=3, 5=3/2.

So long as U™ may be expected to vary slowly with the electron number
n, then the two energy differences (15) and (16) should be very similar.
Moreover, the prevailing of a high- or of a low-spin state is decided by a
fine balance between the Coulomb repulsion anisotropy (U — UL) and the
dynamical JT gain %Eﬂg This suggests the possibility that if high-spin is
more likely to prevail for C3; and C3; in the gas phase, where U is large,
the balance might easily reverse in favor of low-spin when in matrix or in
solution. Recent EPR data indicate that this is precisely the case. When
frozen in a CH,Cl, glass, CZ; appears to be in a high-spin, S=1 state [20].
Hence, in this case (U — UL ) is larger than 0.3 eV. However, optical and EPR
data for C35 in CH,Cl, and other matrices favor a low-spin state [21]. Now

Ul(lg) — Uf) has therefore become smaller than 0.3 eV. We can conclude that,
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even for a single embedded molecule, the balance between intra-ball Coulomb
repulsion and dynamical JT energy gains is extremely critical.

Recent photoemission and Auger data [34] have shown that the intra A,
HOMO orbital Coulomb U is not as large as it was previously supposed. In
particular, a decrease by only 0.23 eV from gas phase Cgo and the crystalline
Ceo hole-hole Auger shifts, implies |U| < 1 eV in the latter. This upper bound
is about a factor three smaller than those previously proposed [35]. In the
light of this observation, it is not at all surprising to find that Uy — U, is in
the neighbourhood of 0.3 eV for Cg; in a matrix.

Coming next to the pair binding energies of Ref [1], we find large negative
dynamical JT-related U,’s for odd n. Even if we omit the Ay contribution
(which may be irrelevant for superconductivity, due to screening [18]), we
get Us=-0.2 eV. This negative value, will cancel at least a good fraction of

the Coulomb positive intra-ball pair energy
ufed = U + (20 + vl - 2(uf + 20y = 1 (17)

This cancellation implies a severe decrease of the Coulomb pseudopotential
p* relative to that calculated when the JT coupling is ignored [36]. For a
sufficiently strong solid-state screening of the electronic U and Uy, it may
well be sufficient to reverse to a negative p*, i.e. to an overall negative
Hubbard U state.

For n=2 and 4, dynamical JT stabilizes the average configuration of Cgy,
since the pair energy is positive: U, &~ 0.4 eV. This now acts to reinforce the

bare Coulomb pair energy
Coul __ 3 (3) 2)
ufer = Uf¥ — 20 — 20 ~ 2U, - 1
geed = UfY + 80 + (U + 20 — 220" + 4ULY) = 20, - Uy (18)

where a filling (2,2,1) has been assumed for n=5.
For even m, the JT coupling stabilizes a correlated insulating state of a

lattice of evenly-charged Cgp molecules. In this type of insulator, fluctuations
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about (n;) = n are suppressed, and a gap of order U, is opened in the
electronic spectrum.

This state has an even number of electrons per site, and is non-magnetic,
very much like a regular band insulator. However, electron correlations re-
sponsible for band narrowing and gap opening are vibronic in origin. We sug-
gest that the (body-centered tetragonal [37]) structure of K,Cgy and Rb,Cqgy
may be a realization of this state where electronic and vibronic interactions
play an important role. So far, band calculations [23] and experiments [38]
had been in disagreement, the former suggesting a metal, and the latter
finding a narrow-gap insulator.

Very recent UPS data on K,,Cgy [40] have shown a decrease of the energy
difference between the HOMO and the Fermi level (inside the ¢, LUMO)
when going from n=3 to n=4 and finally to n==6. This kind of non-rigid band
behaviour is in itself not a surprising result. The surprise is that the decrease
is very large from n=3 to n=4 (= 0.4 eV), and smaller from n=4 to n="6
(7~ 0.2 eV). As pointed out by De Seta and Evangelisti, a positive Coulomb
U would predict exactly the opposite. We observe that this behaviour is
instead in agreement with our predicted pattern of effective U,, of vibronic
origin, which is therefore supported by these data.

Additional experiments which may probe the electron—vibron interactions
are short time resolved spectroscopy of excitons in neutral Cgy [39]. An
exciton consists of an electron in the LUMO orbital and a hole in the H,
HOMO levels, which interact with different strengths with the vibrons. The
hole-vibron coupling inside the HOMO could be studied along similar lines
to those presented above for the ¢;, LUMO.

As for superconductivity in solids with n=3, we expect the enhanced pair
binding found here to be crucial for overcoming the on-site Coulomb repulsion
and for enhancing T, over its value in, e.g., graphite intercalates. Broadening
of the t;, electron level into a band of non-negligible width makes the present

treatment insufficient for quantitative predictions. From the fundamental
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point of view however, it is amusing to note that superconductivity can be
enhanced by a decrease of lattice zero-point energy. This adds to the usual
BCS mechanism of reducing the electron kinetic energy by opening a gap.

We hope to pursue this line of thought further in future work.

6 Summary

In conclusion, a full treatment of all the A, and H, modes has been given,
and shown to yield analytical results with quantitative accuracy for the full
dynamical JT problem of Cj; . The ground state energetics has been studied,
and unexpectedly large energy gains have been found, due to a decrease of
zero-point energy. This implies large positive effective U, for n=2 and 4, and
a large negative Us, which is very interesting in view of superconductivity in
K;Cgo and insulating behaviour in K;Cg. Detailed vibrational spectra for
Cg; are presented, and proposed for spectroscopic investigation, particularly
in gas phase.

Related work is also being done by other groups [41].
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Table I

original 2"d order | residual | excit. energy
2 g2 :
n N, | degeneracy | shift 5‘%—(}% degeneracy -E—————gfﬂl‘"—d 25+1g
1 0 3(x2) -5/4 3 0 ’p
S=3%|1 15(x2) -2 7 1—§gz ;’~F
-7/8 o 1+3 D
-1;8 3 1+ %gQ ’p
2 0 6 -5 1 0 'S
(5 =0) -11/4 5 29 'D
1 30 -5 5 1 'D
17/4 9 1+ 324° G
-11/4 7 1+ 347 'F
-13/8 5 1+ 24 'D
-7/8 3 1+ 247 'p
-1/2 1 14 9g° 'S
2 0 3(x3) -5/4 3 0 *p
(S=1)| 1 15(x3) -2 7 1—3g? F
-7/8 5 1+34° °D
-148 3 1+ %Zz 3p
3 0 8(x2) -15/4 3 0 ’p
(S=13) -9/4 5 29 ’D
1 40(x2) -9/2 7 1—3g° ’F
-15/4 9 1 G
-15/4 5 1 ’D
-21/8 3 1+ 24° ’p
-9/4 7 1+ 2g° ’F
-9/8 5 1+ %4° D
F R e S
+ g
3 0 1(x4) 0 1 0 1S
(S=2)| 1 5(x4) 0 5 1 ‘D
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TABLE I. Analytical expressions of energy shifts and excitation energies
for the electron-vibron coupling of a single H; mode, for low-spin and high-

spin states, to second order in the coupling constant g.
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Table II

H, | Exp.Energy coupling excitation energy

mode (cm™!) gk Etin — Eground Lfin (sym.)
6] (18] [10] [9] (em™1)
1 270.0 0.330.330.54 | 248 248 212 | 3 (TQu &5, Gu)

281 281 299 |2 (H,)
303 303 357 | 1 (Ti.)
2 430.5 0.37 0.15 0.40 | 387 423 380 | 3 (Tou ® Gu)
452 434 456 |2 (H,)
496 441 507 |1 (Ti.)
3 708.5 0.20 0.12 0.23 | 687 701 679 | 3 (Tou ® Gu)
719 712 723 |2 (H,)
~ 741 T19 752 |1 (Ty)
4 772.5 0.19 0.00 0.30 | 751 773 722 | 3 (T ® G.)
783 773 798 | 2 (H,)
805 773 849 |1 (Ti.)
5 1099.0 | 0.16 0.23 0.09 | 1077 1055 1092 | 3 (Thy ® G.)
1110 1121 1103 | 2 (H,)
1132 1164 1110 | 1 (Ty)
6 1248.0 | 0.250.00 0.15 | 1190 1248 1226 | 3 (Ty. ® G.)
1277 1248 1259 | 2 (H,)
1335 1248 1281 | 1 (T%.)
7 1426.0 | 0.37 0.48 0.30 | 1281 1179 1332 | 3 (Tyu @ G,)
1499 1549 1473 | 2 (H,)
1644 1796 1568 | 1 (Ti.)
8 1575.0 | 0.37 0.26 0.24 | 1415 1495 1510 | 3 (T, @ G,)
1655 1615 1608 | 2 (H,)
1815 1695 1673 | 1 (Ti.)

TABLE II. Vibronic excitation spectrum for the eight H; modes. Three
different sets of coupling constants used in the perturbative expressions of

Table I. The relations [9] between the coupling strength g and the electron-
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phonon coupling A/N(er) (See Ref. [18]) are for Hy modes g* = $A/N(ep)/hw,
and for 4, modes g> = 3A/N(ep)/hw.
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Table III

mode U, U, Us
A, | 2EJL | ES% | AEy
H, | —5E{% | 10E)7 | —5E)%

TABLE III. Analytical expressions for single mode pair energies (low-spin

states) to second order in the corresponding coupling constants g.
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Table IV

Exp.Energy | coupling Ground state
(em™1) 9k energy shift (meV)
6] [18] n=1 n=2 n=3
E,,q 493.0 0.38 -5 -18 -27
E,, 1468.5 0.39 -14  -54 -81
Ey, s 270.0 0.33 -5 -18 -14
By, 4 430.5 0.37 -9 -36 -27
Ey, s 708.5 0.20 -5 -18 -14
En,s 772.5 0.19 -5 -18 -14
Ey,1 1099.0 0.16 -5 -18 -14
Ep, s 1248.0 0.25 -12 -48 -36
Eu, o 1426.0 0.37 -30 -120 -90
Eu, 10 1575.0 0.37 -33  -132 -99
E,, -18 -72 -108
Ey, -102  -408  -306
Eio -120  -480  -414
Un,, -36 18 72
Unn, -204 408  -204
Un ot -240 426 -132

TABLE IV. Dynamical JT ground state energy shifts due to each mode,
their total, and the pair energies U,,. Results are accurate to second order in

the coupling constants g;.
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Figure 1: Exact (solid line) and perturbative energies (dashed line) for n=1,
one coupled H, mode of frequency w. The straight lines correspond to second
order perturbation theory for the N,=0 and N,=1 multiplets.

Figure 2: Exact (solid line) and perturbative energies (dashed line) for n=2,
one coupled H, mode of frequency w. The perturbative lines correspond to
the N,=0 and the lowest three multiplets of N, =1.

Figure 3: Exact (solid line) and perturbative energies (dashed line) for n=2,
one coupled H, mode of frequency w. The perturbative lines correspond
to the N,=0 and the lowest three multiplets of N,=1. The second order
coupling does not split the L=4 and L=2 levels in the N,=1 multiplet, while
the exact theory finds they actually do separate. The next excited level (of
species P) is also drawn to show its crossing of the initially lower D level
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n=1, §=1/2, N™==5




n=2, §=0, Nmaz=5

pert.(L=4)

pert.(L=3)




n=3, §=1/2, N™=5
pert.(L=2 and 4)







