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INTRODUCTION

Stochastic Quantization is an algorithm that permits to associate a stochas-
tic process ( we will call such process a Nelson diffusion ) to a solution of the
Schrédinger equation in such a way that the density of the process p cor-
responds to the usual probability density of Quantum Mechanics. In this
correspondence the drift field of the diffusion process is singular on the nodes
of the given solution of the Schrédinger equation, so that a problem of exis-
tence for all times for the corresponding diffusion process arises. In particular
the process may reach the nodes in a finite time with a certain probability
strictly greater than zero. Since the paradigm of Stochastic Quantization tells
us that the process represents the trajectory of the particle, and since Quan-
tum Mechanics tells us that [:(z)|? represents the probability density to find
the particle in z at time t, it seem very unphysical that the process may reach
the nodes. The idea to solve this problem is that the drift vector field b may
points away from the nodes. In such case it will give rise to a strong repulsion,
and will prevent the particle from approaching the nodes. This suggests that
the distance function d of the nodal set will be increasing under the flow of
b, and so omne is lead to use d as a Lyapunov function for the process. In
the stationary case, i.e. when the process corresponds to an eigenvalue of the
Schrédinger equation, we show, under suitable regularity hypotheses, that the
drift b has, on a sufficiently small nbh. of the nodal set, a very simple form
that indicates that the distance function will be increasing under its fow.
So we can apply the Lyapunov—type theorem obtaining nonattainability of
nodes. In the non stationary case the hypotheses of the Lyapunov theorem
ate not satisfied. We prove this fact by exhibiting a connterexample. This
counterexample shows that there is no hope to apply Lyapunov theorem, at
least as it stands, to non stationary Nelson diffusions. The key fact for resolv-
ing this problem is that for Nelson diffusions the density of the process is a
priori known. This permits us to state a Lyapunov—type theorem for Nelson
diffusions in which the pointwise condition of the usual theorem 1s replaced
by a more manageable condition in the mean. Using again the distance func-
tion as a Lyapunov function, but now employing this modified version of the
Lyapunov theorem, we can prove the nonattainability of the nodal set when






such set is the union of a numerable family of regular submanifolds under the
hypotheses p/dc Lj,. and p||b||/d € Li..

In an attempt to make this thesis self-contained, we report, in the first
four chapters, all the standard results on the theory of stochastic process that
we use in the following chapters. In chapter five we give some regularity and
nonattainability theorems for stochastic differential equations with unbounded
drifts, making use of the Lyapunov function approach. In particular we prove a
nonattainability theorem for regular submanifolds using the distance function,
and some estimates on its Laplacean. Chapter six contains a review of Nelson’s
theory of Stochastic Quantization that permits us to state and discuss, in
chapter seven, the problem of nonattainability of nodes. Chapter seven closes
with a less probabilistic approach, due to E.Carlen, to prove existence of
Nelson diffusion. His approach, that uses methods of the theory of partial
differential equations, in particular maximum principle, permits to prove an
existence theorem for Nelson diffusions with drifts that satisfy a "finite energy
condition”, without assuming regularity hypotheses on p and b.
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STOCHASTIC PROCESSES

1.1 Probability spaces and random variables

A probability space is a triple ({L,S,Pr), where (. is a set, S isa G-
algebra of subsets, and Pr is a positive measure of total mass one on ({,3).
In the triple (fL,S,R), (L is called the sample-space, or outcome space, the
points of (). are outcomes, setsin S are events, and Pr is the probability. In-
tuitively a random variable is a quantity, obtained from a random experiment
whose value depends upon the outcomes of the experiment. If a probability
space (L, 3 ) represents the experiment, with the points in 0. corresponding
to outcomes, then we can see how a random variable is represented mathemat-
ically as a function on £ . Clearly the probability structure must come into
play, and this is accomplished by requiring the function to be S—measurable.
In conclusion a random variable will be a (£, B )—valued measurable function on
(Q,5,%), where (£,3) is a measurable space. If X is a random variable on
(L, the distribution of X is the probability measure on (E B) given by

Pi(A) = Priwen s X(w)ehl]
For every integrable {:(£,3)— R one has

Suppose the [R'-valued random variable X isintegrable. The expectation, or
mean of X , constitutes the coarsest probabilistic information concerning the
random variable X , and is defined by

E(X):= jLch) dPr ()



If X isin[*(q $P), then one define the variance of X by
Var (x):=E((X-EX)@(x-EC))) = E(X@X)-E(IBE(X) .
If X is R-valued the Chebyshev’s inequality holds:

Pl (B2 0] £ .\@_a_ﬂl)f A>o

1.2 Conditional probability, independence, conditional expectation

Suppose an experiment represented by a probability space (1,3 Pr) is
performed, and results in an outcome weL . Let A and B denote events
in 2 , and suppose we known that the outcome w results in the event A |
i.e. weA . What is the probability that B occurred ? It is clear that this
probability is no longer P-(B), because if AnB=¢, then weA implies that
wé¢ B, and we are certain that B did not occur. We will define a function
P-(- 1A) on S sothat only those events which have non empty intersection
with A have positive probability, and P (+ | A) gives the probability of an
event, knowing that an outcome resulted in A . Then (A, AnS,P(-1A)), where
A~ S denotes the subsets of A that are in S , will be a probability space
that contains all the uncertain after we know the event A has occurred. In
case Pr(A)>0, it is easy to obtain a definition for Pr(+ IA) . In this case we
define the conditional probability

Pr(B1A):= RK(A0B) Be S
Pr(A)

An event B is said to be independent of an event A if the probability of
® is unaffected by the knowledge that an outcome resulted in the event A .
Thus B is independent of A if and only if

Pr(BIA) = Pr(B)

The definition of conditional probability implies that B isindependent of A



if and only if
Pr(AnB) = P-(A) Pr(B)

Analogously two sub— g —algebras are said to be independent if

Pr(Aah) = Pr(A)Dr(N) YAeD ¥ AeD'

The random variables X,Y are independent if the corresponding ¢—algebras
they generate ¢ (X),0°(Y) are independent. Returning to conditional proba-
bility, to deal with the more general situations in which P(A)=0, or A is
replaced by a sub-¢—algebra , the more general concept of conditional ex-
pectation is introduced. Let Xe L'(,SPr), and let D be a sub— d—algebra.
Note that X is not necessarily a random variable on (.O.,(oﬁ,?r). We denote by
E(XID) the random variable on (LD ) satisfying

éE(M‘D)APr - {Dx dPr De

The existence of €(XID) is guaranteed by the Radon-Nikodim theorem, and
we will call it the conditional expectation of X givenD . It constitutes that
portion of all information carried by X which is related to the sub— T—algebra
D . We now list some properties of the conditional expectation.

Theorem 1.1:  Let Xe (0 ). Then

i) X2 0 implies E(XD)>0 as.

i) E(E(XID)) =E(X)  as.

i) DeD implies E(E(XID)ID') = E(XID') as.

iv) ¥ ‘D —measurable implies E(XYID)= YEXID) as.

v) X independent of D implies E(XID)=E(x) as.

The conditional probability % (AID) of an event A given the sub—o—

algebra D is defined by

Pr(AID) = E(X,ID)

and it is an easy exercise to see that if

D=1p, A A, Q) o0<Pra) <1



then

P (BID) () = Pr(AaB)/Pr(A) weh
Pr(faB)/Pr(k) wehe

Now, let ¥ bea R"—valued random variable with distribution Hy . Similarly
to the previous definition we may define E(x{Y=y) by

= - Xd r :
a.nd h (Al\/:g):E('KA{Y_—S) .

1.3 Stochastic processes

A stochastic process is a mathematical abstraction of random phenomena
which develops according to a parameter, usually time, and whose develop-
ment is governed by probabilistic laws. More precisely a stochastic process is
a collection of objects

(0,8, ), (Kedoer, Br)

teT !/

where

i) Te Ry

ii) (£1,%,Pr) is a probability space

iii) (Pe)eer is an increasing family of sub—-algebras of S

iv) (X)er is a family of (E3) —valued random variables, ( £ is a topological
space and ® s its Borel 0—algebra ), such that X, is 2. —measurable for all
teT .
If the P, ’s are not explicitly defined then D = (X set) (the natural
filtration ). The space £ is called the state space. By the application

03w —> ] £ X))

one may always suppose {L< ET, and so .O. is often called the trajectory space.
Two stochastic processes (Q;,S;, (), (x1)¥), j=1,2 , are said equiva-
lent in law if ¥%,,...%&T, the random variables (X th) and (X:’,..., )_(ih)
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have the same distribution. We say that they are stochastically equivalent if
(1,24, %)= (0, S F), and Pr(x%=x%)=1 ¥£<T. A stochastic process Xe s
said to be continuous if

is continuous VYwe (L.

The following theorem is due to Kolmogorov

Theorem 1.2: Let X be a R'-valued stochastic process such that

E X~ XS\(B§_ ¢ le-s1*"" C,,B>0 .

Then X is stochastically equivalent to a continuous stochastic process. More
precisely such process is of Holder class C¥, with y<d/B .

Given a (£3) —valued stochastic process (1, S,(Pc), (X)), a n—uple
(€4,...,tn) of elements of T with t,<-<t,, one may define the probability
measure on E"

P (Agxeeox Ay )z Br (th Ag, -0 X €Ay)

The measures J1; are said to be the finite dimensional distributions of X, .
The knowledge of the finite dimensional distributions characterizes Pr in the
following way:

Theorem 1.3:  Let (1,2, (), (X), %), j=1,2, have the same finite dimen-
sional distributions. Then ®' and ™* coincide on 0" (Xy teT),

The following celebrated Kolmogorov's construction theorem permits us to
construct stochastic from distribution functions:

Theorem 1.4: Let {7, (Xq,--,xh)} be a sequence of consistent distribution
functions, i.e. '

i) for any intervals I, = [;K b ) 12k <h

A .. AL F,(x) 2o

1 n

where

AIK-fcx) = O, X by, Xpcpq 1+ %0 )= F O S NP S



i) if x‘;)'l\ Xy as kT (12i<h), then

:Fn (-X‘I(K)/"'/ x‘:t)) /r j{:h(xfl""lxh) a5 K’}CO

iii) if x;¥-w for some j, then

Fh (xﬂl"'/xh) J’o

and if x;to forall j A¢jzh , then

F, (..., %) 1A

iv) m  F, g, %) =T, (X, X, ) 0>
x, Mo

Then there exists a stochastic process such that the given distribution functions
are its finite dimensional distributions.

1.4 Martingales

A stochastic process ({1, S, (Fe), . ()(Qe gfr) is called a martingale if, for each
teT ,Xel1Q,8M), and for each s>o,

E (Keeg 1Te) = X - (1)

Such processes are sometimes referred to as ’fair games’ processes; if Xe
represents a gambler’s fortune at time t , the game is fair if his expected
fortune at a future time t+S , given the game history up to some previous
time t , is precisely the fortune at time t . Sub—( super- ) martingales are
stochastic processes which satisfy (1.1) with = (= ) instead of =.

Martingales satisfy key estimates :

Theorem 1.5: Let X. ( Y ) be a sub=( super— )martingale. For arbitrary



real numbers t>o,p21, one has

Prfswp Xe st} < E (UXIF) /4P
Ce,T]

{—
£ r
E( e X ) é_(__t_) E (X, (F) £21

-

Prluzv:% IYell>e] « E AYUF) /17

1.5 Brownian motions

Let X,,...,X, be n random variables on the same probability space.
X4,..., Xy are said to have joint normal distribution ()u}T‘) , Where pe R,
I' is a symmetric matrix, if the characteristic function

-F(u.) ::EQXP Cw- X U= (Uy,., Uy) X=(X,... Xn>

has the form

fw) = e,xp(/.«-w— 42 w-Tw )

Theorem 1.6: Let X,,..., X, have joint normal distribution (/u,T‘) . Then
i) Xq,-.,Xn are independent iff Ti;=0 whenever (#]
i) if X{,Xj are independent for (#£j , then X,,--, Xn are mutually in-
dependent
iii) if Y=AX, with A any linear operator, then Y4,-++¥n  have joint normal
distribution
iv) mi=ECG) ) Ty B(OXi-#i) (X5- pi))
v) if debTx0 ,then X has a distribution with density

-1
(4) = — 1 ep =2 Ty p)
i (@T)" (det )2 ? /




A R -valued stochastic process (1,3, (%), (%) ¥ )is called a Brownian
motion if R
i) Xo=0 as.
i) for any °’=J°4<"<'th,xt4.-xtn have joint normal distribution (o, (£jate) ) .
A R"valued stochastic process X is said to be a R"-valued Brownian
motion if each its component Xz is a Brownian motion and ¢ (X’;) k=1,...n
are independent.
Since

E (N Xe- Ks\\4) < (h*+2n) (t‘s)l

Brownian motion is a continuous process by Kolmogorov theorem. The follow-
ing theorem of Doob, provides a criterion for determining when a continuous
process is a Brownian motion.

Theorem 1.7: Let (1,S, (), (%) ﬁ"r) be a continuous stochastic process
t2o €20
such that for all t=2s2o0
I) Xo=0 a.s.
Il) E(xt-xsl:lbs):o a.s.
iii) Then X¢ is a Brownian motion.
For a Brownian motion the so called law of the iterated logarithm holds :

lim<sup Xe - 1 as. (1.2)
tvo Vat 603 eog 11t

lim inf Xe = -1 as. (1.3)
tbo  Vat foglog 1t

Almost all sample paths of Brownian motion are nowhere differentiable. To
see this, note that, for fixed nonnegative s and t , X~ X is a Brownian
motion; then observe that (1.2) and (1.3) imply that, for o<z<1, and for
almost every sample path, there are sequences of values of h ( dependent on
the path ) tending to zero such that

Xeth -~ Ke > (4-2)\[7' &%&%4//7 (1.4)
h . h '



and

Keeh - Xe < (4-2)/2&%&% 1/ . (15)
h h

The right hand side of (1.4) and (1.5) approach + and -® respectively, so
(Xesn=Xe)/h  has, with probability one, for many fixed t , the extended real
line as its cluster set. Thus the path of X are nowhere differentiable, since

the average rates of change experience arbitrarily large fluctuations as h¢ 0
at each time :

Theorem 1.8:

i) Almost all sample paths of a Brownian motion are nowhere differentiable

if) Almost all sample paths of a Brownian motion have infinite variation on any
finite interval.

1.6 The Wiener process

The most celebrated realization of a Brownian motion is the Wiener pro-
cess. Here

D= Co(Ry,R”) 7€ C(R, RY): 7(0)=0 ]

Xel¥)=7€) , = is the Borel G- —~algebra with respect to the topology on fn
given by the metric

sup Uy e)- '@l

A ozeen

2" A4 swp Nyie)- 7@l

0Lt én

Ms

d(7,7')=

o o
i

4

and Pr is the so called Wiener measure. The Wiener measure can be con-
structed in the following way due to Nelson:

let R" denote the one-point compactification of R"and let 0. be the
cartesian product space

Q=T ®R"

0tswm
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With the product topology, by Tychonoff theorem, Q. is a compact Hausdorff
space. Let Cﬂn(ﬂ.) be the set of function of the form

LP('a/)::}:<-3/(+“'1)/ ...)‘b’('t.,,)) t, < «tn

T continuous. Cg;, ({1) contains 1 and separates points, so, by the Stone—
Weirestrass theorem, it is dense in C(Q1). Define the linear functional L on

Cga L) by

Ly = 5&:4(") Pe g, (x4) - Pt"-t,,,1(x")F(x4:"» Xn) d Xy - dXn

with

Pe(x) = f#)-’“ exp (- UxI/4t)
4 n/2

If

FlXa) = K (5) - Ag, (0)
with E,,..,E, Borel sets in R", then Ly is interpreted as the probability
that a particle performing a Brownian motion, starting at 0 in t=0, is
in ) at time t; . Let T be the extension of L to C({L) . By Riez’s

representation theorem, there exists a regular probability measure P+ on (L
such that

T. = (7) dFr (v

=) )

The following theorem shows that Pr so constructed is a probability measure
when restricted to C,(®,,R):

Theorem 1.9: For o<d¢ the set Q4 of Holder continuous paths in R" of
order o is a Borel subset of .. . Moreover

Pr () =1 0<k< 4/2
Pr (ﬂ‘,\):O WYeedk <1
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MARKOV PROCESSES

2.1 Definition of Markov process

Let (n,S,(%),(X),) bea (£,3) —valued stochastic process. X is said
to be a Markovian process if the probability of a future state of the system at
any time t>S is independent of the past behaviour of the system at times
t<s | given the present state at time s , that is

Pr(Xee AL )2 Pr (XeeAlXs) st
This condition is equivalent to
PrlAnB IXe) = H(AIX)P-(BIXe) A€, 3 et tictsy,

We may think of Markov property as a version of the causality principle. From
the symmetry of the above condition it follows that if X¢ is Markovian then
X.t is Markovian also.

2.2 Markov transition functions

For a Markov process X¢ the conditional probability

Pr(KteAlXS)EP(s,XSJt,A) szt

satisfies the following properties :
i) pls,x,t,A) is B —measurable in x , for fixed s/t,A
ii) PG, Xt A) isa probability measure in A» , for fixed st
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i) p satisfies the Chapman—Kolmogorov equation
bt A= | byt A) PN dy)  seAeT
E

for all x except possibly for a M,—null set.
In fact p(s.x,%,A) can be modified on a set of measure zero in such a

way that the Chapman-Kolmogorov equation is satisfied for all x and such
that

Pr(s,x,5, A) = Xy (0

In this case a function satisfying i), i), iii) is called a Markov transition function
and the notation

p(s,x 5 A) = Pr(XeeA | Xg=x)

is employed.
For a Markov process all finite dimensional distributions can be obtained
from the transition function and the initial distribution :

:Pr (’x't4eA4)"' ) x‘tneAh) —

—_—i il‘... ihf (th_“xh_“emA,,) P(talxolt,,,c{)(,,) J/A"q,(x")

By Kolmogorov’s construction theorem, if £ is a metric space which is 0 —
compact, for any Markov transition function P and any probability distri-
bution 4 on £ there exists a (£,3) —valued Markov process with transition
function p and initial distribution M :

Theorem 2.1: Let E bea G —compact metric space and let p bea Marko-
vian transition function. Then there exists
i) a measurable space (2,2) with a family of sub T —algebras (% )t>5 such
that Dic Py if sss', tst! ) <
i) a family of random variables Xtiﬂ“7£ such that wr> Xgw)is Tt =
measurable for all s <+t
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iii) a family of probability laws (?f-X/S)XéE on (0,0 P:}such that
£
”P{"XIS(XS(W)—.—.X) = 1 P

P (XL_% eA X )= b (£, X¢, tth,A) Plas,

The stochastic process ((1,S, (:Pé)v , (Xe) ] #’S) will be called a realization of
the Markov process associated to D. = '

2.3 Markovian semigroups

Let Mb (E) be the space of all bounded, 3 —measurable, R —valued func-
tions on £ with the norm Il = sup lfeol . Given a Markov transition

function p we define the mappings "

T ME)» ME) T ofo:= IJ_:_—)C(ﬂ)]D(s,x,t,Jg)

It is easy to verify that L& is a Markovian evolution operator, i.e. :

i) the T are bounded contraction

i) Tsef2 0 if £20

l'il.) —Ts,t'/l':/]’

iv) Ts,g =1

v) Tse= T Tos
- The family {Ts,tS is called the semigroup associated with the Markov
transition function P , or with the corresponding Markov process. The
following problem naturally arises: given a Markovian semigroup does there
exist a Markov process generating such semigroup ? This question leads to
the definition of Markov processes with the Feller property.

2.4 Feller Markov processes

Let <,(E) denote the space of all bounded, continuous, R —valued func-
tions on £ equipped with the sup norm. A Markov process is said to
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satisfy the Feller property if T Co(E) & Cy(E) for all cet , i.e. the Feller
property assures the w¥-—continuity of the family of probability measures
x> p(s,xx- ) . One has the following

Theorem 2.2: Let E be a compact metric space and let Tse be a Feller
Markovian semigroup. Then there exists a E —valued Markov process to which
the given family {Ts,tg <t corresponds.

2.5 Strong Markov processes

In the study of Markov processes there are situations in which it is im-
portant to know if the property of the independence of the future from the
past, given the present, is preserved if one identifies the 'present’ not with a
fixed value of t ( a ’sure’ variable ) but with a random variable. This leads
to the definition of Markov time and of strong Markov process.
 Let (0,8, Reere.ms (Xe)erers ’:P{‘) be a Markov process. A (possi.bly ex-
tended) random variable z: ‘4 —>[t. 7] is called a Markov or stopping time
with respect to the Markov process A¢ , if the sets {22ty and{e<T) are
P —measurable, for each t<[t, 7] . For a Markov time Z the ¢ -—algebra
3, consists of all events A€ P such that An {z<t) is P -—measurable,
for each t€lte,T] . It is clear that TrS= miniz,sb is a Markov time. For a
“continuous Markov process X¢ and an open set D

S = .lmc)\’h'- XteDC_}

is a Markov time, called the first exit time of D or the first hitting time of D°.
A Markov process & is called a strong Markov process if the Markov property
holds for Markov times, that is, for any Markov time 2 , and any Borel set

A
Pr (Xeez €Al :Pc'c.,zj) = P (Xeez (Xz) t>o

The relation between the Feller and the strong properties is given in the
following

Theorem 2.3: Let Xy be a continuous Markov process with the Feller property.
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Then it satisfies the strong Markov property.

2.6  Diffusion processes

Roughly speaking the diffusion processes are continuous Markov processes
for which the associated Markovian semigroup has a differential operator as
infinitesimal generator. The correct definition is the following:

a continuous D -valued ( D is an open set in R" ) Markov process X
with transition function p is called a diffusion process if for any R>0 and
s20 the following limits exist :

i)

lim 1 p(s,x,s-a-h,B;(x)):o
h>0y h
ii) )
lim ’_l_j (g-x)p(s,x,sfh,dg) Eb(s,x)

h=o0« h Bg(")
iii) ]
[Im 1§ (-x)e (=) p(s,x,s+h,dy) = ¢ x)
l’l - O h Bg(x)

The vector b is called the drift coefficient and the matrix 4 is called
the diffusion matrix, it is positive definite by construction. Properties ii)
and iii) may be written, similarly,

E (XX [Xg = x ) = bls,x)e-s)+0(e-s)

E((Ke-Xs) @ (Xe-Xg) [ Xs=x) = a(s,x) (6=5) + 0 (-s5)

The drift coefficient gives the time of rate change of the conditional mean
of the increment of the process. Since

£ (KE-XS (st X)@ E (xt“xs [st)() = 0(‘5‘5)

by ii’), the diffusion matrix represents the rate of change of the conditional
covariance of the increment.
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It is easy to compute the infinitesimal generator A of the Markovian
semigroup associated to the diffusion process X¢. By definition

Afoy .= lim Tocrn § 00 - T
> h> o+ h

The domain of A consists of all the functions in Hb(D) for which the above
limit exists for almost every x . Suppose {e C,n C*. Then using i) — iii)
and Taylor formula one obtains

As'? =15 A;jry,-_j-F-(— 73 Bi?i-f

1
2. b
Under certain conditions on the coefficients it is possible to associate a diffu-
sion process to any differential operator of the form above:

Theorem 2.4: Let b:[oT]x RP—=> R" be locally Lipschitz with respect to spa-
tial variables and suppose that [lbtw&)ll= M1+ lixti) . Suppose that lace)ll< M*(1+ix!
and that & is of class c? and positively semi—definite or positively definite and
locally Lipschitz. Then there exists a Feller diffusion process with generator

L= 1 2 A;j‘?’;j + 2 5,9,

2 W i

More precisely the above diffusion process will be a realization of the Markov
process associated to the transition function p(S,X,’c,g)d_tj , where p(sx,tY)
is the fundamental solution of the anti—parabolic differential operator L + P -
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STOCHASTIC INTEGRALS
AND
THE ITO'S FORMULA

3.1 The definition of stochastic integral

The scope of this section is to define the integral
&
J Xg dbg

where X, is a stochastic process and Bs is a Brownian motion. Since the
sample paths of Bs are not of bounded variation, the above integral cannot
be defined in the usual Lebesgue-Stiltjes sense. The integral will be defined
by an approximation procedure using a certain class of step functions.

If (0,3, (%)m,(Bt_l?‘,’%) is a R-valued Brownian motion, a R~valued stochas-
tic process (Xt )eras7 18 called a nonanticipative function with respect to (F )cho
if

i) (Ew)r— Xw) js measurable from 4 ®Ix . into TR
i) Xe is Pe-measurable .
- By L’;Ea\'gj we denote the space of nonanticipative functions such that
5
Pr {(A) . X, )P dt <+ j =1
N
and

Py
P ? .
HB[‘*‘BJ ::{XteLgfd‘B] s E '-Sk lXt[ dt <+005 .

A stochastic process (X*)Jcer £ 5] is called a step function if

XeW)= 2, Xew) X ©)

O&kah-1 xe1
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where X are random variables and d=t,<%4 <--<%,-p is a partition of [4?] .
If X¢ is a step function in fbu.%] , we define the random variable

B |
EXSABS = ) Xt{ [%tm— Bt‘]

oLren-1
2
Since it may be shown that for every %€LpT4 )  there exists a sequence

{ (X% )Y,, of step functions convergent in probability to X¢, i.e.

|
"Fr{w: lim ;(X:(w)—)(t(w)(clt:oﬁz’r ,

n-"+@

and the sequence

¥
L) x5 dsd,

is a Cauchy sequence in probability, i.e.

Yevo , Avo dMeN st
| B, P
'Pr{w: l Sa XSCw_)oIB_g(w)-_g X ¢ (W) d'BSCw)b)syE hm >M

then

[ xan),

converges in probability to a random variable that we denote by
53

and call it the [to’ integral of Xy .
Ito’s integrals do not follow the rules of usual calculus. For example
€

| BodBs = B,

—‘2‘, t

t

1
1

Tto’s integral has the following properties :
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Theorem 3.1: et XteL;Ial,ﬁj . Then
B
E ,&XSABS = 0

P B
E L xdBl™ = £ [ xR,
B
|
B 2 B 3
E(1f xdB[ 13 )= E (L xli3e 19) = [E0G 1) 43,

E ([ XdBs 1% ) =0

3.2 Indefinite integrals and the martingale property

If Xel3leT] we define the indefinite integral
£
I, - i X.dR 0steT
where, by definition |

Such family (Ib)teta - has fundamental properties :
Theorem 3.2:

(v
} X dBg

Is stochastically equivalent to a continuous process, and ,if XE M% LoT1 then it
is a martingale.

The martingale property is maintained if the extremum of integration is
replaced by a random variable :

Theorem 3.3: Let XK€ METo Tl , where otz¢T s 3 stopping time with respect
to P, ie. {z stlede  for all teloT1 | Then the process

TAL TWIAL
J XdBs @)= | X o) dBo )
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is a martingale, and

At

Q

3.3 The Ito’s formula

Let B, bea R’-valued Brownian motion, and let As be a LIRTR™) -
valued stochastic process, such that each component (As) K€ Lg@pl. The stochas-
tic integral

B
i\ As' CtBS
is a R —valued random variable defined by
B — :
(L AcdB), = TIA), dvs
where each integral on the right is an usual Ito’s integral.

Let X bea R™ valued stochastic process, and let A€ LlB £4,B1 , and
bee LT ta 1 with Ag LR, R™) —valued and by R"-valued. We say that X¢

has a stochastic differential given by

C!.Xt = btclt + At' Cl%t

t
th- xt4 - S

€

if ) o
bsds + S Ag-dgs det, <1, < B

Jto’s formula tell us as stochastic differentials change under composition with
regular functions :

2 . . . L. .
Theorem 3.4: Let -FﬁCq’ (RxR"), i.e. £ has continuous first derivative with
respect to t€éR+ , and continuous first and second derivatives with respect to
xeR". Let X have stochastic differential

d:X.--t‘: = Etdt -+ At‘ ABt
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Then f(t,Xc) has stochastic differential

dffeiXe)= LX) + (AL Vfexe) 4B,

with

Lie Ot bV, o 1 (A T

( * denotes transposition ).
By properties of Ito’s integrals, from Ito’s formula it follows, with X ) £, bt ,
and At as above,

Eae('c,xz)—’f f(o,%,) = F £ Lf (s,x ) ds

provided

I"F(t,xt)e M‘g CoyT2 Af-vx-F(‘h,Xt)GM;to,T],

and 7 is a stopping time.

3.4 The Feynman-Kac formula

As application of Ito’s formula we give the celebrated Feynman—Kac for-
mula

Theorem 3.5:  Let the stochastic process (s, (%), (xz)/ﬂx)have the stochas-
tic differential

+ <
Xe = X + L B(s,X)dS + iU'CS,Xs)dRS

with  b(s,X)eLl(Re) | o (sx)e L5 (R,).



Let P Cy(R”) and VeC,(R"). Put
<
0 (6,x) = E* Lexp (- § VOQ)ds)t 0 ) 1=

t
= § Cexp-§ V(X w))ds ) £ (X w) dFr o)
Fo¥ ]

Then
W =4 G o * Dy 4 bV - VU

In particular if X: is the Wiener process staring at x , then

<
Ulex) = § (exp=§Vre))ds ) Rrw) d )
CLR,RY)  °
with 7

CX(ID“[R")_-_._;@'QCCTR,,IR») ’ U(o):kﬁ S
and B* the Wiener measure on C.(R,,IR") , is a solution of

(at U= .17: A,‘ v~ Yu

The proof follows from
£

EF(z) =« E F(z)1 E JLF@Jds
with

Zy = (21 th) , F(x,y) := xy

and

S
2;‘: = £ (xe) , z% = exp-—gV(Xs_)ds :

22
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3.5 The Girsanov's Theorem

As another consequence of Ito’s formula we will give the Girsanov’s the-
orem. Let B. be a R"-valued Brownian motion ,and suppose &€ 57071 .

Define a R —valued process 2 by
£

€
1
Zt = €Xp (So A&st - 11 .E W_sll olS )
ie. Zy=expXy , where X has stochastic differential

dXe= TG de ¢, dB,
By Ito’s formula, 7 ¢ Will have stochastic differential

dZ¢ = 2§ dBe

If Zté{zcé Hzgta,‘rl then Zp isa martingale and E (Z¢)=1. In general it may
be shown that Zy is only a positive sub—martingale and E’gzt)ﬁli . In case
Z¢ is a martingale we may define the probability measure P+ on (Q,?;) by

d Pr
A Pf' :PT'
We have the following fundamental result:

Theorem 3.6: Let .
<
Zow= op (L §dBs— 2 [ Udids)

with Cbse ngtO,Tl , be a martingale. Then the process

= 27

(o, #r (:Pt)tetanz/ (Be telor ! )
with
A

a1
Bt = Bt - _g ésds

is @ Brownian motion.
The following theorem gives sufficient conditions on ‘{75 in order Z_. be
a martingale :



Theorem 3.7: If

N
E (exp 4 S°u<t>5uus)<+w

or

E(exp p holl* ) <c <+

then Z. is a martingale.

A> 1/2

YseloTl

/

p>o ,

24
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STOCHASTIC
DIFFERENTIAL EQUATIONS

4.1 Strong solutions

Let b:[oT]x R"— R" , :0013xR"—M"(R) be measurable functions, let
(o2, 3 ke, (Xe)c(ory Pr) be be a R"—valued stochastic process, and let
(1,8, (Pe), (Be), ®) a R"-valued Brownian motion such that btt,Xe)e Lo, T1
and 7 (t,X.)e LZEEOJJ . X is said to be a strong solution of the stochastic
differential equation ( s.d.e. )

A)(t = l)(‘&.,'xt)CIt + (T('tlxt.)dgt
(4.1)
on rl

if
t t
Xe = Ko ¢ ib(s,xs)és * 2 o (s,%5) d By
Obviously if ¢=0 ,then Xcw)= b, (nw)), where ¢ denotes the flow ( we suppose

it exists ) of the vector field b , and s.d.e.’s reduce to ordinary differential
equations. Suppose ¢ is constant. Then

£ %
Ke- T Be =4 [bisX)ds = "L-t-,ib(s, (Xg~0Bs)+Bs) s

therefore

Xew)= G (1 (w))
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where & denotes the flow of the w —dependent vector field

b, (e,x) = b(e,x+ T B.w))

4.2 Existence and uniqueness

Theorem 4.1: Suppose b:To,TIx R"—> R", ¢ Lo TIx R"—W"(r) are mea-
surable and

Ib@Ex) ek (atuxu) , UTEx)£x(1+Uxu) . (4.2)
Suppose further that for any R» o there is a positive constant Kg such that

b (ex) - ble) 2K hx-yll | No@Ex) -0 ¢y Il <Kg Ux-yll (4-3)

if Uxil¢R, lylleR,teloT]. Let n be any n—dimensional random vector inde-
pendent of B, . Then there exists a unique, continuous ( up tho stochastic
equivalence ), strong solution Xe of (4.1). If € llr[l(2<+oo then X.€MgLe1] and

E (sup ] Ixel') 2 G (A+EUR) .

teloT

The assertion of uniqueness means that if X, Yy are two solutions of (4.1), then

Pr{w: Xew) =Yg (w) ’v’fe[v.ﬂj =1

The assumptions of the above theorem permit an elementary proof of the
existence and uniqueness of solutions of s.d.e.’s which is analogous to the
classical one for o.d.e.’s: the solution will be the fixed point of the continuous

map & £

S Mile 17> MRToTl  S0n,)i= o+ )b6ds+ 76 )dE -
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4.3 Solutions of s.d.e.’s as diffusion processes

The solutions of s.d.e.’s are not arbitrary processes. In fact we have the
following :

Theorem 4.2: Let b,o satisfy (4.2) and (4.3), let n beindependent of Prs,TJ ,
and define P(s;7,t,A):= P(X€A), where X¢ is the solution of the s.d.e.

C{Xt - bCHZ -+ GC(B{:‘

XS:‘Q

Then X is a diffusion process with Markovian transition function p initial
distribution /Mh , and generator

At‘le\Cb = 1 E (G—d—*)“ (9:] + ? bL(Dl

2. b Y

Moreover X is a Markov process with the Feller property, so, since it is contin-
uous, it is a strong Markov process .

4.4 Solutions of s.d.e.’s as Markov processes on path space

From the above theorem and and the continuity of the solution of a s.d.e.
it follows that such processes can be realized on the path space C(Te,77,R"):

denote by ”mst the smallest ¢ —algebra generated by the sets
{Yé C (EO,TJ, R") . Y(wjeA ,ne s k] }

where A is any Borel set in R" . Denote by M* the smallest 0 -algebra
generated by

{’afe C(CoT3, R™) @ yu)eh weES,TJ}
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Define a continuous process by

XE (7)1: X(t) .
Finally let
Pr""{'b’ijl = Priw: X:.)cw)eB}

where B is any set in ‘mi and where X ’; is a solution of the s.d.e.

(4.4.)

with b and o satisfying (4.2) and (4.3). Notice that for each weqL,
£ s X () is a continuous path.

Theorem 4.3: The process (c(roma,RY), M, (M%), Ke )?r )Wlth M, X,
and B as above, is a Markov process with the Feller property, and therefore is
a strong Markov process.

From the above construction it is clear that [N depends only on the law
of the process X¢ . The following theorem tell us that the process, Xe does
not depends ( in laW ) on the choice of the Brownian motion B. in (4.4).

Theorem 4.4: Let (15, S; (5PJ) (BJ) hE ), be two R"-valued Brownian mo-
tions and let 15 )=12, be two random var/ables in ' (-Q-J,S),Pr ) independent
of BL . If b and o satisfy (4.2) and (4.3), and X1 js the solution of the
s.d.e.’s

IX0 o bdt . dB,

then the processes X' have the same law.



29

4.5 S.d.e.’s on open domains

The following localization theorem permits us to define s.d.e. on domains
of Te,T)x R". A subset D of [o,TIx R™ will be called a domain if Do R 24
and D=D'nleiTIx R" | where D' is open in R"**,

Theorem 4.5: Let b;:ToTIxR"—» R | a7 : [o7Ix R = M7(R) satisfy (4.2) and
(4.3), and let D be a domain of [+TIxR" . Suppose that bﬂ’“0=1’21‘9 and
Tpp= Gpp  and let X! be the solution of

dXi = bydt 4 o5 dBe
Xg = ni
Assume finally that n,=1n, for a.a. w for which either n'w)eD or 7zcw)eD.

Denote by z; the exit time of (t,X.) from D if Z;<T, and z;=T otherwise.
then

Pf" (Zf,—_Zl) -.::’I-

Pr Su Ix? - Xill=0}=1
L e WXL - X l=o]

Let us now consider two continuous functions
b: D—R" @ :D —M""(R)

where D isa bounded domainin R,x R" . Supposethat b and @ satisfy
(4.3) on every closed subdomain of D . Let {Dn} be an increasing sequence
of domains such that Dn¢D, Y0,=0, and consider the sequence of functions b,
‘and 0, satisfying the conditions of the existence and uniqueness theorem,
and such that b"(‘ﬁ =b and Ty - Let X% the solution of the s.d.e.

2] n

C(Xht. = by\Jt + %ABt

n
o=r2

X



30

with h independent of B, and Pr{neDj=1. If 2, denotes the exit time of
(¢,X%) from Dy, then from theorem 4.5 for m>n,we see that the processes
X" and X"e coincide on D, and z,>Z,. Furthermore, for t<2,, we have

bt X% )= bt,XY) , oy xi)= o (2xT) .

Define X\L_:: X'; if tez . It is clear that X, satisfies the s.d.e. on D

Axk - bc{t + G-ClBt
Xo=q

for teTyz sup Z,

4.6 Weak solutions and transformation of the drift

In the first section we defined strong solutions of s.d.e.’s. In such case
the probability space and the Brownian motion with respect to which one
performs stochastic integration were a priori assigned. Otherwise we will say

that (0,5, (:Ft)téf-,ﬂJ(Xt)tea.n:(gt)lP’) is a weak solution of the s.d.e.

dXe = bk, Xg)dt 4+ 0 (6, Xc)dBy
Xo = q
if (n,s, &), (8)%) is a Brownian motion,
beXe)e Ly leT] | T(eXxe)e Ly lo, 71

and
£ t

Xe= n+ éb(s,xs)ds + J,VCSJKs)JBs

The existence of weak solutions of s.d.e.’s follows from Girsanov’s theorem.
In fact, suppose @ satisfy (4.2) and (4.3). Then, if (1 ,3S,(%),(B.)Fr) is a
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Brownian motion, then there exists a solution of the s.d.e.

dX¢ = G (£, X ) d By
(4.5)
Xo= q

with n independent of B, . Suppose now that ¢ isinvertible and b is such
that
C{Dt "

0‘-1(t,xt) b, x.) e LlB Co,73

2]

and

& ©
Z, = exp( ,E)‘{?SJBS- ??: % llfbsl(zds)

is a martingale. Then, by Girsanov’s theorem,
A t . ’
Bt = Bt - .L C7'-1(5»,><s) E(S,X.s.)ols (46)

is a Brownian motion with respect to the measure P , with

.iﬁ:_ - ZL’
4Pr 7

Putting (4.6) into (4.5), one obtains
A
Axt— = b(ﬁ,xt) + G'('tlxt_)C{Bt
Xo = Yl
e (0,3, (%), (X&), ( §t),§-) is a weak solution of (4.7). Moreover one can

show that , for weak solutions, under the above assumptions on ¢ and b ,
there is unicity in law. g

(4.7)
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LYAPUNOV-TYPE THEOREMS FOR
REGULARITY AND NONATTAINABILITY

5.1 Regularity

It follows from theorem 4.1 that if (4.2) and (4.3) hold for all t 2z 0 then
the solution of equation (4.1) is defined for all t2o0 and the process X¢ is
said to be regular. Analogously for the solution X¢ of a s.d.e. on a domain
D , the process Xy is said to be regular if Pritpzw}=1, where Cp is the first
exit time of the process (¢,X.) from the domain D . We note that if D=RxR’
then the two definitions of regular process coincide. This follows from the
continuity of X¢ , defining Zp to be the limit of the increasing sequence
of random variables Z, , where Z, denotes the exit time of (t,Xe) from
Rx{mi<h} . The conditions under which theorem 4.1 assures the regularity of
the solution process are rather restrictive and it is of paramount importance
to find others, less stringent conditions (allowing, for instance, unbounded
drifts) for the existence of the solution of a s.d.e. . The following theorem
gives a more general sufficient condition for regularity through the Lyapunov
function approach.

Theorem 5.1: Let D be a domain in RxR" and let

b:D— R" T :D— M™(R)

!
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be the coefficients of the s.d.e. on D
ClXt — b Jt e G~C[B{;

.'Xc,:rz

with 1 independent of B, , and Priton)edj=1. Let '{Dh}nzo be an increasing
sequence of bounded domains such that Dne D, U0,=0D. Suppose that in every
Dn b, o satisfy conditions (4.2) and (4.3), and there exist a non negative func-
tion Ve C"(D) such that for some c 20, h2o

LVecV on D\D: 529 4+ bV, . ate(Ce*D))  (54)
2
[im inf v(‘t,)‘) = 4+ & . (52.)

N2+ &x)e?D,

Then the solution process exists and it is regular, I.e. BJLCO-. ZD(w)=ao}=’l. Moreover

if Etlrll!1<+m and E(Vlonlktw then X € H;(/&_) .
Proof. We at first note that from (5.1) it follows that the function

W (%)= ¢ V(,x)

satisfies LW< 0. Now, let X't be the solution of the s.d.e. on D, with
coefficients by, ¢y, . Since bI‘D.,IG-f‘D.\ satisfy (4.2) and (4.3), X'y exists,
and let 2, denote the exit time of (t,Xx%t) from D, . Define

v h n

/t = (tazy, ) Koaz, )

Since D, isbounded, b and ¢ are continuous on D, by (4.3) and We C'I'ZCD),
one has

(o*vw ) (YR)eMs (R,)  LW(Y2)e ME(R,) .
So by Ito’s formula applied to W | it follows

€
EW(YL)=E(Vlon) + E f ZW(Y]) ds
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Suppose now that h>h . Then
t n
E { LW (Y{)ds = g‘ﬁW(s,XJA/MSsz =

_ S " W (e, %)t x

= Dn\DYLFW(s,x) d s ) dls + é,} (s,%)dug ds =
< é)ﬁf W (s, %) dpf o ds = As

by (5.1) and the fact that on Dy the distributions /V-'; and /MRS coincide by

theorem 4.5. Therefore

Pr {w: th(w)st} mwf V)< E VYY) < O (E Vien)«AR) .
(‘b;“)e‘(h)h

Now, A% is finite by

LW (YD) e My (Ry)

and suppose that the range of 1 is bounded with probability one, so that

EV(eq)<+@ . Then by (5.2) one hasPr{2p2ty= o for all finite t , ie.
Pr(Zp=t®)=1. The case of an arbitrary initial condition n may be dealt with

in the way described in [10] pp. 465—466.

5.2 Nonattainability

If in the above proof one works with hitting times instead of stopping

ones one obtain the following nonattainability result:

Theorem 5.2: Let D be a bounded domain in RxR", let I' be a closed

subset of R™' and let

b. D\F— R" ¢ :D\' = M™"(R)
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be the coefficients of the s.d.e. on D\

dxt :ECHZ + G.JBt ,

Xo=q

with n independent of B, and Pr{(e,q)eD_}:’!. Define {Dn} to be the in-
creasing sequence of bounded domains "

Dn = Dn {(t,x) cdE,x)> 4ln}

where d denotes the distance function of T . Suppose thatin every Dy b and
0 satisfy (4.2) and (4.3) and there exists a non negative function Ve c** (D)
such that for some c20, H2o0

LZV<cV on (D\P)\Dg (5.3)

lim nf Viex) = +@
h>+e0 dtX)=1/n

(5.4)
E V(e,h) «+w , (5.5)

Then the process (¢,X¢) neverhits [' with probability one, i.e. Pr{ 'ZF:+oo} =1,
where Zp denotes the first hitting time of T' |

5.3 Nonattainability of regular submanifolds

If in the above theorem T is a C*-submanifold of R" then one can use
the logarithm of the inverse of the distance function as a, Lyapunov function.

Theorem 53: Let D be a bounded open subset of R", let I' be a C*-
m—codimensional submanifold of R" , and letl b be the drift of the s.d.e. on

DA\T
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d¥e = bdbt +dBy
Xo= 1

with Pr{Qe DAT ,d(@zcw}’!and Iz independent of B. . Suppose that in every
bounded domain

Dy .= Dan {xzc\(x)>4/ns

/

where & denotes the distance function of ', b satisfy (4.2) and (4.3), and
suppose there exists a nbh. U of T' such that

b.dVd > (2-m)/2 on U\T' . (56)
Then T' is nonattainable.
Proof. Let V bea C> nonnegative function on DM' such that

Vipye = - log <
One has, on V\I' |

1V=-{b. dVd- 1VdI}/z +dAd /2 Yd™

From dAd=m-1+0(d) ( seethe appendix ), \Wdl=1 , and (5.6),it follows LV<0 on
a sufficiently small nbh. of ' . Obviously V satisfy (5.4), so nonattainability
follows from theorem 5.2.

5.4 Appendix. The distance function

Let ' be a non—empty set in a metric space X with metric function
m . The distance function d is defined by

doo= inf mxy)
ye
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Let us now suppose that [ is a m~dimensional Ck‘submanifold of R".
It is readily shown that there exists a nbh. U of T' such that d is a
C* function on U\T' . Indeed, if : V> R" is a local coordinate system in
R™ such that f(VaT)clolx R™  one has d0)=UCe..., Xnmll with respect to this
coordinate system. From this also it follows that Jypect d®=l-901, For sake
of future convenience we show its existence by making use of the Lagrange’s
multipliers theory and implicit function theorem.

Theorem 5.4: Let jér' and let F=(F,,... . k.) be a R"—valued c* function such
that dﬁ(b)A---Achm(bj;éo, and T' js given by Fx)=0 on a nbh. of Y . Then there
exist a nbh. ofj Uy and 7 functions

Y v—=0 AU -—R™
such that |
qQ (%, ‘fOO,M%)) = (2 (P 0)-x)+ DF*(WK))-/,\(X)/F(WM) =0
for all xe U™, Moreover d &) = || x- P ) \.

Proof. We prove the theorem making use of the implicit function theorem
applied to the function

GOy, A) =(20e-yy + DF ). A, Fiyy )

To this end we must prove the invertibility of the derivative of ¢ with respect
to the 2-nd and 3-rd variables evaluated in (44,0), yel' . Since

DG Gy, A) (M) = (2h« DOF(y.A)-h+DF oM, DFly) b )
we must resolve the linear system
2h + DF¥ M _ -
DF - h =N
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From the first equation we obtain
= 1 (r- DF*. M)
and making use of the second one we have

N=2 DF-v - DF. DF " M

Since

det DF-DF¥ = dFya-e-adfm (VR VFW) 20

the above system has one and only one solution for any given v and N | so
P3G (yy,0) isinvertible. We end the proof observing that, by Lagrange’s the-
ory of multipliers, Yx) is the minimum of the function yr> ix- yi* restricted

to I
Corollary 5.1:

AVcl = X- \f (x)
Proof.
Vd*22dVd =V lIx-gmir=20l- Dty*ck))-(x —yw) =

= (=900 - DPFOY- (x-9 ) -

From F(\POO):O it follows

DF (¢ ) DY &) =0

and, since
*
- = A . ,
X=90) = > DF (‘{J(X)) A (x)

one has

D ¥¥e0) (x- P ) = 4 D&Q*(x) DFF (Y 9) Alx) =0 .
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From the the regularity of d* and from the equation
Ad™= 2IVdIM s 2dAd = 2 (44 dAd)

we see that dAd isa T function. We are now interested in the value of the -
function dAd on a nbh. of T' .

Theorem 5.5:
dAd = (codimT-1) + 0OCd) .

Proof. From Vd:2(x-9x)) it follows Ad = 2(n- A:G‘YCX)) and, since x = P 0+ dvd
for x in a sufficiently small nbh. of T , one has

dir 9o = div ¢ (P9) + 0d) .
So, we have to evaluate DY(90) . From

2 (-909) = DFF(9(0) - A (x)

it follows
2 (T-Dy(pm)) = DT—*@FM) DA (y()
and
2 DFIP9) (- p0) = DF (o). DFp9) A
therefore A(x) = 2 (DF - DF¥ (P (x) )-1 DY (Y09) (x-¢(x))
and DAY = 2 (DF-DF*(\O(X)))-T DFE(p ) (- DY (v (x) )

Since DF(cp(x))- D*f{&p(x)):o , In conclusion we have
DY) =T - DF*(W)«)) (DF- DF*(PCAJ))"7 DF(p)) .
We conclude the proof evaluating the trace of DF*(DFDT-"TTDF:
2 (OFOFDF¥ DF),, = gﬂ OF; (DF.DF¥), Q. T, =
(det DFDF*)™ 3 df (VF,) €™ dFn.. adF noondE, (W, S5 UE, )

Jln

= (det DF-DF¥*)-T ?(d«f DF.DF¥ ) = m.
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STOCHASTIC QUANTIZATION

6.1 Stochastic mechanics

Let Xe be a stochastic process. It is well know that for many important
processes Xy is not differentiable. This is the case for the Wiener process.
To discuss the kinematics of stochastic processes therefore one needs a sub-
stitute for the derivative. Let (11,3, (:Pe_)“r,(x{_)tir )be a continuous R"—valued
stochastic process such that

i) &+ X is a continuous map from I into L*(,S %)

II) D-(-Xt = é:.::)*.@/h)E (Xt-ﬂ.\- Xe k?t)
exists as a limit in LMQSR) and €+ DXy is continuous from I into L"(Q,3 %)
iii) ‘;*t:: lim 4 E((th‘xt)@(xteh-xt) ‘:Pt)
‘f\'i>0+ h

exists as a limit in L0 ,S,Pc—) , and v 3, is continuous from T into L"(_()_‘S’R-),
and detdg>o0a.e. .

The stochastic process (£,S, (%), (D)) is called the mean forward
derivative and it represent the best prediction one can make, given any relevant
information at time € , of

(_X’c*'h-xt )/h

for infinitely small positive h . If £+>X¢ has a continuous strong derivative
in 1100 3, Pr) then D,Xe = d%/dt. As an example of a stochastic process satisfying
i)-iii) consider a solution of a s.d.e.

dX, = Ldt + o dBe
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In this case DyX.=b@,X) and 2,=Tlt %) M€ xe ) . This situation, in some sense,
exhausts all the examples of processes satisfying i)-iii) :

Theorem 6.1: Let (n,S, (%) , (X)) be a continuous stochastic process
satisfying i)=iii). Then there exists a Brownian motion (2,S, (), (Be) Pr) such

that
£

A
Xe= X ¢ ébfxsofs + g\[é—‘; AB#S

Let us now suppose there exists a decreasing family of T -algebras (%)
such that the continuous stochastic process (1,3, (), (Xe),*) satisfying i)-
iii) is ¥_ ~measurable ( % represents the past, Fc¢ the future ). In that case
one may define the time-symmetric analogue of i)—iii) :

iv)

DXg:= lim 4 E (X-Xeep |
h=>o. h

exists as a limit in L'03P)and te DX, js continuous into L*((1,S %r)

v)
h>0+« |

exists as a limit in SH, e s continuous, and de£3..>0 a.e.

The stochastic process D.X¢ is called the mean backward derivative and is
in general different from D,X.. If &+> X is strongly differentiable in L', $ %)
then D,X¢=D_X¢ =dX/dt. It may be shown that

E(DiXe)=E(D-Xe) |, B(3pe)= E(a,) .

Moreover X, is a constant process if and only if DX:=D.X=0. There is an
analogue of theorem 6.1:

Theorem 6.2: Let (.S, (Fe), (Xe), ) be a continuous stochastic process sat-
istying i),iv),v). Then there exists a Brownian motion (10,5, (%), (Boe),P) such

that
t <

Xt: .Xo + QD—XSJS - _E)‘/éts‘ st

The above theorem needs some explanation since (F.) isa decreasing ¢ -
algebra. (11,5, (Fe), (B-e),Pr) is called a Brownian motjon since Bo=0, BB
is normally distributed with variance ¢-< and zero mean, and BB is
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independent of T, . The stochastic integral with respect to such processes
is defined in a manner analogous to the Ito’s integral with respect to the
usual Brownian motion where the only difference is that the limit of Riemann
sums is performed using backward increments. Let us now assume that the
past P. and the future 7. are conditionally independent given the present
¥ . If X, is a Markov process and

P :0"()(5‘5&*:) , _‘Fc-—:G'QXS,SZb)

this is certainly the case. With the above assumption on the P« and Te ,
if X. satisfies i) and iv) then D¢X¢ and DX are J.aF. —measurable, and we
may define D.D.X¢ and D.D, X if the corresponding limits exist. Assuming they
exist, we define

Ao = 2 (DeD-Xe + D-DeXe)
yA

and call it the mean second derivative or mean acceleration. If &w %, is smooth
then A = d*Xe/de™

If the process Xe is supposed to represent the motion of a particle of
mass m in the presence of an external force ¥ and an unanalized dynamical
mechanism causing random fluctuations one is lead to write down a stochastic
analogue of Newton's second law setting

F(Xew)) = m Agw)

6.2 Smooth diffusions

(X,) _P)is a smooth diffusion,

tel!

Let us now suppose that (0 S, (%)
that is
i) Xe s a continuous R"—valued Markov process
~ii) there exist smooth bounded functions

(%)

ter!) ter!

nxh

\:'.h b_  IxR"» R" | lIbs ) Wec @rix1) | r:RWWM (R) |

a positive definite, such that
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¥ fely IxR") , Dt &%) and D_fle,X) exists and
DetleXe) = (9 +% ¥ £+ b VE) X

DL, xe) = (Qt{:— ?} 0"”'(5}13'{: +b- VL) (&, %¢)

The definition emphasizes the fact that diffusions are time—symmetric. The
differential operators appearing in ii) are called the forward and backward
generators. Analogously b, and b_ are called the forward and backward
drift respectively.

We will now derive a relation between b, and b~ . From now we will
suppose 0=V v>o for simplicity.

Let 4e C;axR") and let P be a measure such that

) fde = JELex) 4t
T
Since

4 EflXe)dezo= JE D flex)dt = (Afvateb,VE)dp |
T Tx[RN

Ho-
(o
(qy

the measure P will be a weak solution of the forward Fokker—Planck equation
PP = VAP - div (pb.) . (6.1)

This equation is parabolic with smooth coefficients, so e will be smooth and
strictly positive. Since

E D-{-')C(.t,xb) = E D-'F Ctlxb)
P will be also a solution of the backward Fokker—-Planck equation
Pep=-vap - di (pb.) _, (6.2)

Averaging (6.1) and (6.2) one obtains the current equation ( also called the
equation of continuity )

(th = —-cliu' fU—
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where the current velocity vector v is defined by

U= (b_,‘_'(- E_)

— p).s

Taking the difference of (6.1) and (6.2) one obtains

div (2w Vp - p(byrb)) =0

It may be shown that 19Vf~f(bf+5_) is not only divergence free but it is
actually zero, so that

b_ = bi - 'wwo%f

and one has the osmotic equation

L=V Y \o% E
where the osmotic velocity vector w is defined by

U= L‘i(b“.‘E—)

. . . ¢ o] n
Since X, is supposed to be a Markov process one has, given TeCy (R),

EE &)X ) = %RH‘F(%)PHS.X;,’M%J set
and

E (L)1 Xe) = Smhi;cxj b (s dx &, Xe) set
where

Pr (5% ,£,A) 1= PrXe€ALXs) set

P (5,4, 8 %) = Pr(xge A IXe) sek

" are the forward and backward transition probability respectively. Note that P
is the usual Markovian transition function. p- is also a transition function
and its definition emphasizes the time symmetry in the definition of Markov
process.
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Let & be two functions such that Ft,Xe) and G(5,Xc) are forward
and backward martingales respectively. A stochastic process X¢ is a
backward martingalein case each X is Ty -measurable and E (X% )= X¢ for all
sst . A forward martingale corresponds to the usual definition of martingale.
Since X, is Markovian we have that

s, X)) = E(F () 1% ) =

1l

Tfw) pe (5%, 6 dy)
mh
and

G X):.= E (%, (%) IXe) =
= ‘g;h%CX) p- (S,O{X/tlxt’)

are forward and backward martingales respectively for all -y‘:,fg,e CS (R

Since it is easy to prove that if a process X¢ is a forward ( backward
) martingale, then D.X.=o ( D_X=0), by i) it follows that ¥ and < are
solutions of the forward diffusion equation and the backward diffusion equation
respectively :

<(?JS-(-\)A+ b+VJF = 0O
(%t- vA « b V) G 2 o

From our regularity assumptions on the coefficients o , by, b- and from
the standard theory of parabolic partial differential equations it follows that
the transition probabilities there are strictly positive smooth functions p, P~
the fundamental solutions of the forward and backward operators respectively,
such that

P+ (3/X/Jt1d‘j) = P+ (s, x,t4) c(‘.‘j
P-(sdxt,y) = po(s,x%Y) dx

From this there also follows that p+ satisfies the forward Fokker-Plank equa-
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tionin t and y . and the forward diffusion equation in s and x
Qt P+ - \)Aﬂ P+ - G\I\T:j (,P-f b-(-)

Vs P+ =-VD, P+ = by Y Pt

Analogously for p. one has
Vs po =-vA, p- - div (3-b-)

Qepo=vhyp. - b-Vypo

Moreover, since for all 4 19 € C? (R™)

E 'F(xs)%«cxt> ~F E(fx)axa) X)) =€ E(f(X)g(Xe) \Xe ) =
=FX)E (}(Xcﬂxs) = %(XE)E(‘HXS)\XL—) =

§ Lo 9(9) Pe(5,%%,4) f(s,x)clxo\5= § fx)gm) - (sx24) f(t,gjjdxd_y
nRh R%IRn

one has

?(S,X) P+ (Slxl‘bl%) = ?" (Slxlt‘ 5) f(t’ﬂ)

6.3 Smooth diffusions and the Schrédinger equation

Let us now return to the stochastic analogue of Newton’s law. Let Xe be
a smooth diffusion process. By ii) it follows DiXe=b, (t, X) and D_Xc=bo (£, Xo).
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By ii) again,

D+ D_ Xt = (Btb- (&:,X(,> + E+V ‘3_ (,ttxt) ‘i'VA b_ (-*’;Xt)

B-Dy X = Opb, (bXe) e b Vb, Xe)-v A L (6,X)
so that the mean acceleration is given by Ale,Xc), where

A=Q betb. o 4 b.Vh .1 b Vb A b-b.
YA 1 2 2
that is

@t\T = A+ w-Vu - 0. Vv + Vv Ay

Suppose now that mAkX.)=F, X¢) holds. The above equations becomes
VUU=Flm+uVu-orVoevAuw

and from the osmotic equation and the continuity equation one obtains
Qtu«: vV 9% loc}f =V V(- dir fu‘) =
=-VV (dw v+u. Ve /e )=-v Vdivr v = Viru

In conclusion, if u, and v, are given, one has an initial value problem for a
system of non-linear partial differential equations

(Etw = = VC{N"\T— Yuw v

(6.2)
gt(f = T/m - Vu+ w-Vuw +vAw

Such equations, once resolved, give b, , b=, and so the Markov process the
particle obeys is known.
Suppose now that F and o are gradients, pose

F:-V\/ , U= 2y VA4S
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and define
R = 1. l .
- g P

Consider now the complex function ‘= €p R+lS | and put v=f/am. The
remarkable fact is that from (6.3) easily follows that ¢ satisfy the Schrodinger
equation

L'F\(athf/z—ﬁ A"{’-{-\/Lf/—f-ol(*-)“{/ . (64)
o1Lm

Since h{’f:—-f, if we multiply by \{’*, integrate over space, and take real parts,
we see that if (6.4) is satisfied, then d(s) 1is real. We can always choose the
potential S so that o(e) =0.
Conversely, if ¢ is any smooth, nowhere zero, solution of the Schrodinger
. . 2 .
equation, normalized so that Iyll.=1, we may write

W=exp ReLS  w= ’%VR ) U’=‘.ﬁh; Vs,

and the diffusion process with diffusion matrix 3 1/m , forward drift by=u+v ,
backward drift b_= 0v~W , has probability density 1Y 12, and mean acceleration
A=-VV/m. The same considerations apply to systems of n particles considering
R* —valued diffusion processes with diffusion matrix (h Si5/m;)-

In conclusion there is a bijective correspondence between smooth diffusion
with diffusion matrix % 1/m , and drift satisfying (6.3), and smooth nowhere
zero solution ¢ of the Schrodinger equation, the correspondence being de-
termined by

p = lylr bt:%(Petim)Vlo%ﬂ/
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NONATTAINABILITY OF NOleS
AND
EXISTENCE OF NELSON DIFFUSIONS

7.1 Nelson diffusions

Let p. be a family of probability densities on R" , let b be a vector
field on Z5 , where

Zpi= ] e ReR" 1 plox)=ol

and suppose that, on ZPC ,» P and b satisfy, in some weak sense, the Fokker—
Planck equation

Qtf = - dir (f‘:;)-f—i’z_llf

A solution, if it exists, of the s.d.e. on ZFC

dXc = bdt + dB
T + t (7‘1)
Xo = kz
with My=fodx, will be called a Nelson diffusion. If
pP=lyl> | b_—_Q?e-z-lm)Vloa_&[J,

where < is a solution of the Schrodinger equation, then Xe will be called a
Schrodinger diffusion. Under suitable conditions D, X, exists and it is equal



50

to b , and moreover

Pr ('F (Xt—)EA): i-g(x) )OCt,X)dX ,

for all bounded measurable function -@ and all measurable Borel sets A . As
regards the equality DiX¢= b Xc) Follmer proved that if X¢ is a solution of
(7.1) with
T 5 |
E So b &, Xe)ll dt <+ pz1
then, for almost all £&ToT1, Dy X¢ exists as a limit in L?(.O.,SJP;-) , and
DeXe=b (& Xe) .

Let us suppose that b is sufficiently regular on Z§ . Then, from the
existence theorem for s.d.e.’s, there exists a local Markovian diffusion in some
bounded domain in 2‘@ . The process will be defined up to some stopping
time indicating that the process will reach the nodes or will escape to infinity
in a finite time. Since the paradigm of stochastic quantization tells us that
Xe represents the trajectory of the particle, and since quantum mechanics
tells us that H’Cx)lz represents the probability density to find the particle in
X , it seems very unphysical that the process may reach the nodes. It turns
that the solution of this problem is given by its cause, i.e. the singularity
of the drift on Zp . In fact, if the singular drift field points away from the
nodes, it will give rise to a strong repulsion, and prevent the particle from
approaching the nodes.

Let us now check that, at least for stationary solutions of the Schrédinger
equation, the corresponding drifts are repulsive at the nodes.

7.2 Bound states

Let $,=4+.B bea C' eigenfunction of the Schrédinger on R" . The drift
field will be a time-independent vector field on Zcf

box) = T (- p)Vet + @+B) VB0 / (LP00+ B 09) (72)

Suppose now da(xo)An d pXo)f0 with xeZ , so that 2 will be a (n-2)-dimensional
¢1 local manifold in a nbh. of =, In Z , and consider the local change of
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coordinate
Fiox e (300, B (), $(0)

defined on a nbh. of x, in R" | where Y 1is a local chart of Zp in a nbh. of
X, inZp. From (7.2) it follows

Beb () = A Toer) e o) e, ] (73)

2
X7e X%

where {¢;} is the standard basis in R" . From (7.3) it follows that, locally,
b is a vector field that 'lives’ on the fibers of the normal bundle of Zp. It is
easy to study the phase portrait of the vector field

(5 5)

Xyt ) X%yt
on Rl\{og . With respect to polar coordinates one has X- (2,4/r+) , and the
solution of the differential equation

~ k)=2
8(c)= 1/ (x)
is

Fle)z2t+r,  8(e) =06, + 1/2r, - 1 (2(e410)) (mod 2T)

so that the origin ( i.e. Zp ) is a repellor with basin equal to R* , and the
orbits turn round the origin infinitely many times in a finite time.

From the above analysis, if 4 denotes the distance function of Z , then

d is certainly increasing under the flow of b , so that one can hope to use
theorem 5.3 to prove the nonattainability of nodes. To this end let us now
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give an estimate of b-dVd on a nbh. of Zp. From (7.2) and from

Ad(x)= 400 Vdx) Valxo) + 0d?)
B0 = d o) V) -VBxe) + 0(d?)

there follows

b-dVd = 4+ 0d)

on a nbh. of Zf- The above estimate permits us to use theorem 5.3 :

Theorem 7.1: Let 4,=4+(B bea c" eigenfunction of the Schrodinger equation
on R" , such that <,~7() is 3 C* submanifold, and let define b on ZCP by

bz@g+ ‘m) Y lo% k{’o

Then, for every bounded open domain D in R", the solution of the s.d.e. on
D\Zp

C{Xt = b CH.' + d Bt—

Ka = Yl
with ?r{QéD\Zﬁr’f , fz independent of Bt _ does not reach the nodes with prob-
ability one.
7.3 A Lyapunov—type theorem for Nelson diffusions

The above analysis seems to fail in the time-dependent case. In fact, let
us try to use theorem 5.2 with V:-(o%cl . We have

LV=-)dd +b.dVd - Wi +dbud 2§ /of?
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Since ( see the proof of theorem 5.5, we pose F-(4,B) )

. . ° 2
dAXA:/L{_ dL__ : “dR(B"PVXC’LH 4 OCCDE
0o VB - f ol I W ok ot I B [t B

= 4+<'iz+ £+ 0(d)

on a nbh. of Zp, LV£0 implies
b.dV,d+d" > 1 ! (7.4)

on a sufficiently small nbh. of Zp . Since

b= (#-B)Vxet + (+B)VxB
art+ BZ

and

o= d(dd+ Vet Vd) + 0(d%)

B=d(fd+VB%d) « 0

(7.4) is equivalent to

(Vx&'vxd )l'f' (vx B‘VXCD?:(. ;( chi . ("’(Q(d+ év}:B*d.‘VX?— év%"z)
(%t Wd+ad ) & (RERd+pd)T

Fd>a 0. (78
2

In the one dimensional case Zf will be a discrete set in R” | and (7.5) will
reduce to

(o{‘l-e- B‘z) xi+ TX (aad'+ éB’%'c;&'Bl- éd') . T >

a (7.6)
X+ adT )+ (B'x+ gT)* X%TH 2

with X=x-x, , T=4-t, ) (oto) €Z 2z Moreover, on a nbh. of its singularities

b(Tx) = (¥ B)X+T (dal+ BB+dp!- ) o) (77
(' X+aT)*+ (B‘X+ 8T)2
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Formula (7.7) shows that in the general case b does not always point away
from the node. Let us see it with an example. Let 4 be a solution of the
Schrédinger equation for the harmonic oscillator with initial condition

-x¥/2

o 3l pdy ) bom IR G =VExE T Napiat AR

After some calculations one obtains

Zf - {Qbﬁ()emli t:K’“‘ ‘Kéll X‘:-:t X/EHS J
and, in (W, =x/R M)

2 2 —AL/4HL
AMH/W,GL':-ﬁE@ % ,P]=O /

A=0 ) é:—;\q_

so that

b(T,X):___ Q}*LX-" \E)\f-&T . 0(4)
X+ ATTE

on a nbh. of (90) . This shows that on the sectors

} Teo ) - AT/Rpexco ,{ T>o0, 0ex< AT/ RS
(we are supposing x[j> 0 ) b points in the wrong direction

'x::—XT/ﬁ. M

T

‘T'I‘"‘

and o&+T*) will not be increasing under the flow of (4,b) in the sector

{T<o /-XT/E/M.<X<OB.
///
=

/

T
Moreover, for instance for X such that fip +pr <0 (7.6) will be violated on
the line X=T . This example shows us that there is no hope to apply Lyapunov
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theorem, at least as it stands, to Nelson diffusions. The key fact for resolving
this problem is that for Nelson diffusions the density of the process is a priori
known. This will allow us to replace the pointwise condition LV<0 with a
more manageable condition in the mean. The key technical ingredient is the
following result of Zheng :

Theorem 7.2: Let p be a function on R.xR" such that 7)) s a
probability density ¥teRy and VP satisfy the following Holder condition:

LVP(s, %) =V Ileu) < (Ix-Yll~+ H:-S("/Z) XyeR compact

Let b 2 locally Lipschitz vector field on 2:5 with 2f:={ f=ol Suppose P
and b satisfy the Fokker—Planck equation in the following weak sense:

<
< ferfsv= [<LAf B VL, B ¥ e CP (R")

where <, > s the usual L* scalar product with respect to the Lebesgue mea-
suredf X¢ is the Nelson diffusion defined by f and b, then, for every random
variable 3 satisfying 923<TAT T>0 (2 being the stopping time of Xe ), and

‘F— =0 3 T
B [Foxe)de & [[£ (o) plom) dtx

Let us now explain as the above results enters in the proof of the Lya-
punov’s theorem. In the usual proof, see §5.1, one has

EVYL)-EV(L")=E fZl/(X;’)o{s = jf\/(s,x)c{ﬂ;wa/s ,
Dn

where /4; is the distribution of the process X5, and, since one has no knowl-
edge on M5, the only way to obtain an uniform ( with respect to n ) upper
estimate on

t
E ) Iv(ya)ds
is to require IV< 0 . For N elson diffusions, using theorem 7.2, we may write

E X:I’,V()/g)ols < 5(2V)+(5,k) Plsx)dsdx |
D .
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and it will suffice to require
(LV)" e L (RxR™ pdtds) .

So we have the following

Theorem 7.3: Let ¢ and b as in theorem 7.2 and let D be a bounded
domain in R,x R". Suppose there exists a non negative function Vec"*(D) such
that

/

(LV)* e L'(D, pdedx)
Ve, ) e LY (DaR™, fodx) .

and

Lim inf Vigx) =+

/
ho>+o  dx)=1/n

where & denotes the distance function of Zf, and
‘ﬁ = (at'("b'vx*%Ax

Then the solution of the s.d.e. on D\Zf

Xo:"\ /‘(n= {cdx

does not reach the nodes with probability one.
Suppose that 'Zf is such that de <" |, and put V=-—‘°3C& . One obtains

2Vo-dd+ b.dVde IRl +dAd ey /d™ .
Suppose now that f: 0(d*) on a nbh. of Zp, then
(pv)tel' ) 4 (b.dud) el (D)

This generalizes the pointwise condition b-dVd700f theorem 5.3 ( here Z
has codimension two ). If P=IyI*, with ¢ a C" solution of the Schrédinger
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equation, then f:O(oil) , and from

o=L&-B)%ar (+8) % BT /s pt)

it follows b=0(4/d) | so (b.clvcl)'el." is always satisfied.
Observing that in the Lyapunov theorem is sufficient to require

Vec™(,) , UDaD | g(\iV)+fcftclxiH<+Co ¥

we can prove the following

Theorem 7.4: Let P:b  be asintheorem 7.2 and suppose that Zp s the
union of a numerable family of C* submanifolds, Suppose moreover that

p/d*eLl™(D)  publ/de L' (D) 7.3)

with 4 the distance function of Zf , and D bounded. Then the corresponding
Nelson diffusion on D\Z[o never reaches 210 :

Proof. DPose

- U
Zf"hem Fh

where the TJ' 's are C* submanifolds of ™", Tet cfj denote the distance
function of Tj - Let Vj be a non negative C** function on D\T; such that Y -
~logd; ona sufficiently small nbh. of I’j . Since V| is regular,

Idilet | E%eljliza, IDSd;0 = cd;+ 10 0n]
with O;(1) bounded ( see theorem 5.5 ),1/d<n on D, , djx Gf’ and Dy is

bounded, for every j there exists a constant M;>1 such that

V< (elog n) Mj /I(VVj[(Dnéh M;, DS < n*Hj (19)

Let 3
Vi= 2 ¢ Vi /M,

jenN
By (7.9) the above series is uniformly convergent on D, together with the

series )
.l -. . =) .

3

so Ve C"™(D,) ¥ nuq
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By (7.8) we have
{ lfV]?chlx <L 5&‘3 lﬂ\/jlfcl’cclx < 2}%‘3 li\/jlfdtix < K+ 6‘3{l<_1_4'_l+
4 D 4 D

Dn n D\Dz i

b Shdjl UVdill®, [ Axdi qftdgxéﬁsz 4 bl 1 N fodtdx <vo0
5 4P Q_AJ'}F j { 2d7 ASF

i D\D,

and so nonattainability follows from theorem 7.3.
If pis sufficiently regular one may use V=-log f as Lyapunov function.
In this case one obtains the following result of Blanchard and Golin :

Theorem 7.5: Let IO ,b andZ beas in theorem 7.3, and suppose
pec o) beCT'(z), pdis e L' (RexR")

with

l‘!r:—:‘ilo%f on Z

U=
\L o} on Z

Then the corresponding Nelson diffusion on D\Z , D bounded, never reaches

-

Lo

Proof. Use theorem 7.3 with V:-lo% = and observe that, by the Fokker—

Planck equation,
i V = i_ AK - CII'U" J
B p - i

Since p is regular, fc([u‘ rell implies v L,
In order to apply the preceeding theorem to Schrodinger diffusions, one

may use the following

Theorem 7.6: Let . bea solution of the Schrédinger equation such that

Y e CPRxRY) | Vy €L (RexRY
Then :
o= Iy I b= (Retlm )V log ¢
satisfy the conditions of the theorem 7.5. Moreover suppose that

im-1

voe HTRY) |, Vel acd
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Then
W =(exp it H ) Y, fi =-—%A + V

satisfies 2(m-{)

n
Ye € Q, Ce(m‘*’/H (R") ),

so that the above conditions may be recovered by Sobolev embedding theorem.

7.4  Existence by P.D.E. methods

The results of the previous sections, based on the Lyapunov function ap-
proach, although relatively easy to prove, rely on some regularity hypotheses
on the density probability and on the drift. Now we will weaken these re-
quirements and we will suppose that p and b satisfy the Fokker—Planck
equation in a weak sense. E. Carlen proved that if the drift field satisfy a
'finite energy’ condition, then there exists a weak solution of the s.d.e.

C(Xt = IDCIt -+ dBt

Xo_—_"l

defined for times. The complete statement of the result is the following

Theorem 7.7: Let P b satisfy the weak continuity equation

1
ft_j#f’t dx = JU'-VFfbdx acint VIeC (R (71

with b. 2V [o% f on ch
0= 2
0 On ‘Zf
Suppose
ij"ft dx <+
and
! LJ Chui>+ Uri*) £, dt dx <+ (14

with W=b-V" . Then there exists a Borel probability measure P on C(R.,R")
such that: :
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i) the evaluation process X )= ¥ (£) Isasquare integrable Markov process
under Pr which as a jointly measurable version

i) the distribution of Xe has density Pe
jii) (€(R4,R™) B,(%),(Be),P) , with 3 the Borel T-algebra, (Tc) the nat-
ural filtration, and

t
By = Xc-xo",g bs(xs)és /

is a Brownian motion
iv) for any fe CO(R"), the following limits exist strongly in L2(Pr)

lim 1 E (£ )-F ) 1xt)=(5z_A+ b(t,xt).V) Lfxe)

hoo, h (7.1,
m 4 ECEOe)-FOx ) IX)= (_12_&,,5* @lxt).v%t(xt)
h=29. b

with by = b~ Viegp

We give a sketch of the proof. The first step consists of the construction of
a Markovian propagator. Such propagator will map any function f¢Ll™(fsdx)
to a solution ( in a sense that will be made precise below )£l (fedx) of
the backward diffusion equation

gt‘9t=(§-A—{C’*'V)‘Ft fo=f . (713)
The construction goes as follows. Let
3 © o
[ b], o ColtamixRY)
be a sequence such that

X (pdtdx)- lim bir = by

1D+

and let { Jc be the solution of the initial value problem

SAe (18- 50w e = o
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where f.e CJ (R"). Such solution exists by the regularity hypotheses on B;
and f; . Moreover one has, for the solution ! , the maximum principle

Mmin -fscx) < _F‘J(tlx) < max [ (x) ¥ (tx) el TIx R,
x X

By the weak continuity equation (7.10), the hypothesis (7.11), the maximum
principle, and repeated integration by parts, one shows that {$1{,.» is a
Cauchy sequence in [?*( fedx) . Let f. denote the limit of such sequence.
Define the family of operators { Ts,c} by

TS,t S C? (TRHD B— Llcftd)() Ts;t S:: ‘}'[t

One has, denoting by (- )" )e the scalar product on L* (fodx ),
1 Tefs )e = (1,45

and T;It extends by continuity to a Markovian propagator
Ty o L) —> (fd)

Moreover

t 2
(Tstt'F; C})t" “1 %)t'—‘ J((Tf}ﬂc/ Ot-?)*-"' (7;;;16077%)‘_&# JV’?EC s(R*) (712

with 0. being the osmotic operator

Ot—::-\iA'f'Mr'v
2z

When +fec} (R") also, & & (Tf, })E is right differentiable at <=5, and

ditj(—.:s (Ts,e'p,‘g.)t: ('{:10.53—)54- (—f, O;V%)S . (745

(7.14) tells that fex):=Teys+¢x) is a solution of (7.13) in the sense that,
formally, (7.14) gives, differentiating and using (7.10),

Jaf g Pdx + J(mv#)glotdx » J=Vg) £pdx =
= [ ((LAvwV)f)gpder [ (5 r-Va ) p, dx
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Cancelling and rearranging one obtains

| (2.4 -4 05 - b Vi Jo fdx =0 VgECT (R

The second step consists of the construction of a probability measure
on (L=(R")T . Such measure is defined making use of the same technique
employed for the construction of the Wiener measure in §1.6. One defines a
linear functional on Cj;, (1) by

L f = (—gh ’TTlt‘F‘{h"‘Ttn-‘t itn:fh-L . “—Em-t'd"g" >T
or)i= T fi(witn) , fie CCR)

Extending L to C (©1), and making use of Riez’s representation theorem, one
obtains a probability measure Pr on 1 . The evaluation process X (¥).= ¥(t)
is automatically a Markov process by the construction of Pr . Again by the
definition of Pr , one has

with

E %Cxt)-:({‘l—r'rqthT: (413’){:: S% f‘tCIX V%QC? (‘[Eh)
so that I x" ft“{ x . Moreover, always making use of the definition of Pr |
v -{‘%,E': Clb (R")

% E(($xe)-f(xen))3(e)) = % ((£,9)e- (Te-nt19)c )=

- (58 8 )+ & (oo (Renfighe) -
n h

Taking the limit h =9+ , applying the weak continuity equation to the first
term, and (7.15) to the second term, one has

(U’- v 3-)t;* (’gl U’.V%)t t % (Vf JV%—)t - (’F/V"V% >t
so that, integrating by parts, '

m 4 E((£ (Xt.)"'gcxt-h))%(xt-)):(Q‘%: Atk V)E9). -

h29o, h
In a similar way one obtains

E((§ ) £ 0e))g0xe))= ((LA+ BV ).

b 4
h=04 h
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The third step begin defining the process

€
Bei= Xe-Xo - § bis,x)ds -

One shows that such process is a Brownian motion by explicitly evaluating

its mean and covariance. Since
]

€ ] b(s, % )ds

is a.s. continuous, and B¢ is a.s. continuous being a Brownian motion, Xe
is a.s. continuous, and so Pr(C (Re,R")) =1.

The following result of E.Carlen permits to apply the previous theorem to
Schrédinger diffusions. Before stating the next theorem, we recall the defini-
tion of Rellich class potential. A potential VY is called a Rellich class potential
if, as a multiplication operator on L*(R") , the domain of V contains the
domain of 4 , and for some a,b <4,

EVellzalAqall +bpyl .

The Kato-Rellich theorem asserts that, if V is a Rellich class potential, then
-4 A +V s selfadjoint with domain DA) .
Z

Theorem 7.8: Let V be a Rellich class potential, and let ¢ € H’I(IR“). Let

Yo = Op =it (-A2eV) ¢,
Then : .
i) forall £ et (R”) and €= IV4 ) is continuous
i) there are unique jointly measurable functions (%) , V¥ (%) such that
Yt )= % and Vi(t:) =V ae
iii) if
@ = Re Vlaca,‘f , V= lmV/ag,‘,V ,
then for each finite interval Lo T1 |, there exists a constant Mi<+w such that

}' Clnte o y?) (Bx) 1¢Ex) [P dx < Hr for a.e. telsT]

iv) forall {e CLCIRh)

e [L00 [Plex)tdy



is in C4[01T1 and
4 (£00 Ipteftd x= [ Tlen)- VEG) ¢ dx
fa?
v) if fxb%‘o(x)c{x <+ then S’xlﬁ}/’{t,x) <+ D YeeloT.

64
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BIBLIOGRAPHICATL REMARKS

CHAPTERS 1-4. For the proofs of the standard results of these chapters see
[1], [7], [8], [9], [10]. For the construction of the Wiener measure given in §1.6
see [12]

CHAPTER 5. Theorem 5.1, in the case D=Ix D' , is given in [11].

CHAPTER 6. The results of this chapter are due to E.Nelson. See [13], [14],
[15], [16], [2].

CHAPTER 7. Theorem 7.2 is due to W.Zheng [17], [18]. For theorems 7.5
and 7.6 see [2] and [3]. Theorems 7.7 and 7.8 are due to E.Carlen [4], [5].
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