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INTRODUCTION

The purpose of this thesis is to give necessary and sufficient conditions for the
convergence in the sense of Mosco of a sequence of convex sets of (unilateral) obstacle type in
higher order Sobolev spaces.

This notion of convergence was introduced by U. Mosco in [22] for the class of closed
convex subsets of a reflexive Banach space and, through the epigraphs, for the class of convex
lower semicontinuous functionals. The range of application covers a number of situations in
perturbation or approximation of optimization problems (see [22], [23] and [3]). In particular, if
A is a (possibly non-linear) operator from a reflexive Banach space X into its dual and (Kj)
is a sequence of convex subsets of X which converges to a set K in the sense of Mosco,
then, under some natural assumptions on A, it can be proved that the solutions u;, of the
variational inequalities

upeKy , <A(uy),v—u,>20 forevery veky ,
converge strongly in X to the solution u of the variational inequality
ueK , <A(u),v—u>20 forevery vekK .

Therefore, a study was developed to determine significant conditions which could imply
the Mosco convergence (see, for instance, [25]). Here we focus our attention on the important
class of the convex subsets of Wy"P(Q) (Q open subset of R™, m>1, 1<p < +)
associated to an obstacle function, i.e. of the form Ko(y) , where W : Q — [—oo,400] is
any function, and

Ko(y) = {ue Wy"P(Q): u>y on Q) .

We point out that in order to consider also thin obstacles  , namely obstacles given on
sets of Lebesgue measure zero, we have to pass to the more refined concept of C, -capacity
(defined from the norm of W™P(R™)) and specify, up to sets of null capacity, both the values
taken by u and the set where the inequality u >y has to be considered.

Given a sequence (y;,) of obstacles, it is clear that a strong enough convergence of (yy)
to W implies the convergence of (Ky(y,)) to Ky(y) . The question is then to find minimal
assumptions on the obstacles which guarantee the Mosco convergence.

In this connection, for the case m =1, we must mention the result obtained by H.
Attouch and C. Picard in [5], which unifies previous studies on the same line (see the
references in [9]). As a consequence, it is proved that the convergence of the obstacles in a
suitable LP-space constructed by means of the C, p-capacity, as well as the weak convergence



of (yy) to ¥ in Wé'S(Q) for some s>p, turn out to be sufficient to yield the Mosco
convergence of the corresponding convex sets (see also [6]).

These results (quite satisfactory for C; ;,-quasi continuous obstacles) were refined, by
means of new techniques, by G. Dal Maso in [9], where necessary and sufficient conditions are
established for the convergence in the sense of Mosco of a sequence Kolyp) in WOl Q) .
Here no regularity on the obstacles is assumed.

In this thesis we aim to find an extension of the characterization given in [9] to the case of
higher order Sobolev spaces. More precisely, we begin by presenting, in section 2, some
properties of the class of subsets of W(‘)Tl P(Q) we deal with. Here, on the basis of the concept
of unilateral convex set in Wol‘p(Q) (see [4]), we introduce an analogous notion for Wy "P(Q)
(requiring that, if u and v are in the set, then the same holds for every w2 uAv (minimum
between u and v)). It is proved that every closed unilateral convex set in W(I)n P(Q) isa
convex set of obstacle type. This extends the corresponding result given in [4] for the case
m =1, and allows us to obtain the closedness, under the Mosco convergence, of the class of
obstacles constraints in Wy P(Q) .

The subsequent sections can be divided into two parts. In the first one (sections 3 and 4)
we take into consideration the sets Ky(yy,) in Wg‘ P(Q) (m=1) associated to a sequence
(yy) of obstacles, and we characterize their Mosco convergence to a set Ko(y) in terms of the
Mosco convergence of (Kg(1(y,>t))) to Ko(1(y>t)) » where Liyyot) and 1y, denote the
characteristic functions of the level sets {y; >t} and {y >t} , respectively, and t varies
in a dense subset of R . This result is first achieved in section 3 for a sequence of obstacles
which take the value —eo (i.e. give no constraint) outside a fixed compact subset of £ on
which they are equi-bounded. Next (section 4), these conditions are weakened by means of a
proper control on the range of the functions ;, and on their behaviour near the boundary of
Q .

In a second part (section 5), we give necessary and sutficient concitions Ior th
convergence in Wy P(Q) of the sequence (Kg(lg,)) to Ko(1g), where E; and E are
subsets of Q . Here (Theorem 5.1), the characterization is expressed through the convergence
of the capacities of E;NA to the capacity of ENA , where A is taken in a sufficiently large
family of open subsets of Q . In particular, if we specify the sets Ej; to be the level sets
{yy, >t} of a sequence (y;) of obstacles, then we obtain the main result of the thesis: the
characterization of the convergence of (Ko(yy)) to Kg(y) in terms of convergence of
capacities of level sets (Theorem 5.12). The results in section 5 are confined to the case
p=2.

Finally, we want to point out that the main difficulty in the attainment of these results is
the loss of the lattice structure passing from W, P(Q) to WP(Q) (m > 1). This is overcome



making use chiefly of suitable approximation lemmas for p-quasi continuous functions, and
of the representation of the elements in W™P(R™) as a convolution between an LP(R"™)
function and a non-negative kernel (the Bessel kernel).

1. NOTATION AND PRELIMINARIES

Throughout this paper n and m are positive integers, p a real number with
1 <p<+e and Q an open subset of R™ (not necessarily bounded). We denote by
W™P(Q) the space of functions ue LP(Q) whose distributional derivatives D%u are in LP(Q)
for every multi-index o with lol <m. We equip W™P(Q) with the usual norm

- o P\
(1.1) llullm’p;g— (lagm IID ulle(Q)) .

W4 P(Q) will stand for the closure of Cy(Q) in Wy"P(Q) . Moreover we set H™(Q) =
W™A(Q) and Hp(Q) = WI(Q). If ue W™P(R™), by ue W"P(Q) we mean that the
restriction u, of u to Q isin WyH(Q) .

We denote by A(Q2) the class of all open subsets of Q,and by B(Q2) the o-field of all
Borel subsets of Q.If A and B are subsets of R", we write AccB if the closure A is
compact and contained in B . A family (A), g of elements of A(Q) is said to be a chain in
A(Q) if A;.ccA, whenever siteR and s <t. We say (see [13], [17]) that a subset R of
AQ) is:

(@) cofinalin Q, if for every subset B of Q with BccQ there exists Ae R with
BccA

(b) densein A(Q), if for every pair Ay, A, in A(Q), with A;ccA,, there exists
Ae R with A;ccAccA,;

() richin AQ), if for every chain (A)cg in A(Q) theset {teR: Ag R} is at most
countable.

It is easy to see that every rich set is dense and that every dense set is cofinal. Moreover
the intersection of a countable family of rich sets is rich.

LP, w™P H™, iy ,, A4 and B will stand for LP(R"), W™P(R N,
H™R"), IHl, ,g", AR") and BR"), respectively.

For every s,teR we set

sAt = min{s,t}, svt = max{st}), s = svO .

By R" and R~ we indicate the sets {teR: t=0} and {teR: t<0)} , Tespectively.




For every subset E of R" we denote by 1y the characteristic function of E with
respect to R", defined by 1gx) =1 ifxeE and 1g(x) =0 if xe R™\E. Moreover we set
xE(x) =0 if xeE and xE(x) =—oo if xe R™E .

The abbreviation a.e. will mean almost everywhere with respect to the Lebesgue
measure.

Recall now some notions we shall need in the subsequent sections.

Bessel potentials and Sobolev spaces. We define a linear map J,: LP — LP by setting
for every fe LP and for every xe R" (see, for example, [26, Chap.V]):

D) = (Gp*DE) = [Grx-y)(y)dy
Rn

where G, isthe L' function on R® whose Fourier transform, defined through
2wk
Gn® = 1[«: G (0

R

for every te R™, is given by (1 + 4z%1g1®)™2 | It is known that G > 0 and

IIGmlIL1 = 1. The function J,f is called the LP-Bessel potential of f of order m.

Theorem 1.1. ([26, Chap. V, Theorem 3]) J,, establishes a bijective correspondence
between 1P and W™F . Moreover there exist two positive constants ¢, and c, such that for
every felP

m,p —

(1.2) clllﬂle < Al <.czllﬂle .

Hence J, is an isomorphism of Banach spaces between 1P and W™P .

The spaces £, =T (LP) of all LP-Bessel potentials of order m coincides with W™P
It will be equipped with the norm induced by J

- . -1
Illulllmp = ”u”LI; = l(J,) uIILp .
which turns out to be equivalent to the norm II-IIm’p introduced in (1.1).

Remark 1.2. For every ue W™P there exists a function ve W™ with v>u" and
llivill, , <lhalll, 5. Indeed, if f= (J,)""u, then it suffices to define v=1J_f".



Capacities and quasi-topology. If K is a compact subset of R", we define
Conp®) =inf {llgllf _: 9 CR™, ¢ 2 1g on R"} ,
Bmp(K)=inf{lll(p|H§l,p: ¢e C5(R™, ¢=1g on R} .

We extend C,, and B, toall the subsets of R" as external capacities in the usual
way ( see, for example, [7]). The equivalence of II-ll, , and lll-lil, , implies that Cn,p and
Bn,p are equivalent capacities; thus the notions involving sets of zero or arbitrarily small
capacity are the same for both of them. In such cases the symbol "cap" will be often used
instead of Cp, or By ;.

Given a subset E of R", if a statement depending on xeR™ holds for every xeE
except for a set N ¢ E with cap(N) =0, then we say that it holds (m,p)-quasi everywhere
((m,p)-g.e.) on E (we usually omit E if itis R").

We say that a function f:E — R is (m,p)-quasi continuous if for every ¢ >0 there
exists an open subset A of R" with cap(A) <e, such that f,E\ A is continuous on E\A .
The definition of (m,p)-quasi lower semicontinuous (l.s.c.) and (m,p)-quasi upper
semicontinuous (u.s.c.) function is given in a similar way.

Bm,p turns out to coincide with the capacity defined in [20, §8], and in [21] by means of
the Bessel kernel G, . Hence we have, in particular, that every function ue W™® has an
(m,p)-quasi continuous representative, denoted by # , which is unique up to (m,p)-q.e.
equivalence. Indeed (see [20, Lemma 5.8]), if f and g are (m,p)-quasi continuous and f2g
a.e, then f2g (mp)-qe. If ue W "P(Q), the restriction to Q of the (m,p)-quasi
continuous representative of any extension of u to a function of WP is well defined and

denoted by @ . )
It can be proved that for every feLP the function G *f is (m,p)-quasi continuous.
Moreover, for any E c R"

Bm,p(E)=inf{HﬂIip: feLP, £20 on R", G *f21 on E}
=inf{lllull[51’p: ue W™P, 2 1g (mp)-qe.)
=inf{lllull|f;’p: ue W™, =1 (m,p)-ge.on E} .

As for C,,, we have
Cm,p(E)=inf{I|uII§l,p: ue WP, i > 1 (m,p)-qe.} .

We point out that By, ; is countably subadditive.




We say that a sequence (f;) of functions from R" into R converges in (m,p)-capacity
to a function f from R" into R, if for every &> 0

lim cap {(xeR™: Ify(x) - f(x)I2e} =0 .
h—too

Proposition 1.3. ([21, Theorem 4]) If (u,) is a sequence in W™P which converges
to u in W™, then (Uy) converges to U in (m,p)-capacity and there exists a subsequence
(Uy,) of (Uy) which convergesto T (m,p)-q.e..

Proposition 1.4. If (f)) and (g,) are sequences of functions from R" into R
which converge in (m,p)-capacity to the functions f and g, respectively, then the sequences
(fhAagy and (fyvg,) converge in (m,p) capacity to fag and fvg, respectively.

Proof. Apply the inequality
lfh/\gh— f/\gl < lfh"' fl+ lgh— gl

and the analogous one for v . ¢

We shall use some other topological notions connected with capacities; to handle them it is
more convenient to deal with countably subadditive capacities, though most of the results still
hold for equivalent capacities. We refer to [17] for a systematic account.

Let E,E; and E, be subsets of R". We say that E, is (m,p)-quasi contained in E,
if cap(E\\E;) =0; consequently, we say that E; is (m,p)-equivalent to E, if
cap(E,AE,;) =0 (where A denotes the symmetric difference).

E is said to be (m,p)-quasi open (resp. quasi closed, quasi compact, quasi Borel) if for
every ¢> 0 there exists an open (resp. closed, compact, Borel) set A such that
cap(EAA) <e.

It is easy to see that A is (m,p)-quasi open if and only if R™A is (m,p)-quasi closed,
and that any countable union or finite intersection of (m,p)-quasi open sets is (m,p)-quasi open.
Moreover A is (m,p)-quasi open (resp. quasi closed) if and only if 1g, or equivalently Xg
is (m,p)-quasi Ls.c. (resp. quasi u.s.c.).

It can be proved that a function f:R"— R is (m,p)-quasi Ls.c. (quasi u.s.c.) if and
only if the sets {xeR": f(x) >t} (resp. {xeR™: f(x)>t}) are (m,p)-quasi open (resp.
quasi closed) for every teR.



Let ue W™ and t>0; by approximating u by Cj(R™ functions it is easy to see
that the set {xeR": T(x)>1t} is (m,p)-quasi compact. It follows that an (m,p)-quasi closed
set with finite capacity is (m,p)-quasi compact.

It can be shown ([17, Theorem 2.8]) that for every subset E of R" there is an (m,p)-
quasi closed set E which is (m,p)-quasi contained in every (m,p)-quasi closed set which
(m,p)-quasi contains E; E is unique up to sets of null capacity and it will be referred to as the
(m.,p)-quasi closure of E .

We will sometimes drop the prefix (m,p) in the foregoing notations.

Proposition 1.5. Let E and Z be subsets of R". Then the following conditions are
equivalent:

(a) every (m,p)-quasi open set G with cap(GNZ) >0 is such that cap(GNE) >0 ;
(b) Z is (m,p)-quasi contained in E .

Proof. (a) = (b) Consider the quasi open set G = R™E . Since cap(GNE) = cap(E\E)
= 0, we have, by condition (a), cap(Z\E) = cap(GNZ) =0, i.e. Z is quasi contained in E.

(b) = (a) Fix a quasi open set G ; let us assume that cap(GNE) =0 and prove that
cap(GNZ) = 0 . Consider the quasi closed set F =FE\G. Since E\F is (m,p)-equivalent to
ENG, we have cap(E\F) =0, i.e. E is quasi contained in F . Hence E is quasi contained
in F, thus F is (m,p)-equivalent to E . This means that cap(Gmﬁ) =0 and therefore
cap(GNZ) =0, as GNZ is quasi contained in GNE by assumption. ¢

Finally, for any function ¢ :R"™ — [0,+ec] we define
Bpnp(@) = inf {Ilullf}, : ue W™, ¢ <¥ (m,p)-qe.} .

Convergence in the sense of Mosco. Let V be a Banach space with norm II-1] .

Definition 1.6. Let (K;) be a sequence of subsets of V.

()  The strong lower limir of the sequence (K;) in V is the set s-l}ilr_r)n;xolof K; ofall ueV
with the following property: there exist an index ke N and a sequence (u) converging
to u strongly in V such that ueK; forevery h>k.

(i) The weak upper limit of the sequence (Kj;) in V is the set W-I%l%p K; ofall ueV
with the following property: there exist a sequence (u,) converging to u weakly in V

and a subsequence (Ky, ) of (Ky) such that weKy, forevery keN.



Note that s-liminf Ky < w-limsup Ky, .
h—+eo

h—o+oo

Definition 1.7. Let (K;) be a sequence of subsets of V and let K be a subset of
V . We say that (K;) convergesto K in the sense of Moscoin V (see [22]), and we write

K, » K inV,

if s-liminf K;, = w-limsup K; = K.
h—teo h—+oo

Remark 1.8. s—l}ilrgi&f K, and w-l}gi&p K;, are the lower and upper limits of the
sequence (K), in the sense of Kuratowski, taken with respect to the strong and, respectively,
to the sequential weak convergence in V - see, for instance, [22], [23] and [3] for a more
general treatment of these concepts.

An important general property of the strong lower limit is that it is strongly closed in V.
Moreover we shall need the following result:

Proposition 1.9. ([22, Theorem B]) Assume that V is reflexive; let (Ky) be a
sequence of convex subsets of V which converges to a subset K of 'V in the sense of Mosco
(in V). Then

lim inf llull = inf Il .

h—+e0 ueKy uekK

In the sequel we shall take as V one of the spaces W™, Wy P(Q) or LP(B,, ) (see
Definition 2.15). i

Definition 1.10. Given a function y from R" into R, for every subset B of R"
we define

K(y,B) = (ue W™P: 2wy (m,p)-g.c. on B}
while, if Bc Q,
Ko(y,B) = {ue Wg"P(Q): T2V (m,p)-qe.on B}.

By Proposition 1.3, K(y,B) is a closed convex subset of W™ and Ko(y,B) a closed
convex subset of Wy P(Q). We shall denote K(y,R™ and Ky(y,Q) by K(y) and
Ko(¥) , respectively; note that K(y,B) is nothing but K(Tgy) , where



\j on B
1.3 Ty =
(1.3) BY {—oo on R™B

If (y) is a sequence of functions from R™ into R and B a subset of R", we shall
use the notation

K'((y),B) = s-liminf K(y;,B) (in W™P)
h—too
K"((¢),B) = w-limsup K(y;,,B)  (in W™P) ;
h—too

if B=R" we shall simply write K'((w;)) and K"((y})), respectively. Ky ((y),B)
Ky ((yyp),B) (for B < Q), K ((yy) and Ki((yy) are defined in the obvious way.

2. APPROXIMATION LEMMAS AND CONVEX SETS

In this section we first state two approximation results (Lemmas 2.1 and 2.3),which will
be widely used. Next we define the class of closed unilateral convex sets in Wg1 P(Q) and
prove that it coincides with the class of convex sets of obstacle type in W(;n P(Q) (Proposition
2.9). This generalizes the analogous result given in [4, theorem 3.2] for the case m=1.
Moreover, we show the closedness of the class with respect to the convergence in the sense of
Mosco in Wg‘ P(Q) (Proposition 2.12). Finally we point out a useful connection (Proposition
2.19) between the Mosco convergence for convex sets of obstacle type in W™P and in the
space LP(B, ) (see Definition 2.15).

Let us recall a result from [9] (Lemma 1.5):

Lemma 2.1. Let f:R™ = R be an (m,p)-quasi u.s.c. function. Assume that there
exists a function we W™P with % >f (mp)-q.e.. Then there exists a sequence (uy) in

W™ such that (%) decreases and convergesto f (m,p)-q.e..

Before giving the other fundamental approximation result, we need a theorem from
non-linear potential theory (see [1, Theorem 3.2]).

Theorem 2.2. There exists a constant ¢ depending only on n, p and m such that
+o0

L Brp@) < 0j'Bm,p({xe R": ¢(x) > t))dtP < ¢ By, 5(0)

for every function @ : R™ — [0,4e0] (here d means p® 'dt).
¢



Lemma 2.3. Let (f)) be a sequence of functions from R™ into R and let f be a

function from R™ into R . Then the following statements hold:

(i)

(i)

(iii)

let f,, be (m,p)-quasi u.s.c. for every he N .If (fy) is decreasing and converges to
zero (m,p)-q.e., and there exists a function we W™ such that % 2 f, (m,p)-q.e.,
then (fy) converges to zero in (m,p)-capacity;

if (fy) converges to zero in (m,p)-capacity and there exists a sequence (wy), which
converges strongly in WP, such that f, <%, (m,p)-q.e. for every he N, then
Bmp(f ;:}) converges to zero;

if u is a functionin W™P and (Bm,p((fh—ﬁ)J')) converges to zero, then we can find a
sequence (uy) in W™F which converges to u strongly in W™P and for which
U, 21, (mp)q.e. for every he N .

Proof. (i) For every he N and t >0 the sets {f,>t} = {xeR": fy(x) >t} are

quasi closed and have finite capacity, hence they are quasi compact. The continuity of Bnp on

decreasing sequences of quasi compact sets (see [17, Theorem 2.10]) yields that

(Bm,p({fy2t})) converges to zero.
(i) Let w be the limit of (wy) in W™P | For every heN and t>0 the subadditivity of
Bnp gives:

B p({fa2 1)) S By ;({¥,2 1)) < By, ,({W21/2}) + By, ,({#—F 2 1/2}) .

On account of Remark 1.2, from Theorem 2.2 we easily obtain that
+oo Feo
Oijp({vV > t2))d® <+, lim ()JBm STy 2 t/2))dP =0 .
, e ,

Since (Bm,p({f}1 21})) converges to zero for-every t>0, we can apply a version of

the Lebesgue dominated convergence theorem with respect to the measure dtf, so that

“+oco

im [Bpp((f52))dP =0 .
h—yoo ’

Now we conclude by Theorem 2.2.

(iif) is an easy consequence of the definition of By, , on non-negative functions. ]

Remark 2.4. Lemma 2.3 is a slightly extended version of Lemma 1.6 in [8], and in

fact it can also be directly proved by a similar argument.



-11-

Definition 2.5. We say that Ky is a unilateral convex set in Wy P(Q) if Kg is a
subset of Wg'P(Q) with the following property: if u,veKy, we Wg' P(Q) and w=uAv
a.e.in Q, then weK,.

‘We point out that K; immediately turns out to be convex.

Definition 2.6. We say that a subset Ky of Wy 'P(Q) is C™-convex when the
following condition holds: if u,ve Ky and ¢ is a function in C™(Q) with values in [0,1]
and bounded derivatives of every order, then ¢u + (1 —@)veK,.

It is clear that the unilaterality condition implies C™-convexity. We now show that
actually the two conditions are equivalent for every closed unilateral convex set K provided it
is stable under addition of non-negative Wy () functions, i.e. such that

(o) if ueKy,veWyP(Q) and v=u ae.in Q, then veKy;

If K, is a subset of Wy ™(Q) , we put

KKy)= N {ueW™: IveK; u=v ae. on o} ,
wcch

where the intersection runs over all the open sets accQ2 .

Lemma 2.7. Ler Ky be a C™-convex set in Wy "P(Q) , closed in W§P(Q) and
satisfying condition () introduced above. Then K(Kg) is a C™-convex set in W™ | closed
in W™ | for which () holds and

(2.1) Kg = KoKWy H(Q)

where KiaKo) = {UIQ 1 ue K(Ky)}. Moreover, if Ky=XKy(y) then K(Ky) = K(Tqy)
(where Tgq is defined in (1.3)).

Proof. Assume K, # O, otherwise there is nothing to prove; then we can suppose
0eKyp.

By C”-convexity, if ueKy and ¢ isa Cj(R") function taking its values in [0,1],
then @ue K, . The closedness of X{(K;) now follows easily by means of standard cut-off
functions, as well as the equality K(K,) = K(Tqw) in the case Ky =Kqg(y) . C”-convexity
of K{K,) is immediate. Let us check condition (o) . Consider ue X(K,) and ve W™ with
v2u a.e.; we fix two open sets o and o' such that ecce'cc, and a function
peCy(w") with ¢=1 on © and 0<@ <1. Since ue X(Kg), there exists a function
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ueKy equalto u ae. on o', thus Qv = @uy a.e.in Q and @uge Kg ; by condition (o)
which holds for Kg, ¢ve K. Moreover, v=¢v a.e.on o and then ve X{K;) because of
the arbitrary choice of .

Let us prove (2.1); only the inclusion Kg2 Kln(KO)mWB"’p(Q) is not trivial. Let
ue K(Kg) with y,e Wi"(Q). Fix £>0; since € W P(Q) there exists a function
ne C‘;(Q) such that 0<n <1 and llu—- nully, .0 <€ (see [18, Theorem 3.1] and [19,
Theorem 5]). Let occQ be an open set containing spt n ; since ue X(Ky), and hence
nue X(Kj) ,we can find a function wge K, equal to mu a.e. on o . Consider a function
¢ Cy(w) with @ =1 onsptn and 0<@ <1; we have nu=@(nu) =@w, a.e. on Q
and @wge K. Since &> 0 is arbitrary and K, is closed in WB“’F(Q) , we conclude that
ue Ky, therefore K,(Ko))"Wy""(Q) ¢ K . ¢

Proposition 2.8. Let K be a closed subset of ng'p(Q) satisfying condition (a)
above. Then Ky is a unilateral convex set if and only if Ky is C™-convex.

Proof. Assume that Ky is C™-convex and let us prove that it is a unilateral convex set.
(i) Case Q=R".Let u,veK;, we W™P with w>uAv ae.in Q; we have to prove
that weKy.Fix heN;thesets Aj={0 =2 ¥ + 1/h} and A, ={V 2T + 1/h} are
quasi closed and have finite capacity, thus they are quasi compact: we can find compact sets C;
and C, and open sets ©; and w, such that

CcACCUe , Bpyepsl/h  (i=12).

Let ¢, be a functionin Cj(R"™) with 0<¢;<1 and ¢,=0 on C;,@y=1 on
C, . For every >0, if 2/h<e the subadditivity of B, yields:

B p({l 94T + (1= @) ¥ = TATI > ¢)) < By (@) + By o(0y) S2/h

this means that the sequence (@i + (1— @)¥) converges to UAV in (m,p)-capacity. For
every heN putnow fj, = (il + (1 — ¢y)¥)v%® ; by Proposition 1.4 (f;) converges to W
in (m,p)-capacity, therefore, on account of Remark 1.2, we can apply Lemma 2.3 and find a
sequence (wy) in W™P which converges to w strongly in W™P and with %, > f, (m,p)-
q.e. for every he N. By C™-convexity and condition (a), w,eKq for every he N, hence
we K| because K, is closed in W™P .

(ii) Consider now the general case of  open subset of R". By Lemma 2.7 the set K(Kj)
is closed in W™P | C™-convex and satisfies condition (o) .Hence we can apply the foregoing
part (i) of the proof and get that K[K,) is a unilateral convex setin WP ; the same is true for
Ky in W73'P(Q), as it follows from the equality K, = ‘J(IQmWE)" P(Q) given in
Lemma 2.7. ¢
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Let us now show that any closed unilateral convex set is of obstacle type.

Proposition 2.9. Let K, be a non-empty closed unilateral convex set in Wy P(Q) .
Then there exists an (m,p)-quasi u.s.c. function y : £ — R such that Ko=Koy(W); ¥ is
uniquely defined on  up to (m,p)-q.e. equivalence.

Proof. (i) Case Q =R". First of all let us prove that for every ke N, k22, the
following statement holds:

B if uy,uy, ..,y € Ky, ve W™ and v2u;A upA ..o Ay, ae., then veKy.

Since (), holds by assumption, it suffices to show that for every k=2 (B), implies
(B)xs1 - Fix k=2, a subset {uy,..., U, gy} in Kg and a function ve W™P with
V 2 UjA ... AUgAly,; ae.. The function f=T;A ... ATy is (m,p)-quasi continuous,
hence, by Lemma 2.1 we can find a sequence (wy,) in W™ such that (%) decreases and
converges to f (m,p)-g.c.. Observe that by assumption (B) , wye Ky for every he N . The
sequence ((Wy, Alli,1)VvV), decreases and converges (m,p)-g.e. to ¥ : by Remark 1.2 and
Lemma 2.3 there exists a sequence (vy,) in W™P which converges to v in W™F and for
which ¥y, 2 (¥, Al,;) VvV (m.p)-g.e. for every he N . By definition of unilateral convex
set, vue Ko (since wypeKy) for every heN ; the closedness of Ko in WP implies that
ve K, and thus we have proved that (B),,; holds.

Since W™P is a separable metric space, there exists a sequence (vy) of Ky dense in
Ky . For every heN let yy = mfh ¥V; (y, is defined up to sets of zero (m,p)-capacity).
The sequence () is decreasing and its infimum W is (m,p)-quasi u.s.c. since each function
vy, is (m,p)-quasi continuous. We now prove that Kq =K(y) .

Let us show that Ky < K() . Let ue K. There exists a subsequence (vy,) of (vp)
which converges to u in W™F ; by Proposition 1.3 we may suppose that (Vy,) converges to
U (m,p)-g.e.. Since for every ke N, Wy <V (m,p)-q.e., we get ¥ < § (m,p)-q.e., i.e.
ue K(y) . Therefore Ky < K(V¥) .

Let us prove now that K(y) < K. Consider ue K(y) and for every he N let
fy, = Wy, v ; then (f) decreases to U (m,p)-g.e.. By Lemma 2.3 we can find a sequence
(u) in W™P which converges to u in W™ and such that for every heN @, 2 f;, (m,p)-
ge. By (B)y.u,eKy for every he N, hence ueKg since Kg is closed in W™P . We
conclude that K(y) ¢ Kg .

If y; and , are two (m,p)-quasi u.s.c. functions such that K(;) = K(y,) = Ko, we
get easily that ¥, =, (m,p)-q.e. by approximating both of them (m,p)-g.e. by means of
Lemma 2.1.



—14—

(i) Consider the general case of Q open subset of R". By part (i) of the proof and by
Proposition 2.8 there exists an (m,p)-quasi u.s.c. function ¥ : R®™ — R such that K(K,)
= K(¥) ; moreover ¥ <0 (m,p)-g.e. on R™Q . Now from the equality K, =
K 1oK)NW"P(Q) , stated in Lemma 2.7, we obtain that Kg = Ko(Wg) » with ¥, (m,p)-
quasi u.s.c.. Finally, the uniqueness of such an obstacle function follows from the
corresponding property for X{K) . ¢

Proposition 2.10. Let y : Q — R be a function such that Ky(y) = D . If
V:Q — R is the (m,p)-quasi u.s.c. function, given in Proposition 2.9, for which
Ko(W) = Ko(Y), then Y is the (m,p)-quasi u.s.c. envelope of ¥ (i.e. the least (m,p)-quasi
u.s.c. function £:Q — R with 2y (mp)-q.e. on Q).

Proof. Assume at first Q = R". By Lemma 2.1 we easily obtain that ¥ >y (m,p)-
q... Fix now an (m,p)-quasi u.s.c. function f:Q — R with f =2y (m,p)-q.e.. By
Lemma 2.1 we can find a sequence (u;) in W™P such that (fi;) decreases and converges to
fAY (m,p)-q.e.. Since fAY =Wy (m,p)-q.c., we have uye Ky(y) for every heN, then
U 2 V¥ : taking the limit (m,p)-q.e. we have fAy 2V, ie. 2y (m,p)-ge.. We
conclude that y is the (m,p)-quasi u.s.c. envelope of V.

Consider the general case of Q open subset of R". Let —'I-’;\II- denote the (m,p)-quasi

u.s.c. envelope of Tqy ; then Ty <0 (m,p)-g.e. on R™Q . By Lemma 2.7 and what
just proved we have

Ko(y) = {ug : ue K(Toy)}NnWg " (Q)

= (ug : ue K(Toy)}INWg(Q) = Ko(Tay) -
Moreover it is easy to check that (TQ\;/)|Q is the (m,p)-quasi u.s.c. envelope of y. ¢

Remark 2.11. Consider a subset E of Q and its quasi closure E. If
Ko(lg) # @, then E is quasi contained in Q and Ko(1g) = Ko(1g) (indeed, if ue Ky(lg),
then {xeQ: u(x)21} is quasi closed and quasi contains E ). Hence, in particular, the
capacities Cp,, and B, , we are dealing with are "quasi stable" in the sense that every set has
the same capacity as its quasi closure (see [17]).

It is now immediate to prove the closure, with respect to the Mosco convergence, of the
class of closed unilateral convex sets in Wy () .
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Proposition 2.12.If (yy) is a sequence of functions from € into R, then the
strong lower limit Ko ((yn) of the sequence (Ko(yy)) is a closed unilateral convex set in
Wy P(Q) .

Proof. We have already remarked that K, ((wy)) is strongly closed in Wy P(Q) . Let
us show that conditions (c) holds (stability with respect to addition of non-negative W *(Q)
functions). |
(o) Fix ueKj((yp) and ve Wy P(Q) with v=u ae.on Q; we can find a sequence (uy)
converging to u in Wg"p(Q) with u,e Ko(wy,) whenever h 2>k, for a suitable index
keN . If we put vy =uy + (v—u) for every heN , then we obtain a sequence (vy)
converging to v in Wy P(Q) and such that v,e Ko(y;) for h>k. Thus ve Ko ((yp)) .

Since we have just proved condition (o), and K, ((yp) is trivially C™-convex, we
conclude by Proposition 2.8 that K, ((yy) is a unilateral convex set. ¢

We state now two useful consequences of Proposition 2.12.

Corollary 2.13. Let (yy) be a sequence of functions from Q into R such that
Ky((yp) # D . Then

Ky = 0K (w)o)

where the intersection runs over all the open sets ®CCS) .

Proof. Only one inclusion is not trivial. Let us fix ueM o Ky ((yp),0) and show
that ue K, ((yp)) . As Ky ((yy)) # D it easy to see that there is no loss of generality if we
assume Y, <0 (m,p)-q.e. on Q for every he N . Consider open sets © and o' with
oCCo'ccQ and a function ge Cjj(w') with ¢ =1 on © and 0<@ <1. Since
ue K ((yp),0") we get que K, ((yp)) . By Propositions 2.12 and 2.9 there exists a function
WV :Q — R such that Kj((y) = Ko(y) . Therefore & = ¢ 2y (m,p)-qe. on o .
Since o is arbitrary we conclude that ue Ko(y) = Ky (Cwy)) - ¢

Proposition 2.14.Ler f and (f,) be a function and a sequence of functions,
respectively, from € into R . Let ue Wy "P(Q) . Assume one of the following hypotheses:

(i) 1, is (mp)-quasi u.s.c. for every heN, (f) is decreasing and converges to T (m,p)-
g.e.on Q, and there exists a function we ng’p(Q) such that W 21f; (m,p)-q.e.
on Q ;
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(i) (f,) converges to U in (m,p)-capacity and there exists a sequence (wy) , which
converges strongly in W(')n P(Q), such that f, < W, (mp)-q.e. on L for every
he N .

Then we can find a sequence (uy) in Wy P(Q) which converges to u strongly in
Wy P(Q) and for which Ty, 2 f, (m,p)-q.e. on Q for every heN.

Proof. Assume (i) (case (ii) can be handled in a similar way); we may suppose that
f, <0 (m,p)-q.e. on Q forevery heN. Let us consider the functions f;, and u as defined
all over R™ with value zeroon R™\Q : (f;) is a sequence of (m,p)-quasi u.s.c. functions on
R" and ue W™P . Then Lemma 2.3 yields that ue K'((fy)), thus ue K{K;((fy))) , as one
can easily check. By Propositions 2.12 and 2.9, K ((f,)) is a unilateral convex set of obstacle
type; on account of the definition of XK, ((fy))) we conclude that ue K(')((fh)) . This is what
we had to prove. ¢

We conclude this section with a few remarks about the connection between convex sets of
obstacle type in the spaces W™P and LP(B,). The spaces L°(Byp) have a kind of
convergence naturally modelled on W™P  but their elements are not required to possess
derivatives: so they may be more suitable when truncation arguments are involved. LP-spaces
with respect to a capacity were introduced in [2] for the Riesz capacity.

We recall now the definitions and some properties we shall need (see [5]).

Definition 2.15. Let Q,,, denote the space of (m,p)-quasi continuous functions from
R"” into R (with the equivalence relation of (m,p)-q.e. equality). Define

LPB,,p) = (fe Qpp: Jue W™ Ifl £ T (mp)-qe.},

and for every fe LP(B, )

= llp
"f”Lp(Bm,p) (Bm’P(IfI))
= inf {(Ilhalll, , : e W™ | Ifl £ T (m,p)-q.e.} .
Proposition 2.16. (i) II-IILP(B ) is an increasing norm on Lp(Bm,p) with respect to
m,p

which LP(B,,,) is a Banach space;
(ii) W™ is continuously imbedded in LP(B,, ) .

The proof can be easily obtained as in Proposition 1.2 of [5] taking into account
Theorem 2.2.
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Remark 2.17. Let (f,) be a sequence of functions in Lp(Bm,p) which is decreasing
and converges (m,p)-q.e. to a function fe Lp(Bm,p) . Then it immediately follows from
Lemma 2.3 that (f;) convergesto f in Lp(Bm’p) . By Proposition 1.3 we also have that
convergence in Lp(Bm,p) implies convergence in (m,p)-capacity and, up to a subsequence,
convergence (m,p)-q.e..

Moreover we observe that if fe Lp(Bm‘p) and g is either an (m,p)-quasi continuous
non-negative function or ge LP(By, ;) then fAageLP(B,,); furthermore the mapping
f + fAg is continuous from LP(B, ) into LP(By,,) . A similar statement holds for v .

For every v :R"™ — R define
K(y) = {fe LP(B,,p) : f2y (mp)-ge.) .

We remark that K(\y) contains K(y) (provided that the functions of K(y) are
identified with their (m,p)-quasi continuous representatives). Moreover, K(\u) is closed in

LP (Bpp) ; more precisely:
Proposition 2.18. K(y) is the closure of K(y) in LP(By,,).

Proof. Let fe K(y); by Lemma 2.3 there exists a sequence (uy) in W™P such that
(Up) decreases and converges to f (m,p)-q.e.. Then u,e K(y) for every he N and, on
account of Remark 2.17, (§},) converges to f in LP(Bm,p) . Therefore f is in the closure of
K(y) in LP(B,,,) ¢

Given a sequence of functions (y;,) from R" into R, we set

K'((y) = s-liminf K(yy) - in LP(B,, )
h—too
Proposition 2.19. K(y) c K'((yy)) if and only if K(y) ¢ K'((yy)) .

Proof. Assume that K(y) < K'((y})) . By Proposition 2.16, K'((yy)) < K'((wy)
so that Proposition 2.18 yields

Rw) celpy Ky = Kiww)

L’ @B p

since K'((y)) is closed in L°(B,, ) . Therefore Ky) c K'((wy)) .

Assume now that K(y) < K'((yy,)) . Let ue K(y) . Since K(y) < K(y), we can find an
index ke N and a sequence (f;) in Lp(Bm‘p) converging to # in LP (Bm,p) such that
f,e K(yy) for every h>k. By Remark 2.17 and Lemma 2.3 there exists a sequence (uy,)



~18-

in W™P which converges to u in WP and for which @y, 2 f;, (m,p)-q.e.. We conclude
that ue K'((yy,)) , therefore K(y) < K'((yy)) . ¢

3. CONVERGENCE OF OBSTACLES AND LEVEL SETS: THE CASE OF
EQUI-BOUNDED OBSTACLES ON A COMPACT SET

Following the study carried out in [9] for the case m =1, we now characterize the
Mosco convergence of the sequence (Kg(yy)) to the set Kg(y) through the Mosco
convergence of (Ko(lwh>t})) to Ko(lw>t}) , for t in a dense subset of R (if f: Q — R
is any function and teR, by {f>t} we denote the level set {xe Q: f(x) > t}). The main
result in this section is Theorem 3.1, where the obstacles are assumed to be equi-bounded and
equal to —eo outside a fixed compact subset of Q. These additional conditions will be
considerably weakened in the next section.

Theorem 3.1. Let (V) be a sequence of functions from € into R andlet y bea
function from Q into R . Assume that there exist a set Q'ccQ and a constant M >0
such that for every heN :

Y, Yp=— on Q\Q'; o, !l €M on Q'
Then

Ko(yy) = Kow)  in W5R(Q)
if and only if there exists a dense set D in R such that for every teD
. m,p
(3.1) Ko(l{wh>t]) - Ko(l{wt}) in W, (Q) .
Moreover, condition (3.1) is equivalent to
’ . m,p
(3.1°) KO(th»}) - KO(X[um}) in Wy "(Q) .
Finally, D can be chosen so that R\D is countable.

Throughout the following preliminary lemmas, y and (y;) are a function and a
sequence of functions, respectively, from R" into R .
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Lemma 3.2. Let Q'ccQ . If Ko(y) and K(y) are non-empty, and Yy, =\
(m,p)-qg.e. on R™NQ' for every he N, then the following conditions are equivalent:

(@ Koy — Koly) in WIPQ) ;
(b) K — K@) in W™ |

Proof. Let ¢e Cj(Q) such that @ = 1 on a neighborhood Q" of Q' and
0<op<1.

(a) = (b) Assume (a). Since Ky(y) = & we may suppose that Y, y, <0
(m,p)-q.e. on Q for every he N . Let us prove that K(y) < K'((y},)) . Take ue K(y) .
As @ue Ky(y), there exist an index ke N and a sequence (vy,) converging to @u in
WgP(Q) such that vye Ko(yy) if h2k.Let e C5(Q") with n=1 on Q' and
0<n<1;then mv,+ (1 -n)ueK(y,) forevery h>k,as y, =y on R"\Q', and
(mvy + (1 —n)u) converges to u in WP, We conclude that ue K'((yy,)), hence
K(y) € K'((yy)) . Moreover, it is simple to see that if ue K"((y;)) then @ue Ky(y) and
T2y (mp)-qe. on R™NQ'. This means that ue K(y), therefore K"((yy)) € K(v).

(b) = (a): it can be proved in a similar (and even simpler) way. ¢

Lemma 3.3. Let Q' be a subset of Q with Q'ccQ . Assume that (Ky(yp, Q")
converges to Ko(y,Q") in the sense of Mosco in W, *(Q) . Then for every teR

Ko(yy + Q) = Koy + Q)  in WyP(Q) .

Proof. Consider a function ¢e Cj(Q) with @ =1 on Q'; then it suffices to observe
that Ko(yp+t,Q") =Ko(yy,,Q2") +t¢ and Ky(y +1,Q2")=Ky(y,Q") + t@ . ¢

Lemma 3.4. Let (f,) be a sequence of functions in LP which converges weakly in LP
to a function f.Let (t;) be a sequence of negative real numbers converging to — and
assume that to every i€ N there corresponds a function g;eLP such that

fovy, = g weaklyin L as k — +oo .
Then: g — f weaklyin LP as i—> +oo .

Proof. Fix a .non-negative function veLP , where 1/p+1/p'=1.Let M be an
upper bound of the sequence (Ilkale) ; for every i, ke N we have




0 < (vt — fovdx = t—fpvdx < — fivdx £ Mlivl] p Y -
R.L . « fk!ti} * {fk<j:k} Lp({fkq‘})

Moreover, by Chebyshev's inequality I{fy < t;}| tends to zeroas i — +eo uniformly with
respect to k. Thus

lim J(fkvti—fk)vdx = 0 uniformly with respect to k

i—>+ee N
and then
im [(g;— Hvdx =
1—H—°° n
For a general veLP it suffices to consider its positive and negative parts. ¢

Lemma 3.5. Let T be an unbounded set of non-positive real numbers. Then the
following conditions are equivalent:

(@ Kyyvt) = Keyvt) in WP forevery teT;

(b) K(yy) = Ky) in WP .

Proof. (a) = (b) Let us show first that K(y) < K'((y},)) . Let u be in K(y) and
(t) asequence in T converging to —eo.If u=J,f with feLP, put v;= Gp*(fvty) for
every ieN . By assumption (a), vie K(yvt) c K’ ((\thtl) ), then for every ieN, v; is
in K'((yy)) . This latter is closed in W™P and (v;) convergesto u strongly in wP
hence ue K'((yy)) . Therefore K(y) < K'((yy)) -

Now we prove that K"((yp,)) € K(y) . Let (hy) be a strictly increasing sequence of
positive integers and let u be the weak limit in W™P of a sequence (uy) such that
uge K(yy,) for every keN.If f=(J,) 'u and f = 0.0 lue (ke N), then ()
converges to f weakly in LP.Let (t;) be asequencein T which converges to —ee ; by
means of a diagonal argument we may suppose that for every ieN there exists a function
g€ LP such that (fivt) converges to g weakly in LP as k— +e. Since
Gp*(fvtDe Ky, vty) and (Gp*(fiv t.)) converges to Gp*g; weakly in WP as
k — +oo, by assumption (a) Gp*g; € K(yvt) < K(y) for every ie N . By the previous
lemma, (G, *g;) converges weakly in W™P to Gp*f=1u, so that ue K(y) as K(y) is
convex and strongly closed in W™P  We conclude that X"((y},)) € K(y) .
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(b) = (a) Fix te T. We show that K(wvt) ¢ K'((yyvt)). Let ue K(yvt) and
u=J,f, with feLP; in particular ue K(y) thus, by assumption, we can find an index
ke N and a sequence (v;) which convergesto u in W™P and such that v,e K(yy) for
every hzk.If f; = (Jm)‘lvh, put z;, = G *(fy,vf) for every he N; when h=>k we
have

zp = G*(fyvf) 2 Vv 2 yvt (m,p)-q.e. ;

therefore z,e K(yyvt) . Moreover (z;) convergesto u in WP, as (f,) converges to f
in LP, so that ue K'((ypvt)) . Therefore K(yvt) ¢ K'((y,vt)) .

Finally, if u is a functionin K"((yy,vt)), then T2t (m,p)-q.e. and ue K"((yy)) ;
by condition (b), ueK(yvt) . We have thus proved that K"((ypvt)) € K(yvt) . ¢

Corollary 3.6. Ler (Ey) be a sequence of subsets of R" and let E be a subset of
R" . If there exists a set Q'ccQ which contains E and the sequence (Ey), then the
Jollowing conditions are equivalent: '

(@) Ko(lg) — Ko(1p) in WgP(Q) ;

(b) Kolxg,) = Kolxp) in WoP(Q).

Proof. By Lemma 3.2 it suffices to consider the case Q =R".
(b) = (a): it immediately follows from Lemma 3.3 and part (b) = (a) of Lemma 3.5.
(a) = (b) Consider a bounded open set Q">>Q'; it is easy to check (see the proof of
Lemma 3.2) that condition (a) implies the convergence of (K(lEh,.Q")) to K(1g,2"). On
account of the boundedness of Q", by Lcmma_ 3.3 (K(lEh - 1,Q")) converges to
K(1g - 1,22") and then for every real t<0, (K(thvt,Q")) converges to K(XE\/ t,Q") .
Part (b) = (a) of the previous lemma now gives that

K(thvt) - K(xEvt) forevery t<0.
By part (a) = (b) of the same lemma, we conclude that (K(th)) converges to K(xE) . ¢
- Lemma 3.7. Assume thar K(y) =D ; let \§ be the (m,p)-quasi u.s.c. envelope of Y

(see Proposition 2.10). If te R™, then YAt and (f — ) are the (m,p)-quasi u.s.c.
envelopes of WAt and (y—1)", respectively.

Proof. WAt is quasi u.s.c. and majorizes WAt . On the other hand let f:R"™ — R
be a quasi u.s.c. function with f2WyAat (m,p)-q.e.; since f + (f —t)" = WAt +
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(y-1n"= y (m,p)-q.e., then f + (y — "> ¥ (m,p)-q.e.. Moreover Yy < +eo  (m,p)-
ge.as KW) # D ; hence 2>y — (W~ t)" = YAt (m,p)-q.c.. We conclude that YAt is
the quasi u.s.c. envelope of WAt . The case (Y —t)” can be handled in a similar way. ¢

Lemma 3.8. Ler te RY . Assume that

K(yAt) € K'((ypAt)
K((w - ") < K'[((wn— D] .

Then K(y) < K'((yy))

Proof. By Proposition 2.19, Lemma 3.8 may be restated in the following form: given
teR™, if
Kyat) ¢ K'(ypat)
Ky -9 c Ky -9 ,

then K(\y) c K'((\Vh)) . This follows easily from the identity f= (fAt) + (f— " . ¢

Lemma 3.9. Assume that K(y)= & and that (K(yy)) converges to K(y) in
W™P  Then

K(ypAt) = KOyAt) in W™,
K((yn =0 - Ky -0 in W™,

for every teR™ .

Proof. Fix t¢e R . Let us prove that K(y At) < K'((ypAt)) by showing that
K(\y/\t) c ﬁ'((\ph/\t)) (see Proposition 2.19). Let fe K(\y/\t) . By assumption and by
Proposition 2.19, K(w) c K'((\;{h)) . Consequently, for every function ge I~{(\y) there exists
a sequence (gp) converging to g in Lp(Bmp) such that g,eK(yy) for h large enough. By
Remark 2.17, ((gyAtvf) convergesto (gAt)vf in Lp(Bm'p) and (g At)vie Ky, At) for
h large enough. Then (gat)vfe K'((yyAt)).Let ¥ be the quasi u.s.c. envelope of y (see
Proposition 2.10); by Lemma 2.1 it is possible to find a sequence (f},) of quasi continuous
functions, which decreases and converges to Y (m,p)-q.e.. Take the elements of (fy) as g
in the previous result: ((f,At)vf) is a sequence in ﬁ'((\yh/\t)) which decreases and
converges to f (m,p)-q.e, as f2 YAt (m,p)-q.e. by Lemma 3.7; actually we have
convergence in Lp(Bm,p) , by Remark 2.17. Since K'((\;fh/\t)) is closed in Lp(Bm,p) , it
must contain f, too. Therefore K(yat) < K'((ypAt)) .

In a similar way one can obtain the inclusion K((y — t)+) c K'[((yy, — t)+)] )
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Let us now prove that K"((y}, — N9 < K((y - %) . Let ue K"((yy, - )") . There
exist a strictly increasing sequence of positive integers (hy) and a sequence (u,) converging to
u weakly in W™, such that uee K((yy, —1)*) for every ke N . The inclusion K(yAt)
< K'((ypAt)) proved above yields that for every ve K(yAt) there exist an index ky and a
sequence (vy) converging to v strongly in WP, such that vye K(yyAt) for every
h 2 ko. We may assume that hy 2k for every ke N. The sequence (uyg + vy, )
converges to u+v weakly in W™P . Moreover, for every ke N

ﬁk + vhk 2 (th’\ )+ (th - t)+ = th (m,p)-q.e.;

thus, by the assumption on K(yy), u+veK(y), ie. u+veK(y) for every
ve K(yAt). By Lemma 2.1, there exists a sequence (wy) in K(yAt) such that (%)
converges to WAt (m,p)-q.e.. If we take the functions wy as v, passing to the limit we
obtain

T+yat2y (m,p)-q.e.;
this implies that

T2y—-yat=(W- )" (m,p)-q.e. on the set {{ > —oo} ;

on the other hand, @ 20 (m,p)-q.e. as ue K"[((yy — 1)")]. We conclude that
ue K((y - t)+) by Lemma 3.7. Therefore K"((yy, - t)+) c K((y - t)+) .
In a similar way one can prove that K"((y,At)) < K(yAt) . ¢

Lemma 3.10. Let X be a separable metric space, 1 an open interval of R (possibly
unbounded) and (K1 afamily of closed subsets.of X, increasing for tel (i.e. K;C K,
whenever s¢gel and s £t ). Then there exists a countable set T 1 such that for every
te \NT we have

Ki=cl(UKy)=NK, .
s<t ™t
Proof. See the proof of Theorem 2.7 in [9]. 4

Proof of Theorem 3.1. Observe that Corollary 3.6 gives the equivalence between
(3.1) and (3.1".

Part I Suppose that there exists a dense set D in R such that (3.1) holds for every
te D . Since the obstacles are equi-bounded and equal to —e= outside a compact subset of Q,
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Lemma 3.3 allows us to assume that 0 <y ,y, <M (m,p)-g.e. on ', for every heN.
For the same reason it is not restrictive to suppose that 0eD .

Consider Wy and vy, for every he N, to be defined all over R" with value —oo
outside £2. Let us prove that

(3.2) K(y;) — K@) in WP,

which implies the convergence of (Ko(yy,)) to Ko(y) in Wy P(Q) by Lemma 3.2.

First of all we show that K(y) < K'((yy)) . Fix &> 0; by the density of D there
exist ty,t; , .., tg in R such that 0=ty <t; < ..< tg=M, t—-ti_;<e for
i=1,.,q and D for i=0,.., q— 1. For every heN define

q q
(Dh = i§1(ti -ti—l)l{\y}pti_l} , @= igl(ti —ti—l)l {w>ti—1)

We want to prove that
(3.3) K(®) c K((@n)
arguing by induction. Since
DAty = tll[Wh>0}
DAL = tll{w} ,

condition (3.1) for t=t;=0 immediately gives the first step, i.e. K(® At))
< K'((®y,Aty)) . Assume now that
(3.4) K(@At) < K'((PpAty)
for some i=1,..,q— 1. Since )

( Py At 1) = (g = ti)l{\yhxi}

(@AL)= )= (i~ D (g
we have, by assumption, that

K@t~ )] € KI((@pAti)= ) nl -

This inclusion, together with (3.4) and Lemma 3.8, gives
K(@At,) c K'(PyAtL)) -

Thus we have proved the inductive step, hence inclusion (3.3).
We are now in a position to prove that K(y) < K'((vy)) . Let ue K(y) and
e C;(Rn) with ¢ =1 on Q'. Then u+epeK(P) and, by (3.3), u+epe X'((Dy)) ;
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since @, >\, for every he N, we have u+epeK'((yy)) . We conclude that K'((y))
contains u as it is closedin W™P and ¢ >0 is arbitrary. Therefore K(y) < K'((yy)

Now let us prove that K"((y)) < K(y). Let ue K"((yy,)) : there exist a strictly
increasing sequence of positive integers (h,) and a sequence (u) converging to u weakly in
W™P | such that ue K(yy,) forevery keN.If ¢ isas above, for every fixed te D we
have

u -t e Ky th>t}) for every ke N,
(up — t@) convergesto u—to weaklyin WP,
Our assumption, in the form (3.1"), together with Lemma 3.2, implies that
u-— tQe K(X{\yx}) , hence 2t (m,p)-q.e. on the set {y >t} . Since t is arbitrary in D
we easily obtain that ue K(y) . Therefore K"((yy)) < K(v) . We conclude that (3.2) holds.
Part IT Assume that
Ko(Wp) = Koy) in Wy(Q).

Let us prove that there exists a subset D of R such that R\D is countable and
condition (3.1) holds for every teD . We point out that the following proof does not use the
assumption of boundedness of the obstacles.

By Lemma 3.2 we have

(3.5) K(yy) = K@) in W™P .
Let s,te R" with s<t and define
gn= (-5 [(ypat) = sI"
g=(t—s) (YA —sI"
for every he N . By Lemma 3.9, (K(g;,)) converges to K(g). Moreover
Liypon) S80S Liypog)
Loy S8=Lyog
so that
K" (1)) € KL ygy) -

Hence, for every teR",
clyymp [ K (1 pyos))] € KL pypon)) € K (1 yy) € QKL pyoy) -

Apply now Lemma 3.10: there exists a countable set Ty C R* such that,for every
te R+\TO s




K1 o) = K" o) = K (o))

i.e.
KL ys)) = Kllpyny) in WP
By Lemma 3.2 we conclude that
KO(I{\U}Pl}) - KO(I(\pt}) in W(r)n'p(g)
for every te R\T|, .
Since for every AeR, condition (3.5) and Lemma 3.3 imply that
K(yy +2) — Ky +1) in W™P |

what we have just proved allows us to say that for every AcR the set T, of those te R with

t=~-A for which (3.1) does not hold, is at most countable. Now it suffices to make A vary in

Z . *

4. CONVERGENCE OF OBSTACLES AND LEVEL SETS :
THE GENERAL CASE

In this section we extend the result of Theorem 3.1 to the case of obstacles dominated by
a sequence of functions strongly converging in Wy "?(Q) .

Theorem 4.1. Let (yy,) be a sequence of functions from Q into R and let vV bea
function from Q into R . Then

Ko(wp) = Ko(w) in WyP(Q) and Ky(y) = D
if and only if the following conditions (a) and (b) are satisfied:
(a) there exists a dense set D in R andaset Fc A(Q) , cofinal in Q, such that
(4.1) Kol ypojam) = Kol pyognp) 7 W P(Q)

for every t€D and every Be F;

(D)  there exist a sequence (wy) in Wy "(Q) and an index keN such that (w,) converges
strongly in Wy "P(Q) and wye Ky(y,) for every h2k.

Moreover, if BccQ, (4.1) is equivalent to

(4.1 Ko pypoen) = Kooy 1 WoP(Q) .

Finally, we may assume that R\D is countable and that BccQ for every Be °F.
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Before proving this theorem we state, without proof, a localization result which can be
obtained as Theorem 2.7 in [9].

Proposition 4.2. Let () and y be as in Theorem 4.1. Suppose that Ky(y) # D
and that

Kowy) — Ko(w) in WP(Q) .
Then there exists a set R.c AQ) , rich in A(Q) , such that

KoWiA) = Koy,A) in Wy ()
for every AeR..

Besides, we need one more lemma, for which we refer to [9,Lemma 4.7].

Lemma 4.3. Let () and  be as in Theorem 4.1, and let T be an unbounded
subset of R" . Assume that

Kypat) = K(yat) in WP
for every teT , and that

(4.2) lim limsup By, (W~ =0 .
h—ortoe

t—rtoo

Then
K(y,) — K@) in WP,

Proof of Theorem 4.1. The equivalence between (4.1) and (4.1") for BccQ comes
from Corollary 3.6, while, by Proposition 4.2, we may suppose that BccQ if Be F.

Assume that (Ky(yy)) converges to Ko(y)~ and that Ko(w) # D . Let us prove that
condition (a) holds with a set D whose complement in R is at most countable. By Proposition
4.2 there exists a countable set F < A(Q), cofinal in €, such that BccQ and

Ko(y,.B) — Ko(w,B)

for every Be . Since Part II in the proof of Theorem (3.1) does not depend, as we
remarked, on the boundedness of the obstacles, we obtain that there exists a set Dy <R such
that R\Dy is countable and

Ko(Lpyoynp) — Kol ysnp)

for every te Dy . Since ¥ is countable, we get condition (a) with a set D such that R\D is
at most countable.
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Condition (b) is an immediate consequence of Definition 1.7 of Mosco convergence.
Assume now (a) and (b). As observed above, we may suppose that if Be F then
BccQ . First of all we want to prove that

(4.3) K(y;B) - KGy,B) in W™

for every Be F.
We claim that (4.3) is implied by condition (b) together with the following one

(4.4) K(ypat,B) — K(yat,B)

for every te R". To prove this, it suffices to show that (b) implies condition (4.2) of Lemma
4.3. Let (w) and k be asin (b); denote by w the limit of (wy) in W, P(Q) and define
f=0n 'w and f, = (Jm)_lw}1 , for every he N (here we consider w and wy, as
functions of W™P with value zero outside Q ). For every teR* and h>k we have

. + . —_antnp P,
h}xllfgp Bnp((Wp—1) )s}}x_r::o NGp*(f, —t) Illm,p = ll(f—t) “Lp ;

we obtain condition (b) taking the limit as t — +oo .
In view of Lemma 3.5 (part (a) = (b)), (4.4) follows from the convergence

K([Ta(WaADIvs) — K([TyAt)]lvs)

for every seR™. Observe now thatif ses R™ and he N we have

[Tg(ypAat)lvs = [Te((ypAt)vs)]vs
and the corresponding equality for y . Therefore, by Lemma 3.5 (part (b) = (a)), to get
(4.4) it suffices to prove that

K((ypAt)vs,B) — K((wAt)vs,B)
for every te R" and seR™. This now follows from condition (a) and Theorem 3.1 applied to
the sequence (Tg((y;,At)vs)), taking into account that

{Tg((ypAt)vs) > 1) = {y, >1}NB
{Tg((yAt)vs) >t} = {y>1}NB

for s<t<t. We have thus proved (4.3).
From (4.3) and Lemma 3.2 we obtain

(4.5) Ko(yiB) = Ko(y,B) in WyP(Q)
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for every Be ¥ .Since ¥ is cofinal in Q and (b) holds, Corollary 2.13 and (4.5) yield
’ = ' B M ,B) = ,
Ky (W) BQTKO((Wh)’ );BeTKO(W ) =Ko(w)

hence Ko(y) < Ky ((wy)) -
Finally, by (4.5)

Kp (i) € 0 Ky (@B) € 0 KowB) =Kotw)

hence Kj((ypn)) < Ko(y) . We conclude that
Ko(wy) — Koly) in W5™(Q)
and consequently Ky(y) # & by condition (b). ¢

The next theorem presents a simple situation in which condition (b) of Theorem 4.1 is
satisfied without requiring that the obstacles are —eo outside a fixed compact set.

Theorem 4.4. Let (V) be a sequence of functions from € into R andlet v bea
function from Q into R. Assume, in addition, the existence of a set Q'CCQ such that
V,¥, <0 (mp)qge. on Q\Q' for every th . Then

Koy — Ko(y) in WyP(Q) and Ko(y) # &
if and only if the following conditions (a') and (b’) are satisfied:

(a') there exists a dense set D in R andaset F< AQ), cofinal in €, such that

KO(]- {\yh>t]mB) - K0(1 [\lDt}ﬁB) in W(r)n’p(g)

for every teD and every Be F;

“+co

(b) lim limsup | Cpy o({yy>s))(s = P 'ds =0 .
h—eo ‘

t—+oo

Proof. By Theorem 2.2, (b") is equivalent to
(4.6) lim limsup B, (=07 =0 .
t—too h—rtoo

As shown in the proof of Theorem 4.1, this is implied by condition (b) (of Theorem 4.1).
Assume now (') and (b"), and let us prove that (b) holds. Since ¥, Yy, <0 outside
Q' in view of Theorem 4.1, we obtain



Ko(ynat) — KoW'AD) in W3P(Q)

for every te R*. Therefore, by Lemma 3.2,

Kwipat) = KyrAt) in W™ |
On account of (4.6), we can apply Lemma 4.3 and conclude that
4.7) K(y) = Ky .

Furthermore, since each obstacle Wy, is non-positive outside Q', from (4.6) we easily
get that there exist a sequence (wy) bounded in W™P and such that %, = w1 (m,p)-q.e. for
every he N. We can extract a subsequence (w,,) which converges weakly in W™ to a
function w . Therefore we K”((Wg)) and, by (4.7), we K'((\y;)) . It follows that K'((yy,))
is not empty, and this implies condition (b) by definition of Mosco convergence.

Now, it only remains to apply Theorem 4.1. ¢

5. CONVERGENCE OF LEVEL SETS AND CONVERGENCE OF
CAPACITIES |

In this section we consider the sequence of convex sets (Kg( lEh)) in W‘;'p(ﬂ)
associated to a given sequence (Ey) of subsets of Q, and we express its Mosco convergence
to a set of the same form through a convergence condition for the capacities of the intersections
EyNA with a rich family of open sets A (Theorem 5.1). Afterwards we link this result with
the one of the previous section by taking as (E;) the level sets of a sequence of obstacles
(Theorem 5.12). R

In this section only the case p =2 will be studied.

Theorem 5.1. Let (Ey) be a sequence of subsets of Q and let E be a subset of Q .
Assume in addition that there exists a set Q'ccQ which contains E and the sequence (Eyp) .
Then

Ko(lg) = Ko(1g) in Hy(Q)
if and only if there exists a set Rc A(Q), richin AQ) , such that
(5.1) im Cp ,(BpnA) = Cp o(ENA)
h—+e :

for every AeR.
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Remark 5.2. We observe that the existence of a set R < A(Q), richin A4(Q),
such that (5.1) holds for every Ae R is equivalent to the existence of a set D < A(Q),
dense in A(Q), such that (5.1) holds for every Ae D . Indeed, one implication is obvious;
conversely, define

a(A) =liminf C, o(EpNA)
h—+ee
B(A) =limsup Cp, ,(EpNA)
h—>+ee
AA) = Cp2(ENA)
for every Ae 4(Q) . The functions o, and y are increasing on A(Q) and coincide on a

dense set, therefore they coincide on a rich set in A(Q) (see, for example, [10, Proposition
13.17] or [16, Proposition 4.8]).

The idea to derive the convergence of (Ky(1g,)) to Ky(1g) from the validity of (5.1) for
a rich family of open sets A , may be sketched as follows. In a standard way we change the
problem of Mosco convergence into a problem of I'-convergence (see definitions below) for an
associated sequence of functionals. By means of a compactness theorem we get a I'-limit,
which can be identified as the functional corresponding to E thanks to the possibility of
recognizing E from the knowledge of C, ,(ENA) for sufficiently many open sets A .

Let us briefly recall the notion of I'-convergence. Let (X,t) be a topological space
satisfying the first axiom of countability.

Definition 5.3. Let (F,) be a sequence of functions from X into R, F a function
from X into R and ue X .We say that (F,) I{t)-convergesto F in u,and we write

F =T lim Fy) ,

v—u
if the following conditions are satisfied:
(1) for every sequence (u;) convergingto u in 1

F(u) £ liminf Fy(uy)
h—rteo
(i) there exists a sequence (u,) convergingto u in t such that
F(u) 2 limsup Fy(up) .
h—teo

(Fy) is said to I'{t)-converge to F if (F,) I'(r)-convergesto F in every point u of X.
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For a complete treatment of this kind of convergence see, for instance, [15] and [3]. Here

we limit ourselves to state one of the most significant variational properties of I'-convergence
(see [15, Corollary 2.4]).

Theorem 5.4. Let (F,) be a sequence of functions from X into R which

I(z)-converges to a function F . Suppose that there exists a T-compact subset K of X such
that

inf Fy(u) = inf F,(u
ueX h() ueK h()
for every he N .Then F attains its minimum in X and

lim inf Fy(u)=min F(u) .
weX

h—+oe ueX
Furthermore, if v, is a minimum point of ¥y, in X for every heN , and (w,) converges to
apoint u in 1, then u is a minimum point of F in X.

For any subset C of H™ let us denote by Ic the indicator function of C in H™,ie.
the mapping which takes the value 0 on C and 4o on H™\C. Moreover, by Hg(Q) we
shall mean the space LYQ) . The following proposition has a simple proof which we omit.

Proposition 5.5. Let K and (K,) be a subset and a sequence of subsets,
respectively, of H" . Then

K, - K in H"
if and only if

TETY lim (M, + T, 1=l + T (w)

v—1u

(T (Hi’;;l) means that the I'-convergence is considered with respect to the topology of
, Hﬁ:l(Rn) on the space H™(R™) ).

For every Be B and ue H" define

FuB)= X J]D“ulzdx.
lal<m

Moreover, given a subset E of R", we define

0 if 921 (m,2)-q.e.
G (U,B) =1 (u ={ EnB
E K(1gg) ) +oo otherwise in H™
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0 if ©>1g (m,2)-g.e.on B
He(u,B) =1 =
eWB) = Ieqy ) ) {+oo otherwise in H™
for every B < R™ and ue H™ . A simple check shows that Hg satisfies the following
properties, which we state for a functional H:H"xB — [0, +e] ;

(i) forevery Ae 4, the function H(-,A) is lower semicontinuous in H™ ;
(i) for every ue H™, the function H(u,) is a Borel measure on R":

(i) if uveH™, Ae 4 and u=v ae.on A,then H(u,A)=H(,A);
(iv) if u,veH™, Ae4 and u<v ae.on A,then H(u,A)2H(v,A).

Let us denote by (H™)" the cone of non-negative functions of H™ From [24, Theorem
1] and [14, Theorem 3.3] we derive the next theorem.

Theorem 5.6. Let (E,) be a sequence of subsets of R" . Then there exist a
subsequence (Egmy) of (Ey), a functional G cH"%x4 — [0, +] and a set R' < A,
richin A, such that

(5.2) [F(,A) + GEc(h)("A)] I‘(Hi‘);l)-converges to [F(,A) + G(,A)]

(5.3) [FC,R™) + GEc(h)("A)] T(H’I‘;l)-converges to [FCRM + G(,A)]

for every Ae R’ . Moreover, there exists a functional H: H™%B — [0, +eo] satisfying (i)
to (iv) above and such that (5.2) and (5.3) hold with (GEc(h)) and G replaced by (HEc(h))
and H , respectively. Finally,

H(u,A) if ue (™"
+ oo otherwise in H™

(54) G(,A) = {

for every ueH™ and every Ae 4.

Proof. Step 1. Here we prove the existence of a subsequence (Ec(h)) of (Ey), a
functional G :H™xA — [0, +oo] , and a set R; 4, richin A, such that (5.2) holds
for every Ae R, . This step is rather standard (see, for example, [10, Theorem 15.8] or [13,
Theorem 4.15]) and it relies only on the property that (Gg,) is a sequence of functionals
increasing in the second variable.

Let M' and M" be the functionals defined, for every ue H" and for every pair o, A
of open subsets of R" with A <, through the equations



—34—

(5.5) M'(u,0,A) = inf { liminf [F(u;,,0) + GEh(uh,A)] > up—>u in H]m":l }
h—+o oc
(5.6) M"(u,0,A) =inf { liﬁgp [F(uy,0) + GEh(uh,A)] :up—>uin H;’;;l } .

It is easy to see, by a diagonal argument, that the infima in (5.5) and (5.6) are actually
minima. Moreover, M'(-,w,A) and M"(-,n,A) are lower semicontinuous on H™ with the
topology of H{L‘;l (see, for example, [15, Proposition 1.8]).

Fix a countable dense subset D of 4. Applying a general compactness theorem with
respect to the I'-convergence (see, for instance, [15, Proposition 3.1]) and a diagonal process,
we can find a subsequence (Eo(h)) of (E;) such that the sequence [F(-,A) + GEG (h)(-,A)]
has a I’(Hl”;l)-limit forevery AeD.

If M' and M" are the functionals defined by (5.5) and (5.6), with (Ejp) replaced by
(Egny) » then M'(w,A,A) = M"(u,A,A) for every ue H™ and AeD. Thus

(5.7 sup M'(u,AA") = sup M"(u,A"A")
Aed Aeda
A'ccA A'ccA

for every Ae 4. Besides, since the functions A —» M'(1,A,A) and A — M"(u,A,A) are
increasing on A4 for every ue H™, while M'(,A,A) and M"(-,A,A) are lower
semicontinuous in H™ for every Ae .4, we can apply Proposition 14.14 in [10] (or argue as
in [13, Proposition 1.14]). It follows that there exists a set ®; < 4, rich in 4, such that

(5.8) M'(u,AA) = sup M'(u,AA"), M"(u,A,A) = sup M"(u,AA")

AEZn AEEA
for every ueH™ and Ae R, . Defining M(u,A), for every ue H® and every Ae 4, as
the common value of both sides in (5.7), and setting G(u,A) = M(u,A) — F(u,A) , from (5.7)
and (5.8) we conclude that (5.2) holds for every A€ R .

Step 2. It is rapidly seen that we can apply to the sequence (Hg <S(h)) an argument quite
similar to the proofs of Theorem 1 in [24] and Theorem 3.3 in [14]. Thus, passing, if
necessary, to a further subsequence, there exist a functional H:H"xB — [0, +eo],
satisfying (i), (ii) and (iii) above, and a set X, < A4, richin A4, such that

(5.9) [F(-,A) + HEo (h)(-,A)] I‘(H;‘;l)-converges to  [F(,A) + H(,A)]

for every Ae X, . Property (iv) can be obtained as in [24, Theorem 2].
Step 3. Let us prove that the functionals G and H just obtained satisfy (5.4) for every
ueH™ and every Ae 4. To this aim, for every ue H™ and o, Ae 4 with A C o, we set

G'(u,,A) = M'(u,0,A) — F(u,)
G"(u,0,A) = M"(u,0,A) — F(u,0)
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where M' and M" are defined in (5.5) and (5.6) (for the sequence (GEo(h)))' In the same way

we introduce H'(u,0,A) and H"(u,w,A) from the sequence (Hg o(h)) . The functionals G',

G",H' and H" turn out to be lower semicontinuous in H™ with respect to the first variable.
We need the following properties:

(P if o, Aje 4, with A;ce; (i=12)and e, C 0y, A; S Ay, then for every
ue H"

G'(U,(Dl,Al) < G'(U,(Dz,Az) 5 G"(u,a)l,Al) < G"(u,(x)z,A2) )
(P,) if A, A'e4 and A'ccA, then for every ue (H™)"
G'(u,R"A") <H'(u,AA) , G"w,R"A) < H"(1,A,A) .
Let us prove (P;). We consider only the first inequality, the second one being analogous.

Fix ue H™ ; by definition of G'(u,m,,A,) there exists a sequence (u,) in H"
converging to u in Hf;l and such that

(510) F(u,wz) + G'(U,a)z,Az) = liminf [F(uh,ﬁ)z) + GEc(h)(uh,Az)] .
h—+ee
Assume that G'(1,@,,A,) < +eo, otherwise there is nothing to prove. Then, up to a

subsequence, we may suppose that (up) convergesto u weakly in H™(w,) and that the
lower limit in (5.10) is actually a limit. Then for i=1,2

lal<m

F(up,0;) — F(u,0;) = Fyy—u, o) +2 2 jDa(uh— u)D%u dx
OF]
= F(u,—u, 0;) + ¢,

where hgrilm ey, = 0. Since GEG(h)(uh,-) is increasiqg for every he N, we have

G'(u,03,A9) = lim [Fuy—u, @) + G gy (UnsA2)]

2 liminf [F(uh_ u, (.01) + GEG(h)(uh,Al)] 2 G'(u,(l)l,Al) .
h—to

Let us prove (P,). We consider only the first inequality, the second one being analogous.

Let ue (H™". As in the proof of (P,), we may suppose that H'(u,A,A) < +e and that
there exists a sequence (u;) in H™ converging to u in Hl“;l and weakly in H™(A) , such
that

(5.11) F(u,A) + H'(u0,AA) = hli_)rn)f@o [F(up,A) + HEc(h)(uh’A)] .



Let us consider a set A"e 4, with A'ccA"ccA andlet @ be a function in CB"(A)
with ¢ =1 on A" and 0< @ <1.Define v =9uy + (1 — @)u for every he N. Then
(vy) is a sequence in H™ which converges to u in H™ !. The finiteness of H'(u,A,A)
implies the existence of an index ke N such that HEo(h)(uh,A) < +eo whenever h=>k,
hence fi;, 20 (m,2)-q.e. on A. It follows that vye (H™)", thus

(5.12) Gy (VioA) = Heg gy (VipA) = Heg p (5, A7) < He (U, A)

for every h 2k . By the convergence properties of the sequence (u) , we easily obtain, for
h 2k,

F(vp,R) = X ‘{Icha(uh—- u) + Daul2 dx + g,
IaISmR

(5.13) < Z {[@D“uhﬁ + (1 — @)D%u] dx + ¢
IaISmR
< F(up,A) + Fu,R™A") + ¢

where h];im ey, = 0. Then, by (5.12)

~>+00
F(u,R™") + G'(w,R",A") < liminf {F(vh,R") +Gg G(h)(vh,A')]
h—too
< liminf [F(uy,A) + Hg G(h)(uh,A)] +F@u,RMA") ,
h—+oo
and therefore, by (5.11) and (5.13),
F(u,A" + G'(u,R",A") < F(u,A) + H'(u,A,A) .

We conclude taking into account that A" is an arbitrary open set such that
A'ccA'"ccA.

We are now in a position to determine the form of G . Itis clear that G(u,A) = +eo for
every Ae 4 and ue (H™)" . On the other hand, if ue (H™)", then by properties (P;) and
(P,) we have

(5.14) G'(w,A%A") £ G'(b,R",A) <H'@U,AA) < G'(W,AA)

whenever A, A'€e 4 and A'CcA (note that HEh(-,A) < GEh(-,A) for every he N ).
Besides, A —» G'(u,A,A) is increasing by (P;), thus the set &4 of those A€ A4 such that

G'(w,A,A) = sup {G'(u,A'AY) : A'e 4, A'ccA)

isrichin A4 (see property (5.8) for M"). From (5.14), G'(u,A,A) = H'(u,A,A) for every
Ae R, . This, together with (5.9) and the result of Step 1, yields that G(u,A) = H(u,A) for



—37—

every A in the rich family of open sets R3 = R1NR,NR,4; we pass to an arbitrary
Ae A observing that G(u,”) is increasing on 4 (as can be easily checked by using (P;)) and
G(u,A) =sup {G(u,A") : A'e 4, A'ccA} for every Ae 4. Hence Step 3 is proved.

Step 4. To accomplish the proof of Theorem 5.6 we have only to show that for a suitable
rich family of open sets A the convergence in (5.3) takes place, as well as the corresponding
one for the sequence (Hg G(h)) .

If ug ™" then G'@.R™,A) = G"(u,R",A) = +e0 = G(u,A) for every Ae 4. In the
case ue (H™", by (P;) and (P,) we have, as in (5.14),

G'(u,A"A") £ G'(u,R",A) < G'(u,AA)

We can now use an argument quite similar to the one applied in the previous step to (5.14).
Since the same holds for G", we obtain that (5.3) is valid for a rich family of open sets A .
Finally, as to (HEc(h)) , we argue in the same way, taking into account that for every ue H™
and A, A'e 4 with A'‘ccA we have

H'(uR",A) <H(@u,A,A) , H"'(WR",A)<H"@uAA) .

This replaces (P,) and can be proved in a similar (and even simpler) way. ¢

Now we represent the I'-limit of the foregoing theorem by means of an integral
functional.

By a Borel measure on R" we mean a non-negative countably additive set function
w: B—> [0,+=] such that p(@)=0. We indicate by M, the class of all Borel measures
on R" such that p(B) =0 for every Be B with null (m,2)-capacity . If p is a measure in
M, 5, we still denote by p its completion, which is defined, in particular, on all (m,2)-quasi
Borel sets. -

Lemma 5.7. Let (E,) be a sequence of subsets of R" . Then there exist a
subsequence (Egqy) of (By), a measure ye My, andaset R' < A, richin A, such
that for every Ae R’

(5.15)  [FC,R™ +Gpyy (wAN]  T(HD)-converges o [FC.R™) + GGA)N

where

fla-o1%de i ve@E™?
(5.16) G(u,A) = A

. . m
+ oo otherwise in H

for every ueH™ and Ac 4.
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Proof. Let us apply Theorem 5.6 and let (Egq,))» G, R’ and H as in that statement.
The only step which remains is to determine the form of H . Properties (i) to (iv) satisfied by
H allows us to represent it by means of Theorem 5.7 in [8]. Then there exist a Borel function
f: R"xR — [0, +e] and two non-negative Borel measures A and v on R" such that

H(wA) = Jf(x,800)dMX) +v(A)
A

for every ue H" and every Ae A . Furthermore, the same theorem guarantees that A is a
Radon measure which belongs to H™ , hence to M, , , and that for every xeR" the
function f(x,") is decreasing and lower semicontinuous on R.

If A is an arbitrary bounded open set of X', and ¢ a function in C;(Rn) with
¢@=1 on A, then H(p,A) =0 by Theorem 5.6. We infer that v=0 and f(-,1) =0
A-a.e. on R™ . Moreover, since the T'-convergence is stable under continuous perturbations
(see, for example, [3, Theorem 2.15]), from Theorem 5.6 we obtain, for every ue H™

ﬁD vfdx + Hpp (vA) = 2 |ID%ufdx + H(wA)

O<lotl€m A

(5.17) TEHD “1y lim

h—>+°° 0<|ax<m

where A is as above. Observe now that for every he N

Hg, (tu + (1 - )9, A) = £ Hg, (1,A)

whenever te R™ and ue H™ are such that u2=0 a.e.on A and tu+ (1-t¢=20 ae.on
A . This turns out to be a positive-homogeneity property for the functional ﬁEh(-,A)
=Hg, (¢ — -, A) for every teR” and ve H™ with v<1 and tv<1 ae.on A.As
this property is preserved by I'-convergence (see, for instance, [10, Theorem 10.9]), on
account of (5.17) it also holds for the functional H- and for the fixed A . By the richness of
R." this is true for every Ae 4. We are now in a position to apply the next lemma, which
proves that

Jexmar = [0t - ©7Pa
A A
for every Ae 4 and ue H® with u=0 ae. on A. We conclude setting dp =

£f(-,0)dr . ¢

Lemma 5.8. Ler Ae Mm_2 and let g:R"xR — [0, +o0] be a Borel function such
that

(i)  for every xeR" , the function g(x,”) is increasing and lower semicontinuous on R ;
(i) gx,0)=0 for A-a.e.xeR" ;



—30—

(iii) for every Ae 4 and ue H™ with u<1 a.e., we have
- 2 ~
jg(x,tu)dl =t Jg(x,u)dx
A A

whenever te R* is such thar u<1 ae..

Then
(5.18) [sxmar= [gxn@Ha
A A

for every Ae A and ue H"(A) with u<1 ae.on A.

Proof. The result is standard if Jg(x,'ﬁ)dk < +oo for every ue H™ . In the general
n

R
case we shall essentially follow the proof of Lemma 2.3 in [12].

Let us consider the set

S={ueH™: [g(x,d)dh<+eo }
Rn

Since H™ is a separable metric space, there exists a sequence (up) in S which is dense
in S with respect to the strong topology of H™ . For every he N we consider an (m,2)-q. e.
representative of &, and we shall keep it fixed in the following arguments. Define
E = Upken (T 2 1/k} . We now prove that

(5.19) g(x.t) = gx, D H?

for A-a.e. xeE and for every teR with t<1.

Let h,keN ; since the characteristic function of {¥ > 1/k} is quasi lower semi-
continuous, by Lemma 2.1 we can find a sequence (Vy i), in H™ such that (Vi0); 1S
increasing (m,2)-q.e. and

(520) Vh,k;i - l{ﬁh>1/k] (m,2)-q.e. as i— 4oo .

For every ie N, we fix an (m,2)-q.e. representative of ¥y y.;, as we have done for the
sequence (up) . Denote by N the (m,2)-negligible set of the points where (Vy,;), fails to be
increasing or to satisfy (5.20) for some hkeN.

For every xeR" the function g(x,) is increasing on R and, by (ii), g(x,;n) =0 for
every 1 <0 and xeR"\N,, where AM(N,)=0; then we have




[0 b Tucodr s oo b1 guaprs foomi < e ;
R R R
hence, by (iii),

J.g(x,?ih,k.i)dl < Foo |
R" ’
We apply now the classical result. For every 1€[0,1], h,k,ie N and Ae A4, from (iii)
we get

Jo e iGN = 7 [g(x,Tp 1) < oo
A A

therefore there exists a Borel set N3 such that A(N;) =0 and
(5.21) E(X, TV 1i(X)) = T KT (X))

for every xe R"™\N3, hk,ieN and e Qh[O,l] . This equality actually holds whenever
1€ [0,1], since by (i) the function g(x,") is continuous from the left for every xeR" . Let
x€ EN(N;UN3) and tyeR with 0<ty<1. By definition of E there exist h,ke N such
that ¥p(x) > 1/k ; then (5.20) yields that Vhk:i(X) >ty for a suitable index ie N . For every
te [0,tg] we can apply (5.21) with 1=t/ ¥ .4(x) , so that

2 8(X,¥p (X))

(5.22) D=t .
B = i)

Let t;,t,€R with 0<t; <t; <1 andtake t, as t; in the above argument. Since
in (5.22) the choice of the indexes h, k and i does not depend on t, we have

g(x,t) _ g(X.ty) .
2 - 2
tq 15)
by continuity from the left this inequality extends to t, = 1. We conclude that g(x,t) =
g(x,l)t2 for every xe E\(N;UN3) and every te R with 0<t<1. Hence (5.19) follows
for every xeE\(N;UN,UN3) and t<1.

Now we claim that

(523) [sxmar = s @)
R" R"

for every ue H™ with u<1 ae. ,
Assume that the left hand side of (5.23) is finite. By the density of (u,) in S we obtain
that { > 0} is quasi contained in E . Then, from (5.19)

g(x,0(x) = gx, @)% for r-ae. xe {F>0) ;
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this immediately implies that u satisfies (5.23).

At this point, to accomplish the proof of (5.23) for every ue H" with u<1 ae, it
only remains to consider the case in which the right hand side of (5.23) is finite. Let € >0 ; as
before we can find a sequence (v;) in H™ such that (¥;,) increases and converges (m,2)-g.c.
to 1(g.¢) - Therefore, for every heN

[t < el gmepdisd [eD@)dA <+ .
Rn Rn € Rﬂ
Hence ;€S for every he N . This implies that {¥y, >0} is quasi contained in E, so that,
by the arbitrary choice of >0, the set {ii >0} is quasi contained in E . Finally, we get
that u satisfies (5.23) by applying once more equality (5.19).

We are now in a position to prove (5.18). Let Ae A4 and ue H™(A) with u<1 ae.
on A . For every open set A'ccA let ¢eCy(A) with ¢ =1 on A' and O0<¢@ <1.
Then, by (5.23)

[exmar < [emoman < [exDieD TPar < [gx, @)% .
Al R® R A

As A'is an arbitrary open set satisfying A'ccA , we get

[exman < Jexn@Han .
A A

The opposite inequality, which can be obtained in a similar way, concludes the proof of
the lemma. ¢

It is now convenient to introduce an auxiliary notion of capacity (see [11]).
Let ve M, , . For every (m,2)-quasi Borel subset B of R", define

cap,B)= inf [[ul,+ |[(1 - @)'TPdv]
ap s ulf; 5 J it v

(5.24)

= inf I.F(u,Rn) + GV(U’B)] ’
ue (Hm)+

where we have put
G,(u,B) = g[ [(1 - ©)7%dv

for every ue H™ . Note that the functional [F(-,R") + G,(-,B)] is lower semicontinuous in
the strong topology of H™ (use Proposition 1.3) and (strictly) convex, hence it is weakly lower
semicontinuous in H™ . Then the infimum in (5.24) is attained.

We shall need the following properties of cap,, (see [11, Theorem 2.9]).
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Proposition 5.9. Let ve M, ;. Then:
(i) if (By) is an increasing sequence of (m,2)-quasi Borel sets and B =\U;By,, then
capy(B) = sup capy(By) ;
(ii)) capy(B) < C,»(B) for every (m,2)-quasi Borel set B ;
(iii) for every (m,2)-quasi open set A
cap,(A) = inf{cap,(U): U open, UD A} .

Proof. (i) Since cap, is obviously increasing, it suffices to prove that cap,(B) <
s%p capy(By;) assuming that the right hand side is finite. For every he N, let wye H™ be
the unique solution of the minimum problem defining cap,(By) ; the sequence (wy) is
bounded in H™, hence there exists a subsequence, still denoted by (wy) , which converges
weakly in H™ to a function we (H™)". By weak lower semicontinuity we have, for every
ke N ,

F(w,R") + G,(w,By) < liminf [F(w,,R™) + G, (wy,,By)]
h—+eo

< liminf [F(wy,,R™) + G,(wp,B,)] = sup cap, (By) .
h—+e h

We conclude taking the limit as k—>-+eo .

(ii) It suffices to assume C;, 5(B) < +eo and use, as a test function in (5.24), the element w
of (H™" such that |]w|lr2m2 =Cph2(B) and w21 (m,2)-qee. on B.

(iii) Let A be an (m,2)-quasi open set with cap,(A) < +eo (otherwise there is nothing to
prove). For every ¢>0 there exists an open set o such that C, ,(0) <e and AUo is
open; let wy; and w, be the solutions of the minimum problems defining cap,(A) and
cap,(w) , respectively. On account of the fact that w; and w, are non-negative functions, for
every O0<o<1, we have

cap,(Auo) < [lwy + wolZ, + (1 = (% + %)) Pdv
AU

1 1
< T—:—&—capV(A) + p capy(w)
and since, by (ii), cap,(0) < C, 2(w) , it follows

cap,(AUw) — cap,(A) < T——_G——(-T-capv(A) +§- .

Choosing o = e the right hand side tends to zero with & . This concludes the proof. ¢

For every subset E of R", define
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oo 0 if C ,(EnB)=20
uE(B>={ £ CmalEOD)
+oo if Cm,z(Er\B) >0

for every B ¢ R".Itis clear that pge My, 5 .
In the following lemma we shall use the condition of convergence of capacities stated in
Theorem 5.1.

Lemma 5.10. Let (E;) be a sequence of subsets of Q and let E be a subset of L.
Assume the existence of a set Rc A(Q), richin A(Q), such that

(5.25) lim Cpap(ExA) = Cro(BNA)
h—teo

for every Ae R. Assume, in addition, that E is (m,2)-quasi closed. If (Egmy) ,n and X
are as in Lemma 5.7, then w(A) =pg(A) for every (m,2)-quasi open set A Q.

Proof. We prove first that for every (m,2)-quasi open set A < Q

(5.26) min _[F(u,R") + G, (u,A)] = C; o(ENA) .
ue (H™

Let us consider a bounded open setin R"= R "K', which is a rich set in () .
By the boundedness of the sequence (C, 2(EgnyNA)) and recalling the definition of Gg o(h) *
we can apply Theorem 1.12 to the sequence of functionals [F¢-R™ + GEc(h)("A)] , which
I‘(Hl“;;l}convergcs to [FC,R™ + G(-,A)] since (5.15) holds. Therefore, in view of (5.25),
we have
min [F(u,R") + G(u,A)] = C o(ENA) .

weH" -

By (5.16) this implies the validity of (5.26) for every bounded Ae K" . Observe now that
(5.26) can be written as

(5.26" cap,(A) = capu; (A) .

Proposition 5.9 (i) and the richness of R" in A(Q) yields that (5.26") holds for every
Ae 4(Q) ; finally, we pass to any (m,2)-quasi open set A < Q by means of Proposition
5.9 (iii).

Now let us take, in (5.26), A = Q\E, which is quasi open because E is quasi closed.
If wis thelminimum point of [F(-,R™) + G,(-A)] in H™", then w=0 and Gu(O,A) =
G, (w,A) =0 . Consequently, n(Q\E) = 0 .




—44—

To accomplish the proof of the lemma it is enough to show that for every (m,2)-quasi
open and bounded set A ¢ Q we have

(5.27) WA) =+es  if Cpo(ENA)>0 .

Assume p(A)<+eo and let we (H™" be such that ||W||,2n,2 = Cp2(ENA) and
w21 (m,2)-q.e.on ENA. Since p(A\E) =0, we obtain Gu(w,A) =0 and, by (5.26),
W turns out to minimize [F(-,R") + G,(-,A)] in (H™)". It follows that for every
0O<ex< 1

F((1 - e)w,R™ + G, (1 —&)w,A) - Fw,R) 20 ,
hence, taking into account that w(A\E)=0 and %=1 (m,2)-q.c. on ENA, we obtain
~2elIwliZ, 5 + €XllIWliZ, 5 + 1A 20 .

As this inequality holds for every 0O<e<1, we must have Wllh2=0, ie.
Cn2(ENA) =0. Thus (5.27) is proved. ¢

Lemma 5.11. Let E be a subset of R", E its (m,2)-quasi closure and A an (m,2)-
quasi open set. Then the (m,2)-quasi closure of ENA coincides with the (m,2)-quasi closure
of ENA up 1o sets of zero (m,2)-capacity. Consequently, ENA and ENA have the same
(m,2)-capacity.

Proof. Let F and F' be the quasi closures of ENA and EnA, respectively. Since
ENA is quasi contained in ENA , F is quasi contained in F'. Let us prove the opposite
inclusion. Let G be a quasi open set such that cap(GN(ENA))>0; then GNA is quasi
open and cap((GmA)nﬁ) =cap(Gm(ﬁmA)) > 0. By Proposition 1.5 for Z= E, we have
cap((GNA)NE) > 0. Hence, cap(GN(ENA)) >0 for every quasi open set G such that
cap(GN(ENA)) >0 . Apply now Proposition 1.5 for Z =ENA; then EnA is quasi
contained in the quasi closure of ENA . It follows that F' is quasi contained in F. We
conclude that F is (m,2)-equivalent to F'.

Finally, the quasi stability of the capacity (see Remark 2.11) yields

cap(EmA) = cap(F') = cap(F) = cap(ENA) . ¢

Proof of Theorem 5.1. Assume that
Ko(lg,) — Ko(lp) in Hg(Q) .

By Theorem 3.1 this implies the convergence of (KG(th + 1)) to KO(XE +1).
Therefore, by means of Proposition 4.2, we get the existence of a set R.c A(Q), rich in
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A(Q) , such that (KO(;(,Ehh A+ 1)) converges to KO(xEn AT 1) for every Ae R. Again
from Theorem 3.1 it follows that

Ko(lgna) = Ko(lgna)  in Hg(Q)
for every Ae K. In view of Lemma 3.2
K(lg,~a) — K(lg~a) in HT .

Therefore, Proposition 1.9 yields (5.1) for every AeR..

Conversely, assume that there exists a set R.c A(Q), rich in A(2) , such that (5.1)
holds for every Ae R. Observe now that Ky(1g) = Ko(1§) (see Remark 2.11) and that, by
Lemma 5.11, C ,(ENA) = Cm,z(EmA) for every open set A . Consequently, since E is
(m,2)-quasi contained in Q , we may suppose that E is (m,2)-quasi closed.

By Lemmas 5.7 and 5.10, every subsequence (Eq)) of (Ey) contains a further
subsequence, still denoted by (E)) , for which there exist a measure pge Mo and a set
R s < A(Q),rich in A(Q), such that for every Ae R

F(-,R™) + GEc(h)("A)] F(Hﬁzl)-convergcs to  [FC,R™ + G(,A)],
where

fla - ©*1%dpe  if ue (H™”
GuA) =< A

+ o0 otherwise in H™

for every ue H™ and Ae 4. Moreover, if A < Q is quasi open, then pg(A) = u‘E(A) It is
now easy to verify that G(u,A) = Gg(u,A) for every ue H™ and Ae 4. Indeed, for every
0<e<1 theset {i<1l-e}nA is quasi open and

Ji(1 = ©Pdug 2 Pu((§ < 1~ €] NENA)
A

So far we have proved that the I'-limit does not depend on the chosen subsequence. In
order to obtain that the whole sequence converges, it is enough to apply Propositions 15.5 and
15.7 (Urysohn property of I'-convergence) in [10] (see also Propositions 4.11 and 4.14 in
[13]). Therefore, we obtain the existence of a set Ry < A(Q), rich in A(Q), such that

F(.R™ + Gg,(~A)] T(H™')-converges o [F(-R") + G(,A)]

for every Ae R, . From Proposition 5.5 it follows that
K(1g,Aa) = K(lgna) in H"
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hence by Lemma 3.2,

Ko(1gna) = Ko(lgna)  in Hp(Q)

for every Ae Ry . Choose Ae R, with the property Q'ccAccQ ; since the sets Ey, and
E are contained in Q', we conclude that

Ko(lg,) — Ko(lg) in HG(Q) .

This completes the proof of the theorem. ¢

Theorem 5.12. Let () be a sequence of functions from Q into R and let y be a
function from Q into R . Then

Ko(Wn) — Ko(y) in Hy(Q) and Ko(y) # &
if and only if the following conditions (a) and (b) are satisfied:
(a) there exists a dense set D in R anda set Rc A(Q), richin A(Q) , such that

hgn:“ Co2({yy > t}NA) = C ,({y > t}NA)

for every t€D and Ae R,
(b)  there exist a sequence (wy) in Hg’ () and an index keN such that (wy) converges
strongly in Hy(Q) and wye Ko(yy) for every h2k.

Proof. Assume that
KoWn) — Ko(y) in Hy(Q)

and that Ky(y) # & . Then (b) follows immediately from Definition 1.7 of Mosco

convergence. Let us prove (a). By Theorem 4.1 there exist a dense set D in R and a set
Fc AQ), cofinal in Q ,such that

KO(I{\yh>t]nB) - KO(l{\y>t}nB) in Hg‘(Q)

for every teD and every Be ¥ . As observed in Theorem 4.1, we may suppose that F
consists of elements BccQ . Then, by applying Theorem 5.1, we get that for every te D and
Be ¥ there exists a set R(t,B) ¢ A(Q), rich in A(Q), such that

(5.28) m - Cr (W > HNAB)NA) = Co (W > )AB)NA)

for every Ae R(t,B) . Since we may suppose D countable, for every Be F the set R(B) =
M{R(tB) : teD} isrichin A(Q) and (5.28) holds for every teD, Be F and Ae R(B).
It is now easy to see that the set



—47-

R = U (RB)NAB))
Be¥F

istichin A(Q) and satisfies condition (a).
Assume now conditions (a) and (b). Let D and X be as in (a). Fix tye D and define
Ep = {yy >tg} forevery he N and E = {y >t;}; moreover, define ,‘}’to as the set of

all Be 4(Q) for which
(A AQ) @ lm Cpa(ENBINA) = Cr((ENB)NA) )

isrich in A(2) . Let us prove that condition (a) implies that ,7—}0 istrich in 4(Q) . Fix a chain
(Byser in A(Q) and consider a countable set D= {U, : ke N} ¢ A(Q) which is dense
in A(€2) . For every ke N it is possible to find a chain (Af:)seR such that A(l)( = Uy and the
set {AI: :$<0} is cofinal in Uy . For every ke N and for every rational q,
(BsmAiq)seR is a chain in A(Q) ; since R isrichin A(Q), there exists a set Tk’q cR,
at most countable, such that Bs(\Ak € R for every se R\Ty . Define T=

s+q
U{Tk’q :keN, qeQ}; T is at most countable and

(5.29) BsmAiqe R forevery seR\T ,keN and qeQ.
k . .
Letus fix se R\T and put D, = {ASJFq :ke N, qeQ}; we now show that D is

dense in A(Q) . Consider G; and G, in A(Q) with G;ccG, and let Uge D be such
that GyccUpccG, . Since {Af :t <0} is cofinal in Uy, there exists ¢ <0 with
GICCA§CCUk . Let now geQ be such that 6 <s+q<0. Then

A;qe D, and Glcc:AﬁccAiqcc:UkccGz.

We conclude that D; is dense in A(Q) . )
Keep s fixed in R\T; by (5.29) we have B;nAe R for every Ae D, hence, on
account of condition (a),

(5.30) m Gy (B BYNA) = Crop(ENBINA)

Apply now Remark 5.2: there exists a set R(B) < A(Q), rich in A(£2) , such that (5.30)
holds for every Ae R(B,) . Therefore, B thO and since s is arbitrary in R\T, we deduce
that }_to isrichin A4(Q).

It is not restrictive to assume D countable; then the set F = tQD F, isrichin A(Q)
and for every te D and Be F there exists a set R(t,B) € A(Q), rich in A(£2), such that

m Crn,2(({y, > t}NB)NA) = Cp o(({w > t}NB)NA)



—48—

for every Ae R(t,B) . We may assume that if Be F then BccQ ; hence Theorem 5.1 yields
Ko(Lpyyotrp) = Kollpysyap)  in Hg(Q)

forevery te D and every Be F. We are now in a position to apply Theorem 4.1 and conclude
that

Ko(Wp) — Kp(y) in HG(Q)
and that Ko(y) =D . | | ¢

Finally, we state a simple consequence of Theorem 5.12 which can be proved as Theorem
4.4 and in which the conditions for the Mosco convergence are expressed only through the
capacities of the level sets of the obstacles.

Theorem 5.13. Let () be a sequence of functions from Q into R and let \y be a
function from Q into R . Assume, in addition, the existence of a set Q'ccQ such that
V,y, <0 (mp)q.e on Q\Q' for every he N. Then

Ko(y) — Ko(y) in Hg(Q) and Ko(y) =D
if and only if the following conditions (a') and (b') are satisfied:
(a’) there exists a dense set D in R and a set R AQ), richin A(Q) , such that

hlim Ch2({yy, > t}INA) = C o ({y > t}NA)

forevery t€D and AeR;

+co

(b’) lim Limsup |Cpy ({yp>s)(s— 1P 'ds=0 .
h—+ee £ ’

—teo
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