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Introduction

Very recently, there has been a renewed interest in the method of coadjoint orbits
both in Theoretical and Mathematical Physics. It became apparent that actions for
relevant 2D-dimensional Quantum Field Theories can be constructed generalizing
the Kostant-Kirillov construction [49,47] to infinite dimensional groups.

The starting point can be probably found in the representation theory of Kac-
Moody and Virasoro algebras. As a matter of fact, these infinite dimensional Lie
algebras (together with some of their generalizations) have come out to play a cen-
tral role in the study of Conformal Field Theories, String Theory, Integrable Systems.
Their representations proved indeed to be very useful in determining interesting phys-
ical properties such as the operator content of a field theory, values of the central
charges and so on.

The method of coadjoint orbits is a powerful tool to deal also with representation
theory of infinite dimensional groups. In the finite dimensional case of a compact Lie
group, coadjoint orbits can be realized as certain complex homogeneous spaces where
the group acts transitively. The geometric quantization [49,40,41] yields irreducible
unitary representations as spaces of sections of holomorphic line bundles over the
orbits. This is, roughly speaking, the contents of the Borel-Weil-Bott theorem [14,69].
On the infinite dimensional side, one has to consider the underlying groups of the
above mentioned Lie algebras, that is the Kac-Moody and Virasoro groups, and try
to apply the method of orbits to obtain their representations. Rigorous results are
only partially available at the moment [57,58].

From the non rigorous point of view, a very interesting progress has been made
by the Leningrad school in term of (formal) functional integral formulation [3,4,5].
Instead of canonically quantizing the orbits by means of usual Hamiltonian formalism
on the phase space, they suggest to use a Lagrangian formalism by introducing what is
now called the “geometric action”. This is done in a purely formal way introducing
the “primitive” « of the natural Kostant-Kirillov symplectic form w on the orbit.
They write this form as o = d7'w, where the “inverse” of the exterior differential
should mean the operation of taking the primitive of w, and « should play the role
of pdq. Then they form an action functional by integrating this form a over a path
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on the orbit. Since in general the 2-form w will not happen to be exact, it is clear
that this operation could be valid only locally.

Surprisingly, when applying this procedure to the case of Kac-Moody and Vira-
soro algebras, the geometric action turns out to be the Wess-Zumino-Witten action
in the first case, and the action for the Polyakov’s 2D-dimensional induced quantum
gravity [56] in the second one.

This is of course very interesting, since the WZW model and 2D-gravity are
examples of field theories exhibiting remarkable properties such as complete integra-
bility, conformal invariance, etc. Moreover a quite intriguing phenomenon seems to
connect the two theories: in [56] Polyakov showed that there is a hidden SL(2\, R)
symmetry in 2D quantum gravity. There is also some evidence that the geometrical
action for 2D-gravity can be derived from an SL(2,R) WZW model [4]. Therefore it
is very appealing to derive both models from the same general principle, since this
could also reveal itself as a tool to understand part of the whole matter at a deeper

level.

Clearly, from the point of view of a mathematical physicist the procedure outlined
before is highly unsatisfactory. Beside the lack of rigour in itself, the local approach
we have described does not take into account what happens if the symplectic form w
is not exact, and prevents one from having under control the global geometry.

This thesis deals with the problem of setting the whole machinery on rigorous
global geometric grounds. Of course, we have not faced the problem in its complete-
ness: here the case of the WZW model is treated, that is the case of coadjoint orbits
in a Kac-Moody algebra.

It turns out that a rather complicated structure must be set up in order to
overcome the problem of non-exactness of w. For a compact semisimple Lie group G
with Lie algebra g, consider the Kac-Moody algebra I/I\g and a coadjoint orbit O C l:J\gx.
The Kostant-Kirillov symplectic form w is not exact on O, thus we consider the path
space PO, which is always a contractible space. There, using a well known homotopy
operator, it is possible to find a 1-form & such that d& = @, where @ is the Lift of w
to PO. Therefore, for a path v on PO, we can form the functional

S = [ra

which classically can be taken as genuine action. We show that it yields precisely the

WZW model.

Of course, climbing on the path space is simply a device and we should not find
track of it in any physical step of the theory. From a classical point of view, we
have no problem, since the equations of motion are unaffected by this procedure.
At the quantum level we are really interested in expiS and a careful analysis of the
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multivaluedness of the action functional, together with the requirement on expiS
to be insensitive to the presence of the path space, yields the quantization for the
central charge of the Kac-Moody algebra. It is very interesting to see that this result
can be deduced directly in the framework of coadjoint orbits.

This thesis is organized as follows. In Chapter 1 we recall the basic ingredients
of the method of coadjoint orbits in the finite dimensional case, relating it to the
bordering subjects of Hamiltonian G-spaces and flag manifolds. In Chapter 2, we set
up the basics of the theory of Loop Groups and Kac-Moody algebras. In particular
we deal with central extensions and affine actions of Loop Groups, used to describe
coadjoint actions in the dual of a Kac-Moody algebra. We also show how the based
loop group QG can be seen as a coadjoint orbit. Chapter 3 is the core of this thesis.
There we focus on QG and we describe in detail the Kostant-Kirillov symplectic form.
Then, it is described the construction of the geometric action for a general symplectic
manifold M and it is shown that in the case M = QG we obtain the WZW action on
a sphere. Finally, the quantization of the central charge is discussed. Some auxiliary
facts are collected in the appendices.
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Chapter 1

The coadjoint orbit method

1.1 Coadjoint orbits

The coadjoint orbit method has been developed mainly by Kirillov [47], Kostant [49]
and Soriau [61], see also [6,1], in connection with the representation theory of Lie
groups and appears as a powerful tool in producing examples of symplectic manifolds:
the orbits of the action of a Lie Group G on the dual of its Lie algebra g are shown
to carry a closed non-degenerate 2-form, which is now called Kostant-Kirillov form.

In order to illustrate the general features of the method, avoiding complications
due to the presence of infinite dimensional objects, let G be a finite dimensional Lie
group, and g = T.(G) its Lie algebra. However, the aim of the subsequent sections
will be to apply what we are going to say to the special infinite dimensional case of
the Loop Groups and their Loop Algebras.

For each a € (@ consider the inner automorphism

T.:G@— G gr—agat

of G into itself: it leaves the identity element fixed, therefore its derivative (= tangent
map) at the identity maps the Lie algebra into itself. The Adjoint representation of
G on g is defined to be the map

a— Ad, = Te(1,) Ya€G (1.1)
of G into GL(g). It easy to verify [1] that Ad, is a Lie algebra homomorphism, i.e.

Ady([¢,n]) = [Ada€, Adan] &n € g

Also it follows from 7, = 7, o 7, that Ad. is indeed a representation, i.e. Ad =
Ad, o Ad,.
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The map 1.1 is differentiable. Its derivative at the identity of the group is a
linear map from g to the space End(g) of linear operators on g. This map is denoted
by ad and its value on an element ¢ in the algebra by ade, so that

d
g — End(g) év+— ade = —| Adexpie (1.2)
dt t=0
defines the adjoint representation of the Lie algebra on itself. From 1.2 one finds
immediately that

‘ldeﬂ = [5,77]-

Now consider the dual vector space g* of the Lie algebra g: the coadjoint action
of G on g* is defined transposing the Adjoint action, that is for @ € G the map
Ad . g¢ — g is the transpose of Ad,, defined by

< Adia,E >=<a,Ad,€> a€g’,{cyg

and the map
Ad®: G — GL(g") a+— Ad], (1.3)

defines the Coadjoint representation of the group on g* (note, however, that we have
Ad*, = Adj o Ad, so strictly speaking the representation should be given by a —
Ad* _,. Anyway, we follow the conventions in [6]). Taking the derivative of 1.3 at the
identity we obtain a linear map, to be denoted by ad*, which sends the Lie algebra
into the space of linear operators on its dual space, that is

04— Bnd(g) € adi = ~|  Ad: (1.4)
=0

dt expté"

t=

and again it’s easy to see that ad™ is the dual of ad:

< adia,n >=< a,aden > .

We now consider the orbits of the coadjoint representation of G on g*: at each
point of a given orbit there is a natural symplectic form firstly used by Kirillov to
investigate representation of nilpotent Lie groups. We point out that a series of
examples of symplectic manifolds is obtained by looking at different Lie groups and
all possible orbits. For o € g* the coadjoint orbit O = O, through « is

O = {Adalg € G}

and if B € O is any point of the orbit, its isotropy group in G is Gg = {g € G|Ad},B =
B}, while the Lie algebra of Gy is gg = {¢ € glad;f = 0}. The tangent space T3(0) at
any point 8 € O is contained into g* and we can make the identifications O = G/Gpg
and Tp(O) = g/gs; more precisely, we have the
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Proposition 1.1.1 There is an ezact sequence
0—gs — g— Tp(0) — 0 (1.5)

where the map o sends the element £ € g to the vector o¢(8) = adyB and 1 is the
inclusion.

Proof . If § € O and ¢ € g we define a curve through 8 by
t— Adl, .0

The tangent vector at 8 along this curve will be identified calculating

d
dt

F(Adly1eB)

t=0

for any function f : O — R. It’s sufficient to consider only those functions f,, defined
by f,(8) =< B,n >, for n € g, thus we have

d d
En < Ad:x 18777 > = - < :B’ Adexpt{’] >
dt t=0 pit dt t=0
= <p d Ad >
= " 0t Y exp té7]

= <I[3,[£777] >=< adZﬁaW >

and we see that the tangent vector in question is precisely ad;3. Now the exact
sequence in the proposition becomes obvious. a

We can state the

Definition 1.1.2 (Kostant-Kirillov form) Given two tangent vectors X,Y be-
longing to Tp(O) the Kostant-Kirillov form w is defined by

Q)g(X,Y) =< /8)[6777} > (16)
where £,1 € g are such that X = o¢(B) and Y = o,(B).

Now we have the

Theorem 1.1.3 (Kirillov, Arnol’d, Kostant and Soriau) The form w in 1.1.2
ts closed and nondegenerate, hence it turns the orbit O into a symplectic manifold.
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Proof . First of all, we have to check that the definition 1.1.2 is well posed. To this
end let ¢ be an element in g such that o = o¢. Therefore we have

wﬂ(X>Y) = <¢6’[€777}>
<adzﬁ,n>

= <ad2‘/,3,77>

= </B9[€,777}>

and the same argument apply also to 7.
Secondly, we show that w is nondegenerate. Suppose in fact that wg(X,Y) = 0 for
all Y € T3(O). This means that < 3,[€,n] >= 0 for all € g and therefore

<adiB,n>=0 Vneg

so that ad;f is the zero functional in g*, which is the same to say that X is the zero
vector in Tg(O).

Finally, we show that the form is closed, that is dw = 0. Observe that if let 8 vary
in O, ad;f obviously defines a vector field over it, so that we can use the following

formula to express dw[46,2]:
dw(og,0q,0¢) = o - w(oy, 0¢) — w(log, oq),0¢) + cychic perm.

where ¢ denotes the vector field 8 — 0¢(8) = ad;8 and the first term the action of
o¢ on the function 8 — wg(o¢(B),0,(8)). Now for generic f : O — R we have

(06 F)B) = | F(AdigicB)

t=0

and therefore

d
dt
d

dt

O¢ 'w(anagC)(ﬂ) = (JH’JC)(Ad:xptle)

03]
t=0

< Ad’:xpt£67 [777 C] >

t=0

= <adB,[n,¢]>
= < B)[&["%CH >

having used the definition of w and ¢ (namely, o, (AdL,,..0) = ad;(Ad,,.B)). The

cominutator is treated by means of the following

Lemma 1.1.4 [o¢,0,] = o
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Proof of the lemma. First note that for f : O — R we have

(0e-HB) = 2| f(Ad:y .0

dit =0
= dfs(o¢(B))

< Uf(ﬁ)vdfﬁ >
= < /87 [é,dfﬁ] >

where in the third equality we have considered o¢(f) as lying in g* and dfg as lying
in g. Using the above expressions

logsonl - f = (o¢oy —onae) - f by def.

d

dt Y < AdlpeB [, df(-‘id;pteﬂ)] > — (€ —mn) by the previous eqns

d
= < adg,[n,dfs] > + < B,[n, (‘C‘l‘t‘ )df(Ad;xp,Eﬁ)] > —(§ <)

t=0

= < ﬁ,[é,[ﬂ,dfﬁ” > =< B?[Ua[é,dfﬁ” >

+  Hess f3(€,m) — Hess fa(n,£)

= < B,[[£,n],dfs) > wusing Jacoby id. and the symmetry of Hess

= (o - £)(0)

which proves the lemma. \V4

Collecting all terms together

dw(og,00,0¢) = <B,[&[n,Cl] > — <w(ogey, 0¢) + cyclic perm.
<B,16[n, ¢l > = < B,[[¢m,]¢] > +eyclic perm.
= 0 by Jacob: identity

and the theorem is proved. o

Corollary 1.1.5 Coadjoint orbits of finite dimensional Lie groups are even dimen-

stonal. 0

Corollary 1.1.6 If§ € O, then via the identification O = G/Gp we have that G/Gg

becomes a symplectic manifold. O
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Proposition 1.1.7 The action of the Lie group G leaves invariant the Kostant Kir-
tllov form, namely we have

(Ad})'w=w
Proof . In fact calling @, the action 8 — Ad;3 we have

d
Tp®4(0e(8)) = — AdyAd B = 4

t=0

AdECXP té )gﬁ

t=0

d y d
= dt Adgg’l(exptf)g'g = di

t=0

Ad; exp t(Adg_l f)IB

t=0

= 5| A, 9AdS

t=0

= adiyy ,¢(Ad;B)
= 0(ad,-,6)(AdH)

and therefore

(®rw)s(0e(B),04(8) = < Ad;B,[Ady-1¢, Adg-1m) >
= <IB)AdgAdg“l[§7"7] >
= wp(o¢(B), 9 (8))

1.e. the invariance @;w = w. O

Remark 1.1.8 Another proof of theorem 1.1.3 could have been given by means of
the notion of Lie-Poisson structure [6,8,22,23,60]: we say that a manifold M has a
Poisson structure when there is a bilinear operation

LP:C®(M) xC®(M) — R
that turns (C*=,{, }) into a Lie algebra and acts as a derivation on C*(M):

{f,gh} ={f,gth+{f h}g.

We speak of a Lie-Poisson structure on a Lie group G when it carries a Poisson
structure {,} which is compatible with the group multiplication in the following
sense. If p : G x G — @G is the multiplication and p* : C®(G) — C®(G x G) the
induced mapping on functions, the compatibility of the Poisson structure with u
means that

{wf,n gtexe = p*({f,9}c)
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where under the natural identification C*(G x G) = C*®(G) ® C=(GF) the Poisson
structure on G x G is given by [8]

{a1 ® b1,02 ® ba}exe = {a1,a2}6 ® by by + a1 a2 ® {b1, b2 }c.

The dual g* of a Lie algebra g has an obvious Lie-Poisson structure, with respect to
the abelian Lie group structure defined by the vector space addition, given by

{fag}(a) =< aﬁ[dfaadga] >

for f,g € C=(g*). Now another way to state (and prove) theorem 1.1.3 is to show
that

{f,9}(e) = {flo,g9flo}a)

where the bracket on the left is the Lie-Poisson bracket, while the RHS bracket is the
Poisson bracket defined by the Kostant-Kirillov form on O.

1.2 Miscellaneous results

We now collect some interesting facts related to the subject of coadjoint orbits. We
mainly refer to [49] and [40] (see also [1]).

If (M,w) is a symplectic manifold we say that the vector field X : M — TM is
hamiltonian if it exists a function hyx : M — R such that

z(X)w = dhX

where 7(-) is the interior product. Denote by ham (M) the class of hamiltonian vector
fields. (M,w) will be called a G- symplectic space if there is an action

:GxM-—M

of G on M through symplectic diffeomorphisms, while it will be called a G-strongly
symplectic space if the vector field o; defined by

d
oe(z) = 7 P(expt,z)
t=0

is hamiltonian V€ € g, i.e. gis sent into ham(M) (note that this is a homomorphism
of Lie algebras, since oy¢ ) = [o¢, 0y)).

We have that strongly symplectic is equivalent to symplectic in either one of the
following two cases [49]:
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1. M is simply connected

2. g=[g, g i.e. H'(g,R) = {0} ( this happens e.g. if g is semisimple).

This is easy to understand, since symplectic means £,,w = 0 = di(o¢)w (recall that
w is closed) and in the first case we have m (M) = {0} = H'(M,R) = {0}, while in
the case 2. we have the general relation [Lx,i(Y)] = ([X,Y]) and

i(a[ﬁ,n])w = i([og,0q])w = [E(,E,i(or,,)]w
= Lo i(on)w = d(i(og)i(og)w.

If a strongly symplectic action is given, the map that associates to every € € g
its hamiltonian function f; such that

i(og)w = dfe

can always be made linear. In the case the commutative diagram of Lie algebras

0 R C*(M) — ham(M) — 0

BN

g
(1.7)

exists, A is called a lift of 0. ) exists if and only if the class [p] € H?(g,R) vanishes,
where p is the cocycle

1(€,m) = {po(€), po(m)} — po([&,7])

for po : g — C®(M) any linear map making the above diagram commutative. In
particular A always exists if H%(g,R) = {0} (e.g if g is semisimple). Note also that if
Ais a lift then sois A + a for a € g" such that a|gg = 0 (i.e. if « is a cocycle on g).
Therefore H'(g,R) measures the non-unicity of the lift A in the case it exists.

In [49] Kostant also introduces the category H(G) of Hamiltonian G-spaces, in
the sense of the following

Definition 1.2.1 Hamiltonian G-spaces are those strongly symplectic G-spaces M
with symplectic form w satisfying the condition that a lift A : g — C=(M) ezists with
the properties that

1. dX(¢), spans T2(M) NzeM
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2. the hamiltonian vector field Xy) = o¢ is globally integrable V¢ € g.

Morphisms in H(G) are maps f : M — N such that

ffun =wy and Ay (€) =An(€) o f

It’s easy to see that for a coadjoint orbit O a lift X : g — C=(O) is given by

where f; is the function f¢(8) =< 8,6 >, B € O, so that collecting what we have
proved so far we get

Proposition 1.2.2 Every coadjoint orbit is a Hamiltonian G-space. O

Now the importance of coadjoint orbits relies on the following results, the proof of
which can be found in [49,40]:

Theorem 1.2.8 The map f : (M,wp, Anr) — (N,wn, An) between hamiltonian G-
spaces 1s G-equivariant and such that

Tef (o)) = Xonne)(f(2))  VEeg
Moreover for any z € M
Tof : Te(M) — Tya)(N)

is an isomorphism and in fact f is a covering map of manifolds. O

Theorem 1.2.4 Let (M,wpr, Apyr) be any hamiltonian G-space. Then there exists a
unique orbit O such that a map f : M — O of hamiltonian G-spaces ezists. Moreover
f 1s unique. a

An important tool in proving theorem 1.2.4 is the momentum mapping
J: M —g

defined by
<J(2),{>=A(¢)(z) (egzeM

Due to theorem 1.2.3 the momentum mapping is equivariant. Note also that for a
coadjoint orbit the moment map is nothing else that (minus) the inclusion into g".

The above results should clarify the importance of coadjoint orbits besides the
fact they are examples of symplectic manifolds. Noticing that they actually are homo-
geneous symplectic manifolds (corollary after theorem 1.1.3) and also that Hamilto-
nian G-spaces too are homogeneous (as condition 1. in 1.2.1 implies that the tangent
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space at point z is spanned by Xy()(z), £ € g, since w is nondegenerate — see [49]),
the previous theorems show that in some sense each symplectic manifold carrying a
strong liftable action is a coadjoint orbit (up to covering). However, if one drops the
lifting and retains only the notion of G-symplectic space, if a covering

f:M— O

exists then either f or O need not be unique. Nevertheless, if we consider G-
symplectic homogeneous spaces we have that if such a covering exists it is unique

up to the addition of a 1-cocycle on g. This in turn implies, together with theorem
1.2.4, that [49]

Proposition 1.2.5 If H*(g,R) = H?*(g,R) = {0} the most general G-symplectic
homogeneous space covers an orbit O C g*. Moreover O and the covering map are
unique. a

These last results from [49] tend to a classification of G-symplectic (homoge-
neous) spaces and bring into the highly developed subject of homogeneous complex
manifolds, representation theory, etc.

For G a compact connected semisimple Lie group, it is immediate to see that the
stabilizer subgroup G, of 1 € g* under coadjoint action is the centralizer of a torus
T in G. More precisely, if X, € g is the vector corresponding to p via the Killing
form, G, is the centralizer C'(T') of the torus T generated by exptX,, that is

Gu={g€G|g(exptX,)g™" =exptX,} =C(T)

Therefore, for what we have seen in section 1.1, a coadjoint orbit is of the form
G/C(T) that is, by definition, a generalized flag manifold see [14,69,13]. A flag man-
ifold M = G/C(T) can be endowed with a complex structure [13,68,69] such that G
acts on X as a group of holomorphic diffeomorphisms. This complex structure is not
unique, depending on the choice of a set of positive roots for g, the complexification
of g [13]. A flag manifold can be also represented as the homogeneous space

M= Ge/P

for G¢ the complexification of G and P a suitable parabolic subgroup of Ge¢ [69].
The complex structure inherited from this representation is also known to be Kahler
[68]. Therefore it follows that coadjoint orbits are Kdhler manifolds.

They are also readily seen to be simply connected, since in the case m(G) =0
an easy application of the homotopy sequence of a fibration [15] shows that

71'1(0) = Wo(Gu) = GH/G?J
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where G is the connected component of the identity of G,.. The centralizer of a torus
in a compact group is connected [69], therefore m;(O) = 0. In the case m(G) # 0 we
can pass to the universal covering G -2 G to find

0=G/G,=G/G,

for G, = p~1(G,,), and apply again the above mechanism.

To summarize, coadjoint orbits of compact groups are simply connected homoge-
neous compact Kahler manifolds. They are the only manifolds of this type, in some
sense, since Wang has shown in [68], among other things, that a simply connected
compact homogeneous complex manifold is Kahler if and only if it is a flag manifold.

This result on the classification of this type of manifolds is implied by the results
of Kostant we quoted above, since if M is such a manifold, Kahler implies symplectic
and, by the proposition 1.2.5, it covers a unique coadjoint orbit (0. As homogeneous

spaces

M=~G/G, O=G/G,,

where G, C G is the stabilizer subgroup of z € M, and G}, C G, C G, [49]. But since
the coadjoint orbits are simply connected, one obtains Wang’s result in an improved
form, that is with only the assumption of being symplectic [49].




18

Chapter 1: THE COADJOINT ORBIT METHOD



Chapter 2

Loop Groups and Kac-Moody
Algebras

2.1 Kac-Moody Algebras

2.1.1 General definitions

Kac-Moody algebras are a subclass of infinite dimensional Lie algebras intensively
studied both in Mathematics and Physics. In general in the spread literature concern-
ing Lie algebras and their applications the name “Kac-Moody algebra” is not used
to always mean the same object. In particular it seems that in Physics the name is
used mainly for (central extension of) current algebras, while in Mathematics a slight
more general object is meant. We choose to agree with the definition in [45], which
is now a standard reference, even though we’ll actually use a restricted subclass.

In [45] the a Kac-Moody algebra is constructed somewhat axiomatically starting
from the notion of Generalized Cartan Matriz(GCM for brevity):

Definition 2.1.1 A Generalized Cartan Matriz A is an n x n matriz A = {a;;} of

rank 1 subject to the conditions
1. a; =2 1=1,...n
2. a;; are non-positive integers for i # j.

3. a,-j:O = G,jizo

An even more important concept is that of realization of a Generalized Cartan Matrix,

in the sense of the following

19
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Definition 2.1.2 A realization of a Generalized Cartan Matriz A is a triple (h,H,I:I)
where by is a complez vector space, I = {a1,...,an} Ch~ and I = {&1,...,&.} C
obeying the following conditions:

1. both II and II are linearly independent
2. < Qj, 0 >= a4
. n—-l=dimbl—n

We note explicitly that the condition §. let dim f vary between the two extreme
cases of maximal rank | = n = dim lj and [ = 1 dimfj = 2n — 1 (the most degenerate
one) and the first one corresponds to the finite dimensional simple Lie algebras. The
vector space [j is the Cartan subalgebra and the sets I, II correspond respectively to
the roots and the coroots.

Given a GCM A with realization (f),H,fI) form the auxiliary Lie algebra g(A)
by generators {e;, f;}7; and fj with relations

e, i] = i

E] = 0 for hheh
[hyei] = <aj,h>e
[hfi] = = <ayh>f

and in [45] is proved the following

Theorem 2.1.3 There is a unique mazimal ideal v in g(A) among the ideals inter-
secting ) trivially. Furthermore

t=(eNh_)d(tNng)

as a direct sum of ideals, where n_(fiy) s the subalgebra in g(A) generated by the set

{en,-sen} ({fiseo0s fal)- -

Now we are ready to state what a Kac-Moody algebra is.

Definition 2.1.4 Given a GCM with realization (,II,1I) form the Lie algebra a(A):
the Lie algebra

a(4) = a(4)/x
is the Kac-Moody algebra associated with A.
This seems to be the most general definition of a Kac-Moody algebra. At this level

of generality, keeping the name e;, f; for the image in g(A) of the generators of g(4),
we record the following facts: '
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1. there is the triangular decomposition
gA)=n_ohen;

where the subalgebras n,, n_ are generated by {e;,...,e,} and {fi,..., fu}

respectively.
2. if g*(A) = [a(A4),g(A)] is the derived algebra we have

a(4) =g (4) +5h

with g'(4)Nh=1h for h = ¥, C&;

3. the centre ; of g(A4) or g'(4) is equal to
;={hebh<a,h>=0 i=1,...,n}

4. there is a C-linear involution w of g(A4) which acts on the generators as
ei— —fi, firr—e h— —h hen.

The fixed point set of this involution is (the generalization of) the compact form

and 1s a real Lie algebra.

Actually, restrictions are imposed on the allowable Cartan matrices in order to
get more manageable definitions. The subclass of symmetrizable GCM is still vaste
but at the same time it’s sufficient to produce a more transparent definition of Kac-
Moody algebra. A GCM A is said to be symmetrizable if it can be represented
in the form 4 = DB, where D is a nondegenerate diagonal matrix and B is a
symmetric matrix. In [45] is proved the highly non trivial result, which surprisingly
is a consequence of the representation theory of Kac-Moody algebras, that a Kac-
Moody algebra g(A4) associated with a symmetrizable GCM A defined as in 2.1.4, can
be equivalently defined as the Lie algebra with generators {e;, f;}*, and § satisfying
the defining relations[37]:

les, f5] = 6is6 [h,h'] =0 h,h" €}
[hye;] =< ci,h > e [h, fil = = < ey h > f;
(ade;)'™™iej = 0 = (adfi)' ™" f; i
This is the definition usually found in the mathematical literature. Kac-Moody al-
gebras associated to symmetrizable GCM posses remarkable properties, one of them

being the existence of an ad-invariant C-valued nondegenerate bilinear form (-,-)!.
Moreover the derived algebra g'(A) is a universal central eztension by its centre [45]:

0— 35— g(4) — g(4)/5 — 0
Sometimes this derived algebra itself is called a Kac-Moody algebra.

1We prefer to recall its definition in a still more restrictive case, which will be the one of our
practical interest, where it can be done even without referring to the Cartan matrix
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2.1.2 The affine case

Cartan matrices can belong to only three mutually exclusive classes [45]:

Theorem 2.1.5 Given a GCM A one and only one of the following possibilities
holds for both A and *A:

Fin det A # 0; there ezists u > 0 such that Au > 0; Av > 0 implies v > 0 or v = 0;

this happens if and only if all its principal minors are positive

Afl corank A = 1; there ezists u > 0 such that Au = 0; Av > 0 implies Av = 0; this
happens if and only if all its proper principal minors are positive and detA =0

Ind there ezists u > 0 such that Au < 0; Av > 0, v > 0 wmply v = 0. a

Cartan matrices of finite or affine type are symmetrizable and they all are classified
by the extended Dynkin diagrams [45]; those of finite type correspond to finite dimen-
sional simple Lie algebras. In the affine case the Dynkin diagram carries [ + 1 labels
{ao,a1,...,a,} which are the coordinates of the unique vector § such that 46 = 0
and are positive relatively prime integers. Given a GCM of affine type we’ll also have
labels {ao,ai,...,a,} relative to the transposed matrix which is of affine type too.

From now on we shall consider only Kac-Moody algebras of affine type (i.e.
those associated to affine Cartan matrices). Note that since rank4 =1 =n —1 then
dim h =n+1 =1+ 2, and being II a set of linearly independent coroots we have
that the center is one-dimensional. Actually it is the span of the element

!
=) &
1=0

as follows from the fact that ¢ must satisfy < o;,é >=0 Vi=0,1,...,n. Moreover
it is possible to fix an element d € ) such that

<apd>=0 i=1,....n <oagd>=1

called the scaling element, which forms together with II a basis for h and since we
saw that g'(4) N = ) we have the direct sum decomposition

Affine Kac-Moody algebras are completely described in terms of an “underlying”
finite dimensional simple Lie algebra g [45]: this is the algebra generated by {e;, fi}'_;
and clearly it is the Kac-Moody algebra associated to the Cartan matrix obtained
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from A deleting the 0% row and column. If fo) is the span of &,...,&,, obviously
f)z% Ng and b is the Cartan subalgebra of E( Recall that for a Cartan matrix of finite

type the rank is equal to the order, so that &i,...,&, form a basis for § and also
we have g = [El, g, ie. the first (real) cohomology group vanishes. For the Cartan
subalgebra of the affine Kac- Moody algebra it follows that

h = &(Cé + Cd).

»

We now describe a “concrete ” realization of all non-twisted affine Kac-Moody

algebras, where non twisted means all those affine algebras whose Dynkin diagrams
are listed in table Aff. I in [45]%. Let’s change a little bit the notation and let g
denote from now on a finite dimensional complex simple Lie algebra with (compact)
real form gy obtained with the usual Cartan involution [44]. Consider the loop algebra
[36,35,45]

Lg=Clz,27"] ®c g

which is the Lie algebra of polynomial maps C* — g with the obvious commutator
defined extending pointwise the commutator in the “small” Lie algebra g:

PREQ®N=PQ®,n] PQEeC]:""] é,neaq. (2.1)
If D is a derivation in C[z,z7!] it obviously extends to a derivation on Lg by the rule
D(P®¢&)=D(P)®¢

and if <,> is a multiple of the Killing form it extends to a symmetric invariant
bilinear form
<, >,: Lgx Lg— Clz,277]

by pointwise evaluation. Consider now the C-valued bilinear form ¢ defined by

aX
(,D(X,Y) = Res << *&;,Y >z> (22)

where

Res P=c¢_y for P= chzk.
k
This form satisfies the two conditions

L. SD(X,Y) - _SO(Ya ‘X)

2. p([X,Y], 2) + o([Y, 2], X) + o([2,X],Y) = 0

] . . . .
“a “constructive” definition will be given later on
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i.e. it is a 2—cocycle, as can be easily proved on simple tensors; therefore we can form
the corresponding one-dimensional central extension Lg which fits into the exact
sequence of Lie algebras

0—C—Lg— Lg— 0
with commutator [, |A given by
(X & aé,Y @B, =[X,Y]® (X, Y)e (2.3)

for X,Y € Lg and o,8 € C, while ¢ is any element that spans the one-dimensional
center of Lg. Explicitly, Ig= Lg® Cé.
Finally, denote with Lg the Lie algebra obtained adding to Lg a derivation d

4

-+ and sends the center to zero. More precisely, Lg is the

that operates on Lg as z
vector space

Log=Lg® CédCd
with the bracket

dX,
dz

. . dx .
(XQatdfd, X, 0aé®fdl]. = ([x,xl] 1Bz ——,Blz—d—z—> B (X, X1)é (2.4)

for X,Y € g and o, a1,8,8; € C. The Lie algebra Lg possesses a nondegenerate
symmetric bilinear form, denoted with <, >., defined by

<X®at®Bd,X:®01é®Pid >u=Res(z7 < X, X1 >.) +afi + 18 (2.5)

This form is ad-invariant in the sense that < [X,¥].,Z >.=< X,[V,Z]. >. for
any X,f’, 7 e Lg.

The connection with the abstract theory is found noticing that if f is the Cartan
subalgebra of the finite dimensional Lie algebra g then the subspace

h=hoCédCd

is a maximal abelian subalgebra, hence a Cartan subalgebra of Lg [36]. The theory
of roots can be carried on in this setting, see [36,35,45], and produces an extended
Cartan matrix of (untwisted) affine type. Detailed proofs can be found in [45].

However, by the general theory outlined above, we have that
La = (LgLg
Lg = LgaCd
and we stipulate the convention of calling “Kac-Moody algebra” the central extension
of a loop algebra, while we will use the name “affine Kac-Moody algebra” for the

full algebra Lg, unless otherwise explicitly stated. This obviously means that we will
always restrict ourselves to the subclass of affine untwisted Kac-Moody algebras.



2.2. LOOP GROUPS AND THEIR CENTRAL EXTENSIONS 25

2.2 Loop Groups and their central extensions

2.2.1 Loop Groups as manifolds of maps

In this section we start to embed the algebraic theory outlined above into an analytic
setup where it is possible to “exponentiate” the Lie algebra described in the previous
rather abstract way to obtain a group, at least in the affine case [57] (but see [64,65]
for the state of art in the general case).

First of all note that with the change of variable z = €' [35] we can think of the
Lie algebra C[z,z '] ®c g as an algebra L,,g of polynomial maps from S* to g, where
we consider S* either as {z € C | |z| = 1} or as R/27Z. The connection of course is

d_,d d/_/“d&__l dz
R P e A e

This observation quite naturally leads to consider the space Lg = Map(S?,g) of

given by

smooth (i.e. C*) maps from S! to g or various completions of it, and one would be
tempted to say that Lgis the Lie algebra of the group LG of maps from S* to G, where
G is the finite dimensional Lie group whose Lie algebra is g. This is indeed the case,
even for the general situation of groups Map(M,G) of maps from a smooth compact
manifold M in G, either endowed with the C*®—topology [42,53,57] or with some
Sobolev completion [32] — see also [54,26,25] for generalities on manifolds of maps.
The local model for Map(M,G) is Map(M,g), where an appropriate topology has
been given: this furnishes a local chart near the identity (the map M 3z +— e € G)
and by left translations with f € Map(M,G) we can produce a local coordinate
system.

The C'”—topology is defined requiring “uniform convergence with all the deriva-
tives” in the local model Map(M,g): this is achieved either by fixing an auxiliary
connection on M to globalize the notion of derivative, or by specifying a basis of
neighbourhoods of zero in Map(M,g) taking finite intersection of the sets [53]:

NU Az}, Kym,e)={f: M = g|[|[D*f| < & |a| <m}

for U C M open with local coordinates {z;}, K C U compact, || - || = absolute value
of the Killing form and D* = §xt-+en /g, ... §% g, .

For any real number s, Sobolev completions are defined giving to Map(M,g) the
metric [32]

(X,Y g, = /M <(1+A9X(2),Y(s) >de  X,Y € Map(M,g)  (2.6)

for A = d*d the Laplace operator on M and dz the Riemannian volume form. The
Hilbert space completion is denoted H,(M,g) and for s > %, n = dim M, it consists
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of continuous maps (Sobolev embedding). In this range the corresponding completion
H,(M,G) exists and is modelled on H,(M,g). Pointwise multiplication is defined by
the Sobolev multiplication lemma and we have [32,34]

Proposition 2.2.1 The group H,(M,G) is a Hilbert-Lie group for s > 3. O

The H, metric on Map(M,gq) defining the completion also gives an H, metric on
each tangent space, where the tangent space at a map f € Map(M,G) cousists of
H, sections of the pulled back tangent bundle f*(T'G). Map(M,G) also inherits a
natural family of weak metrics, namely the H;—metrics defined in the same way as
(2.6) but with ¢ < s, the most important one being the L? (or Hy) metric given on
Map(M, g) by

(X,Y) = /M < X(2),Y(z) >, dz

which defines the Killing form on Map(M, g). See [32,33] for a detailed analysis of the
interplay between this various metrics as far as curvature and characteristic classes
are concerned.

All what we have said applies to the case LG = Map(S*,G): we choose to
consider LG as a manifold of smooth maps in agreement with [57], even though
Hilbert-Sobolev completions are oftenly considered [32,7]. Actually, for a certain
range of purposes it doesn’t matter which kind is used and, even more, only subsets
of smooth or algebraic maps turn out to be really important [7,57]

From now on for a compact real (semi)simple Lie group G with Lie algebra g,
we will deal with the smooth loop group LG = Map(S*,G). It has Lg = Map(S*, g)
as Lie algebra and exp : Lg — LG defined pointwise by (exp X)(z) = exp(X(z))
is a local homeomorphism. Even though LG very often behaves like a compact
group, we begin pointing out a difference: the exponential map is not surjective
on the connected component of the identity, namely there are elements which do
not lie in any one-parameter subgroup, as shown in explicit examples in [35,53,57].
Nevertheless, for G compact the image of exp is dense in the identity component of
LG. Another obvious remark is that if G has a complexification G¢ then LG¢ is the
complexification of LG and is a complex Lie group. This is true also for the more
general group Map(M,G).

Given LG, one of the most important subgroup is perhaps the group QG =
Mapo(S*,G) of based maps, i.e. those maps f : S' — G such that f(1) = e. It
is obviously a normal subgroup and we can think of it in a variety of ways. First
of all G can be thought also as the homogeneous space G = LG/G the corre-
spondence being the one that associates to the coset G - f, f € LG, the element
F() = f(1)"1f(-) € QG. Using this correspondence, we can consider the tangent
space at the identity of QG (= coset G) either as the space Mapo(S?,g) of maps
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X : ST — gsuch that X(1) = 0, or as the quotient Lg/g. QG can also be regarded
as a homogeneous space of a larger group. U(1) acts on LG by rigid rotations, i.e.
we have

(e - F)(2) = f(e7%z) = f(*Y) (2.7)
for f € LG. Form the semidirect product U(1)x LG with the rules

(%, F)(e®,9) = (ei(f“){(e"" -f)g)
(eit’ f)—l — (e—-zt, ett . f——l)
it follows that [32,33,7]
0G = (U(1)xLG)/(U(1) x @)

via the map

(e, F) — F(1)7F()-
This result, in spite of its apparent triviality, leads to make the following remark. U(1)
is trivially a torus (in the sense of being a compact abelian subgroup) in U(1)x LG}
its centralizer C'(U(1)) is the set of elements in U(1)x LG that commute with every
e € U(1) and it’s easy to show that

CU1) =U(1) x G

so that QG is the quotient of a Lie group by the centralizer of a torus, that is
an infinite dimensional (intermediate) flag manifold [32,33,27,14,69]. This is very
important, since at least in the finite dimensional case flag manifolds are essentially
coadjoint orbits and indeed G can be also realized in this way, as we will directly
prove in the next section.

Since G is a homogeneous space, the full group U(1)x LG acts on it shifting
the cosets in the following way. Represent a coset in QG by the element (1, f) for
f:8'— G, f(1) = e. Then for (e, g) € U(1)x LG we have '

(L, A)(e"9) = (% (e7™ f)g)
= (e, f(e")g(1)) (1,9(1)7 F(e*) (% )g())

and this proves the

Proposition 2.2.2 There are two actions

LG x QG — QG (g,f) — (1) f(1)g(")
U(1) x QG — QG (" F) — f(e*)7 (")

of the groups LG and U(1) on QG. .
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Note that the fibration
G — LG — QG

is trivial, since being LG and QG groups we have that LG = QG x G as a topological
space.

2.2.2 Central extension

We now show how our previous algebraic discussion on Kac-Moody algebras fits into
this framework. Consider the set L,,g of polynomial maps from S* to g, which of
course can be identified with the restriction of C[z,z7!] ®¢ g, our previous formally
defined loop algebra. At the same time consider also the set L,,G of polynomial
maps from S* into G: it can be defined directly by embedding G in some SU(n) and
considering matrix— valued functions of the form

N
Z A"

k=—-N

see [57], or more formally as the group of all maps f : S' — G which are the
restriction of morphisms of complex varieties from C* to G¢, the complexification of
G, [7]. QuG is the subgroup of L,,G consisting of the basepoint—preserving maps.
A result due to Segal is the following [57,7]

Proposition 2.2.3 L,,G is dense in LG if G is semisimple. The same is true also
fOT' Lpolg' =

Actually a more striking result can be proved, namely there exists a filtration
QOC91CQ2C

of 2,,G by closed subvarieties of a finite dimensional complex Grassmanian such
that Q,,G = U2, Q% and the inclusions are algebraic embeddings; with the use of
this filtration in [7] it is proved that Q,,G is dense in G, its Sobolev completion
with s = 1. Of course the same holds true for L,4G and H;(S',G).

Thus we have that the formal loop algebra described in the previous section
can be considered as a dense subset of our “true” loop algebra. Actually all the
untwisted affine Kac-Moody algebras we were referring to before arise in this way.
The twisted case corresponds to algebras coming from sets of maps f : S' — g
with the identification f(1) = a(f(0)), for o an outer automorphism of G of finite
order. Since in our discussion about formal loop algebras we have considered mainly
central extensions, we do the same here. It will turn out that the algebras previously
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examined embed as dense subsets into the algebras we are going to construct. We
can still use formula (2.2) to define a 2—cocycle ¢ on Lg by

1 2 , d9
o(X,Y) = 57-;/0 < X\Y >,

= [, <X.Y> XYels (2.8)

By direct calculation on L,,g and using proposition 2.2.3 it can be shown that [57]

Proposition 2.2.4 If g is semisimple the only continuous G-invariant cocycles on
Lg are those given by 2.8. o

Therefore given ¢ we can form the central extension
0— R— Lg— Lg— 0 (2.9)

with commutator

X@at,Y®LeA=[X,Y]®p(X,Y)E (2.10)

Since now we have a genuine group LG whose Lie algebra is Lg, we can ask ourselves
what is the Lie group (if it exists) whose Lie algebra is Lg, or stated in other words,
given the exact sequence (2.9) does a corresponding group extension

1—UQ1)— LG — LG — 1 (2.11)

exists? This is not always the case, since certain integrability conditions must be
satisfied.

First of all, use ¢ on Lg to produce a left-invariant 2—form on the whole LG,
still denoted by ¢; this form will be closed due to the cocycle condition. We start
with the following

Theorem 2.2.5 If G is simply connected the Lie algebra extension (2.9) corresponds
to a group extension (2.11) if and only if the differential form ¢ /27 represents an
integral cohomology class. In this case LG is a U(1)-principal bundle over the the
base LG uniquely determined by the class [¢/27].

Proof. LG is topologically a product and by definition of homotopy groups [15] we
have

m(LG) = m,(QG x G)

mo(QG) x my(G)
= 741 (&) X my(G);
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since G is a compact Lie group it has m(G) = 0 [43,39], and being also simply
connected it follows that mo(LG) = m(LG) = 0, that is the loop group itself is
connected and simply connected. The theorem will follow from the following two
important propositions.

Proposition 2.2.6 Let X a connected and simply connected manifold (it may be
also infinite dimensional).

i) If ¢ is a closed two form on X such that ¢ /2m represents an integral cohomology
class then there is a circle bundle over X with a connection whose curvature s

©.

i) If Y and Y' are circle bundles over X with connections o and o' which have the
same curvature ¢ then there is a bundle isomorphism A : Y' — Y such that

Ao = o'. Furthermore 1 is unique up to the composition with the action of an
element in U(1).

Proof of the proposition. m(X) =0 = H;(X,Z) = 0 and by the universal coeflicient
theorem this implies that the torsion part of H*(X,Z) is zero [15], so that the map
H*(X,7) — H*(X,R)is injective. Since H*(X,Z) is the group of isomorphism classes
of complex line bundles (as follows from the well known exponential sequence

exp

0—7Z— A A" — 0

[70,16] where A is the sheaf of C~—functions *), = determines uniquely a class of

line bundles. Moreover the principal bundle of a line bundle is a C*~bundle, and,
being £ real, it determines a reduction to a U(1)-bundle [49,46]. To show that

27
the bundle U(1) — ¥ — X in question has a connection o whose curvature is =,
proceed as follows. Given a covering * £ = {U,} of the manifold let ¢; = ¢ |y;; then

do; = 0= 3a; € QYU;) | ¢; = day, so that on U;; = U; N U; we have d(a; — aj) =0,
which implies that 3f;; € Q%U.;) | ou — a; = df;;. Obviously d(fi; + fix — fie) = 0,
so that 3 2ma;;x € R | fiy + fix — fie = 2mayx. It follows that {a;x} is the two-
cocycle relative to ¢ ([16] and the “collating formula” in [15]). Since £ is integer,
{aijx} € Z*(,Z). Taking c¢;; = expifi;, we have that {c;;} satisfies the cocycle
condition, i.e. {¢;;} € Z'(Y, A*) and therefore it can be taken as a set of transition

functions. Moreover the a; are the components of the connection, since

a; = o;+dfy;

1 dcij

1 G

3In the sequel we shall often put A(U) = Q°(U)
#Cech cohomology applies to the manifold we are considering here [57]
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To prove part i), let {a.} € C°(&, Q') such that da; = ¢; : there is a corresponding
construction and c;j = exp zf:J are the transition function for a bundle ¥’ — X.
Now we have that da; = do; implies that 38; € QN | a; = a; + dB;. Tt follows
that d(fi'j — fij — Bi + B;) = 0, which in turn means that 3 {u;} € C'(U,R) |
fii = fi; + Bi — B; + pij, and the condition 27ra:-jk = 2ma;j; forces {p;;} to be a
cocycle. Since X is simply connected, Hi(X,Z) = 0 and {u;;} is a coboundary, i.e.
3 {vi} € C°(4,R) | ps; = v; — v;. From this we have that

iy = cij/\i/\gl for A; = expi(f; + v;)

that is the bundle Y’ is isomorphic with Y, and from
1dA;
T A

a;=a; +dB; = a; +

we see that A*a = o/. Uniqueness follows from the fact that if p;; = v; — V;— =v;—V;
then V£ —y; = I/; — v; and therefore for the transition functions we have

A= expi(Bi +v;) = A expi(v; — 1)
namely they differ for a globally defined element in U(1). v

Proposition 2.2.7 Suppose that a Lie group T' acts on a connected and simply con-

nected manifold X, leaving invariant an integral closed 2-form % on X (both I' and

2
X may be infinite dimensional). Then there is an eztension I' of T by U(1) canon-
ically associated to (¢, X), and for any point ¢ € X the associated eztension of Lie

algebras can be represented by the cocycle

(&m) — (& m2)

where ¢, denotes the tangent vector at x € X corresponding to the action of the
element £ € Lie(T).

Proof of the proposition. First construct a U(1)-bundle Y over X with connection
a with curvature ¢. For each v € T' take the pulled back bundle v*Y which has a
connection a, whose curvature is v*¢. We define T as the group of all pairs (7, )
with v € I and A an isomorphism such that a, = A*a. By the previous proposition
there is a circle of possible choices of A for each . From this it should be apparent
that ' is a U(1)-bundle over I'. More accurately, let’s note that with the pull back
bundle v*Y we can form the diagram

Y Y —T1 .y
X —" . X
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where the upper map 7 is canonically determined by definition of pull back; any other
isomorphism A will differ from ¥ by the action of an element in U(1). Moreover there
is a canonical way of producing the map ¥ — 4*Y that covers the identity on X — as
clearly explained, for instance, in [49] — simply by specifying how an arbitrary yo € ¥’
goes into an arbitrarily chosen element of v*Y such that both project down on the
same o € X. Due to our particular geometry this is exactly the same as specifying
an element of the fiber of ¥ over v(z¢), so that the U(1)-freedom in the choice of
A :4Y — Y can be transferred to the map from Y to 4*Y, thereby indicating
that the group I' can be equally described as the set of pairs (v,A) where X is an
isomorphism A : Y — Y covering v and such that A*a = a. Such an isomorphism A
is determined by 7 and the choice of A(yp) such that it projects on v(zo). Thus as
a manifold T' is the fibered product I' X x Y, that is the pull back of ¥ by the map
I' — X which takes v to y(zo). v

Now the proof of the theorem is almost finished, since it is sufficient to apply the
proposition just proved to the case X = I' = LG. The other half of the statement is
quite trivial, for if there is a group extension

1——>U(1)———>I’}@——>LG—-—>1

a choice of a splitting

Lie(T') = Lie(T) ® R

determines a decomposition of the tangent space at each point of T, i.e. a connection.
The splitting map Lie(T") — L‘ie(l:‘) can be identified with the horizontal lifting ¢ — ¢
of left-invariant vector fields. Since the curvature in principal bundle can be described
by the lacking of the horizontal lift to be a Lie algebra homomorphism, wee see that
the expression

(19(6777) = [57 ﬁ] - [5777]
describes both the curvature and a Lie algebra cocycle which therefore has to be
integer. =

When G is not simply connected the situation is much more intricated [57].
In this case the loop group will be neither connected nor simply connected, so the
theorem above does not apply. We can write @ = G/Z where @ is the simply
connected covering group of G and Z = m;(G) is a finite subgroup of the centre of
G. Since the conditions under which a 2-cocycle on a loop algebra is integer can
be ultimately deduced entirely from the bilinear form on the finite dimensional Lie
algebra g [57], by the preceeding theorem such a form gives rise to a unique central

e

extension LG of LG. The group G can be thought as a subgroup of L& (because
the fibration over it as a subset of LG is trivial) and therefore we can regard Z as a

subgroup of LG. In fact Z belongs to the center of LG, because its adjoint action on
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Ly is trivial (see proposition 2.3.1 in the next section). Thus we have an extension
1—U(l) — LG)Z — (LG)° — 1

where (LG)° = (LG)/Z is the identity component of LG. One should be warned
about the fact that the that extension is generally not the restriction of an extension
of the whole group LG unless certain additional conditions are satisfied, but we do
not proceed further into details.

2.3 Coadjoint orbits in Kac-Moody Algebras

In this section we specialize the general framework outlined in 1.1 to the case of the
dual of a Kac-Moody algebra. Since such an algebra is infinite dimensional, we must
specify the meaning of “dual”. As we saw in 2.1 and 2.2 a Kac-Moody algebra is of
the form

La=LagoR

and is the tangent space at the identity of the “Kac-Moody group” L@ so that taking
the topological dual is dangerous for two reasons:

1. the topological dual of a space of C*™ maps such as Lgor Lg is made essentially
of distributions, even though the C maps themselves form a dense subset; this
1s somewhat unpleasant from our point of view of studying coadjoint orbits,

since we would like to avoid distributional objects;

2. the topological dual of a Fréchet vector space is never a Fréchet space itself,
unless the space itself is finite dimensional [42], so that when dealing with
infinite dimensional manifolds modelled on a Fréchet space one should not take
dual spaces or, more generally, spaces of linear maps in order to remain into
the chosen manifold model.

Of course we have the inclusion Lg C Lg*, where Lg acts on itself by means of the
Killing form as
L(X)=< L, X >= /S <L,X >, (2.12)

for L, X € Lg. Since this pairing is nondegenerate, we limit ourselves to consider
only the smooth part of the dual, and when speaking of the dual Lg* we will intend
the space Lg itself as a set with the above pairing. It follows that for the centrally
extended algebra we have

Ig =Lg®oR=LgaR (2.13)
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with the duality

(Lo X Bat)=<LoXXBat >=<L,X >+ (2.14)

With this preliminaries we pass to discuss the action of the loop group. The
ad-action of a Lie algebra on itself is defined by the commutator, so for Lg we have

wWd(X@a)-(YBh) = XDa,Y ®B]a
= [X,Y]®e(X,Y)
= ad(X®0)-(Y®pB) (2.15)
and we see that the action of the centre is trivial. The finite version of the action
(2.15) is the adjoint action of the loop group. Let Ad denote the adjoint action of
LG on Lg obtained evaluating pointwise the one of G on g, and for g € LG let g7*0g

be the element in Lg obtained first by differentiating the map g with respect to d/df
and then left translating the vector so obtained by g °. We have the

Proposition 2.3.1 The Adjoint action of the loop group LG on Lg is given by

Adrg- (X @ a)=Adg - X @ (at < g7'8g,X >)

Proof. The formula above correctly reproduces the ad-action, in fact take g; = exptY,
Y € Lg, and differentiate with respect to t:

d A o d
L (Adg X)) = S| AdnX(2)
dt t=0 dt t=0 !
= [Y(2),X(2)] = [Y,X](2)
and
4 <g'o Y>~<£ (¢7'89), X >
dl‘ o g g?" - dt o g g b
but
d ( “1dg) = Y
N g g)=
dt im0
and therefore
d
7 < g7t0g,X >=< 8Y,X >= (¥, X)
t=0

5We use notations as if G were a group of matrices
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It must be checked that the formula in the proposition defines a representation of
LG, but this follows from the relation

(hg) " 8(hg) =g '0g + Adg™" - (h™'OR)
for g,h € LG, and the obvious Ad-invariance of the form (2.12 ). a

Proposition 2.3.2 Under the identification (2.13) the coadjoint action of LG on
the Kac-Moody algebra Ly is given by

Adyg (Lo )) = (Adg™ L+ Xg7dg) @ A
Proof. Trivial using the previous proposition and the duality relation (2.14). a

Remark 2.3.3 The coadjoint action of LG on Lg preserves the hyperplanes A =
constin Lg: once that any such hyperplane has been fixed by the choice of a particular
value of A, we can regard it as Lg equipped with an affine action of LG.

Remark 2.3.4 Note that taking g; = exptY and differentiating with respect to ¢
the formula for the coadjoint action in the above proposition we get

d—ci Ad g, - (Lo X) = (~[Y,L] + AdY) @ 0 (2.16)
t=0

which in turn is equal to ad; Y - (L @ }), in fact we have

<ad Y - (LHA),XDa> = <L)V, X®alr>
< LY, X] > + (Y, X)
<[L,Y,X > +A<0Y,X >
= <MY +[L,Y],X > (2.17)

and the pairing < -,- > is nondegenerate on Lg. The previous remark, combined with
the above formulas, says that tangent vectors to the orbits are entirely contained into
the affine hyperplane where the orbit takes place, hence their component along the

center is identically zero.

It follows from (2.16) and (2.17) that the stabilizer subgroup of the point L @& A can
be constructed, modulo elements that cannot be reached by the exponential map,
solving the differential equation on S?!

AOY +[L,Y] =0 (2.18)
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for Y € Lg. More generally, calling Orga the coadjoint orbit passing through L @ A,
a tangent vector at this point can be thought as lying into Lg" @ 0 and therefore
identified with an element Z € Lg. Again from (2.16) and (2.17) we have that an
element X € Lg such that adi X - (L & A) = Z @ 0 is determined solving

AOX +[L,X] =2 (2.19)

on S'. Of course X determines the tangent vector in question up to the addition of
a solution of (2.18), so that we could say that the tangent space to the orbit at the
point coincides as a set with Lg modulo solutions of (2.18).

Now in the same spirit of definition 1.1.2 we can state the

Definition 2.3.5 Given a coadjoint orbit O C Lg and two tangent vectors X,V at
the point L @ A, the Kostant-Kirillov form w is given by

w(X,Y) = <Lo)N[X,Y]>
= < L,[X,Y] > +A < 0X,)Y >

where X,Y € Lg determine X,Y in the sense of equation (2.19) above.

2.4 QG as a coadjoint orbit

Consider now the special coadjoint orbit O, in I’,\g* passing through the point 0 & «.
From the general form of the coadjoint action stated in proposition 2.3 we see that
the generic element in this orbit is of the form L, = kg~'dg for g € LG. Therefore
it follows that if g is a constant loop we have L, = 0, that is the point 0 @ « is left
fixed by the elements in G C LG; furthermore, also the converse is true, since the
equation ¢g7'dg = 0 implies that g is a constant loop. It follows that the stability
subgroup of 0 @ x is G and we can make the identification O, = LG/G = QG; this
can also be inferred using the relation

Lgn = kh™10h + kAdR™' - (g7 89)
which for g a constant loop reduces to
Lgh = /\‘,h'lah = Lh.

As we anticipated in section 2.2 the based loop group is therefore a coadjoint orbit.
We will make a complete identification between O, and QG speaking from now on
of QG directly as a coadjoint orbit, since this will be our main object of interest.
Sometimes, to be more definite, we will mention explicitly an identification map

7: QG — O,
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such that
if)y=rf0f®r feQG

On QG many calculations simplify considerably, for instance it is easy to calculate the
element in Lg that produces a specified tangent vector on QG via coadjoint action.
The calculation is as follows. Suppose that §f is a tangent vector to QG at the loop
f, that is a field z — 6f(z) on S' of tangent vectors at G such that §f(1) = 0.
Choose any path t — f; in QG such that fy = f and §f = ji{'t:ﬁft, therefore under
the map j the corresponding tangent vector to the orbit at the point kf~*8f @ « is
given by

d

: (o) 00)

d
(efi'0f @ K) = (’le—t

t=0 t=0

and therefore we have ¢

d
dt

il

§(f705)

= (6f7)0f + £776(0f)

—f8f f7Of + £716(0F)

—f8f O + F71O(5S)
= O(f76f)+ frOf f8f — fT8F fTIOf
= O(fT6f)+[f710f, f6f]

ftvlaft

t=0

Now note that f~'é6f is an element in Lg and since also Zdi t_oft'laft is in Lg, we
have obtained exactly the structure of equation (2.19), and f~'6f is the vector in Lg

that determines the tangent vector §f to f through infinitesimal coadjoint action.

Now using the calculation above and the explicit identification between G and
O, furnished by the map 7 we can state how the Kostant-Kirillov form on the orbit
translates to QG. Let f € QG and let &1 f,6.f € T¢(QG); then by definition we have

(17w)s(61f,62F) = wjn(T¥(8:5), T(821))
= & [ <FOLUTSS T8RS >,

+ ﬁ/Sl <OV f), f1 6 f >, (2.20)

Thus our object of investigation will be the space QG equipped with the symplectic
form (2.20). We point out that in [7,32] a symplectic form which coincides with the
second half of the ours, and therefore coincides with the cocycle giving the central
extension of Lg, is used. We plan to put some comment on this fact in the next

chapter.

®we prefer to give a more transparent formal derivation treating the loop as a matrix-valued function
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Finally we make a few remarks on the invariance of the Kostant-Kirillov form.
Even though invariance should be apparent from the construction itself of the sym-
plectic form, if one had the need to see this explicitly the procedure is as follows.
First note in general that if L @ x is a point in a coadjoint orbit O € Lg and for
X eLg

SL=ad;X - (LD k)=r0X +[L,X]

is a tangent vector to it, the coadjoint action of the loop group LG
¢,:0—0

¢, (Lor)=Ad,g- (LB k) = (K,g_lag +Adgt- L) Bk
sends 4L into

TS(6L) = xd(Adg™ -X)+[Adig (L @«),Adg™ - X]
= adi(Adgt-X) -Ad,g- (LD k)
= adi(Adag™' - X) - AdLg - (L@ &)

as is easily checked by making only derivatives. In the last equality we have used
the fact that using the affine action is the same since the central term is unessential.
Now invariance can be proved in the same way as we did in the finite dimensional

case in section 1.1.

In the case of G, we had the explicit identification 7 with the orbit O,. For
f € QG and g € LG the relation

kg 09+ rAdgTt - (FT0f) =r(fg)tO(fg)=3(9(1) S g)

shows that the map j is equivariant with respect to both the coadjoint actions of LG
on O, and QG and therefore it follows that j*w is invariant.



Chapter 3

WZW model from coadjoint orbits

3.1 The symplectic form on QG

We ended the previous chapter presenting the based loop group QG as a coadjoint

orbit. For convenience we transcript here the symplectic form

widf,6af) = x [ < FTORIT0S TS >,
+on [ <TG, FTES >, (3.1)

where f € QG and 6,f,6.f € T;(QG). We have also suppressed any reference to
the identification between QG and the orbit passing through the point 0@ « € Lg .
The second half of the symplectic form is nothing more than the 2-cocycle defining
the central extension of Lg extended to the whole group LG by left translations
and restricted to QG. This observation suggests that this symplectic form cannot
represent a trivial cohomological class on G and in fact we now recast the expression
in (3.1) into a form suited for our purposes in which its cohomological meaning is
more transparent.

For a compact, connected, not necessarily simply connected (semi)-simple Lie
group G fix an invariant positive defined bilinear form < -,- >,on its Lie algebra
g, such that the 2-cocycle determining the central extension of the loop algebra be
integral. (typically there is a smallest one which is minus the Killing form divided
two times the dual Coxeter number [45,19]). Consider the left invariant differential
3-form on G given by

TQ6) = 1= < 6,[6,6] >, | (3.2)

where § is the Maureer-Cartan form with values in g. The value of the form TQ(6)

39
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at the identity of G on &,7n,( € g is

TQO).(67,0) = = < &,[1,¢) >

This form is closed and actually represents a generator in H*(G,Z). Now with the
aid of the evaluation map

ev:S'x QG — G (z,f) — f(z)

where z € S and f € QG, it is possible to obtain a closed 2-form on G from this
generator in the following way. Denoting with 8 the tangent vector ! to S! given by

0/00 =iz d/dz, we state
Definition 3.1.1 The transgression mapping 7 : H1(G) — HT 1 (QG) is given by

T($) = /51 iy (ev ) (3.3)

for 1 an element in HY(G) and ev the evaluation map above.

In the definition the role of the internal product with 8 is to isolate the (1,¢ — 1)
part which is integrated over S*.

Remark 3.1.2 Some word must be spent on the rather non-standard use of the term
“transgression”. Strictly speaking, the Transgression refers to fibre bundles. Suppose
to have a fibration 7 : £ — M with fibre F in the differentiable category: then an
element § in H9(F') is said to be transgressive if it is the restriction to the fibre of a
global form v on E such that d¢p = 7"« for some form o on the base M. Since in
the case of a fibration 7~ is injective, we have 7*da = d7*a = ddip = 0 and therefore
da = 0, that is the form « represents a cohomology class in H?"}(M) on the base
manifold M. Thus the Transgression mapping is the assignment [3] — [a] [15,12]. Of
course replacing forms with singular cochains, the definition translates word by word
to the singular setting with arbitrary coefficients [12]. A typical situation is when
one has a principal G-bundle 7 : P — M with connection A. Then the differential
form (3.2) is transgressive since it is the restriction to the fibre of the Chern-Simons

form [17] on P
TQ(A) = 4—17; (< A dA > +% < A,[4, A] >> (3.4)

which in turn satisfies

dTQ(A) = 4—17; < F,F> (3.5)

lwe oscillate continuosly between the coordinates § and z
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where F' is the curvature form of the connection A. Therefore the name 7'Q(6)
for the differential form (3.2) is appropriate with this definition of transgression.
Nevertheless we follow here Pressley and Segal [57] in calling transgression the map
(3.3) simply because it takes a generator in the cohomology of G into a generator for

the cohomology of QG in one dimension less.

To come back to (3.2), it is very easy to check by direct calculation that the
form 7(1) is closed if so is . Instead of doing this calculation in general we prefer
to concentrate ourselves on the case we are interested in, namely the 3-form (3.1).
First note that the tangent vector

(9,8f) € Tiz,p)(S* x QG)
is sent by the derivative of the evaluation map into
T..pyev (3,6) = 9 £(2) + 61(2)
so that finally calling Wy the transgression of TQ(8) we have
, 1 _ _ -
(W/Q)f(glfy 62f) = 4_7'('/5'1 <f 16f’ [f 1‘Slfaf 162f] g (36)

(remember that the Maureer-Cartan 6 is formally f~'df). This expression clearly
reproduces, modulo a factor, the first half of (3.1). To take into account also the
second half in a coherent way consider the 1-form 8 over QG:

1 -
Bs(5f) = 5/51 < fUOf, IS >, 6f € THQG) (3.7)
whose differential turns out to be given by the following expression
1 - -
Bi6:5,6:0) = 5 [ <FTOLUT0S TGS >,
_ /5 < O(f7160f), F L6 F >, (3.8)

Proof. Pull back 8 by a two-parameter map v to, say, R* and use the relation
v*dB = d~*B. This can ultimately be considered as a device to coordinatize the
space. Now 4" is a 2-form over R? and by the usual calculus of differential forms
we have [2]:

« g 0 0 . 7] 0 » 0 . _(?_ _(:9_
180 (3031) = 2 (08 (3)) -z (0 (2)) - (|22
but the term with the commutator obviously vanishes. Now by definition of pull back

0 o, 0 0 0
o (ora) = 2 (B (22(2))

L0 g (2
= 7 (2 o <701 (aﬂ) >g)

we have
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and using the relations

a 4 0 _ 4, 0 '
5 (toy) = 0 (7 153-(7)) + [7 07,7 157] (3.9)
9 ( _,0 o ( 40, N [ .8, .8
w(am) - 5 (aw) = [rgmnw| e
the claim is easily proved. d

Comparing expressions (3.1, 3.6, 3.8) proves the following

Proposition 3.1.3 The Kostant-Kirillov form (3.1) on QG can be put into the form
w=2rk Wy +rdf (3.11)

where Wg 1s the transgression via the evaluation map of the generator (3.2) in H3(G.)
O

Remark 3.1.4 We could have also put things differently to recast the Kostant-
Kirillov form into this other expression

w=—kKke+2cdf

where ¢ is the cocycle generating the central extension of Lg thought as a left-
invariant 2-form over QG. This is essentially the reason why in [7,32] the form ¢ is
directly taken as a symplectic form.

Remark 3.1.5 Using the (3.11) and the expression for w in the previous remark we
see that w can be eliminated to obtain the following relation between Wy and ¢:
1 1

Wo=—g-p+5_-d8

showing that Wy and w are in fact cohomologous and represent the same element
in H*(QG). Note that If G is simply connected the transgression mapping 7 :
H?*(G,7Z) — H*(QG,Z) is actually an isomorphism: it is in fact the transpose of
the isomorphism in homology Hi(G,Z) = H,(QG,Z) obtained applying Hurewicz
theorem: H3(G,Z) = m3(G) = m(QG) = Hy(QG,Z) ; recall that QG is always simply
connected, since w1 (2G) = m(G) = 0. Simply connectedness, forcing torsion effects
to vanish, implies that the integer classes in H*(Q0G,Z) are representable by means
of classes in H*(QG,R). Transgressing the generators in H*(G), which are given by
left invariant forms, produce classes on G which are not invariant anymore, but it
is a fairly easy result to show that each one of this generators is in fact cohomologous
to left-invariant form [57] just in the way the form Wy above is cohomologous to the
form ¢.
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Remark 3.1.6 The decomposition (3.11) of the Kostant-Kirillov form into a coho-
mologically non trivial part plus an exact part is in fact the global version of the
procedure adopted by Alekseev and Shatashvili [4,5] in their investigation of W ZW -
model and 2D-Quantum Gravity in terms of geometric quantization of coadjoint
orbits: they write essentially a version of the form which is valid only locally.

3.2 The action on symplectic manifolds

Let M be a symplectic manifold with symplectic form w, and let o : M — R a
Hamiltonian function on M. The Hamiltonian will play no role in the sequel, but to
include it into the discussion requires no extra effort. If w were exact, i.e.

w = da

for a 1-form « on M, then we could easily form the “action” functional
Str) = [ ad) - [ h(v(2))d

where v is any path in M. Variations of 4 produce the equation of motion in the

hamiltonian form

i(¥)w=4dh

Of course when w is not exact the above mechanism does not apply so that we must
modify the procedure. One method is to lift all to a space where in some sense
it is possible to “exactify” the (lifted) symplectic form and therefore to construct
an action functional. Obviously the final result at the classical level, namely the
equation of motion, should not depend on the lifting in order to have a meaningful
construction. However at the quantum level things change and other global features

of the action must be taken into account.

Anyway the procedure is set up [20,9] considering the path space P,, M of M,
that is the space of all paths p : I — M such that p(0) = zo, where zo € M is an
arbitrary base-point and I = [0,1]. It is well known [15,62,63] that the path space is
contractible, and explicitly the contracting homotopy is

H:IxPeyM — PoeM  (s,p) — p°(+) = p(s-) (3.12)
It also well known that the path space is a fibration

QM — P, M

J,,

M
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where ., M is the space of based loops at zo and 7 the obvious projection n(p) =
p(1). We now lift the symplectic form w to a closed form @ = 7*w on the path space
P, M: this form is exact, as follows from the following general

Proposition 3.2.1 ([15,2]) Every closed form defined on a contractible manifold is
ezact.

Proof. We need the following

Lemma 3.2.2 (Deformation lemma) Given a manifold M consider the mapping
it 2 M — Ix M given by iy(z) = (t,z). Define the operator K : QPTH(Ix M) — QP(M)
by
1
Ka :/ 1;(tg,a) ds
0

for a € QP (I x M). Then we have

dK +Kd=1i] — i

Proof of the lemma. The flow of the vector field 8, over I x M is given by Fi(s,z) =
(X + s,z) that is iy, = F) 04,. Then for any form 8 € QP*!(I x M) we have

d
Lo B = i,y FiB
dA A=0
d d
= 2 ams= 2| (Boi)s
d}\ A=0 dA A=0
d . d ..
= ﬁ /\=01A+3:B - _d—‘s-zsﬂ

Therefore we have
1 1
dKa+Kda = d/ (45,0 ds+/ i*(ip,d o) ds
0 0
1
_ / i*(dio,c +io,d ) ds
o
= / 1;Ls,cds
0
tod o, . -
= /0 Tl ds =1ja —ija
as claimed. \Y

Consider two homotopic maps f,g : M — N: it exists a homotopy map F : [ x M —
N such that F(0,-) = f(-) and F(1,:) = g(-). and therefore F* : Q*(I x M) « Q*(N)
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so that we can define an operator H 1= K o F* : *"}(M) « Q*(N) which by the

deformation lemma verifies
dH+Hd =(Fot)"—(Foi)
On the other hand we have that F o4, = g and F o4y = f so that the result is
dHo + Hda=g"a— fa.

Now the proposition follows at once from the above reasoning, for if M is contractible
we can take g = idyr and f the map that takes M to the base-point zy. Then f~ is
the zero mapping and

a=d(Ha)
that is the primitive of a is d(He) .

Remark 3.2.3 Note that the sequence of applications i} 0is, extracts the (1,p—1)-
part of the form F"« and localizes it on the manifold M.

In the case of the form & on the path space P,, M the primitive form is given by
a = Ho

1

= [ iilia, )
0
1

= [ iilis,(m o H)w)
0

where H is the contracting homotopy (3.12). But note that the composition of the
contracting homotopy with the projection is actually an evaluation map, since

(mo H)(s,p) = m(p’(:)) = p’(1) = p(s),
therefore we can rewrite the form & as
1
&= f i (39, W)
0
where we have defined
evi=moH : I x P, M — M

Now for a path I 3¢ — ~(t) € P,, M form the action functional
St = [ a3) - [ h(n(3(8)) dt (3.13)
Y

Due to the expression which defines the differential 1-form & the first part of the

action functional actually involves two integrations, in fact we have the



46 Chapter 3: WZW MODEL FROM COADJOINT ORBITS

Lemma 3.2.4 The functional (3.13) can be rewritten as

g = - _/ “h 3.14
1x171w B(IxI)’h ( )

where the map ~, 1s the composite
Ix I T x P M = M

(s,t) = (8,7(2)) — v(£)(s) =: n(s,?)
and the second half of (3.14) briefly indicates that the integration takes place only on
(part of ) the boundary of the 2-dimensional region in M described by ;.

Proof. 1t is a direct calculation starting from the observation that that the tangent
vector

(0s,8p) € T(sp)(I X Pay M)
i1s sent into
T%(s,p)(asa 5p) = 5?(5) + 6‘,]3(3)
On the other hand s, selects the (1,1)-part of E"w as
i9,(80°w)(4,p)(0s, 6P) = wy(5)(0sp(3), 6p(s) + Osp(s))

while 7% acts non trivially only on forms of degree higher than two, so that we have

Go(5) = [ wo)(0,0(s),8p(s)) ds -

Now integrating & over the path v means exactly that

/I’Y*& = /01 di /01 ds wy(e)()(0s7(2)(s), Oev(t)(s))

proving the assertion. Obviously the part containing h is trivial t

For future reference, note that the previous lemma can be generalized to the
following one

Lemma 3.2.5 Consider a p—form ¥ on a manifold N and the sequence of applica-
tions

M x K 28 M x Map(M,N) =% N
with dimM + dimK = p, dimM = m. Then we have that

/%'g* (/Jld(ev*¢)(m’p_m)> - /Mxng)

where g1 = ev o (id X g).
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1
t *
v
3 2
0 S
Figure 3.1: The map v,
Proof. A multidimensional analogue of the proof of the preceeding lemma. O

Due to the base-point condition on the path space P,, M the map +; satisfies the
condition 7;(¢)(0) = z¢ V¢ € I and the situation can be schematically represented as
in figure 3.1: the [0,¢]-edge of I x I is in fact collapsed to the base-point of P,, M.
Actually various other choices are possible, depending on the map v : I — P,, M and
we can list other interesting cases.

z) The map 7 is such that y(0) = v(1): we can think of it as a map
v 8t — Pp M

and therefore we obtain a further condition: 1(s,0) = v1(s,1) Vs € I, that is
the boundaries 1 and 8 in figure 3.1 are identified, as depicted in figure 3.2.
The topology is that of a disc based with its centre at the base-point of P,, M.

1) The map v is itself based, that is v(0) = po, where po is the base-point of P, M,
namely the constant path s — po(s) = zo, and 0 is chosen as the base-point of
I. In this case, compared with the initial one of an unbased map, we have the
further condition v(s,0) = zo Vs € I and this produces the effect of collapsing
to the point zg also the [0, s]-edge, as shown in figure 3.3 where we see that
the boundary 3 in figure 3.1 has been collapsed to the base-point.

1) Consider the combination of the two previous possibilities, that is a based peri-
odic map
v (5171) - (P$0M7p0)
In this case referring to figures 3.1,3.2,3.3 we see that we have to satisfy all the
listed conditions v1(0,t) = 71(s,0) = y1(s,1) = =z, so that, still referring to the
figures, only the boundary 2 survives. The situation is depicted in figure 3.4.
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Figure 3.2: The map S* — P, M

t X, I
\"’/@
2

0 S

Figure 3.3: The based map I — P, M

Actually what we have stated so far is the toy version of a general fact from algebraic
topology [52,62]. For a brief account we refer to Appendix A.

Given three resonable spaces X,Y, Z there is an “association map”
a: Mapo(X ANY,Z) — Mapo(X, Map(Y, 7))

where all spaces and maps are supposed to be based, and X AY is the smash product.
Cases ii) and 111), which are obtained considering Mapo(I, PM) and Mapo(S*, PM)
respectively, therefore both correspond to Mapo(D?, M), since we have that ST AT =
D? and I AT = D? as can be easily verified by hand.

Therefore the main case and cases 1) and z) suggest the possibility of setting
the action functional directly on the space Mapo(D?, M) of (based) maps (D?,1) —
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Figure 3.4: The based map S* — P, M

(M, zo), with the constraint that the functional should depend only on the restriction
of the map to S* = @D?, since in all the above cases what is relevant is the restriction
of the integration to the boundary of the domain determined in M by the map ;.
However it will turn out that at least the dependence on the topological character
of the maps in Mapo(D?, M) cannot be eliminated, as we will show later on. First
we reformulate (3.13, 3.14) in a form suitable to set the variational principle on
Mapo(D?, M) and we will prove our claim that indeed the equation of motions in the
Hamiltonian form are produced.

Given the symplectic manifold (M,w) with base-point zg,consider those loops
£ € (Q2M)o, the connected component in Q,,M of the constant loop zo. Since
70(Qzy M) = 7(M,z0), the loop £ € (Qy, M), is homotopically trivial, that is it
represents the zero element in m (M, zo), and therefore it can be extended to mapping
[62]

u:(D?*1) — (M, zo).

Now form the functional 2

S'(e) = /D ww— [ £ (3.15)

simply adapting expressions (3.13, 3.14) to the present case. Note that this type
of functional has been widely used in the mathematical literature concerning the
Arnol’d conjecture, the theory of Lagrangian intersections and Floer’s Homology,
[69,18,29,30,31]: in [27] Feigin and Frenkel call it the Conley-Zehnder function and
claim to be able to use its critical points and the associated homology to extract in-
formations about the topology of the flag manifolds associated to Kac-Moody groups.
Sometimes we will retain this name to mean exactly (3.15). We prove the

*later on we shall discuss its behaviour under non trivial changes of the map u with fixed boundary
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Lemma 3.2.6 The differential of the Conley-Zehnder function on the space (£lz0 M )o
s given by

ds'(0)(6) = [ (—wen((t), 66(8)) + dheo(84(2))) dt

where §£ 1s a vector tangent to (Qy, M) at the point £ (and therefore salisfying the
condition §£(1) =0).

Proof. Consider a path e — £, in (2, M ) such that §¢ = 21%‘ _OEG and the correspond-

ing variation d—‘i‘ OS '(£.). As usual the only nontrivial part is the one containing the
€=

symplectic form and we will concentrate ourselves only on that. Now £, € (Q,,M)o

determines a map u, : D* — M and

0
Uw = —_— W
./D2 ¢ /D2 Oe €

where uw depends on three coordinates, the two integration variables on D?, say z

d
dE e=0

e=0

and y, and e. Since w is closed, ©w is also closed and using the relation
dw(X,Y,Z) =X -w(Y,Z) - w([X,Y],Z) + cyclic perm.

with the coordinate tangent vectors &.,08,,0. we can find with an easy calculation

that

ggu w(0y,0y) = d(is, uiw)(0q, Oy)

from which we can infer that

/ —-—uw

= [ Go )l
= — [ walde),80(2)) at

and this finishes the proof. a

e=0

Remark 3.2.7 Sometimes it is also convenient to remove the base-point condition
and to set the variational principle for the Conley-Zehnder function on (LM ), the
connected component of the loop space LM of M made of contractible loops: these
loops are always extendable to maps from D? to M. The proof of the lemma 3.2.6
applies without modifications.

The functionals (3.13,3.14,3.15) are actually defined only modulo periods of w,
namely they can depend in a non trivial way on the surface itself described in M.
Let us recall that (3.13,3.14) are set up from a path in the path space P, M: what
is really interesting is the projection of this path down on M, or stated in a more
formal way, given a path in M we can lift it to P, M via the Homotopy Lifting
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Property of the fibration Q, M — P,,M — M [63] and all should be independent
of the lifting chosen. However two different liftings with the same initial and final
conditions describe a closed two-dimensional surface in M as well as two different
extensions to D? of a map £ : S! — M, so that as far as the subsequent discussion
is concerned it does not matter whether we choose (3.14) or (3.15). We choose to do
it with the last one, so let u,u’ be two different extensions of the (based or unbased)
loop £. Obviously one has that the difference between the two resulting values of S’
is

which can be thought as
/ Tw (3.16)
S2

where 7 is the “glue” of the mappings u,u’. The last integral will be zero or not
depending on whether the map @ : S — M represents the zero in my(M): if it is so
it can be extended to a map @ : D®* — M and

/ T w= 4 dw =0
52 D3

since w is closed. Thus we have that (3.15) is certainly single-valued if m(M) = 0.
Otherwise, requiring the integral (3.16) to be zero is equivalent to demand special
conditions on the symplectic form w, the most obvious one being exactness. By the
way, the request of the integral of w to vanish on “holomorphic 2-spheres” in Floer’s
proof of the Arnol’d conjecture is nothing else than the requirement on the integral
(3.16) to vanish.

3.3 Wess-Zumino-Witten action

Now we specialize the discussion in the previous section to the case of M = QG with
symplectic form (3.11). Therefore for a loop fo € QG we consider the path space
P4, (QG) and for a path v : I — P, (QG) we form the action

/IXI'yf(Qmﬁ Wq + xdp) (3.17)

as in (3.14). Recall that the forms Wy and § are respectively given by

(Wols(:1,600) = o= [ < FOLUT 00> (319)

for f € QG and 6, f,6,f € T¢(QG), and

Bi(65) =5 [ <1705, F76F > 6 € 1,00, (319)
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As preannounced in the previous section, the hamiltonian has been put to zero [20,66],
and the action functional is purely topological in the sense that it depends only on
the symplectic form and the manifold QG itself.

Now we can state our main result, namely that the action functional (3.17) is
nothing else than the Wess-Zumino- Witten action. First we can see it in fairly simple
case, namely the case i) of the periodic mapping v : S* — P (QG) (see figure 3.2);
the parameter of the map v becomes an angular variable [20], call it 7, and it is easy
to see writing all in coordinates that (3.17) becomes

K

2m 2w
S = ——/ dT/ do < 70_1870,70_137-70 >4
47 Jo 0

< 1 2 27
+ i/ dS/ dr | d8 <70y, [0, O] > (3:20)
47 Jo 0 0

where we have denoted with ~, the restriction of the mapping ; to the boundary of
the disc, that is the region with s = 1. From this simple example we can start to
see that the kinetic term in the Wess-Zumino-Witten action arises exactly from the
exact part of the symplectic form on QG, while the transgression of the form (3.2)
on the group gives rise to the topological term in the action. This remains true in
more complicated cases, since this phenomenon in some sense is entirely encoded in
the symplectic form constructed via coadjoint orbit method.

To proceed further in this direction, we need to improve lemma 3.2.5 in order to
manipulate intrinsically both terms in (3.17). First note the

Lemma 3.3.1 Ifev: M x Map(M,N) — N and ¢ 1s a g-form on N, then we have

(ev'¥) o)z, f) = (f¥)(z)

forz € M and f € Map(M,N).

Proof. This follows noticing that for X @ 6f € T(, 5)(M x Map(M,N)) it happens
that

Tepyev(X @ 6f) = T f(X) + 6 f(z)
and by definition of pull-back of differential forms we have

eV P ) (X1 B 81 S, ., Xg @6 f) = Yy Tof(X1) + 61 f(2),..., T f(Xy) + 8,f(2))
= Y (Tef(X1), o, T f(Xg)) + -
= (v )o@ X1 ® 81 f,. .., Xy @ 64 f)
+ (ev ) g1z, F)C) + o
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Remark 3.3.2 A consequence of this lemma is that if we had considered ¥ = d¢
for ¢ a (¢ — 1)-form on N, we would have obtained

(ev*dfb)(q.ﬂ)(wa ) =du(f ¢)(z)

where djs is the exterior differential relative to M.

Now if we take K, M, N, as in lemma 3.2.5, we are led to consider the whole space
Map(K, Map(M,N)) to analyze [, x 9i% as a function of g : K — Map(M,N).

Introduce the “double” evaluation map
Ev: M x K x Map(K,Map(M,N)) — N
simply by identifying g with ¢; = ev o (idyr x g) and putting
Ev(z,y,9) = 9(y)(z) = g1(=,v)
To be more pedantic, we should have introduced another evaluation map
evy : K x Map(K,Map(M,N)) — Map(M,N)

and defined Ev as the composite mapping Ev = ev o (idy X ev;). By lemma 3.3.1
we have that (Ev™Y),.0(z,v,9) = (¢;%)(z,y) with (z,y) € M x K. This proves the

Lemma 3.3.3 If we take M, N, K, as in lemma 3.2.5, then

/Kg* (/iw(evx¢)(m’p*m)> - /MXK(Ev*¢)(P,0)('7g)
and therefore, as a function of on Map(K,Map(M,N)), the left hand side is equal

to

E E 3
/MxK( v ¢)(p,o)

Lemmas 3.2.5 and 3.3.3 will be iteratively used in the sequel.

To come back to our problem, we briefly recall the situation. The basic object

is 0G with the associated evaluation map
ev:S'x QG — G

which we used to produce the 2-form Wy by means of transgression. Then we have
the path space Py, (QG) = Mapo(I,QG) with evaluation map

T : I x Py, (QG) — QG
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used to obtain the 1-form
& = ‘/;(W*w)(l'l)
Furthermore, for v : I — P; (QG) or v : ST — Py (Q2G) we considered the action

functional
St = [ra

If py is the base-point in Py (QG), that is the constant path p(s)(-) = fo(-), the
two cases above correspond to 7 € Ppy(Ps(QG)) and v € 0y, (Py,(2G)) respec-
tively. As previously noted in the last section, both amount to consider v as lying
in Mapo(D?, QG), where the base-points in D? and QG are taken to be the point 1
and the loop fy respectively. To avoid complicated notations let us fix the ideas on
the case v € Pp, (P, (QG)), the other one being completely analogous.

Applying lemmas 3.2.5 and 3.3.3 we get

S(’)’) = /I')’* <£(WW)(1,1)>
N /Dz(a’*w)(zm(w)

(having suppressed the distinction between v and ;) where ev is the evaluation map
relative to Mapo(D?*, QG), that is

ev : D* x Mapo(D?*,QG) — QG
In the above statement we have directly exploited the equivalence
Mapo(I, Mapo(I,QG)) = Mapy(D?,QG)

Let us note that it is somewhat unpleasant to have as base-point on QG a generic
loop fp instead of the constant loop e itself. Nevertheless, being G a group, we can
“shift” the base-point to e by a rigid multiplication by fo(-)~!. Namely, defining

z)(2) = fo(z) 7 y(z)(z) =z €D’ zeS

we obtain a map 7 € Mape((D?,1),(2G, €)), restoring a more natural choice of the
base-points. Therefore, by suspension [52,62], we have

MapO(DzaQG) = A/IGPO(S(DQ)aG) = MapO(DS’G)

and from now on we shall consider 7 as lying in anyone of these spaces.

Since w = 2mrxWg + xdf3, the action S splits into two parts and it is convenient
to analyze them separately. The so called “kinetic term” is

Skin = ﬁ/l)z(gff*dﬁ)(z.O)
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and by the remark after lemma 3.3.1 we have that for z € D?

(ev™dB)(2,0)(z,7) = dao(v"B)(z)

where d, is the exterior differential on D?. Thus we obtain
Sein(v) = & L TP

= “/SI'YOﬁ

where we have denoted with v, the restriction of v to S! = dD?. Therefore v, €
Mapy(S',QG) = Q4 (Q2G). Recalling the explicit form of 3 given in (3.19), we have
that

K

Skin(7) = dm

is the loop parameter® and t is taken as the coordinate on S' =

/sxxsl <75 0670, 75 Oryo > dbdt (3.21)
where z = ¢
0D? by means of e*. Applying the above reasoning and considering all the base-
point conditions, we obviously obtain vy € Mape(S?, ), since ST A ST = 5% [52,62].
Therefore the integration in (3.21) actually takes place on S2.

Let us now consider the so called “topological term”, that is the one involving

the 2-form Wy on QG. We have

Stop(Y) = 27m/

(" Wo)e0y(H7) = 27“‘6/ T Wa
D2 D2

but Wy itself is obtained through the evaluation map ev as

Wo = /Sl(ev"TQ(G)(l,z)

so that we have
Silr) =275 [ ([ (e°TQ0Nn) )

Combining ev and ev together to form
Ev: S' x D* x Mapo(D?*,QG) — G
just as done in general in lemma 3.3.3 and, applying it another time, we get
Siop = 275 [ (B TQ(0)) 51

that is, by lemma 3.3.1,
Siop(7) = 27k /D ¥'TQ(6) (3.22)

3remember that a factor 1/27 has been always included when integrating over S! with respect to

the loop parameter
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where, in these last two formulas, we have considered directly v as a based map

D?® — G.

Collecting all terms together, we see that the abstract action functional on the
coadjoint orbit QG produces the action for the WZW model on the sphere S?, in-
cluding the kinetic term

K/ — g,
5(7) = Z;l'_«/s? <Y 18;4'}’0,’)’0 18“"/0 >gd’UOl

+ o L <7 Ty T >,
m JD3

We also see that the topological term happens to be integrated over D®, which is
exactly a 3-manifold whose boundary is 5%, the source-space for the kinetic term.

3.4 The integrality condition

We now address to the question of the multivaluedness of the action functional con-
structed so far. By pursuing the analysis done at the end of section 3.2, we shall
show that we cannot demand the functional

S = Dz(a)*w)(z‘g) (323)

to descend on the space Mapo(S*, QG)*.

To be more definite, in order the functional (3.23) to descend on Mapy(S*t, QG),
it should depend only on 7o = v |s: for any v € Mape(D?,QG). Equivalently, for
any two maps 7,7 € Mape(D?,QG) such that v |s1= v’ |s1= 7o, it should happen
that

Sv)=] FTw= / 7w =5()
D2 D2

that is, “glueing” v and v’ along S* to form a map 7 : §% — QG °
¥ w=0 (3.24)
g2

as already said in section 3.3. But this cannot always be true, since first w is not
exact, and second G is not 2- connected, being m(Q2G) = m3(G) = Z, at least.
Therefore, if the glued mapping 7 does not represent the zero element in m,(2G), the
integral in (3.24) cannot be zero and it will happen that S(v) # S(v'). Thus we see
that looking at the functional (3.23) only, the best we can expect is that it descend
on the space Mapy(S?,QG) of classes of maps in Mape(D?,QG) defined as follows.

*As previously noted, we can take the base-point of G to be either the generic loop fo or the
more natural constant loop e
®See Appendix B for further details
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Definition 3.4.1 Two maps 7,7 € Mapo(D?,QG) are defined to be in the same
class if

1L ylsi=79"|an

2. v and 7' are homotopic, that is the glued mapping 7 : S? — QG represents the
zero element in m,(QG)

There is an obvious projection from Mapy(S?,QG) to Mape(S*,QG) sending the
class [y] to 7 [s1. Actually Mapo(S5t,QG) is the covering space of Mapo(St,QG) =
Mapo(S%, G), see Appendix B.

Therefore the functional (3.23) itself is well-defined on the covering space of the
space of dynamical variables of the theory. A more careful look at the shape of w
and S immediately suggests that only the topological term S,,, is responsible for this
phenomenon. Nevertheless, this is not a true problem, since full variations of (3.23)
produce the right equations of motion, as we have already shown in section 3.2 for
a generic symplectic manifold M. Therefore, from a classical point of view, (3.23)
causes no troubles, since we are ultimately interested in the equations of motion.

Of course, at the quantum level we are not interested in the action in itself, as the
right object to look at is rather the functional exp¢S. Since non trivial phenomena
come only from the topological term, we shall focus only on that one.

We saw that
Siop = 2m/D2(e~v*WQ)(2,0)
= 2k /D;(EU*TQ(Q))“'O)

where Ev : D® x Mapy(D*,G) — G and Mapo(D?,G) = Map,(D?,QG). Since look-
ing back at what we have done before this last space comes from Mapy(I, Py, (QG)),
we can also consider Fv as a map

Ev:S'xIxIx Mapy(I,Ps,(0G)) — G.

Exploiting the equivalence

P, (QG)) = QP.G)
obtained sending the path p into the loop p defined by
p(z)(s) = fol2)'p(s)(2) z€Shs€el

by suspension we obtain Mapo(I, Py, (2G)) = Mape(S* A I, P.G). Therefore we can
consider Ev as a map

Ev:S'AI xIx Mapo(S'ANI,P.G) — G
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Recall moreover that S A = D?. We have now placed ourselves in the same general
framework as in [10], and it is possible to use the general analysis carried out there for
any dimension to infer that exp <2m'rc fDa(Ev*TQ(Q))(&O)) is well defined only when
k is an integer. Since here the situation is considerably simpler than in [10], we can

derive the same result directly, without appealing to highly general results.

We proceed as follows. We saw that Sip(7) actually depends only on [y] in the
sense of the previous definition, so that we should ask ourselves what is the difference
Siop(7) = Stop(7') if [v] # [7']. In this case the class [§] will be a non trivial element
in m(2G) = m3(G). Note that, again by suspension, a map § : §2 — G can be
also considered as a map 7 : §* — G. Therefore this map will represent a non trivial
element in 73(G). By the Hurewicz homomorphism [52], see also Appendix A, this
map corresponds to an element in H3(G,Z). Since

Seal(y) = Sn(7') = 275 [ FTQ(6)

the difference on the left-hand-side is given evaluating T'Q(€), which represents an
integer class in H*(G,Z), on an element of H3(G,Z). Thus we have that with the
correct normalization of TQ(6) the difference in question is an integer, and if the
coupling constant s is an integer, the functional exp (27ix [ps Ev*T'@Q(8)) is single-
valued, that is it descends on the space Mapo(S*, QG) = Mapo(S?, G), unlike the
classical action. This is in agreement with the standard treatments of the WZW
model [71,28,38,48]. From the Kac-Moody point of view, we have that at the quantum
level, only those coadjoint orbits with integer central charge are allowed.



Conclusions

In this thesis partial results have been obtained in globalizing the approach of [4,5]
to the construction of WZW models. In particular the geometrical action for the

WZW model on a sphere has been constructed from a specific coadjoint orbit in a

Kac-Moody algebra.

At this point a number of unsolved questions arise. First, it would be interesting
to analyze also other coadjoint orbits, besides the fundamental one 2G, and to see
whether the related geometrical action has anything to do with known models in
2D-field theory. Closely related to this is the interesting mathematical problem of
the study of flag manifolds relative to Kac-Moody groups [55,51,50]: if some of the
results stated in [27] proved to be really founded, an unexpected deep connection with
Floer’s theory [29] may appear. Also the generalization of the approach outlined in
this thesis to non trivial topologies would be very interesting. It is suspected that in
order to obtain the WZW action for higher genus Riemann surfaces, coadjoint orbits
in more general infinite dimensional Lie algebras, such as the Krichever-Novikov
generalization of Kac-Moody algebras described for instance in [11], must be studied.

Even more interesting, is the Virasoro counterpart of what we have treated here.
One hopes to be able to explain the appearance of the SL(2,R)-symmetry in 2D-
gravity from general principles. Besides the fact that, in the usual Hamiltonian
approach, the Virasoro geometrical action can be obtained from SL(2, R)-Kac-Moody
one via a Drinfel’d-Sokolov type reduction [8,21], the presence of this symmetry still
remains in great part unexplained. Therefore it would be a progress to explain
the presence of the SL(2,R) current algebra in 2D-gravity exploiting the method of
orbits.

Just to end this partial list of unsolved problems, let us mention the suggested
connection [67] between WZW models and 2D-gravity on one side and Chern-Simons
gauge theory on the other. It would be very interesting to be able to clarify whether
this connection really exists, and in the case of an affirmative answer to put it on

more rigorous fundaments.
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Appendix A

Some facts from Algebraic
Topology

We recall here some simple facts from Algebraic Topology; for a complete account on
the subject see [52,62]. We start defining the notion of smash product of two spaces.
Take two based spaces (X, z¢) and (Y, o), that is two spaces X,Y together with a
choice of base points o € X and yo € ¥ respectively. Then the wedge product® (or
one-point union or “bouquet”) is the space

XVY =(XUuY)/{zo,yo}-

In other words, X VY is the space obtained from the disjoint union of X,Y identifying
together the base-points zg,y,. The base-point of X V Y is of course the point
corresponding to {zg,yo}. Now the smash product (or reduced product) is defined to
be the quotient space

XAY = (X xY)/(XVY)

whose base-point is of course the point corresponding to (X VY). It is convenient to
denote by z A y the image of (z,y) € X x Y in X A Y.

The point in working with the smash product, rather than the ordinary product,
is that its properties are more often convenient when dealing with based spaces.
In particular, the smash product is appropriate when dealing with spaces of maps.
Given two based spaces X,Y, we can consider the space Map,(X,Y) of mappings
f i+ X — Y such that f(zo) = yo 2. Then Mape(X,Y) is a based space itself with
base-point the constant map fy(z) = yo for every z € X.

!The name wedge is rather unfortunate, both for the name itself and for the symbol used to denote
it, but in spite of this it is widely used in standard texts on Algebraic Topology

*If we are in the category of topological (based) spaces the we can endow Mapo(X,Y) with the
compact-open topology
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Given three based spaces X,Y, Z, form the mapping space M apo(X, Mapo(Y, Z)).
For f in this mapping space one is tempted to say that it corresponds to an f €
Mapo(X xY,Z) by defining f(z,y) := f(z)(y). The requirement on f to be a based
map forces f to send the whole X V Yto the base-point z, of Z, in fact

L F(z,50) = £(2)(30) = 2

2. f(zo0,y) = f(z0)(y) = go(y) = zo where go is the base-point of Mape(Y, Z).

Therefore f can be considered as a map in Mapo(X AY, Z). Moreover, if f' is another
map in Mapo(X AY, Z) which corresponds to f, it must be f = f', since in this case
we must have f(z Ay) = f/(zAy) forall z € X and y € Y. This observation suggests
that the stated correspondence between Mapo(X, Mapo(Y, Z)) and Mapo(X AY, Z)

should be one-to-one, and in fact it exists an association map [52]
a: Mapo(X ANY,Z) — Mapo(X, Mapﬁ(Y, 7))

defined by [a(f)(z)](y) = f(z A y), which under rather general conditions turns out
to be an isomorphism. In fact if we remain in the category of topological spaces, if X

is Hausdorff then « is continuous and it is onto if ¥ is locally compact and Hausdorff.

Particular examples of mapping spaces are the path space PX = Mapy(I,X)
and the loop space QX = Mapy(S*, X) where we can take as the base points of
I and S! the points 0 and 1 (when viewing S* as the set of complex numbers of
modulus 1) respectively. Therefore, if we consider the mapping spaces Mapo(X,PY)
and Mapo(X,QY), we obtain the equivalences

Mapo(X,PY) = Mapo(X NI,Y)
Mapo(X,0Y) = Mapo(X ASLY)

The objects X AT and X A S! are respectively known as the “cone” over X, denoted
with C(X), and the “suspension” of X, denoted with S(X) (Sometimes they are also

called reduced cone and reduced suspension respectively).

The suspension S(X) of X can be also realized as
(X x I)/(X x {0} U{zo} x TUX x {1}) (A1)

see figure A.1, where the thick line is supposed to be identified to a point. The
suspension (or more generally the smash product) is particularly well suited to deal
with spheres. A theorem proved virtually in any text-book on Algebraic Topology
says that

S™ A ST g
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Figure A.1: The Suspension S(X)

COT-O

Figure A.2: The Suspension of S?
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In particular we have that S(S™) = S™*!. The realization (A.1) of the suspension

2

S(X) is very useful to visualize the suspension process S(S?) = S? as shown in figure

A.2. This also shows that S(D?) = D3,

On the other hand, for any space the cone C'(X) over it is always a contractible
space [52], and the relationship between S(X) and C(X) is that S(X) = C(X)/X.



Appendix B

A covering space

In this appendix we show that the space Mapo(S,QG) = Q4 (QG) introduced in
section 3.3 is in fact the covering space of Q4 (QG).

Since G is a group, we can shift the base-point of QG to e, as already done in
the main text in section 3.3. Moreover, we can be slightly more general and consider
directly the unbased loop space L(QG) = Map(S*,QG). Since m (QG) = m(G) = 0,
each loop is contractible and it extends to a map u : D? — QG. Given two maps
u,u’ € Map(D?,QG), we define their “glue” @ : §* — QG, shortly denoted with
u — u', as follows. We consider S? as the union of two emispheres, the northern
and the southern ones, §? = D} U D?, along the equatorial line S* = D% N D2.
Obviously, the two emispheres must be glued together in such a way to have an
overall correct orientation. This happens to be true if they are connected by an
orientation reversing diffeomorphism ¢ of S, so that the orientations of D} and D?
will agree one with the other to build up the orientation of the whole connected sum
D} UD?. Then we define & = u — u’ to be the map equal to u on D? and to u’ on
D? with reversed orientation. For this machinery to work, we need the restrictions
of u and u' to S to be connected by on orientation preserving diffeomorphism of S,
since composing this last one with the exchange in the orientation of D2, will furnish
the diffeomorphism ¢ that glues together the two emispheres. In our specific case
the glueing diffeomorphism will be p(e?) = e since we shall consider maps u,u’
such that u [s1= u' |s1. In fact we define two maps u,u’ € Map(D?,QG) to be in the
relation ~ iff

1. u ‘51: u' ]51
2. w — v = 0 in homotopy, that is [u — u] = 0 in m(QG) = m3(G).

This is an equivalence relation on Map(D?,QG); define L(QG) to be the space of
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classes

L(QG) := Map(D*,QG)/ ~

with the obvious projection

I(00) ™ L(QG)

[u]  —u|s

Now, since G is a group, QG and L(QG) are themselves groups, so that we have the
decomposition L(2G) = QG x QNG, just as in the case LG = G x QG. Of course,
L(Q2G) decomposes in this way only as a topological space, without considering its
group structure. This allow us to say that

m(L(G)) = m(QG) x m(Q0G)
3 (G) X m3(G)
= m;(G)

On the other hand, we have that

L(QG) = I(QG) /m(G)

since for each £ : S' — QG classes [u] € L(QG) such that 7([u]) = £ are in cor-
respondence with homotopy classes in m(Q2G). To see this it is sufficient to fix
uo € Map(D?*,QG), uo |s1= ¢, and consider those u which agree with uo on S* but
do not satisfy [u — ug] = 0. Therefore we obtain that L(Q2G) is the universal cover of
L(QG), which is what we intended to show.
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