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A Consuelo






Es un gusto aprender en los autores
que tratan de las ciencias naturales,
por qué de las semillas nacen flores,
cémo hacen para andar los animales,
para qué fin hay rayos y temblores,
o de qué se componen los metales.
Cosas que cada dia estoy leyendo,

que siempre admiro y que jamds entiendo.

José Batres Montufar, El Relox, (1836)
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1. Introduction and Motivations

1.1 Motivations

The conservation of baryon and lepton numbers (B/L-number) is founded on experi-
mental grounds, but not on theoretical ones. In fact in the Standard Model (SM, based on
the group Gym =SU(3)c ® SU(2) ® U(1)y) both of them are only accidental global sym-
metries. Onthe other hand the electric charge conservation based on experimental grounds,
can be founded, theoretically, on the local U(1)m gauge symmetry which remains after the
spontaneous symmetry breaking (SSB) of the electroweak group Ge,, = SU(2)L @ U(1)y.
From the Noether Theorem we know that every symmetry in the physical laws has asso-
ciated a conserved quantity. Conversely if we find a conserved quantity we search for the
symmetry associated with it. Within the Standard Model, the B/L-number conservation
can be related only with.a global symmetry (Not local). But according to the Gauge Dogma
“Only the local gauge symmetries are ezact in nature”; so baryon and lepton number con-
servation which in the SM is not related with any local gauge symmetry are expected to
be violated. On the contrary if we associate the baryon number with a gauge symmetry,
the associated long range force would generate an apparent difference between the grav-
itational and the inertial mass [EPF, RKD, BP]. This could be detected in the Edtvos

experiment unless its gauge coupling constant is incredibly small [LY, Oku].

There are more reasons, that suggest the non-conservation of baryon number:
1. The baryon-antibaryon asymmetry in the universe [KT].
2. The fact that the non-conservation of the baryon number can be incorporated, in an
extension of the Standard Model, without destroying the renormalizability of the theory.
3. In the Standard Model, the B/L number are not strictly conserved due to non-
perturbative effects; which by the way, are tremendously small being exponentially sup-
pressed by a factor e~(27/%w) ~ 10786 [t’Ho).
4. In the interaction of a particle with a (real) Black Hole it should be possible to transform
a proton in a positron yielding a violation of B and L [Zel, HPP]. Zeldovich has shown that

is possible to obtain this effect with virtual black holes and found a decay time of the order
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B & 10*° — 10%° years [Zel].

Due to these reasons, it is of great interest to search for possible ways to obtain the
baryon and lepton number violation, not only within the Standard Model but in GUT’s

and Supersymmetric Theories.

1.2 Brief Historical Remarks

The most important historical steps, first towards the conservation laws of Baryon
and Lepton number and subsequently to the violation of these laws, are:

1929 - Herman Weyl proposed a conservation principle for the electron and the proton;
at that time the positron had not yet been discovered [Wey].

1938 - Stiickelberg propose the conservation of the “Heavy Charge”, based on the
observation that no heavy particles (neutrons and protons) transform into light particles
(electrons and neutrinos) [Sti].

1949 - The conservation law of nucleon was reformulated by Wigner, Whé gave also
a possible explicit decay scheme for the proton. In fact, he pointed out that without this
conservation law, the proton could decay into a positron plus a photon (p — e + )
[Wig].

1953 - Marx, Zeldovich, Konopinski and Mahnoud [Mar,Zell,KMa| proposed the
conservation of lepton number, according with the experimental data of that time, (only
one kind of neutrino was know) and Zeldovich alone considered the violation of lepton
number through the 83 decay without neutrinos [Zell, KMa].

1954 - Goldhaber, Reines and Cowan proposed that “We cannot conceive an ezper-
tment which would prove the absolute stability of nucleon”. The laws of conservation of
nucleon can be used with considerable confidence in discussions of practically observable
nuclear reactions. Their proposition remains valid until now [Gol,RCG].

1957 - Pontecorvo considered the violation of flavour lepton number through the neu-
trino oscillations [Pon].

1967 - Kuzmin and Sakharov consider the baryon number violation in order to explain

the baryon-antibaryon asymmetry in the universe [Sak, Kuz].
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1973-74 - In Grand Unified Theories it is possible to arrive in a natural way to the
Baryon and Lepton numbers violation [GG].

Finally the present status of the conservation laws in the Standard Model: There are
three independent conserved lepton numbers L, L,, L, associated with each of the three
known generations of leptons. This obviously leads to the conservation of the total lepton
number L = L, + L, + L,. Furthermore, there is only one instead of three conserved
baryon number, due to the mixing of the generations in the Kobayashi-Maskawa mass

matrix.

On the other hand the experimental status about baryon number violation is based
principally on the IMB, Kamioka and Frejus [Bio, Kos, Ern] experiments that give the lower
limits for the ratio of the lifetime of the proton to branching ratio, /B = 103! — 3 x 1032
years for modes with charged leptons and 7/B = 103! — 6 x 10®! for modes with neutrinos.
On the other hand the proposed 30 kT Super-Kamiokande water Cherenkov detector, could
reach to a limit of 10°* years. It is more difficult to make measurements for leptons than

it is for baryons and therefore the lifetime limits for electrons are poorer (> 2 x 10%? years

[PD88]) than those for proton.



2. Generalities of B/L Non-conservation

Since the phenomenology of the Standard Model is well known, we will concentrate
on possible ways to obtain the baryon and lepton number violation, without violating
the angular momentum conservation, the Lorentz invariance , the electromagnetic charge

conservation and the color charge conservation.

2.1 The Standard Model

Let’s begin with a short review of the Standard Model [SM|. The standard model is
based on the symmetry group G;m=SU(3)c®SU(2)L QU (1)y FWith three gauge couplings
gi (where ¢ = 1,2, 3) corresponding respectively to the three factor groups. This symmetry
is broken spontaneously by the Higgs doublet

_ (¢
¢_<¢o>)

Which transforms under the SU(3)¢ ® SU(2) ®U(1)y group as a ¢ ~ (1,2, +3) multiplet.

The gauge bosons of this model are: A} ~ (1,3,0) (I = 1,2,3) and B, ~ (1,1,0)
corresponding to the electroweak interaction, and Gﬁ ~ (8,1,0) (A =1,...,8) correspond-
ing to strong interaction. The SSB occurs due to the non zero value of the vacuum
expectation value (VEV) of the scalar Higgs potential ¢ (< ¢° >= v/+/2). Obviously
the SU(3) group remains unbroken and only the other two groups are broken to U(1)em
group generated by @ = Ts3r + Y. After this SSB we obtain the three massive gauge
fields Wf = (4, zAi)/\/—Q-, Z, = B,sinf, — A} cosf,, and one massless gauge field
A, =B, cosb, + Az sin 6,,, where 8,, is the Weinberg angle.
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The fermion constituents of the Standard Model are the following multiplets:

an VU o o R
<d3%> (Jfﬁ) 3 do% €R
SU(3)c 3 1 3 3 1
SU(Q)L 2 2 1 1 1
Uy § ~3 3 -3 -1
Table 1

The index a (a = 1,2, 3) is the family index, the superscript 0 means that the fermions are
the current eigenstates, the index a (a = 1,2,3) represents the colour degree of freedom,
and R (L) represents the Right (Left) component of the fermion.
The baryon and lepton number are defined as:

L(g) = 0 and B(q) = (N, — N;) for quarks;
B(B) = L(B) = 0 for ordinary bosons;
B(L)=0, L = N.- + N,, = No+ = N;,, L,=N,- +N,, —N,+ — N;
Lr=N.-+N,, —N.+—N;_ and L =L, + L, + L, for leptons

p?

After this brief review of the Standard Model we are ready to begin with a general

discussion of the baryon and lepton number violation processes at low energies.

2.2 B/L non-conserving processes

After the discussion of the conservation of baryon and lepton numbers within the
Standard Model, at least at non-perturbative level, we will now look for the possible
operators that can violate these conserved quantities in some extensions of the Standard
Model. We will start with a general analysis, with no reference to a particular model, in
which the B/L-number violating operator should satisfy the Standard Model gauge and
Lorentz invariance. So we need to check:

a) The charge or hypercharge conservation.

b) The colour charge conservation.

¢) The invariance under SU(2)r group transformation.
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d) The invariance under Lorentz transformation.

To check the invariance under this last two transformations, we can use the “F-parity”

introduced by Weinberg [Wei].

A B T A+T F
qr, 11 —;— 0 —;— 1 even
qr,lr 0 % 0 0 even
dRr, ZR 0 3 % -%‘ odd
L, lr % 0 0 : odd

Wi, A,8 5 3 0,1 £, odd
1) 0 0 % % odd
Table 2

in Table 2 (4, B) is the irreducible representation SU(2)r®SU(2)r of the SO(3,1) Lorentz
group and (T') is the irreducible representation of the SU(2)r group of the SM.

The F-parity is defined as F' = (—1)24+27T then F-parity even gives allowed interac-
tions, but F-parity odd gives forbidden interactions. On the other hand the electric and

colour charges conservation, can be checked easily.

To preserve the SU(3)¢ invariance we need at least three quark fields. Due to the

Lorentz invariance, we can only have operators of the form:
2ng + 2ng, ng,nr =0,1,2,... (1)

We can have several operators that obey these restrictions. Considering B number viola-
tion, we begin with the operator minimum dimension (in power of mass), d = 6 for which
we can have operators of the form gqql or gqql°. Both lead to electromagnetic and colour
charge conserved processes. However using the F-parity we obtain F=even for the first
process and F=odd for the second, which means that the later process is forbidden. By

this method we can construct other types of interactions, like those shown in the following

7



table.

AB=0 — |AL|= — d=5 ppll

| |AB=1| AB= AL =-1 d=6 qqql

| |AB=1| AB=-AL=-1 d= Dgqqql°

| | AB =1 | AB=%AL=—-1 d=9 qqqlll
AB#0 | |AB=1| d=11 qqqlllded

| |AB=1] AB=-3;AL=-1 d=10 qqql¢l°lI°¢

| |AB=1] d=12 ggql*Il°gps

| [|AB|=2 AL=0 d=9 999999

| | AB |=2 |AB=AL|=2 d=12 q99994!!

Table 3

where D represents a derivative D, or a boson field ¢. Besides the operators showed in
table 3, their hermitian conjugates are permitted too (e.g. ggql — ¢°¢°¢°l° etc.).

Now we can do a detailed analysis of the ggql operators. First according to (1) we are

restricted only to the following combinations: O((zzb)cd = qrqLqr!lr, Oﬁ?:d = qrqrqrlr,
Ot(llbld = ¢grqrqrlr and O«(j))cd = qrqrqr!r (a,b,c,d are generation indices) The whole
previous analysis was made assuming the existence of only one generation of leptons and
quarks, but as we known, there are three. Weinberg made [Weil] the complete analysis
for more than one family and found the following operators:

Ouista = capresil(dn), villlar), Hal

0% 1 = cayeiil(ar), qﬁi][(ua) eRd
—=cvk
08 s = capresientlan) a2 lar)c 1L ]

03 = eapy(7e)i x (Fuillan ) ¢2l(an). 1L,
084 = capnl(dr)y uly)[(ur): era]
0(5)

wred = €apr[(ur), wh)[(dr), erd]

There are two new operators besides our four previous ones; these are clearly different
from zero only for the case of more than one generation.

From the general form ¢r,qrqrlg it is possible to construct only the urdrurer oper-
ator, because the operator with vp doesn’t exist. Moreover since the hypercharge of g,
(ur,dr) is ; and by hypercharge conservation we have, YY(f)=-1+¢++t+z=0;
then the other factor must be ug, (it has a hypercharge of z = 2). By the same procedure

we can obtain from the operator q7qrq1l, two possibilities: urdrdrvy, and urdrurer;
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from the operator qrqrqrlr other two possibilities urdrurer and ugdrdrvy, and finally
from the operator qrqrqrlr only one: urdrurer. The other two new operators Og?cd
and O((I?Cd are not important for proton decay, because they involve at least fermions of

the second generation.

The most important non-conserving baryon number process is proton decay. The
decay amplitude in the simplest case (gqql) is proportional to A o e®/M?, the proton
decay rate is proportional to I' | 4 |?x e*/M* and finally the proton decay lifetime
(over branching ratio) is proportional to 75 &< M*/e*. Since the mass-energy dimension
of 75 is —1, we need a factor of 1/m?\,; where mpy is the mass of the nucleon. So for
B < M*/m3;e* within the experimentally interesting region of 103! — 10%* years, we need
a mass M for the new heavy vector or scalar bosons, between 7 x 10%* — 4 x 10> GeV.

Now let us consider the B and/or L violating operators of any dimension. In general

for an operator of any dimension the constant coupling can be estimated, as:

gan & e TEMATAG T (2)

where e is the electromagnetic coupling (really the coupling constant depends on the model,

but we can take e™ 2

as a good approximation), n is the number of external fields (lines),
M is the mass of the heavy particle, d is the dimensionality of the operator in powers of
mass, Gr the Fermi’s constant, (that should be present when there are VEV’s of scalars

fields), and m is the number of scalar fields.

Following the order of Table 3, we will show the results of the same analysis for
the different processes. The mass (M) of the heavy bosons will be always estimated by
requiring that the proton lifetime lies in the region 10°! — 10** years. Then we proceed,

with a brief description of some of them:

a) Processes with AB = AL = —1 : The operators are of the form gqql, its dimension is
d = 6. Their coupling is of the order e2/M?, that gives M ~ (7 x 10* — 4 x 10'%) GeV.

This operator leads to processes like:



p—etn® p— ytK®  p s DKY, n— etnm
b) Processes with AB = —AL = —1 : The operators are of the form Dgqqql¢, its dimension
is d = 7. Their coupling constants are, in the case D = ¢ of the order €? G;l/z/M3 and in
the case D = D, of the order e?/M?>. M = (3 x 10'° —10'!) GeV and (5 x 10° — 2 x 101°)

GeV respectively. These operators leads to processes like:

n—ent, n—e Kt, p—oetrtat, poentKt

c) Processes with AB = ~31~AL = —1 : The operators are of the form ¢qqlll of dimension
d = 9 (They are irrelevant for proton decay since can be shown [CZ] that at least one of the
three quarks ¢ must belong to the second generation) and gqqlll¢¢ operators of dimension
d = 11, with a coupling constant of the order eﬁG;l/z/M7, that gives M ~ 2 — 5 x 10*
GeV. Some of the possible processes mediated by this operator are:

p— mtvvy, n— vve T
d) Processes with AB = —%AL = —1 : The operator are of the form ¢qql°ll°¢ , of
dimension d = 10, with coupling constant of the order e‘r’G’;l/z/Mﬁ, that gives M =~
3 — 7 x 10% and gqql®l°I°¢¢ operators of dimension d = 12, with coupling constant of
the order e7G;3/z/M8, that gives M =~ (8 x 10°® — 1.5 x 10*) GeV. Some of the possible
processes mediated by these operators are:

P — e+z/v, p— ,LL+De+7r_
e) Processes with | AB |= 2 and AL = 0 : The operators are of the form ggqqqq, of
dimension d = 9, with coupling constant of the order e*/M?®; that leads to non-leptonic
processes like:

nn — w070, ,np — mlrt nen

There are semileptonic processes too, like:

np — et v, through the decay n — p~etr..

The neutron-antineutron oscillations (n « 7 Oscillations) involve ggqqqq operators.
These oscillations are similar to K° «+ K9 oscillations. The mass matrix corresponding to

n «+ 7. oscillations is:
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its corresponding mass eigenstates are:

|n>+|n>

\/§ 3

the mass eigenvalues are: m; » = m=+ém. Starting with a neutron n at ¢ = 0 the amplitude

| n12 >=

n(t) at the time ¢ is:
n(t) = (1/v2)e™ 3 {na(0)e ™™ + np(0)e ™™,
The probability of finding at time t an antineutron 7 is:
Pa(t) = e " sin? (6mi) (3).

From (3) we can see that, when ¢ < 'Sln?’ P; = (6mt)? (provided that we neglect the
exponential e”*. We can define: 7,7 = 1/ém. Using dimensionality arguments and the

experimental bound 7,5 > 10° sec, from ém ~ e4mg/M5, we obtain M > 4 x 10° Gev.

f) Processes'with | AB = AL |= 2 : The operators are of the form ggqqqqll , of dimension
d = 12, with coupling constant of the order e M®. Then produce processes like hydrcsgena
antihydrogen oscillations (H = pe™ « p~et = H) , double proton decay (pp — e~ e™) or

semileptonic decay (n — peTr,).

g) Processes with AB = 0 and | AL |= 2: The operators are of the form ¢¢ll, its
dimension is d = 5, its coupling constant is e2Gz'/M. The processes of this type can
produce neutrino oscillations, neutrinoless double beta decay and others less important
from the experimental point of view.

Processes where there is only lepton number violation, without baryon number viola-
tion, can be classified in two types: Those that involve violation of the total lepton number
L, and those that involve violation of the different family lepton number (L., L., L.).
In the Standard Model, there is mixing between families only in the quark sector, while

in the lepton sector there is no mixing between families, because the neutrino is massless.
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Fig. 1: B3 -Decay processes: a) neutrinoless, b) 2-neutrinos.

d d

However in the extensions of the Standard Model that we will consider, we suppose the
existence of a small neutrino mass and a right component of the neutrino field. In this
way we have two types of oscillations: Oscillations between matter and anti-matter (e.g.
Ve <> U,) or oscillations between families (e.g. ve « v,). The first case is similar to n < 7
oscillations, where we change the neutron with the neutrino, while the second case will be
studied in the following paragraph.

If we call v, (a = e, p, 7,...) the neutrino weak-eigenstates and v; (+ = 1, 2, 3,...)
the neutrino mass-eigenstate, the mixing matrix between different types of flavour in the
neutrino sector can be defined as: v, = >, Usiv;. Since v;(t) is not a stationary state it

will evolve according to the laws of Quantum Mechanics. Thus at ¢ > 0 it will look like:

vi(t) = v;(0)e thizmwit)

where k; is the momentum, z the space coordinate and w; the energy of the neutrino

mass-eigenstate. For w; > m;, for every 1, with m; being the mass eigenvalue of v;, we set

m?t
2E

2
. Therefore we have v;(t) ~ exp [——iT"—t}, and

w; = F and we also set k;z — w;t ~ 55

2
va(t) = D Uaivi(0)exp [_z’;E } ;

12



and then the probability to find the neutrino which initially was in the state b later in a

state a, is:

P(vy — vp) = Z Ugiexp [ 5B } U I? .

In the simplest case when we consider only two families, we can take the mixing matrix

U~——>( cos @ sin9>

Uqa: as being:

—sinf cosb

and we obtain the following equation:

1 Am?
Plve »v,) = 5 sin® 26 [1 — cos 272 t} ,

where Am? =| m? —m2 |.

For the moment there is no experimental evidence for neutrino oscillations, but there
are limits obtained on the parameters § (sin® > 0.25, for large Amz)k and Am (Am? <
0.2 (eV)? with sin® 2 = 1). These experimental lifnits which were obtained for the 7, — 7,
mode in the G6sgen experiment [Zac]; they are the best limits up to date.

Another important phenomenon involving the lepton number violation, is the double
beta-decay. This is second order process, which is possible to be observed only in the
case when the normal beta-decay is forbidden by the conservation of energy The double
beta-decay (032,-decay) can be produced within the SM (conserving the lepton number)

in a reaction of the form:

ny +ng — (p1 + Wh) + (p2 + Wa) ~ u1 + (€1 + Te1) + uz + (€2 + Te2).

This type of decay was observed experimentally in 1987. Using a geochemical test; like
the one used in B-decay; we obtain the following lifetime for Se and Te: 825e > 1.1 x 10%°
years and 28Te > 8 x 10%* years. On the other hand the direct search for the 33,-
decay gives at the present for 28Ge the limits of: 1.7 x 10%! — 3.5 x 10%* years. But it is
possible in the extension of Standard Model to have the same reaction but without final
neutrinos (8fy,-decay). Of course this is possible only if neutrino is a Majorana particle

or a superposition of Majorana eigenstates, in other words if the charge conjugate of the
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Fig. 2: Feynman diagrams for 41, drugeR operators.

neutrino is its antiparticle. Another way to obtain this kind of reaction is if a leptonic

current j L contains right handed admixture:

n =71+ %) +1(1 —7%)]wo

with a non zero value of the parameter . Of course this right handed component is not
possible either within the SM, or within SU(5) model; but is possible in other extensions
of SM. Experimentally for the moment there is no evidence of this kind of decay, but there
are several experiments in course.

The figure number 9 shows two different types of #3-decay processes; with (a) two
neutrinos and (b) neutrinoless.

After the discussion about the possible values of the mass M of the heavy bosons, we
turn onto the simplest d = 6 operator in order to analyse the behaviour of these heavy
bosons under SU(3)c ® SU(2)r ® U(1)ytransformations. Our analysis begin with the
urdrerup operator. We note that it is possible to construct, the following three different
graphs, using Fierz rearrangements
We start by considering the graph a of Fig. 2. First, we observe that in the a vertex we
have the boson field and two fermion fields: uy ~ (3,2, %) and eg ~ (1,1,—1). For the
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moment we do not know what kind of n-plet is the boson field, under the SU(3) group.
Therefore we try the simplest n-plets that could give a singlet in the vertex. Thus
31®1=3, 313=3086, 3I1R3=108
and therefore we obtain a singlet if the boson field is an anti-triplet. Now we will make
the same analysis for the invariance under the SU(2) group,
20191 =2, 20102=103
and therefore we obtain a singlet if the boson field is a doublet. The hypercharge sum

of the fermion fields in the vertex is: Y Y, = % —1 = —35 and in order to conserve the

)
hypercharge we need a value for the boson field of ¥ = %.

All the previous results must be consistent with the results in the b vertex. In the b
vertex we have the fermion fields uz ~ (3,2, 3) and ur ~ (3,1, %) plus the boson field;
then we obtain:

Under SU(3) — 3®3®3 =1@ 8@ 8 ® 10, which means that the boson field is an
anti-triplet from a vertex to b vertex.

Under SU(2) — 2®1® 2 = 1 ® 3, which means that effectively the boson field is a
doublet.

Under U(1) — 3 Y, = + + 2 = £, and then the boson field carries a hypercharge
Y = —2 from a vertex to b vertex.

Our final result is that the boson field, behaves under SU(3)c ® SU(2)r ® U(1)ygroup |
as Xi1, ~ (3,2,-2). /‘

Making the same analysis on graph b of Fig. 2, we obtain a similar result X?;, ~
3,2,-2)

In graph c of Fig. 2 we have X, ~ (3,1, 3); note that under SU(2)y, it is a singlet,
because in the a vertex we have 1 ® 1® 1 = 1 and in b vertex, we have 2@ 2® 1 =1 3.
The hypercharge in the a vertex is: % —-1= —% and in the b vertex is % + % = %; then the
X7, boson carries a Y = % hypercharge.

In the case of the operator dpupurer, we can draw two diagrams:
in graph d of Fig. 3 we can observe that under SU(2)r that in both vertex:

2R201=163, 22Q2=260204 and2R2R3=10360365,

then in this case we can have a singlet X7, ~ (3,1,—%) and a triplet X5, ~ (3,3,—3)-

15
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Fig. 3: Feynman diagrams for dpupur ey, operators.

Notice that in this case it is not possible to Fierz rearrange the operator so that vector
bosons mediate the interaction. We can analyze the graphs from dpvrugrdg, erurerur,
etc. in the same way and find all the possible bosons. Doing this we obtain the following
five bosons:
le;la ~ (3’2’ %): le;Za ~ (§>2a “%)’ Xl*a ~ (371,—%)
Xga N(il’"%)a X;a "'(3’3’_%)-

If we take into account operators of dimension different than 6 it is possible to obtain
more scalar and vector bosons, that would be gauge vector bosons. Following Costa and
Zwirner [CZ] we present in the following tables the list of these scalar and vector bosons,

(they carry color, weak and hyper- charge), that includes six or more fermions fields.
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Scalar boson
Aj
A3
A3
Xla
X3a
X3a

Vector boson
1
Avl
1
sz
1
leoz
1
Xv2oz
a
H'ul
a
HvZ
o
v3
[
H'u4
afi
le
afi
Yv2

Representation
(1,3,-1)
(1,1,-1)
(1,1,-2)
(3,1,%)
(3,3,%)
(3.1,%)
(3,1,-3%)
(3:2,5)
(3,2, %)
(6,1, 3)
(6,3,3)
(6,1,3)
(6,1,-%)

Table 5
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Not all the scalar and vector bosons listed are useful for violating the B/L number
in a second order Feynman diagram. Because there are some of them, that can not have
different B/L numberin their vertices. In these lists the existence of a singlet v,z ~ (1,1,0)
under G5, group (corresponding to the right component of the neutrino) is presupposed.

In table 5, (6) we present the designation of the scalar (vector) bosons in the first
column, their representation under SU(3)¢ ® SU(2), ® U(1)y group in the second column,
their electromagnetic charges in the third column and their B — L quantum number in the
fourth.

Note that besides the scalar and vector bosons listed in both tables, their correspond-
ing hermitian conjugate partners exists as well. With this paragraph, we finish our general
discussion of B — L-violating operators, and in the following we search for a gauge theory
that contain operators like those, as generators.

At this point we have an idea about the order of magnitude of the mass of the hypo-
thetical heavy bosons and some of the possible new processes mediated by these bosons.
But, to go further with the predictions, we need to introduce these bosons within the
context of a specific theory. This is possible in Grand Unified Theories, the theories that

we will discuss in the next section.
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3. B/L number violation in Grand Unified Theories

3.1 Generalities

As previously mentioned, the baryon and lepton number violation leads naturally to
Grand Unified Theories. In order to understand how, we will make a short presentation
of these theories.

The SM is a gauge theory based on the G,m =SU(3)c ® SU(2)r ® U(1)y group,
but due to the fact that it is made of three different groups, we also have three different
coupling constants. The hypothesis in the Grand Unified theories is to introduce a large
simple or semi-simple gauge group G which contains as the effective low energy group G;m
as a subgroup. The theory based on the larger group G must be spontaneously broken at

least at two hierarchically different scales.

a X [Gsm+0 (Ml—z)] = [G“’"O (%H

where Ge, denotes the SU(3)c ® U(1)em group.

But there are other restrictions that the theory must obey, in order to be a cogsistent
theory. One of these restrictions is that the representation Dy, and Dg (to which the fr, left-
handed fermions and fg right-handed fermions respectively, are assigned) must be complex
with respect to the G, group and real with respect to the Ges = SU(3)c @ U(1)em group.
The complexity of the representations which contains the ordinary fermions is required to
enforce the chiral protection which avoids large direct fermion masses in the lagrangian.
Moreover the theory must be free of Adler-Bell-Jackiw Anomalies and must reproduce the
known phenomenology of the SM.

We know that the three coupling “constants” of the Standard Model are differ-
ent, but fortunately they are not really constants. They change with the energy ac-

cording to the Renormalization Group Equations. The one loop approximation reads

[BEGN,GQW,CEG]:
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1 1 b, M?
@) " wd?) T )

where «;(Q?) are the running coupling constants for momentum transfer Q% and b; are:

1
”1 ARy - i
b3 —-11 1 0

ng is the number of fermion generations and ny is the number of Higgs doublets. At an
energy of the order m,,, the couplings a; are different and they grow (or decrease) logarith-
mically. Since we want to embed G4, =SU(3)c ® SU(2)r ® U(1)y into a simple group G
all the generators of Gsm must be renormalized in the same way, i.e. Tr(T°T®) = N§°® for
all the T'* generators of the Standard Model. For instance requiring that Tr(73) =Tr(Y"?)

over a fermionic generation we obtain a new suitably normalized definition of the hyper-

5

where Y had been defined in Section 2 as ¥ = Q3 — Ts1,. We require that at the value M,

charge

all the coupling constants are equal according to:

. 8
a1(M?) = az(M?) = as(M?) = agur = gaem(Mz)
To obtain a first numerical value of the mass M, we use the one-loop approximation. The
running coupling constant «; are defined as:
a; = g?/4r, wherei=1,2,3
In the SM, we need the following relation to be valid.

3
e’ = ggf cos® 8w = g3 sin® Oy (6)

From (6) we have:
S Qem Qem

sin? Oy + cos® Oy = =
3 o Qo

and




From (4) we get:
47 _ 4 +8 In M?

Cem(Mw)  Cem(M) m2

with 8% = §§3’j—§_§9_‘{ [using (5) and neglecting the contribution of the Higgs fields ny].

Making combinations of the equations in (4), for : = 1,2, 3, we have:

11 (=) W
a3(Q?)  «(Q?) 4w Q?
1 1 (=) M 0

as(Q?)  a(Q?) 4m Q?
Using, the previous equations, (4) and the minimal GUT version with three generations of

fermions (ny = 3) and now taking one Higgs doublet (ng = 1), we obtain our final result

[KMNO]:

M= |5 (o - aaénw)ﬂ | (®)

using the experimental values: m, =~ 80 GeV, aem(my) = and az(m,) = we can

2 10’

finally obtain, for the boson mass a value of:

M =~ 10'® GeV = 7 & 10°! years.

It is of interest to consider how much the second loop approximation for the renormal-
ization group equations can modify the above one loop approximation. At the two loop
approximation the renormalization group equations take the following form [GRo]:

(9 ay 2 (o .
Bi :#28_;47(27;)2 b; +szl'j(z;) (9)
—

where the indices ¢ = 1,2,3 correspond to U(1), SU(2), and SU(3) groups respectively

and the numerical coefficients are given by:

9 3 44
b%l b;l,z b:lw = 0 3 0 - 10 16 0 ng — 13'1 —g- ;16 naGg (10)
b31 b32 b33 O 0 102 0 0 O 30 5 5
The value of the coupling constant at momentum Q is given by:
4 4 bi; . (M)
= +b°ln-——+ 71 —L= 2 4 0(ad) (11)
ai(Q) (M) Z a;(Q)
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using the above equations, we can obtain [KMNO]:

M = my exp [bg Eﬂégm (gaem(lmw T mw>)] 2, (Zﬁ))) )

i=1
1 3b3;—5b1;
L 1 bsi — 3
7= o0 po _ 383557
i — 22 %%
3

3

where

using the numerical coeflicients in (10) we have:

v ~ —0.01, 72 ~ —0.01, vs &~ —0.31
finally we obtain the relation between the one-loop approximation and two-loops approxi-
mations:

Mz—loops ~ 0.64M1—loop

The effect of this correction is important to the proton lifetime, which decreases by a factor

of the order ten.

T ~ M* = Tj_l""ps ~ 0.137';_1""1’ ~ 10%° years

Another important source of modification for 7, is the presence of threshold effects in treat-
ing the renormalization group equations at energy scales close to M. But I considered the
so called Step Approzimation where these effects are not taking into account, however the
corrections introduced when we considered more complex approximation not modify sub-
stantially the limit for the proton lifetime [EGNR]. Therefore the GUT’s in their minimal

version (1 Higgs doublet) are in conflict with the experimental limit.

3.2 The SU(5) Model

We begin our search for the unification group among those groups of rank r = 4
because the SU(3)c ® SU(2)r ® U(1)ygroup is of this rank. The groups of rank 4 are:
[ST(4), [O(8), [SU)P?, [Ga?, O(8), O(9), Sp(8), Fi, and SU(5).

We eliminate the groups [SU(4)]* and [O(5)]* because they do not contain SU(3) as a
subgroup. The group [SU(3)]? contain SU(3) but since SU(2) ® U(1) must be embedded
in the remaining SU(3) group is not good because, the sum of the charges of the quarks

is zero due to the traceless charge generator. The groups [G2]?, O(8), O(9), Sp(8) and
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Fy do not have the complex representation necessary to accommodate chirality protected
fermions . Therefore only the SU(5) group remains and we will study the model based on
this group.

The adjoint representation of the SU(5) group is 24-dimensional; its decomposition

under G, group is:

24— (8,1,0)9(1,3,0)®(1,1,0) ® (3,2, 3) © (3,2,—3)-

These gauge fields corresponds to:
a) The eight gluons of Quantum Chromodynamics, G55 ~ (8,1,0).
b) The four vector gauge bosons of the electroweak theory, W:;, By ~ (1,3,0), (1,1,0).
c) The twelve electromagnetic and colour charged vector bosons, that can mediates the
B/L violating processes, X;;, ~ (3,2,%) and Xﬁa ~(3,2,-2).

To complete the know phenomenology of the standard model we need the fermions
fields to be accommodated in a representation of the SU(5) group. This is possible in the
5® 10 (Y. © %) representation. In this representation, the decomposition under G,

is:

5010 — (3,1,-:1);)@(1,2,——12—)]ea[(3,2,%)@(3,1,—%)69(1,1,1) (12)

with the following identification of the fermion fields:

(331’ %) ~ (dc)ln (1727—%) ~ (eE)VL)7 (gala_g) ~ (uc)L (13)
(3,2,%) ~ (ur,dr) and (1,1,1) ~ (e")L. (14)

In this way, we can construct the interaction terms in the SU(5) theory, using as covariant

derivatives the following relations:
a a . g a
(Dpt)® = |0uby — 'L'\/—'Q(Au)b ¥’
a a . a c e g a
(D) = B — i ()29 — iAoy

V2
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where A4 is the matrix:

G% - 12_53 G% G% X%va Xllga
G% G% - I%B Gg Xlzva sza
A= G:{ Gg Gg - %B X%va nga
X1, X2,a X%e =+ 3,/%B w
1 2 3 - 3
Xll-oz Xl;ra XlIa W _% % %B
and a,b,... = 1,2,..., N are the SU(N) indices.
Using (12)-(16), the ihteraction terms take the form:
: - A T (v, 3. 1_ 1_
e = sl(d57#G, 5d5) + (e s W T (%) + \ﬁ(—-—um“prL e Bues
2 2\e ), "TV5 2 2
1 Jjc _u c 1 -~ _pyvajc 1 ~ by ia e
+§dL7 B#dL) + [E(*eL’Y Xu, daL) + ;—/—5(_1/147 X,u. daL) + hc” (17)

and

A - A A T
£8 = (817G, g + din* G5 s + 3G us) + @ Der W, ()
L

d
3 1 - m 1 k2 u 2 —C I c 1 =C K c
+ g(-gum Buurg, — 'b:dL’Y Budy, — 3ULY Buup + 5€LY Bet)
1 — v o je —C v ta jc
—I—[E(—ULQ”/#X}; dg, — eaﬁ.,uL7'y“X; dLﬁ) + h.cl]. (18)

In the relations (17) and (18) we have the interactions terms of the SM reproduced, but
moreover we also have new interaction terms. These new interaction terms involve lepton-
quark currents. We can note that, in an interaction at a second order, we obtain operators
of dimension d = 6, similar to those studied in the previous section. In second order
approximation an effective theory at low energies has a factor g% /2M?. Then the discussion
about the operators made in the precedent section is valid also for the heavy bosons of the
SU(5)-Model. _

Due to the fact that at low energies we need to reproduce the Standard Model with
little corrections, the heavy bosons must acquire their mass in the symmetry breaking from

SU(5) to Gym-group. The SU(5) group is broken in two steps:
SU(5) — Gym — Gles,
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by the Higgs fields ¢ and H. The first step, break of the SU(5) symmetry to the Gym, is
performed by a 24-plet (SU(3) ® SU(2)1):

¢”’”‘>24:(8)1)69(372)@(3,2)@(173)@(171)7 (19)
and the most general potential, that we can associate with it, is:
2 1 1 1
V(9) = —5-Tr(¢?) + Ja{Tx(#")} + JbTx(¢*) + 5 cTr(8°)- (20)

If we introduce the symmetry ¢ = —¢, thus ¢ = 0; without loss of generality. The second
step, break of the G,,, group to G., group, is performed by the 5-plet (SU(3) ® SU(2)r):

5—(3,1)@(L,2) ~ H=(H*) @ (H") (21)

where H%, (a = 1,2,3) is a SU(3) color triplet and H™ (r = 1,2) is a SU(2) doublet
equivalent to that of the Standard Model. The most general potential that we can associate
with H, is: |

13 t A ot 2
V(H):_E—H H+Z(H H)", (22)

Besides the potentials V(¢) and V(H), we need to add to the lagrangian the cross-term

potential:

V(H,$) = aHTHTr¢® + BHIQ*H + §H ¢ H C(23)

in order to avoid that the colour triplet H® remains at the same mass of ¢ (gécause
H< possesses the correct quantum numbers to mediate a proton decay from the 6-dim
qqql operator therefore H® must be heavier than m,,). Using another time the symmetry
¢ = —¢, we obtain § = 0.

The vacuum expectation values that yield the correct symmetry breaking pattern is:

v 0 O 0 0
0 v 0 0 0
<V(@)>=10 0 v 0 0 , (24)
0 00 -3v—¢ 0
0 00 0 —3v+¢
0
0
<VH)>=| 0 (25)
0
%
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From the minimization of the potential we arrive to:

15 7 9
“2 — _é_aVQ +—2—bV2+an+§6ﬂV§’ (26)
ts = -2—/\1/0 + 15av” + ‘2‘,81/ — 3efr”. (27)
3 v vy

Since we require that v ~ O(M) and vy ~ O(m,,), we get ev < vy. Equation (27) clearly
illustrates the gauge hierarchy problem. For a = § = 0 we must recover the well know
Standard Model relation py? = %/\ug, implying that ps ~ vy for A < 1. When we switch
on the couplings o and 8 we produce a drastic modification to such relations. Indeed, the
new terms proportional to a and 3 in the right hand side of equation (27) are of O(M?).
For A < 1, the only way to obtain a consistent result is that in their sum an incredibly
accurate cancellation takes place so that they add a term of O(m?2)) to the previous %/\Vo.

We need a fine tuning of the 24th decimal figure and this is obviously very unnatural.

The Higgs mechanism is useful not only for the symmetry breaking but also to give
mass to the fermions. The mass terms in the lagrangian involve tensor products between

the fermions fields. The possible tensor products are:

$1,Cvr — 505=10015 (30)
$1,CPyr —5010=50145 (31)
Taboyped 1010 =5@ 45 @ 50 (32).

It is easy to see that it is possible give mass to the fermions only through the 5 and 45
representations (and their hermitian conjugates). Therefore the fermions masses can be

obtained from:

10 ® 10QH — u — quarks masses

5® 100 H — d — quark and e masses
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In this so called minimal version (used only the 5 representation), the lagrangian

Yukawa term takes the form:

LYuk - glmnlpgma C¢%?1Hgb + g2mn¢%‘;bc¢ziﬂsefabcde +h.c. (33)

where g1mn and gamn are the Yukawa couplings and C the charge conjugate matrix,

di
d3
5= d§ (34)
o
—v./
and
0 u§ —u§ —-ul —d?
1 —Ug 0 u$  —u? —d?
10=—| u§ —u$ 0 -—u® -d° (35)

V2 ul u? u? 0 —e™
d* d? a2 et 0 /.
The signs in (34) and (35) are just to reproduce the assignmeht to the fermions in the
Standard Model. They are in any case unessential because we are so far in the current

eigenstate basis. It is useful to represent (34) and (35) in the following way:

Ve
5= ds, - (36)
e L
ua
10=| et ul, (37)
as I
Taking as VEV for the Higgs field
<O|H*|0>= ——18°

V2

we obtain:

1% - V
»CYulc = “E()‘glmn(ddeL -+ éjr-zRe;tL)_*_ 4'7%92mnﬁmRunL + h.c.

= —JRMddL - EEMeeZ —upM¥ug + h.c. (38)
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where M¢ = Me¢ = 2 g1mn and M* = 4%gzmn = M*T,
Due to 1°° = 0, no neutrino mass is possible. A serious theoretical problem created
by this mechanism is that it leads to the following relation between the masses of fermions

(due to the presence in the same multiplet of d and e, s and p and b and 7), at any energy:

Td o e (39)
ms My
But experimentally the following relations are valid %‘;‘- = 21—4, and % = 5%7, that are not

in accord with (39).

For solving this problems there are two ways:

1) The introduction of non-renormalizable effective interactions giving rise to contri-
butions in the MeV range [EGa).

2) The addition of the another Higgs field (the other only one permitted 45). But

this addition cut the power prediction of the theory, because leaves more free parameters

[FNS, GJa).

To transform the fermion fields from the interaction basis to physical basis, we need

to diagonalize the mass matrix through the relations:

(4%)" m4s = mg, (40)
(AR M4} = Mp (41)
(AR Me A4S = MS, (42)

where A%,L are unitary matrices and M_,‘é = diag(mgq, ms, ms,...), etc. The fermion fields

change from the current eigenstates to the mass eigenstates as:
1
dyn = (A7) dr,R
If we take a basis such that: e, and dj are diagonal; the 5 and 10 representations, in

terms of mass eigenstates are [using the notation of (36) and (37)]:

Vm
5= (deaihm | (43)
m L
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and
(Azw)m
10= | (4% et (weAY),, (44)

dm L

The matrices AL g are determined up to the phase matrices K1 r by the condition that
M% be real and diagonal. The phases of K1 and K} are determined by the reality and
positivity of Mp. The phases in Kz can be chosen to put the A7 matrices in the following
convenient form. 2ng — 1 of the 3ng phases in the Kg, K7} and Kz+ (K are diagonal
matrices of phases) matrices may be chosen to put the Kobayashi-Maskawa matrix (KM)
AY into the standard (ng — 1)? parameter form. ng phases may be chosen to simplify
Af, which therefore has only n% — ng observable parameters. The final phase may be
chosen to simplify A% so that A% and A% have n% — 1 and n% observable parameters,
respectively.

In the general case, the matrices Ar g are arbitrary. It would be possible to choose
mass matrices so that, for example, the u and d quarks are associated in multiplets with
the 7 lepton, which would greatly suppress proton decay [Jar]. However, the situation
simplifies enormously if only 5 dimensional Higgs are included [EGN, Moh, BEGN]. One
then has A%’R = AE:R = I (in the basis being used). Moreover, the symmetry M* = M+t
implies (for a given A})

b =AK
where K is a diagonal matrix of phases (assuming no degeneracy of the eigenvalues) which
is uniquely determined by the condition that Mp be real and positive. Then the 5 and 10
fields are:

Vm
5= (d5) (45)
€m I
and
Umnun
10= | et Umne (46)
dm L

where U is the generalized Cabibbo matrix and e~**" is the nth diagonal entry of K (only
F —1 of these phases are observable; the last corresponds to an arbitrary phase of all fields

in the theory). Hence except for the extra phases all of the mixing matrices are determined
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Fig. 4: Tree diagrams for B/L-number operators in SU(5)

by the Cabibbo matrix, the light quarks are associated with the leptons, and proton decay
cannot be rotated away [EGN,Moh,BEGN].

3.3 Predictions of SU(5)

It is possible to make several predictions using the SU(5) model. For us the most
important is the lifetime of the proton decay.

We begin the discussion about the proton lifetime within the SU(5) model remember-
ing the interaction terms, that involve the heavy bosons, that can violate the B/L-number.

They are contain in the final part of equations (17) and (18).
Lint = %X; <JiR7”€E + éijkﬁ'},k‘yﬂué + JiL‘Y“EZr)

+~§§-X;T (‘L’R'Y“sz + Eijkﬁch‘ypdﬁ -+ ﬁiL’Yﬂe}t) + h.c. (47)

From the equation (47) we obtain the tree diagrams of figure 4.
In all the graphs A(B — L) = % From this basic tree diagrams, we can construct the

second order interactions, with AB = 1, showed in the graph 5:
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The effective Lagrangian (F < M) obtained from the precedent graphs is:

1 2 o
$hanms = oo a2t ) + )
g’ B .
+ a6k L 744y ) (Fery ¥ dR) + bec. (48)

Taking into account the mixing between families the interaction term of the heavy bosons
in the lagrangian (47) can be written as:

Lint = -%XL (JiR')’p'eE + e Kytud + JiL'Y#e}t)

%

+—g—XPfj (JiR’y“V% -+ Eijk’llszAg’)’#dé + ﬁiLUT’y”e_{L_) + h.c. (49)

V2

Then the effective lagrangian (48) for the case with only two generations, becomes:
1 ) 2 : . — i
ZEAB=1 = emg%/f—z—(eijkﬂik'y“ui){[(l + cos® 8,)&} + sin 8, cos 8.aF]vudy,

+[(1 + cos? Hc)ﬁz' + sin 8. cos Océz]yﬂsg + EE’)’ydjq) + ﬁ;')’#sja}
— g2 ) ‘ ' '
+—_8.7\/§T2 (Eijkﬁik,yu(d’L cos O + s7 sin 6.)][PEpvudy + DS RYush + hac.. (50)

we can take M = MT. The equation (50) give the following quantitative predictions for

relative decay rates:

I'(N — ptnon — strange) sin? 8y cos? O (51)
I'(N — e*non — strange) (1 + cos? 8wy )2 + 1
I'(N — etstrange)  sin® Oy cos® Oy (52)

(N — ptstrange) (1 +sin’ O)2 + 1

The effective lagrangians (48) or (50) are derived in tree approximation from the

exchange of a single boson. The next higher order corrections (and quantitatively the
most important) are those shown in the graphs of fig 6.

These corrections due to gluon exchange can be summed using standard renormalization

group techniques, with the result that Lap=; (50) is multiplied by anomalous dimension

enhancement factor [BEGN]

w

2
2 [T1+{4/3)nc]
Ay = (M) N (53)

aGguUT
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Fig. 5: B/ L-violationg processes in SU(5).

The contribution due to the exchange of the bosons of the electroweak group [EGN, WZe]

give the factor (for the case of only one Higgs 5-plet) A
-33 -27

o= (21280 Tty

(54)
aGguUT agurT

(53)

- 69 -27
2 n
a2, = (m(mi))f‘“‘“‘?ﬁﬂ%c (az(mw)y“—“ﬁw ’
ew aqUT aguT

where A applies to the O; operator and 42 to the O, operator, where:
0O, = éijkﬂzk’)/“uié—27“d2 (56)
0, = eijkﬂik’}'“uiég‘y“d% —_ eijkﬁzk'y”dii):R’y“d% + h.c.. (57)
Therefore the decay rates are enhance by the factor A2( Al )? and A2%(42%,)? for O; and
O, respectively.
Then finally, we mention the better results obtained for the minimal SU(5) model,

taking into account these corrections, plus the corrections due to the uncertainty in the

hadronic matrix elements, as found by Vergados [Ver]:

M
T(p — e;n?) & 2.9 x 10%° (W) years
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Fig. 6: Higher order correction to four-fermions vertices.

Using the better value for the unification mass, the result is:
r(p — epn®) = 2.2 x 10*° — 2.2 x 10*! years

for the mode with the higher branching ratio. The result taking into account all possible

decay channels, in terms of the unification mass is [Ver]:

m(p — I°m) = 6.9 x 10*® — 6.9 x 10° years (58)

Unfortunately this result is not in accord with the experimental limit. But if we introduce
new parameters in the theory it is possible to be in accord with the experimental limit,

however losing predictive power in the theory.

3.4 Conclusions

The SU(5) model solves some questions that the Standard Model doesn’t answer, but
unfortunately not all of them. Moreover it has some theoretical problems principally in its
minimal version. We present a list of the positive and negative features of this model.

The positive ones are:

33



1) The SU(5) group has the SU(3)c ® SU(2)r ® U(1)ygroup as a maximal subgroup (i.e.
the rank of them are equal) and is the only group that give an acceptable theory with this
property (The others are of larger rank).

2) The electric charge is quantized [i.e. Q(quark) = —1Q(e™)] because the electric charge
generator is a SU(5) generator.

3) Due to the mixing of quarks and leptons within the same representations, 10 and 5,
their masses and isospin are correlated.

4) The prediction of sin® fyy is in good agreement with the actual experimental value.

5) The predictions about the charged weak currents reproduces the good agreement with
the experiments of the Standard Model.

6) B — L is conserved and then automatically leads to massless v’s.

7) The simplest version has no flavour changing neutral currents as the Standard Model.
8) The anomalies of 10 and 5 are equal and opposite, thus we obtain an anomaly free
theory. In this structure there is no place for vg (unless we add it as a singlet. This
doesn’t destroy the anomaly cancellation because a singlet does not contribute to the
anomaly).

9) In this model it is possible to solve the baryon-antibaryon asymmetry of the universe,

because we can construct baryon number violation processes.

10) The prediction of sin? 6y and Tp,n are unique.

The negative ones are:
1) The p — e™n® decay channel gives Tp < 10%! years in the minimal version. The only
way not to be in contrast with the experimental bound is to take more than only one 5
Higgs representation.
2) The 10 @ 5 representation is reducible. In larger groups as in SO(10) is reducible.
3) As in the Standard Model the number of generations is open. There are not theoretical

restrictions about its number.

4) The wrong prediction of the minimal model about 74, That can be resolved only adding

another free parameters and consequent loss predictive power.
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5) The production of superheavy 't Hooft-Polyakov monopoles causes cosmological prob-
lems.

6) The gravity is not included and the mass scales M and Mpiank are close.

7) The great desert between M and Mpjank, where no new physics occur.

8) The large arbitrariness connected with the presence of the Higgs Scalars . It is worse
than in the Standard Model.

2

9) The hierarchy problem. We need a fine tuning of 7% &~ 1072%.
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4. B/L-violation in Partial Unified Theories

4.1 The Left-Right Model

The original motivation for the construction of the L — R model is to reestablish at
higher energies the symmetry of the Left and Right components of the fermion fields, and
to explain the physical meaning of this lack of symmetry, at lower energies.

The model is based on the group [PSa,MPa,SMo]:
Gr-r=5SU(3)c ® SU(2)L ® SU(2)r ® U(l)(B_L),

in order to preserve the L — R invariance we need that the coupling constants g; and

gr are equals (g = gr). Therefore we have three coupling constants as in the Standard
Model.

The quark and lepton fields are assigned to representations under Gy _g group as:

ur 1 ]. UR 1
= ~ — — — ~ 30 —
qL (dL> (3727073)7 qr (dR) ( ) a2a

(v 1 _ _(vr) _ _1_
lL-—<eL> (1,2,0, 1) and ZR—( ) (1,0,2,1).

€R

W

),

The electromagnetic charge is defined within this model as [MMal:

1
Q =Ts + 15+ i(B_L)’

then the %(B — L) number becomes a gauge symmetry. Breaking this new local symmetry

to the SU(3)c ® SU(2)r ® U(1)y symmetry, we can have a violation of the form:

1
ATy, = —A(B - L).

The breaking of this symmetry can be made following the pattern:

GL—R — Gam — Gea
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we made the first step of this breaking, taking a VEV of a Higgs field < Ar >~ (1,0,2) at
a scale Mp. The second step at a scale m,, by mean of the VEV’s of the fields < Ay >~
(0,1,2) and < ¢ >~ (3, %,0). This second step is similar to that of the Standard Model;
in the sense that we give mass to the fermions by mean of < ¢ >; on the other hand
< Ay > can give a Majorana mass to neutrino.

Let us write the Higgs fields as:

%5+ §++
AL,R=< o 1 +)
6 ﬁ5 L,R

0 + _ 0% 4+
¢:¢1:(§§ ‘f;) ¢=¢2=<_;; ¢>

then the most general potential, which do not break explicitly the lepton number, is:

and

2 2 2
V== S pdt(elen) + Y Agutr(elgtn(le) + D Mjut(eléiéien)

t,j=1 i3k, l=1 i,J,k,1=1

—p2te(ALAL + ALAR) + 1 [(:(ALAL)) + (2(AhAR)] + pa(tr(AL AL AL AL+

2 .
ALARALAR) + patr(ALALATAR) + D adtr(blg)tr(AL AL + ARAR)

i,j=1

2 2
+ > B [tf(AEALﬂfﬁj) + tr(A%ARﬂgﬁj)] + > yitr(ALgiArg)). (59)

1,7=1 ,j=1
The VEV’s of the Higgs field which minimize this potential are:
0 O 0 0
< Ap >= ('UL 0), < Ap >= ("UR 0)

<do= k0 < Fo k'e™ 0
- 0 k/eia ) @ = 0 k

and to be in accord with the know phenomenology we need [MSe,MMal] to take vpvgr =
~vk?, where
2712
4(p1 + p2) — 2ps

and vg > vr.
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In first stage of the symmetry breaking by the < Ag >, the boson fields Wj{t acquire

the mass

mwy = gVR

and the combination Zr = y/cos 26w (sec Oy )Wsr — tan 6w B acquires the mass

In the second stage of the symmetry breaking by < ¢ > and < Ay >, a mass is given also
to the boson fields WI:,E The relation vy < k,k' is suggested by the experimental data.
Thus the major contribution is from < ¢ >, but since ¢ transforms non-trivially under the
left and right handed gauge groups it mixes the Wf} and Wéz fields. In fact we obtain the
following eigenstates:

Wi =~ Wy = cos (W + e sin (W

Wr ~ W, = —sin (e**Wy, + cos (Wr

with
tan ¢ = kk'
ans = k2 + k"2 + 8vg’
The masses are:
2
m%,VL ~ ?(!c2 + k'z) = m%vl
and
0s 26 1
myp, ~my |1- nCSTW(l ~ 3 tan* OW)} +0(n?).

TN Ay =0

2
where Zj is the neutral boson field of the Standard Model and n = (m) .

mWR

The charged weak current

’Cgkc = (juL ' WuL +juR : WI»LR)

N Q

and the neutral weak current

.. . .B—1L
Lye :7'9(.72LW3L +J;3LRW3R+J“ B.)
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at low energies leads to the effective hamiltonians:
HCC N GF 2 .2 i = 2 .2 e
S ——\/-—-2:[(005 ¢ +sin® ()i i,z + (ncos” ( +sin ()i rinr

+e'®* cos (sin (1 — nj:L Jurt h.c)

and
HEE = ZLEIE + 1 E i sind O + 5 cos® o)
m(jﬁ sin? Oy + jZ cos? O)]
where

A, =sin0w (Wi, + Wg,) + +/cos20w B,
Zr, & (sin GWWI%# — sin Ay tan HWW§ﬂ) — tan Oy +/cos 20w B,

Zp, = +/cos 28w sec BWWE‘U) —tanfw B,.

and jf’R =Jjirn— Asin® fw and tan fy = b—z—qg—_l—g-,—z-. Therefore the modification to the HYC
of the Standard Model is of order n = (%v%)z Barnes et. al. [Bar| have done a systematic
analysis of the neutral currents predictions of the L — R symmetric model. Using their
results in our case where g7, = gr we obtain mz, > 4myz,, which implies mz, > 220 GeV.

We can have different type of process in the L — R model. If we choose AT3gp =1 —
A(B — L) = 2 and we can have two cases:

i) AB = 0, AL = 2. With this kind of processes we give a majorana mass to the
neutrinos.

i) AB = 2, AL = 0. With this kind of processes we obtain neutron-antineutron

oscillations.

After the SSB we construct the Yukawa term for leptonic sector for 1-generation
phepten [hJL@;’.z; + holpidilly + hs (e *’Rklg)] the.
where gg = T3¢" 12 and we assume real Yukawa couplings. After the SSB we have:
LY nss = — (hik + hok"Yorvr + hsvrivr + hsvrPgrr] + hec. (60)
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we can rewrite (60), taking h1 = hy = h as:

LY. =MNTCN + hkvTCN + hsvpvTCv +h.c.
= (7T NT)M0<;>+h.c. (61)
where
. h5’vl %hk
M= (%hk M ) (62)

v=uvg, N = (vg)® = C(vr)T, and M = hsvg. After the diagonalization of the matrix

(62), the two eigenstates are two Majorana spinors with masses

1, k2 1A%\ k2
my %hva_*‘Zh’—U; = (hs’)"f‘ Zh—g) ;ﬁ- and mN’ft‘:h5’l)R (63)
corresponding to the mass eigenstates:

v=uvrcosf+rvgpsiné

N = —vpsiné + vrcosé

(XIS

with ¢ ~ [n":;} and we can write the leptonic charged currents as :

(Vcosf—}-Nsin{)
N L

[

and

€

(—vsin§+Ncos§>
_ .

If we take the limit vg — oo in (63) thus m, — 0 (my — oo) and we recover the
V — A structure. Then the smallness of light-neutrino is related with the suppression of

the right-handed weak interactions at low energies.

4.2 Lepton number violation process

Due to the Dirac plus Majorana character of the neutrino mass matrices we have the
violation of lepton number (AL # 0) and the presence of flavour changing neutral weak

effect in the leptonic sector. The lepton number violation can be obtained also through
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Fig. 7: Feynman diagrams for gt — €7y process.

the radiative corrections involving right handed neutrinos as intermediate states. The last

sources of lepton number violation give processes like:
v, — 3V B — 3e B — ey etc.

The absence of p — ey decay has been a crucial argument in the lepton flavour
assignment [GMF,Fei] and in the conclusion that v, # v, in the Standard Model. But it is
possible to obtain this kind of process in a simple extension of the Standard Model, adding
a right handed component of the neutrino field to the usual field content and making

radiative corrections at least at one loop. The amplitude of this process is [Rah]:
m(p—ey) =€ <eljulp> (64)

where €* is the polarization 4-vector of the photon and j* is the electromagnetic current

associated with the p — e vertex which can be put in the form:

7u = (fo +7sfos)(g*q” — ¢*" ) v + (f + fs*/s)%a“”qu (65)

where 04, = 2:[74,7] and g, is the momemtum transfer. The dominating diagrams for

@ — e are in figure 7.
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where G, p are the Goldstone bosons and we consider my > M., thus the contribution
of the physical Higgs particles are ignored.

From (65) and taking into account that the photon is on-shell (¢*> = 0 and e*g, = 0)
we obtain:

m(/J' — 67) = elué(f =+ f575)7;mp,ap.uqv,u (66)

From (66) we obtain [MS80] the decay width

m5
D(p— en) =22 (17 P +1 5 ) (67)

where f = f, when we take the v propagator, f = fy when we take the N propagator

and
2
€ g
=f5, X ———9§
Jo=Fsv ™ 15 8m¥,
2
€ g
= Ry )
IN = fsn ™ 1 B, Y
and
2
ms,
by = ZUZilULiz —
i Mwr

5 L

N = Z URilURizm"'g'—%

where ¢ = e, i, 7 and Uy g are the analogous in the leptonic sector the Cabibbo-Kobayashi-
Maskawa matrix.

For two generations we have:

. m; —m;
6, = sin dp, cos O ———=*
m
W
. my, —my
ény =sinfg cosfp 5 =
myy
R

since in this case

0o cosfrp r sinfr g
Lr= —sinfp p cosfr g

The usual lepton number changing muon decay is:
G}.mz

I'(p — evyve) = Tooms

42



N v N e N
> U v ©
% § \ W
X Z
e v e > N
N e e
Y v €
W Y
{
e e

Fig. 8: Feynman diagrams for (1 — €€e€ process.

and we define the branching ratio

P(p — ev)

B(p — ey) = = B*(p — ey) + BY(p — ey) + BV
I'(p — evyve)

4 4
~ 2 (53 + (mWL) 8% + (mW) 5N6V> (68)
o mwg MWwg
We have that §, < §x thus in (68) we have that §2 and §,8n are negligible, then (5x)
becomes: .
B(p — ey) == (me) 8N
T \ mwy

If we take the value éy =~ 1072 — 10~2 we have:

1
2 <mWL> = 100 thus B(p — ey) = 1071 —107%°

T \Mwy

This is well below the best experimental limit [PD88,Kin]:
B(p — ey) < 5x 107
Another interesting phenomenon that violates the lepton number is the I'(x — eeg)

process. The Feynman diagrams that contributes to I'(x — ee€) are in figure 8.
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the branching ratio obtained in this case is [SMo]:

T'(p — ecé)

B(p — eeg) = P

the final result is that:

B(p — eet)  «

7 ~(1-10
B(p — ey)  sinfwy ( %)

the experimental limit in this case is [Kor,PD88]:
B(p — ee&) <1 x 10712,

and consequently is easier to detect experimentally the first process.

4.3 Conclusions

The Left-Right model has like the SU(5) model, positive and negative features.
Among the positive ones we have:
1) It is possible to generate neutrino mass. Experimentally is not clear whether the mass
of the neutrino vanishes.
2) It generates parity violation.
3) It gives physical meaning to the U(1) generator, because it is the B — L quantum
number.
4) It correlates the smallness of CP violation with the suppression of the V + A currents.
5) The suppression of the V + A currents is correlated too with the smallness of neutrino
mass.

The negative features can be resumed in only one. The model is not a unified theory,

and its predictive power is limited. It should be incorporated in a more complete theory.
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Beyond SU(5) and Left-Right Models

5.1 The SO(10) Model

The basic assumption in Unified Gauge Theories is to propose a gauge group in which
we can accommodate all the known phenomenology. After the SU(5) group, the next
unification group that permits to accommodate such known phenomenology is the SO(10)
group [Geo,FMi]. On the other hand this group has several advantages over the SU(5)
group. For example it is possible to accommodate all fermions of one generation only in the
16-d spinor representation (which is automatically anomaly free). The SO(10) conserves
parity. Another advantage is that it is the minimal L-R symmetric gauge unified theory
that gauges the B — L symmetry.

In order to simplify the discussion of the SO(10) group, we discuss it in terms of a
SU(5) basis.

Let x; (1 = 1,...,n) and their hermitian conjugate X;r be operators that satisfy the

anticommutation relations:

{xixI}=6; and {xi,x;}=0.

We can construct the operators Tj = X:-ij, that satisfy the algebra of the U(N) group
(i.e. [TJ?,le] = 5;~°Tli - 5ijk). Now we can define the 2N operators I'y (g = 1,...,2N)
Tyjo1=—i(x; —x) and Toi=(xj+x}) (G=1,.,N)
we can verify that the operators I', form a Clifford algebra of rank 2N ({T',, T} = 6,.)-

Finally we can construct the generators of the SO(2N) group as follows:

1
E;w = E[F#,FV]
or written in terms of x; and Xj' as:
1 1 o tot
Baj—t2k-1 = o2 x5 xal = oz D gl + ik + x5
1 T i o
Bajzk-1 = 506G xal + 50k x5] = Oaxe +x5x3)
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1

o5 D x ] = i0xe + xjxd)-

1
Ezj,zk = E[Xj,xz]

In our case for N = 5, the spinor representation of SO(10) is 2° = 32 dimensional. To
write it in terms of the SU(5) basis let us define a vacuum state | 0 > which is SU(5)

invariant.

We can split this representation into 2V ~! dimensional (16 — d) representation under

a chiral projection operator:

1
Yi = 5(1 +To)y
Lo =V T,..TN (To = I'1T3T'sT4 s in our case)

that has the following property (as the Dirac v5 matrix):
[E#MFO] =0
Thus we can represent all the left handed fermions of one generation in the basis

1
xbxixt, 10> 45

1
% >=10> 40 +x] | 0> 9 + 5xixi [ 0> ji + 5

1 pim
+§Ze’kl XszXan |0 > d’] +X1X2X3X4X5 |0 > ¢0

(vt
"’”<¢‘>
P

o
o= i |, 7= | Pij
¥; ¥j

The decomposition of the 16 representation of the SO(10) to the SU(5) is

where 1 are independent of 1,

and

16=100501
thus making the identification

Y; — 5 P — 10 Py — 1
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we finally obtain:

v L
i.e all the fermions belongs to one generations can be accommodated in ¥. Now we can

define the covariant derivative as:
I ® 1 : ov oV K
(Dp)™ = 0pl + S1gRLXAL DY

where A°” are the gauge bosons belong to the adjoin 45 dimensional representation of
S0O(10). This gauge bosons can be identified if we decompose the 45 representation with
respect to SU(3)c ® SU(2)L ® SU(2)r.

45 = (8,1,1) +(1,3,1) + (1,1,3) + (1,1,1) + (3,2,2) + (3,2,2) + (3,1,1) + (3,1,1)

thus the identification of the gauge bosons of the Standard Model, the SU(5) Model and
the L — R Model is obviously:

o 1,2,3 1,2,3 ' X Y XY _
45 =Gz + W™ + Wy +Bﬂ+<Y X'>+(Y' b + X5 + Xs.

The electromagnetic charge operator is:

1 1
Q = 5278 - 6(212 + X34 + Xse)

In general the mass terms in the lagrangian are of the form:
$BCT'Tupdy, $BCTT.Luipdu o PBCTTLluTadeun
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YBC ' T, T, Tal o duvre  or gZBC“II‘#I‘,,I‘AI‘aFaz,/)d)W,\m etc... (70)

where 1 is the transpose of %, B is the equivalent to the charge conjugation matrix in
the SO(10) Model, C the usual charge conjugation matrix and Duy Puvy Guvry Puvare and
Puvirca are Higgs mesons.

The spinor 9 does not transform like a conjugate spinor representation of SO(2N),

but if we define the B matrix in such a way that:
B'%,,B=-%,,

thus ¥ B behaves like the conjugate of 1 and is possible to show that [Moh1]:

%o o
Bl | =1

bij bij

¥; —Y;

Counting the degrees of freedom in the mass terms in (70). The first term ( T',) give
10, the second term (I',T',) give 45, the third term (I',I',T,) give 120, the fourth term (
I,y IaT') give 210 and the last term ( T,T,TaT,T'a) give 252 (really 126 = 222 because
this last operator is totally antisymmetric).

According with (69) all the fermions are in a 16 representation, then the mass term
are of the form

1616 =100 1204 126

thus @, ¢,ua and ¢,,x corresponds to the 10, 120 or 126 dimensional Higgs fields,
respectively. The terms with an even number of I'’s are not useful because corresponds to
the tensor product

1616 =1® 45 @ 210

that includes a mix between the 16 and 16 representations. The decomposition of these
representations to the SU(5) representation are:
10=595,
126=1059 100 15 @ 45 @ 50,
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120=5650 100 109 45 ® 45,

then we can construct the following mass terms:
Y BC T d10 = d10(5)(Grur + Zrrr) + ¢10(5)(drdr + Erer)

TZ’LBC_IF%bL{blzﬁ = ¢126(1)V£02VR + ¢126(15)VEO'2VL
+b126(5)(BRuL — 3TRVL) + 126(45)(dRdL — 3€REL)

Y BC T d1a0 = b120(5)ERUL + P120(45)PRVL
+¢120(5)(drdr + Erer) + b120(45)(drdr — 3€rer)

These are all the possible terms that can be obtained. The choice of one or more of
them is conditioned by phenomenological requirements. |
There are different ways to break the SO(10) symmetry (almost 20). We will shortly

discuss now some of them.

The first pattern is:
S0(10)
My | {16}
SU(B)® U(1)
Mx | {45}
SUB3)ce®SU2)L @ U(l)y
Mx ! {10}, {120}, {126}
SU3)e @ U(1)em

the first step the breaking can be realized by a 16-d Higgs field, the second by a 45-d Higgs
field and the last by a 10-d Higgs field in its minimal version (That presents the same
problems as the original SU(5) Model. It is possible to make the last breaking too with
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the 126-d or with the 120-d Higgs Field. But this symmetry breaking is not so interesting,
because the proton lifetime predicted is less that of the SU(5) Model, as we will show
forward [CMP].

The second pattern is:
S0O(10)
My | {45}
SUB)c®SUR)L®SUR)r®U(1)s-1L
Mr | {126}
SUB)e® SU2)L @ U(1l)y
Moy ! {10}, {120}, {126}
SU3)e ® U(1)em

in this second pattern we the break of SO(10) through a 45-d Higgs field we obtain the
L — R Model discussed previously. Then we can reproduce all its principal features, with
the advantage that now is part of a unified theory. The second symmetry breaking was
made with Ar ~126-d and the last to the exact symmetry by mean of a 10-d, a 120-d or
a 126-d (different from that of the previous step) Higgs fields as in the first pattern.

The third pattern is:

50(10)

My | {54}
SU(4),s ® SU(2)1 ® SU(2)n
Mr | {126}
SU3)c ® SU(2)L @ U(1)y
mw L {10},{120},{126}
SUB)c ®U(1)em

the first breaking of the symmetry can be performed by mean of a 54-d Higgs Field (ob-

taining the so called Pati-Salam group, which we will discuss forward in this section), the
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second step to the G, group through a 126-d Higgs field and the last in the same form

of the previous pattern and the last as in the previous patterns.

The fourth pattern is:
S0O(10)

My L {54}

SU(4)ps ® SU(2)L ® SU(2)r
Mc l {45}

SUB)e®SUR2)L ®SU2)r®@U(1)

Mr | {126}

SU(3)ce® SU(2)L @ U(l)y

Moy ! {10,120,126}
SU3)c @ U(1)em

in this pattern the symmetry breaking is performed by a 54-d and a 45-d Higgs Fields for
the first two steps, meanwhile the breaking of the last two symmetries proceeds in a way

similar to that of the previous two cases.

In order to choose the more convenient (from the phenomenological point of view)
path of the symmetry breaking we will use the following boundary conditions and the

renormalization group equations.

If a unified group G is broken into G; as an intermediate step, and then in G,. If
M; and M, are their respective mass scales, in the limit M; — M, when the mass scales
coincides, thus both the mass scale and the value of sin® 8 are given by the values obtained

when G is broken directly into Gs.
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Consider the following patterns

Fifth pattern:
SO(10)

Mx |

SU(4)ps @ SU(2)L @ SU(2)r
Me |

SUB)c®SUR)LRU(LrU(1)s-1

Mp |

SUB)e @ SU(2)L @U(1)y

My !

and

Sixth pattern:
S0(10)
Mx |
SU(4)ps ® SU(2)L ® SU(2)r
Mr |
SU4)® SU(2) @ U(1)r
Me |
SUBB)c®SUR)L®U(1L)r®U(1)B-1
M
SUBB)ec®SU(R)L®U(1l)y
my

SUB)e ®U(1)em

If Mo - Mx and Mrp — Mx in the left and right paths respectively thus the

SU(4)ps®SU(2), ® SU(2)R is eliminated. Now using the renormalization group equations
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and the above boundary conditions was found [TBM] that the intermediate scales obeys:
Aln(Mx /Ms) + Bln(Ms/M;) + C(sin® § — sin® 65) = 0,

where M; denotes the intermediate mass scales A, B, C are numerical constants M5 and 65
are the mass and the Weinberg angle respectively, calculated in the minimal SU(5) Model.

Finally neglecting the contribution of the Higgs bosons, we obtain:

In (—Af‘f—"i) +im (M5> _ 3ma (76)

Ms 2 Me 1le
Ms Ms 6rA
1n(ﬂ’c>+ln(ﬂn> 1o (77)

where A = sin® § — sin? 5. From these two equations (76) and (77) we obtain:

My 1. [ M Ms\?
In(=2)=zln(=2) = Mx =M [ —=
I‘(Ms) 2“(MR>:> X S(MR>

then the proton lifetime is corrected by a factor:
2
Ti0 = Ts (%) (78)
which is even independent of the scale M¢. From (78) we conclude that if Mp < M5 thus
the unification scale Mx for SO(10) becomes higher, then the proton lifetime 7, becomes
longer. Therefore, a longer proton lifetime in the context of SO(10) grand unification
implies that there must exist an intermediate L — R symmetric scale. After the elimination
of the first pattern the choice of one of the remaining three patterns is more difficult,
because there is no enough experimental information for that choice. And exhaustive study
of the different patterns of symmetry breaking was made [CMGMP] including besides the
groups discussed above the normal P-parity and the so called D-parity, defined in the
following paragraph.
There exists an element of the SO(10) that we call D = Xy3¥¢7 L, p,v =1,...,10

are the 45 totally anti symmetry generators of the SO(10) group which make

fr— fi =(CfM) (80)
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behaves almost like the parity operator but in general cannot be identified with the parity
or charge conjugation operator; however, under special circumstance when all couplings in
the lagrangian are real, it become the same as the parity operator.

After the study made by Chang, Mohapatra, Gipson, Marshak and Parida it was

found that the most convenient symmetry breaking pattern is:

Seventh pattern
| S0(10)
My 1 {54}
SU(4)ps @ SU2)L ® SU(2)R® P

Mp ! {210}

SU(4)ps ® SU(2) ® SU(2)R
Mc ! {210}

SUB)e®@SUR)L®U(Lr®U(1)B-1L

Mp ! {126}

SU(3)e®SU(2)L U (1)y

My ! {10},{120}, {126}

SUBB)c ® U(1)em

where P is the parity or charge conjugate operator.

It is favorable for low energy phenomenology i.e. leads to Mgp ~ Mg ~ 10° GeV,
Mp = 1 TeV for My ~ 10'® GeV and sin® 4, ~ 0.227; and give testable predictions for
events like K} — pji decay, N — N oscillations and for proton lifetime.

In order to break the symmetry pattern in (79) we can choose the following Higgs
fields: a 54-d for break the SO(10) symmetry at a mass scale My, a 210-d for break
the D-parity at a mass scale Mp, another 210-d for break the G,, group at a mass scale
Mg, a 126-d to go to G, at a mass scale Mpo and the final step to Ge,, with one or
more of the Higgs fields that can be coupled to the fermions (10-d, 120-d or 126-d). As
was shown in references [CMP] and [CMGMP] this pattern of symmetry breaking leads
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to Mg ~ Mc ~ 10° GeV, Mgo ~ 1 TeV for a mass unification My ~ 10'® GeV and
sin? § &2 0.227 for a D-parity breaking scale of 10'* GeV. The proton lifetime predicted at
two loops [CMGMP] is:

5 ~ 10%5%2 years.
Therefore there is no enough experimental information for to decide if the SO(10)
Model is right.

5.2 The SU(4),.® SU@2).@ SU(2)» Model

The SO(10) group can be broken to the Pati-Salam group [PSa] by means of the
different patterns previously presented. Choosing the third we found that the intermediate

symmetry can be broken by the Higgs fields:
¢~ (0,2,2), Ap~(10,3,1) and Apgr~(10,1,3)

In the first step we need a VEV < Ap >+ 0 for breaks the right symmetry. Meanwhile
in the second step is performed using < Ap >3 0, and < ¢ > 0. We can accommodate

the fermions as follows

U1 U U3 V
(dl dy  ds e>L N(4a270)

Uy U9 us v
(dl ds ds e)RN(4’O’2)

Thus we can write the G'ps invariant Yukawa terms
LY = f($1,C ' raribrs - Azab + L — R)+h.c.

where a,b = 1,2,3,4 are the SU(4) indices and f the Yukawa coupling constant. In this

notation the SU(2)g breaking occurs due to
< AT >=wp #£0,

to obtain B/L violation processes, note that, the most general Higgs potential contains a

term of the form:

1 ajazazay bybobaby pg _p'q rs 78’ pp’ qq’ rr/ ss’ :
Vi=)e € Il T e e * X AT AT, AT Ay, + all permutation
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Fig. 9: Feynman diagram for N — N oscillations.

this term can produce N « N oscillations according with the Feynman diagram of figure
9.

this graph leads to a estimate strength of the oscillations [MMa)] of:

f2 g

6
mA

GAB:Z ~

qq
where f is the gauge coupling. Introducing renormalization group corrections to its
strength; and then taking account of the hadronic wave functions [CMS,RSh,SMi,Che]

it was found that is corrected by a factor 10™* thus is reasonable to say that
§m ~ Gap=z x 107* GeV
if we choose ma,, =~ vgr ~ 30 TeV as a typical value and f =~ A &~ 107! we obtain
§m ~ 107% GeV

This corresponds to

TN_N ~ 107 sec
just close to the experimental limit 7y _ 5 < 107 sec.
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