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INTRODUCTION

The Logarithmic Sobolev Inequality were introduced and
studied as a tool in the analysis of operators in infinitely
many dimensions. A Classical Sobolev Inequality in Bxi states
that if a function f and its first distributional derivatives
are in LF(P?)then the function is also ﬂwLﬂ with 4=(FtchJ
Now this expression shows that when the dimension d increase
to infinite,q tends to p, and the implication of the theorem
becames less meaningful. Moreover in infinite many dimensions
(for example on an infinite dimensional Banach space), there
is no Lebesgue mesure (i.e. translation 1invariant mesure).
Now, a Logarithmic Sobolev Inequality is an expression that

appears as the following one

sy Sehor gl e ool [ dpa[ e
[Rcl 2 (p-1) Rd

d

for the case of the Gaussian mesure on Rn ) F>|

Ay ~Ixuz/
o\r«(x): (2“) /.OIX- e ¢ XC*ROZ

"+ 9 Lim' L I ()

The appeal of the inequality above is that replacing the
Lebesgue mesure with the Gaussian mesure we have an
expression whose coefficient are indipendent on the dimension
d of the space and at the same time if f and its gradient are
'LP() : . :

in M F?(A;hen f is also in the so called Orlicz space of

function for which the 1.h.s. of (L-8) is bounded.



At the beginning the theory started showing the
equivalence between certain Logarithmic Sobolev Inegualities
and the Hypercontractivity of the semigroup generated by the
Dirchlet form SAHWVQ‘Z. In this way was possible to recover
the result of Nelson 1in the sixties, about the
hypercontractivity of the semigroups of the Free Euchidean
Quantum Field Theory (see Ref. DVQJ ). In recent years with
the work of R. Holley, D. Stroock, E. Carlen, J. Deuschel and
B. Zegarlinski, appeared more and more clear the role that
the Logarithmic Sobolev Inequalities play in the area of the
Infinite Lattice Systems. A motivation for this, was the
idea, followed by Holley and Stroaek in a series of papers,
that Gibbs mesures of a Statistical Mechanical System can be
seen as the invariant mesure of a Stochastic Dynamics and the
fact that certain Logarithmic Sobolev 1Inequalities eniply
exponential convergence to equilibrium of the semigroup
dynamics on the lattice. This permits to have a bridge
between the ergodic properties (especially the mixing one) of
the Gibbs states and the corrisponding analytical properties
of the semigroup that determines the Stochastic Dynamics.
Closely related to this approach there is the use of the
Logarthmic Sobolev Inequalities in Large Deviation theory,
where certain characteristic 1inequalities of the Large'
Deviation theory for Ergodic Systems can be seen as
Logarithmic Sobolev Inequalities.

Reside to this infinite dimensional setting for the Log-



Sobolev Inequalities, in the last four or five years another
one appeared in the field of elliptic operators on locally
compact spaces. There, B. Davies and Simon B. used Log-
Sobolev Inequalities to obtain sharp upper and lower bounds
for the integral kernels of certain semigroups. Moreover that
theory permits to obtain the bounds in a gaussian form.

We stop here with this excursus and start to sketch the

organization of the work.




DESCRIPTION OF THE CHAPTERS

We divided the work in two Parts. In the first one we
treated the general aspects and the methods for finite
dimensional situations. The second part is devoted to the
problems arising in the infinite dimensional setting.

Chapter 1 contains the theory of the equivalence between Log-
Sobolev Inequalities and certain L?~smoothing properties.

In Chapter 2 is shown the relation between the Log-Sobolev
Inequalities, the Paincaré Ineguality and the Spectral Gap.
In Chapter 3 we review two methods originated by the Bakry-
Emery’s one, and develop some explicit computation of the

Sobolev’s constants.

In Chapter 4 we devolop the method of Rosen and 1in Chapter 5
we apply it to the study of the intrinsic hypercontractivity
of Schrédinger operators.

In Chapter 1 of Part 2 we give a short introduction to the
theory of Gibbs mesures and to the Dobrushin uniqueness
theorem.

In Chapter 2 we quote general results about Dirichlet forms
for an infinite lattice system.

In Chapter 3 we develop the anlysis of the Log-Sobolev

Inequalities on infinite lattice systems.



PART 1

LOG-SOBOLEV INEQUALITIES, METHODS AND APPLICATIONS
TO SCHRODINGER OPERATORS



CHAPTER 1

GENERAL SETTING FOR LOG-SOBOLEV-INEQUALITY

1.1 Logarithmic Sobolev Inequality and -smoothness

In this section we’ll define the Logarithmic Sobolev
Inequalities (shortly (L-8)) satisfyied by special operators
H 1in L? spaces, and we’1l prove the relation between these
inequalities and the lf -smoothing properties of the
semigroup ﬁftH generated by H.

Since now on we’ll denote with Cavwwvﬂ)a mesurable space
with @ -algebra M and positive mesure H.

For any PG(HFQﬂ and any complex valued function f we Fix
. ?F("%’MP)'WH where AWz=z/tzl ifz#o and Agny o =0,
In the next lemma we give (without proof) useful properties

of the map ?hvmb?p on E-—spaces:

Lemma 1

i) Pellaip) = ngnelj(am)  peliitee) PrdT=

ii) the mapyeﬁﬂwﬁPpeLﬁ is continuous, injective and

surjective with inverse %ELALMMQ a4 GL?.

Definition 1.

The operator H 1in lFCQfO FG(H+%) is said to be a

\
"Sobolev generator of index F if it is the generator of a



- +H
strongly continuous semigroup © and for some C?0 and'KeH{

the following inequality 1is satisfied
(L-8) S’Aﬁ AT “Q“Zn-«&,c“?”,f ccHPipy + K‘“MS‘P $eD(H)
NN

This 1inequality 1is said to be a "Logarithmic Sobolev
Inequality” for H, and the constants ¢ and Y are called
respectively "Sobolev coefficient (or constant)” and "local
norm". ‘

. , . . LF Ly
The bilinear forn:<n> being the duality between and
ier <Pigd=Tdudg .

L

Our main interest is not in the individual properties of the
operator Hp onlf » but in those of the "coherent family" of

b ,
operators on any L FG(QJb)CDjF%J , coming, maybe, from ffb .

Definition 2
tHp

Let @Jb)CDi+@1 . A TFfamily (e )PG{EA) of strongly
continuous semigroups on (Lh)beﬁﬂb) is said to be “coherent”
ifYeeleib) we have:
i <P (rahy et
i) étH%UhUﬂ Falf— L is continous V¢29o  in the

IV“rtopo1ogies of this spaces.

iii) é””’?L“nL‘“:e-t“’”p LPALP

the family Gﬂﬂbs(mﬁ) is called a "coherent family of

operators an (&;b) .



Remark 1.

A coherent family can be re-constructed by any element

éEHP L\P VYC—(G.'.L) .

This becauself“LF is ”JW ~-dense in
-tH
In this sense we can say that Hp Gﬂ{l% b)generates the whole
family.
Hp on L(@in) i sai :
An operator Mp on iH) is said to be a Sobolev

generator on @ub)“if:

i) Hp generates a coherent family on (ab)
i1) Ype(aib) Hp is a Sobolev generator with constant alb)>o
and Y(p)e R
. . + - IR
iii) the functions C:(&4H%—¢IQ and x‘:&wb)——4>

are continuous.

Some properties of the Sobolev generators are summarized 1in

the following proposition:

Proposition 1.

1) (Homogeneity) If H is an operator on B . then(S) hold
for some ?GD(H) if and only if they hold for the
element -P/HQUP e D(H)

2) (-S) hold on D(He) if and only if they hold on any
other core D of Hp

3) if (-3) hold for b=z on DM2) then they hold on all
the form domain D (H%)

4) if ﬁ@Q¥W and Hp is a Sobolev generator of index p,

-tH LY/
with constants ¢ and ¥ then | e P”th e <
ot

in particular if in (L-3) X=°, is a contraction



semigroup on LP .
Proof:

1) follows because the function YAﬁIQWw&AW]—“fEi-éLHQUP
is homogeneous of degree p in #9 -

2) If D<300%)is a core for Hp, then Vf%Dﬂﬂ) exist sequence

Q’“LeNCD such that %—7%; H,s,&a/%;ﬁ in L° and %-—>/
[t —a.e. The sentence follows applying Fatou’s lemma to
[&JEQuL&J and observing that, by lemma 1, the function cTRe(H{i{p>
+YHH¢HW$&ﬂchontinous function of J¢D in the graphic norm.
3) if %GD(H?) them 9 = €~{H. g€ D(H,) we have

~tH
453 A T , by the strong continuity of € Z.

Moreover (Hz%gi%QLz—D (Hﬁgin%)Lz J=>o

We can now assume 45 converging pointwise [f-a.e. to g: using

Fatou’s lemma we obtain

Sdpts 1 bt ) = N g2 L g ¢ <E(sia)+ yITI

2

where §> is the form associated to H, .

The following 1lemma 1is the key to prove the equivalence
'n

between (L-3) and L smoothing properties It is based on a

theorem of Mazur about the differentiability of the LF norms.

Lemma 2.

Let(IHAMHﬂ be a mesurable space with positive mesure Y



pe(““ﬂ and <709 . Let sl R be a continous
function differentiable in ¢=°  and such that ale)=p.

Moreover for S@°
D(pis)= {reltive)e [borl< 8]
tet 9 [s) YQ)(ML (2 i) be

a continous function in all L' norms rei)@b;&)

differentiable in t= © 1in the Lh norm and such that~/ﬂﬂ5¢”#0 .
Then the function Oa»=[°€)"“7 R defined by g(¥¢)s= ///(L‘)//ﬂ(é) Veelog)

is continous and differentiable in l=o with derivate

d%\ 'Vup [} {. ﬁ{Mﬂ?[lel~HVN;XQJWWA}+RQ<KFBM%%]

dt

Remark 2.

(
With Q(°) we denote the derivative with respect to the

d -
L' norm, and with V= 4%NMvv‘-lV1b(

Proof.

First of all we have
_$ b+d
H?(é)cxs\MHs |9 e \P v (o]

for some 20 , because s is continous and 2(=)=p

Since ? is Lf- norm continous r € D (pid) we have that

10



- S
¥P3+ Pk*

! bs
is continous in L and then the functions P(H +~%&
are uniformly integrable for sufficiently small teloe)

By the dominate convergence theorem we obtain that

X X
E by l(%(* Al) ﬁ
is continous 1in a neighbourhood of [=° . But since 4() s
continous, also g 1is continous. We may assume that g is

continous on all [o¢&) |

About the differentiability of g in = ¢, we start writing

t=o t

L‘mi.(uy(f)tlom—{w(o)llw) lzwi( i) (f{zé))+f@:¢ {//f[é) el )

By Mazur’s theorem, our hypothesis about the
differentiability of %Din {=o in the Lﬁ-norm and by the chain

rule for derivatives, we have
Lo LM 5 0O, )= 3" R CPlopiy  (rcyep ) ms0)

We have, now, just to calculateé

Lo L (QMMM) 19+ Mo(ov),

t=o

P
LetAA?QﬂL) and let’s calculate the derivatives of tbh—3 [lully -
GOk

()

()
- (], ):i.(&u%/f’m) 5(_(4&) bt )~J>(t ) 328 Ll

ORI a0t) 26 llall, e 4(¢)

11



and then

1 I EEYeY ¥
< ally = @ el ._04 I //”(;) A6l Lliel,y g,

C[/ J - /;('é) Py ,
T R ) it [ ) [ ]
Now we have just to show that

o (N “0(*'> = 5(8). [olpe ) -l P e fuuti]
Yayin

= o Jz

A P _
Fixing ~&A&)=.Biﬁﬂ;;kiﬁil. 2 eD(pif)  we can write
AP

i S 2w ool iy S 4,60

1=P n ’\—F ~7P

r
Smce«uen L we have (“Q\. )AGD(/’J) c L //i)
This Fam11y is un1forme1y bounded by the function L(%)

KMELuuﬂ +LMUH Then by dominate convergence theorem

££[LMH2 2 %&rkgdrvﬁongﬁfg%'&dzgdrwamﬂ-fulM(ﬂl

dtd

A=p

Using the chain rule for derivatives we have

é(\lMUAM )

b AlH

< ) et fuc 0] e fucny]
o

t=o

12



Applying the theorem of medium value to the functionfﬁﬁ>”ﬂﬁaﬂj

with«uz-?&), there exist,t16[0£) such that

21_( W, - llP(&)lIMO)) =4'(¢). 4] //{)(t}}/;, “(:}’ [ f O//‘/{)“)/4-%/l’(ﬁ/—/’f&#/{;j%//ﬁ(f/ﬁQ )j

Since ti—> /(%] is continous for any L’l norm with v¢ 5(/’25)
and since ~{)eD (Fi§) te[ee) , by the cointinuity of
s, Tlast term under integral sign is uniformely dominated 1in
teloie) by K&l . Since this function is 1in L* , We obtain the

thesis by the dominated convergence theorem.

/1

Next proposition prooved by Gross in [@i] , shows that (/-S)
implies smoothing properties of the semigroup of a Sobolev

generator.

Proposition 2.

Let H be a Sobolev generator on (xib)c[ii+e] with

+
coefficient function <:(=ib)—>/R and local norm Y: (6] —> /R
Fixing d ¢ («ib) let P(tid] the solution of the problem
dp
th)’-_.: tro
CE N

!o(o;el) = c[
defined for t such that P(¢;9)¢b . Moreover we define

-t

M(tiq’)i SO{,J\&(}o(i;é))--{f(lb[él-a/))‘/

(=]

13



Then: H(th/)
€

Proof.

Let D be the linear manifold generated by the vectors

oo
—tH

&d 3 with ge C. (//?+) and ’))"é/-lﬂL
First of all we want to show that P C D(Hp) ¥h € (&/é);

_tH . .r .
€ DD Vtro ¥pelub) and that D is dense with
b e (aib)

Since LWH?ELF VF , we have that D c Lk YVie(ab) .

Let -

_tH
P - S)olt%(ﬂ AR e Delf
(o4
We have oo
- BHp _tH
&“J%L(e -Q~&):falfe ’fv.gf@)@ D

Then DC:D(H#J\ff°€61Mﬁ . Obviously D is invariant for

e tHr v, Vpeloh) Now,  Tet well=r) pty such

I _tH ry _tH

thatw(dl=o . Then o= {w; gdf‘g(é)-e -'v>: 55“’3(%)(&//8 ~‘V'>
V%GC?OR+) and so <W}Q$H”>:O VE2 o VU‘GUnL%,

By the strong continuity of the semigroup we have Wit p =0

P L
va-el'al™ ., and by the density in any L” of Lol we have
w=0 . Hence D is dense in any LF P e (e:b) .

tet heD , L#o and let’s put

14



r

fR*— N L NIOE e'w,/@ e R”

V'e(u',b)

,
The function %Qis continous in any norm L norm with"é(&;b)
and since D<:D(H%)Vﬁﬁﬁ4él it is also differentiable in C=0
with respect to any Lh‘norm e (a;4) . But the continuity
of the Sobolev coefficient (), the function {i~>p(¢iy) is C7
where it is defined, in particular this is true in £ = © .

Then the function
8:[oe) —» R g(&)://)?/lﬁ)///a{f;?)

satisfies the hipotheses of lemma 2 and we have:

th o< Il [e(m". SZ Vg [oca)] F&wml -9l HAHQ«HM ;ﬂj R {Hpg ,'ﬁ{a/;> <
N
SORTOR TS Y

and then j%(ﬁw%fﬂ)£<4%ijﬁg.
This implies «Qu%(»é\ ¢ bgor+ t(tiq) and then

H _EH i’](z‘/

b(zf;«/) e Ny

: B
Since D is dense in any L FG(¢$), we have

_JCH Wf}#)

I peeigy <

[/

15



Remark 3.

since <¢(plzo VFG(‘“U/ j‘%k’(*;?’)Po Veeloe) . So ta(t;c{)?,*o(o/‘“)/);ﬁ/.

Remark 4.
Before to pass to proove the inverse of Proposition 2,
we want to show another property of the set D, that we needed

in the last proof, and that we’l1l use again.

Lemma 3.

The linear mainfold D, generated by vectors of the form
oe

Ko‘t %(“c\)-e—tHi’.v & eC’o:(/fQ” , V€ L'nl™

is a core for Hp.

Proof.

By arguments above we have just to prove that any
$\GD<Hb) can be approximated by a sequence ﬂﬁuLin D, in the
graphic norm topology of Hp.

Let (9u).c ¢t (R")  such that, 3¢95,§qs‘in the distributional

sense. Let dn= falt?m(% »R e D Vs

Obwously A ~>% in LP . Moreoyer

~H i :ﬂw«f‘(éw& 0= Lo s (Llfg (é)e 4 fa’fg &), HZ)

A6

S SitGaM t0)- 9.0).8°7% fa/tgﬂ.(*) ¢ £——>ﬁ7/é N,

AN20

In the LF norm.
[t

16



, A
In the next proposition we’ll1 prove that L -smoothing

properties imply Logarithmic Sobolev Inequalities.

Proposition 3.

Let (éiHP>p60nb) (aib) < [1i4=] a coherent family of
semigroups strongly continuous on [Lbﬁﬁfinioefhié) (see
Definition 2).

Suppose that V#GC&HJ we have two continous functions
p(id), we( i) [oi€4))—> R
g ]
such that Pbi7)=7 and inAM(qﬁk(, and that
~tH . o W)
< “O//P(*ic/) Can (t;4) Yteleicw) deleit)

Moreover suppose that F@iﬁ)and ﬁthfH)be differentiabile

in t=o and that the functions C/E'zéﬂdlé?éQ defined by

cd) = 4

o P (¢ d) v ()2 ol (8 9)
ol )t=() ¥ Jt ./;50

are continous with ¢ strictly positive. Then H is a Sobolev

generator an («ib) with coefficient function ¢ and local norm
CRR R

Proof.
By lemma 3, the linear manifold D generated by vectors

of the form

17



o0 - , o
&)gt%(t\-éwp-v %éCu (R*) , U € L'nlL

is a core for Hp, it’s sufficient to verify ﬁb?) on D (by
.

Proposition 1). Letv-€D-{} and /-’ [+2)> D defined by //é)f € v

SinceDC¥:%i3 and since the function P(WWQ is continous and

differentiable in({=o , applying lemma 2 with 4(})5,P(é;7)

we obtain from the inegquality

L Al - [t () -
E (“Q[t)"‘)tm) ‘IIQ(O)I/P(OI,G/)W, )é frlly ( 29’/ /)

the following one
el 3 g earr [Jj}/ﬂ oA ford =] Lo oty |- ReC oy ) € 5 -lrly

This last inequality is precisely &95) with local norm X=ﬁﬁc.

1.2 Markovian Semigroups

In Proposition 2 and 3 we saw the equivalence between
(bGB and certain smoothing properties, in the context of a
generic mesure spaceﬂﬂwuqﬁ). In practice we meet often, more
definite situations:

1) (JUA“}F) is a probability space
-t
¢ H

-t , . . 2 .
ii1i) € H is a Markovian semigroup on L (JQ/A%4//”).

ii) is positive preserving

The case i) is the context in which L. Gross pro ved, for the

first time, Proposition 2 and 3. (seeR%ﬁhi]). The {importance

18



of the case i) derive from applications in Euclidean Quantum
Field Theory. In those cases the probability mesure is on a
space of distributions as jﬂ@WJ) . Moreover the property to
preserve the particular ordering given by pointwise
positivity of functions and the hypercontractivity of a
semigroup have strict relation with the problem of the
existence and uniqueness of the ground state of selfadjoint
operator. L. Gross applied these result to hamiltomain
operators in Quantum Field Theory (see Ref. [@2;].).

The case iii) (that cover ii) is that one we meet frequently
in the applications to Euclidean Quantum Field Theory,
Statistical Mechanics (see Ref.[?ﬂ‘il ,[Zi] ,[ZZ:[ ,[Z 3] )
and in the study of elliptic and generalized Schrédinger
operators (see Ref.ﬁ”‘ij ).

The comhon point of all these directions is +that the
interesting operators are usually given by quadratic forms
that are also Dirichlet forms.

This representation permits to study operators with
coefficient functions with a weaker regularity, and also
gives wus a bridge between analytical aspects (for example
spectra] properties) and probabiliste aspects (see Ref.
[A‘H‘KJ ) close to the theory of Markov Processes and
Potential Theory.

In this section we’11 show that in the cases ii) and ii1)
verify D:SJ is much simpler that in the general case. With

respect the point i1i) we have the following.

19



Proposition 4.
_tH
Suppose that e is a positive preserving operator.
Then H is a Sobolev generator on @Jb)c-['3+@]if and only if

Q:S) is verified only on the cone of positive functions in

D(Hyp) VF’G(QJL) (or in any other core of D).

Proof.

By lemma 3°}he linear manifold D generated by the vector
of the form = Jdt %@)-éwv geco (RY) , vellop) nl™(an)

N
is a core for Hp Pe(aﬂl As in Proposition 2, where we show
that D is dense in Lb peleib) , it’s possible to show that the
subset of vector generated by non-negative elements g and v,
is dense in the subset of non-negative functions in L*.
In particular the positivity of ééH implies that $V2o= “47/0.
~tH - &H

At the same time the positivity of€ implies that %VZEEQ '75
takes its values in the set of non-negative elements of D. We

can now apply lemma 2, and obtain as in the proof of lemma 2,

the following inequality:

- H (+:id)
1%y ¢ € M.//@//ﬁ/ ¢ heDp= [Pl fre]

—tH _tH _tH
Since © is positive preserving, we have that {e ~& Yée /A/

[/

for any element of D.

Next Proposition show that 1in the case of Markovian

semigroups, the (E‘S) inequalities for P:Z imply those for

20



F72 . So a Sobolev generator for index 2 is automatically a
Sobolev generator ofv -~ . on [2;cv)‘

The proposition was proved by L. Gross irllﬁi] in the case
where qugiand the Markovian operator comes from a classical
Dirichlet form. Our proof follows that of[PAi], but uses the
following Tlemma (see Ref.[V] ) in order to deal with more

general mesure spaces, non-necessarely locally compact.

Lemma 4.
Let@ﬂﬂiﬂj be a Polish mesure space with positive mesure
M and Tet (£,0(8)) be a Dirichiet form on Ledttp) Lot atso p
a Markovian operator on LF(Jléufi)
Then:
i) YPel® a0 Atp=2 we have of3- /(f“”)ﬂ'//éz{/(J’P)#j{fﬂ)éz
) VeipeDE) wpro 2 we have o -E(fp) <E(pY 17

Proposition 5.

LetCﬂL“H) be a Polish mesure space wifh positive mesure
[ and let be a Dirichlet form whose corrisponding
operator'(Hz}D(Hz)) on L* is a Sobolev generator of index 2
with constantsc and ¥ . Then the coherent family [f;éA%)FEfV*%)
generated byﬁfiD(g)Jis a Sobolev generator on [27t%) with

coefficient functions

_ ch . 2r
c(p)= W, \((/0) b

21



Proof.

Let b71 and D be the common care of all operators
described in lemma 3:
By Proposition 1 point 2) it’s sufficient to show that /Z“y)
holds onDcC D(¥WA and by Proposition 4 it’s also sufficient
to consider only the positive elements of DDy
Let9€ D+ be a generic element and suppose we know that %ﬁé'f)é?)

P/
Taking (3) with p=2 and /= ¢ ‘we have

Cdpaf e — Il gy Lullsll, < < Els™ 9/’/*)+7§f//;//f

Applying lemma 4 ii) with 70= 5#/26 O+ CD(/”/2)C D[’C? )5 D/f/%)
A=2/p PB=2-d= 21%}9 we obtain

) Sdpotle gl Ladgy, s%é’(gz;\/’")*—zf/f%//f

Since 9¢€D<cDMH,) ?(, p-1 =<H:3} -t and by coherence
9 819 i

of the family (Hb}k we have Ho!D=HptD because D < B(H:)c
<Dy Then <Ha3idf > =Hpgigh ™y

_R
Taking (%) we have the thes1s with C(b)~—~%% 'X(ﬁ)’ig‘

_tH
Now we have to show that % 6 D(?) . Applying lemma 4 1) tolz € 2

We have

(et QtHZ ) o™, ‘}l%> ) 4(4«3 <[/" 9/'3“/=>

\éHb)¥ , since %GDCJDGk)E\D(Hb) we

Again by coherence of (
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_tH, - EHp
can change € ‘9 with e !

- 2 2 /- €
4 (l %Wﬂlﬁ/ 54(/»1) </ 3 ?’S>

. 2 .
Now by definition of D(Hp) *éf?(kAAJ is equal to4féb'<%%gJ$ﬁ>>

Since (Jﬂﬁ-d) is, as function of t, monotone decreasing,

because is bounded, admits its 1imit as 2o . By definition

of D(§)=‘DGUQ) : %fheg Dﬂ?)_ ///

Remark 5.
_tH
A  Markovian semigroup € on 2-7}1)is said to be
~ToH
hypercontractive if 3Te>o such that © is bounded from Z°

4 ) , . . , . .
to L . Using Stein’s interpolation theorems is not difficult

to show that an hypercontractive semigroup 1is a Sobolev

generator on(ﬁ+¢°) with constantgfor equal to:
~ToH
= 2T, =1 v@v. <
c = L /{2/4
_T,
Moreover Yy=c if and only if e H “2/4 <1,

1.3 Log-Sobolev Inequalities for Dirichlet forms on-il={ﬂi—ﬁ.

We will see in Chapter 3 methods and example of Sobolev
generator oh many general spaces. Here we want to show that

any probability mesure on Jl:f+u—(} gives rise to a
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. . ) ) [z 40°)
Dirichlet form that is a "Sobolev generator  on

Definition 3.

Let {L be a differentiable manifold or the space {+“-’}»
and VY the gradient operator or the "finite difference
operator” B p= (?uu=+«‘ leg_,)co Lo € {+¢i—(}

If the form

E(pip)= Jeulwpl®
J2
pE)-[pel) £ <=}

is a Dirichlet form satisfying (L-3) then we say that /1

satisfy Q:ﬁ) or that ri is a Log-Sobolev mesure.

Proposition 6.
Any probability mesure r on Jl=£+n-l} is a Log-Sobolyv

mesure with zero local norm. Moreover if a family owd) d e

of probability satisfy o < fjﬁi ﬂd({+ﬁ)
iﬁ;ﬁ ﬁdq+i})< i then the Sobolev constant can be

choosen indipendent on o ¢ L.

Proof.

It’s sufficient to prove O:S> for the set of functions
L (@) = 14ar Ae[-1in] . Let p=pf3d qsi-p If pefei}

there is nothing to prove, so let }o# o f. . We have
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r’(PAZ = f’(l‘”))z + Cj (’*’ﬂl / [1{)42-& % =)0(/+/J)?«£l (1+4) +7’[l-ﬂ)% ()~3)

2\l
Defining for  &[~;+] ‘9\@): Mf&/é— //f/éz)»ét//'?% )

and observing that V.PA @)=40T, we have to show that exist a

costant €70 such that 12\ (A c €A YA€ El i+

Now f (e)=0
dé;_& ()= 2 (149) Los ( 14) - 24 (I-5) “29‘3 (/—4)~[(M)+4]~Qog(!+2(M)4+42) ,
- for same avo we have

r (HA)QQ%(HA)I é(ng%z_)lAl [»Qog(} +2(p-9)$ —l-ﬂ?)l { aln I

and so (L—S) holds. From last inequality we can see that
A?0 can be choose indipendent on [g(:/u{‘f/} if our hypoteses

hold.

[

Remark 6.

In Ref.D;i] L. Gross proved (bﬁ) for Gaussian mesure 1in
R, starting from the result in Proposition 6 for the uniform
mesure p: yﬂ}l1=ﬁé and using an approximation processes.
We’ll prove (L-9) for Gaussian mesure in Chapter 3, as an
application of the method of Bakry-Emery.
The fact that on~J1={+’P*] the Sobolev constant can be choosen
indipendently with respect a certain set of mesures (77d)déif

if they weigh the set fflz in "uniform way" 043%{)1 ﬁﬂ“} £
. [CA
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ég‘ﬁz t'(°‘{+173<1/wi11 be crucial for us in Part 2, when we’ 11

o
frei-t] 2% (50,

investigate [L'S) for mesure on
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CAPTER 2
LOGARITHMIC SOBOLEV INEQUALITIES,

POINCARE INEQUALITIES AND
SPECTRAL PROPERTIES

In this chapter we will be 1intersted in logarithmic
Sobolev 1inequalities with zero local norm. Therefore from now

on we will denote with (L-5) an inequality of the form:

-5y Sdp § gL < 2.E@p) feDE) 5o

#fﬂz

2.1 Log-Sobolev Inequalities toward Poincaré Inequalities

In Chapter 1 we have seen that (L-S) is equivalent to a
certain type of smoothness of the semigroup. In the next
proposition we’ll see that (L~S) implies the Poincaré
Inequality (or Spectral Gap Inequality) and also how all that
is closely related to the property of the generator to have a
gap above the infimum of his spectrum.

Shortly, we choose a probability space (XBﬂ) and we’ 11

( ~tL .
consider a Markov semigroup on L XM Q with generator

L and Dirichlet form g(f/) = [70’120)

We remark that PU“ implies @(L)> o.—:/o;t/o-(c) (O‘(é)cl_—o’tw)‘)‘
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Proposition 1.

The following properties holds:

1) the semigroup is hypercontractive, i.e. exist To 70 such
that I P lly, < +9°, 4/ (5) holds and  and the Sobolev
costants are relate by 2To = 1/a

2) L has a gap above zero in his spectrum, U(L}C{OEL)[F )+°°)

for some , iff the Poincaré inequality is satisfied

(s-0) - nllte LEFS) febE)
3) (S-G) is satisfied with costant C iff the following

“exponental convergence to equilibrium (ECE) holds:

(ece) | 9- <P>I‘ ? <Iﬂ>ﬁ/ L eLH)

4) (L-S) with Sobolev costanti/d implies a gap in the
spectrum of L: G(L)(:(O}L][di+uo)

5) (L-8) implies (S-G) with L<C

Proof.
1) See Remark after Proposition Prop 5 of Chapter 1

2) with the spectral mesure JE?((A\ Jed( (L)

we can write % PP w @) g"[g{)?[ﬁ)[’\_e([ %M(Aﬂ

X=0
The function %{,\): A-C(]\}C&.&(A)) :{A% J o
EQ&—a.e. non negative E%e&b;€3130 and this 1implies
(8-G) if there is a gap.
Viceversa if (S-G) holds, taking the infimum in heach

side over{‘PeD(L) : |\Q”=l ) ?Gii')l we have O'(L)C{DEU[CHO").
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3) if (S-G) is satisfied, then by 2) we have for the
spectral mesure Egp(a) LeDL)  yhay Eppftoic)}=o
representing [|Bp- AP as JdEpe (€2 2py)
and I12-QHI* as SG‘E{’:{’“)(*'XM(U) we have that
Q‘Zw‘x[og(é\)we‘&c-(ﬁ-}‘([(,}(a)) is  &plae.  non-
negative and then |l Pef-(0pIte e 22 1 p oy 2.

In order to prove the opposite is sufficient to
derive (ECE) with respect to t.

4) with 1) we know that (L-S) holds iff I Prllys <1
with To=44,  For fe/¥(n) we can split as:f=y+9 gépﬁafezl?,
Then [P ll,' =% 1 4y3.¢ liPregy +eu Pl +0G) <vher IRy [
SIS = %+ ot l907 304
Taking ¥ large we have llPTo‘}HQsj}f, 191, and so

O(L\c{olu[%fmco)

5) If (L-8) holds with Sobolev constant ﬁﬁx, then by 1)

and 2) we have that (S~-G) holds with <L <@,

Remark 1.

(ECE)

The name of "exponential convergence to equilibrium”

to the formula that appears in 3), refers to the

applications to Statistical Mechanics (as we’11 see 1in the

next

chapter) 1in which the equilibrium states of the

statistical system (Gibbs states) can be seen as the states

to whom a stochastic dynamics leads the system(f%f—0<i&1J~Ufh”.

Here

the problem is about the equivalence of this dynamics
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(see‘hQ{st}} . If (s-G) holds the convergence is

exponentially fast.

2.2 The Laguerre Semigroup

In Ref.D@S] the authors investigated the hyper-—
contractive property of the Laguerre semigroup. This 1is
defined on the spaceil=(“+&ﬁ with the probrability mesure
dp ()= e Tdx

The generator of the Markovian semigroup is taken to be:

2 =%
L.='X-j—“;z —-(I-%)j)_(. oA O(L)Ef Ce (_Q)

The analysis 1is devoted to the calculation of the "best”
constant for which (L-S) and (S-G) hold. In this example they

are different and are equal to 2 and 1 respectively:

(L-8) §°lf‘4>2‘f°%? < 250) + (ﬂlﬂej-%%/ﬂ/v% Jro

?

(s-a) | {?~<9>nHLZ(Ms§W) PebilE)
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CHAPTER 3

THE METHODS OF BARKY-EMERY

In this chapter we start to show methods to prove
Logarithmic Sobolev Inequality. Between the others, the
method of Bakry and Emery had an increasing popularity. The
reasons for this are at least two: first of all is simple 1in
applicatins, and furthermore when works it furnish the best
Sobolev constant. As we shall see is based on “convexity"

arguments.

3.1 The general criterion of Bakry—-Emery

The original proof (see Ref.[B-Ed] ) of Bakry-Emery,
took in account the general form of (L-8), i.e. with 1local
norm not necessarly zero. Because of the use of the method 1in
Part 2, we give a recent proof of Deuschel that deals with

the case where the local norm is Zero.

Proposition 1.

Let 2. a Polish space and H a probability mesure an ).
We denote with B(QJ the space of bounded mesurable functions
on fL . Suppose L is the generator of a Markovian diffusion

semigroup F} on L?(/j) and suppose that exist an algebra
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~JQCB@ﬂﬂDaanariant under L, @ and composition with

2
functions, dense in L . Suppose also that ‘Vﬂp€¢7f

ﬁbmmk)@£= SAF?-

£+
Define the two bilinear forms an u{x_dé

e L[ o8 - HLa-a ]
Q(?:%ﬁs%[LFH%%L\“(LQ;%LP(%Lg)] Dy et

If exist PE€ ® (@) such that

A L0 1) 60 ¥ feced Vxen2

p
and the Green fucntion GP of the semigroup F% with
P
generatior L-f such that G4  is in B(«2) , then (L-S) holds

with Sobolev constant ¢ < 6% g () /2

Proof.
Because FE is a diffusion, L is a local operator and we

have the following rules:

py L(gep)= $of + DL T(hp)

B) T(dofia)= ¢of Ifis)  Sen Ref [B-EL] .
By partial integration in A) we have -<{ila),=<T#alp.
By theorems of Chapter 1, since [t is Markovian, we have
to prove (L-S) just on positive functioneet with =4
For any such a function set 9% ¥ and Me=T (Jeidey 9e)

We then have by the mixing assumption
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Lowe {9,490,

t-co
Moreover since <<%£ °%3£> <i0+%0 L3€>
~<P(%IQ"%%> <Mt>
We have

S‘it (MY, = - gou i (aelyg = (Blap,

Using B) we have i&oziﬂaﬂr&QPZ):4f%ﬁf).With this position we

can re-write (L-S) in the following form

S’clf ey, < 2¢ <Vuo>l1

From A) and B) it’s easy to obtain the following rules:

o (3¢i€e33s) = 3¢ T2 (Loygy i dogge) + (e T (g 9¢ilog 9. ))

jr(w%ga LT (Geidogge) - 290 M (0oy8i g 9,)

o

dt

Hence.M* &xu. F1na11y

§At<ut>r\ §4f<nu> Sat(am, A jolt (i P) L)

- Sdtj’d(« i’f:( M°*§A[4Mo yolfréi Y‘Jf“’“’ efy <il@4u8m) <A"Co>/_{
/l/

Remark.
The original " -criterion” of Bakry-Emery is just a

little different from the one above. Their condition was
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stronger, in the sense that they reguire pzg>o

for some constant &€ .
It’s easy to recover the Bakry-Emery condition using the

P
Feynman-Kac formula for Ftiio&)‘

t
+ jola 1—;?(7(9("0))1
S B (dw) - & ° ey (Xe(w!) .

c (RYR)

?
Mg ()€ Quo(x) =

t+ - =
where X{.'-C((R,JU 7 Xt(w) wmis the processes associated

to Pk and ‘& is the path-space mesure of the process
conditionated to start fromx€£L. Now ifpr€ ,-Pg-E& @QMJéEg%xGJZ
and so Ptp'i “@(,Q)ééstand | @‘Pi “ B(=2) € 'é' < Hoo

However is not clear have use the greater generality of proof

of Deuschel (see Ref.[DiJ ).

3.2 The criterion of Lichnerowicz and that one of Bakry-

Emery on a Riemannian manifold

Since 1in application one deals often with operators on
Riemannian manifold, is useful to investigated deeper how the
Bakry and Emery appear in this situation. As we shall see the
condition is more clear and its ‘“convexity” character 1is
evident.

Moreover in the proof one find out that the method is very

close +to that of Lichnerowitz for the estimate of the
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constant in the Poincaré inequality (see Ref.[DAij for
example).

Let {L be a compact Riemannian manifold with natural

normalized mesure Let 176Cf111) and consider the mesure
_U _U
Wa M€ (@)= [dp e
z(v) b

With this mesure we contruct the Dirichlet form
2
E°0.9) < fo/ﬂ (7)1 Pe €7 ()
and the corrispondwng operator

"f- af- vU-Up pe Co(n)

£°0) = - (PiL) 2y

(For the closability problem see Ref.[A~R5] ). These are the
operators on which we concentrate our attention.

The method of Lichnérowicz for the Paincaré inequality

(s-¢) HP-(OI < 2 E@ip)

starts with the observation that (S-G) is equivalent to the

following formula (by Spectral Theorem):

QY o ¢t g,

and with the Bochner-Weitzenbdck formula

REDE %’[ V19012 2 V.V L] = Iess Pl s (R +HensU) (Wh7 )

where Hess 1is the Hessian of fp and Ric 1is the Ricci’s
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curvature tensor. An integration by parts gives us (recall

Ui=0= (U, =0 ):

el <P (w <IHWJ{ 1% (Rict HewV) W’m}u

So we can caracterize in (S-G) as the constant for which
QRIS o € & (s i+ (R 4t (<4%)),
[ M
This gives us the following estimate for o:

ol ¢ é{iﬁ p(v)s /w}aggeffi (ReetHenU) (0 % pUIXIE XE i%i(rz)} .

We shall see in next proposition that P(U) gives us also an
estimate of c in (L-8): <&¥ B

9(0)
Proposition 2

We the above notation, if PCU)>O then (L-S8) holds with

<A
%)

R T gl o, 141,

Proof.

First of all we note that (8-G) is eqguivalent to
I 2
49L——5<(Pg{’) >U 5—2'-3-—4-<(Ptv{))2> v
dt I d dt s
Now we see that a corrisponding expression holds for (L S)

changing <(Pt-P >U with H@)= <“?é‘ﬁ0‘3{>~£>v where Jfri-” Pzé*?z
with “?u% . In fact HHJ —42’@,7/) - < %}U

and so {(L-S8) becames
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Hio)s - S H(o)

\
(L-8)

Py 00 < 1
Since M@®@)—=o %Té?o because é?'“> P>ﬁu= , (L-8) comes
from —H@® S%H(‘&), Now expressing H() as a function of ald

and using the Bochner-Weitzenbdck formula we have that

)= Vdeg e - V?é>/uv

+H @) =+2 <erf1”(»@og{>u 0°%P&)>/4U
Finally (L-S) is implied by
vl o i >
< é < C<,P-):HWP+(RK+H U)(VQ(V{))j /u,U

U
1 /F
From the definition of 9(U) we extract that CS’;%L)'

Remark 1.
From the proof 1it’s clear that the compactness
hypoteses of the manifold can be replaced by the following

weaker one:

~U

4
e e U'(n)
Remark 2.
In a recent paper B}Si] , Deuschel and Strook proved

long the 1lines of the proof of Proposition 2, a better

estimate for the Sobolev constant, i.e. for the quantity
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) .
*S(U\‘C(O) 3C(O)‘@vg<u—)i—)\/f>(,(—/"l}zv)+2(/—€ ,)(F[")"@;
+0 0l v

Ly f
p(U): < 7 v N+

where S(U)E‘4“¥t}-'bwftj Ue C (Jl) bounded.

3.3 Logaritmié Sobolev Inequalities for the Gaussian Mesure

on and Nelson’s hypercontractive estimates

The first calculation of the Sobolev constant for the
\ ~X9@
Gaussian mesure (21T dx €

on ﬂQ was given by Gross in
[913 . The author used the central 1limit theorem and the
calculation of the Sobolev constant for the uniform mesure on

{+H-1E to prove that

(u\"- SGJX e“xz/zlo(;)&% f00 ~| Wé@c% U, ¢ 1 -(zxr)—lﬁ,,/xe“yz/l'/{l/ 2

this result and the use of Proposition 5 of Chapter 1,
permits to deduce the result of Nelson (see LVZ} ) about the
hypercontractivity of the Orstein-Uhlenbeck semigroup, whose

generator is:
oo XY
L=~é2. +x£/- o Ce (/{Q)cL2<(zn)‘fex.2c/x)
dXx* dx

In particular the (L-S) above and Proposition 5 of chapter 1
. b
gives the Sobolev constant on l_ bt . C(ﬁﬁ:zﬁrj . Now by
-1

Proposition 2 of Chapter 1 we calculate:

38



¢
dp _b dP. A (Gos (b-1)) — s beit. €
{ MG i ST dt ID dtw a(0)=2 [ !
Pleidd=d U plord)=d | ploid-d ploid)=

b id)= (d-0 e x|

And finally we obtain the result of Nelson

1l < 1141
et (i‘i)l/z 4, bl

For d=2 and p=4 we have

&
L

2 4.
So if t%Tes £9%3/%_€ is a contraction from L to L , and

LL7/°09‘33/2_

by Propositidn 1 of chapter 2, we have that the gap 1in the
spectrum of L is at least 1. B. Simon proved irm[?gj that the
gap 1is exatly 1 (this is the reason why people refers o the

result as "Nelson’s best hypercontractive estimates").

3.4 Log-Sobolev Inequalities for Gaussian Mesures

Proposition 2 of this chapter easely applies to the case

4
of Gaussian mesure on ﬂ{ dzw

Proposition 3.

Let’s consider the Gaussian Mesures on given by the
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dxd
positive definite matrix ¢eM (R)

-%(xa@x)
c\pc’(xh 1 dxe

Z
IRJ
dx being the Lebesgue mesure on .
Then /ﬂG is a Log-Sobolev mesure with local norm zero and

Sobolev constant given by:

|

c < (M-QK{\&WGY

Proof.
Here R4¢=C’and-u=%(16~) . So applying Proposition 2 we
. e RYT = 4uf Sheclroun G
calculate F(U):AMb{QeR:(mGAWPKH\ x &/ E_ ee y///
/

3.5 Log-Sobolev inequalities for the Riemannian Mesures on

d
spheres ‘Y dv2 .

This was the first application of the theorem of Bakry-

Emery, showing, between other things, the simplicity of the
L

methods. We consider the sphere Sw du2 and the associated

normalized Riemannian mesure
Proposition 4.

The mesure fﬁ' satisfy (L-8) with zero local norm and

. d -l
Sobolev constant given by %= (d-1
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Proof
We apply the arguments of Section 3.2 to the case U=o .
S&

Moreover on dyz Ru:=ﬁLJ9 where g is the Riemannian

metric. This gives us: P(O)= (d-1) .

/(7

Remark 3.
The method of Bakry-Emery does not applies to circle

This case has been treated Weissler 1in Ref.EWJ.
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CHAPTER 4

THE "ROSEN’S LEMMA™

The Rosen’s lemma furnish a criterion for the “intrisic
hypercontractivity” of strongly continous semigroups. To be

clear we start with the following:

Def. (Intrinsic hypercontractivity and "Ground State
Representation”).

Let (leMfd) be a mesure space with positive mesure # , and
giH a strongly continous semigroup on LQ(QQ“%(f{) with
selfadjoint generator H. If’¢:11*7ﬁ?is a mesurable function

on L and <{>€L4LQ (ﬂ) , we’ll consider the space L2 (0, ¢20//4)

and the unitary transformation

U@F=LZ(M~>> L2(¢j¢4) U4 (¢) = ‘{5'/ L& L3u) .

wWe’11 say that €ft (or H) in "intrisically hypercontractive”
if  the operatorH¢EU¢°H°U$ defined on L?(¢?4) is a
Dirichlet operator and a Sobolev Generator of index 2.

The operator U¢ will be called "ground state transformation”

and the operator H¢ "ground state representation of H".
Remark 1.
The language of Def. 1 is obviously lended from the fact

d
that in main application H will be a Schrddinger on R and ¢
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will be its "ground state" (if exist), i.e. the eigenvector

corrisponding to the eigenvalue E==4“%7¢04)'

Remark 2.

To discuss the Rosen’s lemma we are forced to assume (as
we did in Def. 1) H¢»to be a Dirichlet operator. However the
problem of 1intrinsic hypercontractivity can be studied 1in

general.

Proposition 1 - (Rosen’s lemma).
We consider on the mesure space L04M/0 with positive
mesure pm , two selfadjoint operators, defined respectively on
L?<ﬁ) and on L?(¢iq) » and related by the ground stéte
representation specified by the function §5=J2—4?A?4#L£fla.e.

positive. Suppose that:

1) H¢ is a Dirichlet operator
i) 4,8, n eR with M>2  such thatvgéimﬁf) Ul )y = |
as quadratic forms, the following inequality ho]ds;}fdﬂq+JJ
111) 3<f?0, and ' eR such that the following

inequality holds

-%? gl y!

Then }¥¢ is a Sobolev generator of index 2 with constants

c=c' +o(-]34/’“- N Y=Y _’Qo%ﬁ +°('184/ﬁ' 132//1 Vp2ro
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Proof.

The idea of the proof is very simple and consist to note
that if, as quadratic forms, on |2 (‘472/‘4)/ EO%SC Heé +v
is trueV Qe (&%) positive with norm 1, then (L-8) for Hd
sudden follows, just taking the expetation on fé’ D.;. [é’sé)
(?L?g being the Dirichlet form associated to H¢ ).
On the other hand, using the "ground state transformation” U¢
the 1inegquality QO%‘?4CH¢ +Y ’?5 Lz(d’zl‘*) is equivalent to

an inequality on LZ(]’() of the same type

log § < cH+y pelt(@h)  fao Wl ey, !

Hypoteses i) and 1ii) are used just to verify this Tlast
inequality. Let’s note thatV’N,l ( exist b 7o (it depends

on M )} such that

(‘Qo%,q)ﬂ/z

< L)QL V’)Zfl

Let R2o ‘?GLi(C?zﬁ) [{l=(  and define

Lo opPent
w o= ,
{ o Af [sPciD < 4
where X is zero [SPCP < and then «P,o% ([’:Pc#) <o . Hence we
have that vgo%(p?@g%.&}(@%#) . Moreover SO[F[%@o%(P/gﬁ)[ﬂz/z

o a0y (o) S o b [ e D RS P AT gt
(Note that }K depends on 3 !).
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so Xlog (RO&) e (1) o 1%dog (phet)ll 1y, € Cop2) ™

By hypotesis i) 2
bog (pf¢) < Xolog (pP4) < ] Kho ()], (H8) < (609" (172r).

Hence by hypotesis iii)

by € PP b (Uat)- bogp actH ay's cHey KLy (h) Ifg
ceetva gL g p g L

[/

Remark 1.

In principle 1it’s possibile, acting on the free
parameter{l>o to reduce ¥ (increasing ). If the parameters
A,L and pooare such that:g[S?O'For which y=o , we could say
that For{4¢, may-be increasing the Sobolev coefficient c, éhe
tocal norm can be taken to be zero. This property of certain
Sobolev generators is strictly related, as we have seen 1in

previous chapters, with a gap in the spectrum of f4¢(and H).

Remark 2.
The criterion of Rosen makes sure the hypercontractivity

—tH
of € ¢ in terms of the operator H (hypotesis iii).
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CHAPTER 5

APPLICATIONS TO SCHRODINGER OPERATORS

5.1 Introduction

oPEN .
From now on HoR represents an set in #% , M its Lebesgue

T -algebra, and Jh=5x the Lebesgue mesure.
In order to apply the Rosen’s criterion to the Schrddinger

- A= 2 ,
operator %+=H°+V (¥h" A‘igbt) we must, first of all, make

us sure that the potential V is such that EEAQVQV'OJ) as
eigenvalue and in a way that the "ground state
representation” carry us to a Dirichlet operator H¢

(hypotesis 1) in Proposition 1 of Chapter 4). One we made
this, we’11 show criteria that enable us to verify hypotesis
ii) and iii) of the Rosen’s lemma.

Now we want to note that, in what we said about the
Schrédinger operators we are dealing with, are implicit the
classical methods of construction of "good operators”. For
example when the potential V is in the Kato class (i.e.
VLGK&,V+EK%EVﬂFWit’s possible to define HotV as the operator
corrisponding to the closed form constructed by the sum of
the forms of He and v. (see Ref.[?il ). Alternatively it’s
possible to construct decent operators (closable and Tower
bounded) using the Feyuman-Kac formula (see Ref.[?ﬂ page 459
and the article of McKean quoted therein). By the way we note

that these methods are equivaient for potential in the Kato’s
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class.

Recently the "Dirichlet approach” to the Quantum Mechanics,
appeared. This approach (originated from the functional point
of view in  Quantum Fiel Theory: see Ref.[A'H“K]- )
concentrates the attention on the Dirichlet form é?¢
corrisponding to ¥4¢, and then meets the Schédinger operator
H, or its form, by an invers ground state representation. The
simplicity of this method resides on the fact that one can
use “workable" closability criteria for guadratic forms as
c‘?qg[f;f):_idx P2 Ivpl* (see  Ref.[A-R#1 ). This
permits to focus all the attention on the "ground state
mesure” cﬂrs dx'¢z,

The success of this approach resides on the fact that _it
enable us to construct perturbations of the free hamiltonfan
Pk, that are concentrated on zero mesure sets, and so a whole
series of Schrodinger operators with "singular potential”.
With respect to this approach, the method of Rosen should
marry in a nice way, at least expressing the condition 1iii)
—«&3¢$C'-H+ X' in terms ofgls, Flg or §?§ :

Coming back to the problem of Justification of the “ground
state representation "we can say that the Kato’s class Kd,
represents for the potentials V a sufficient setting in which
the "grand state representation” has the required
properties.

Obviously 1in such a general setting we cannot assume the

existence of the “"ground state" . This problem will be

47



solved in smaller class of potentials.

5.2 Criteria for the Rosen’s lemma

In this section we summarize, without proofs, some
properties  of the 8Schrédinger operators with Kato’s

potentials. (see Ref.[;i] ).

Proposition 1.

Suppone H=Ho+\/ Ho=-A on /Rd Vs Va-V- Vizo

such that \/—yeki‘{c Vo eXd . Then:
1) the form HetV is closed on D(EVHJ)Q D(§KV+U and
also lower bounded

_tH
2) for € the Feyuman-Kac formula holds:

(Q’vaQ)(*) = Ex (QKH~§A4 \/(w(/n)) : f[cu[é)))

oo
d
3) Co(/2 ) is a form-core for H
_a
4) Sobolev estimates hold:<lyo, \véal,-};ng<§,R~23<W-P°"(H)=7HH‘Z) n)o,ci {402

5) if ve ngbe CO: (/Rd) is an operator care for H

-t H

6) ("Lf —smoothing"):tﬁD.F$4 = @ | is bounded from

LP to L4

. b —tH
7) be[mﬁﬂ,?eL = € 'f is a continous function

_tH 2

8) keDi#ﬂ,?GLf:? Ve 7?@21@6 (in distributional sense)
9) ("Harnack’s inequa11ties")V(Hd4=EM. EcR with AL

o
continous and non-negative, given <LcC RT open, x4 € LL
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3¢ such that )T (4)

10)  if Hu=Eu wmel® EeR then AL (x)—P0 X200

//)

From these properties we can deduce that if the ground state 75
exist . Hd=E¢ E=mfo() bel? then % is continous,
positive, bounded, 1locally bounded away fTrom zero with
derivatives 1in Laeoc . This properties are enough to prove
that if the ground state exist then %"95 (and /‘/525) has all good

properties required above.

Proposition 2.

Let H=HotV a Schrodinger operator on //Qoé , With
potential V=Vi-V such that V+e€ Kéj_e V- e Kot
Suppose that E=wPO(H) is an eigenvalue with
eigenfunction CbeLz and consider the “"ground state

transformation”

Vg LX) —>L*(4%4x) - Vg (f)= ¢/ e L5 fet)

and the form ?9& associated to an operator l/"/¢ , equivalent, by

UqL , to e‘? and H respectively. Then
5y D(Eg)= [Del(dun) - vheLl¥d%x)

E¢lt) (Hepf) gy = Sx 22100 7e 0/§¢)
1) CTRY) 4 a forue cone br g

Noart

i1
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Proof.
See Ref.[pﬂj/ﬁik The closability of é%ﬁ is given by the
criterion of [:R5'vd] pag. 129, applied toP:?ZS since<%?ois

continous.

Remark.
In the article LCI of Carmona a different class of
potentials is considered, that is almost all included in the

class of potentials we considered. Carmona choose VE=V+"V;

/s
with V-GLP for some [ Pimax (;t/-a’/z) and V+€ L,goc
b b
But with the notation of [s] pag. 456, [Pc L, < Kd if
b 2 weax (1',5'/1) Moreover'L:jl()mC KQ:L( if 7 arax (4; cf/a),

Next step deals with condition ii) of the Rosen’s lemma. In
the next proposition we’1l see that for Kato’'s potentials,

that condition is always verified.
Proposition 3.

Let H=HotV with VeVi-vo , Va ekf"e, Vo ¢ Kol

Then there exist constants lev 122 such that

g€ Lr/l@éfx) H%Uﬂ/zc{ — g <d(H+)

(as forms)

Proof.

The proof is based on the Sobolev’s estimates for }{o:'ﬁﬂ
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and on the fact that if V is as in hypotesis, then *4oé2}4+4<

(see Ref.ID-371 page 356, Ref.LS41 pag. 458).

To satisfy the condition iii) of the Rosen lemma ~Q°%¢'5C#J+X’
we have to restrict the class of potentials. Next proposition
exhibit a general criterion “well shaped” for a class of
potentials lower polynomially bounded.

The proof 1is based on the following lemma and on the “"sub-

harmonic comparison inequalities”.

Lemma 1.
With previous notations, suppose that the ground state ¢
. . 2 - ‘
exist and that is C° . We can suppose EstufoH) = 0 - Suppose

exist a function\V:mé*?R. of class c? such that:

iy WeeH+y with xR

1) Wk)—> 00 x-speo
ii1) [VNVI%_AUVZV@outside a compact subset K C AQéi
iv) eV on K

Then:

\_@9%75 éc4H+b/'.

Proof. m&

< \ {
First of all consider a region {2 and functionscz\w,4h<?:JL¢

—2R such that 4 .{4)\ on 2L o] , ~A¢(+V¢(7,o le/~ﬂ47“+\X/£’,P€O

[ %
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an L and V& W W7 O on L1 . We prove than that ¥< $ '
on the whole _(2 .
Fix~%ﬁ4¥—¢”gcz(Jl) and consider,X611+={5631‘£(3)?gﬁ by our
hypoteses we have A= 4¢-ﬁ¢'zf(since<-4#uW?¥Oon-fL)z
7 (since Vpz-W onJL)7, W4p- W&+~ (V2o) 2 WH-£)=
- Wi
Hence if x e QT then A‘A(X)ZWQKX)?O . Sofis subharmonic in
J1+and obviously on 311+1s zero. From this follows that-g-écp
on the whole.ll+ . By the definition of ~flf' we have -(ti: 95-
Now we can start to prove the lemma. Fix~J1=‘<¢ , that

%4

will be an open subset since is compact. Let’s defineﬂyséf
XEWW\Q‘AW .By our hypothesis, X5, Vi on (L f ¢ ¢ on &2
and _A75+\/¢ =0 . By construction we have ~AYiXp=0 on (L .
Since A# and 75 are CZz, we can deduce, applying the above
reasoning with ¢‘=<{5 and W= X , that ’L/)z‘e/-ws on (L
and hence on the whole ﬂQi

Hence

—-&S PERV./: CL%/+-K’
7 I/

We want now recall that if the potential V is continous and
diverge to the infinite, then ther exist the ground stte and

in Cz. (see Ref.[Din page 120 and Ref.[SZI page 56).

Proposition 4 - (Intrinsic hypercontractivity for Schoédinger

operators with potential with polynomial grow).
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{ . .
Let V:(Ro~>”3 continous, subject to the following

condition:

. a
coXITeco ¢ VIKIZE CegtIXl ‘v, ¥xeRY o5,

Aly2 , evyo / ay< 2a,-2

where E=4MP¢Gﬁ*V) is the lowest eigenvalue with
2
ergenvector ¢ &L=

Then ¥+=Ho+v is intrinsically hypercontractive.

Proof.

We have already seen that for continous divergent
potentials the ground state exist. The potentials " 1in
hypoteses are clearly of the type V=V?f V- withngkQ&C/Vl @Jhl
Hence in order to verify the intrinsic hypercontractivity we
may deduce, first of all (using Proposition 3) that the
problem is well posed, in the sense that [?/[}ﬂf)) is a
Dirichlet form on LF(¢%JH. Since our potentials are in the
Kato’s class, we can say (using Proposition 4) thatEL”72,<%<f

such that
#l2
g < ol (H+J) Yo el [dX) /lgvl//%:i
To verify the condition “&%ﬂﬁéctH'FK’ , we apply lemma 1

. d
with the function W: R —> R defined as

WE=Ix a, <2a-249a, -2
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o Lo, 1 ~CL(QI—“’~)
It’s easy to verify that ATL A TG O , and then

fixing C'=clcy e'yo we have
N ~a (-
W= (x1%¢ e {elxI® ¢p) + epe' ¢ (epet) ¢ [Hps ouV eg=Coc)) ¢

& (a-a)

¢ ' (V-E) pcpe 4 ¢g.cl ¢ (~az0) ¢

Q'~<H-E) +CQ.C1+ Cg,c\"'o-(a(*(l): (\(‘E ea.cl_{_cs.cl‘cx(&/-—o,))

I~

—

i

C(H—E)+X‘

From the above calculation we see that the hypotesis i) of

lemma 1 is verified.

2 - a-2
It’s not difficult to show that (YWl =AW = QQ-/X/ZQ Eq(a+d~2),/Xl

al A
¥xe R™ since 2a-22c3 and V-E £Cx Ix| %#54_ we have
that I Ryo such that
2
Vi Jixis R lvwlE Aw s, (V-E)r
with K= 5(°}Q> hypotesis iii) of Temma 1 is verified. To

verify hypotesis iv) of the same lemma, we can take advantage
from Harnack’s inequality in [§i] (page 493) and admit that

_ K
there exist a constant Kro such that € Wé<2 ¢ on
K= D(oiR) .
/[
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Remark 1

The possibility to act on the constants €2 and Csg, 1in
the hypotesis of Proposition tell us that is the behavior at
infinity of the potential V that implies intrisic

hupercontractivity.

Remark 2.
it Vi=X? o
The Proposition 4 does not cover the case = since 4,
must be greater than 2. However is well known that 1in this
~X%/2

case the ground state exist and 1is proportional to €

We can recognize the case treated in the previous chapter.

Remark 3.

Proposition 4 with its condition on the potential 'V,
makes more clear which characteristics of the potential V
give intrinsic hypercontractivity. 1In particular the
condition A1<204-2 tell us that the grow at infinity must
be regular in some sense.

We finish the discussion about the intrinsic
hypercontractivity with the following proposition that shows
that the case V(x)= x* is on the borderline for intrinsic

hypercontracitivity.
Proposition 5.

{
Let H=-A4Von L-?'(/Q'Ci)where VGL&c is bounded below. Then

if the ground state exist, is in and is positive and
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_tH
¢ is intrisically hypercontractive the there exist

constants “(70,@6Rsuch that

H ¥ X“Xl—'ﬁ (as forms)

For the proof see[bﬁd] page 125.

/i

5.3 A class of potentials with local singularities

Now we knhow that is the grow at infinite of the
potential that implies intrisic hypercontractivity. However
it’s interesting to show situations in which potentials with
local singularities are intrinsically hypercontractive.

The method is based on comparison between the (L-S) we have
to prove and that one of the Gaussian case.

The class of potential is the following one:

Definition 1.

d) d
Let \/( the set of functions V: R-ﬁﬁ—%PAQ such that:

i) V(X)E‘V({((Kl) XG{Q{{’O?S \/R:(o,'./.oo)%_?/e
ii) Ve C%(o,'wo)
i11)  a)dprd/a, byl such that V-¢€ LP(/@“fa/x)
b) m V(Q(Y) < +eo
r-20
c) Vk is monotone in a heighborhood of zero
iv) a) WA is positive at infinity

! bz
b) at infinityvk/%ﬁz is positive and definitively
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different from zero
/
c) Vk/vk is uniformely bounded at infinity

V) admits a finite number of zero.

We note that\C€LchQsince P> maxﬁ/dh) and that, by the
continuity of Vk , V}e Kﬁx Then we can apply the previous
general results. Obviously, also in this case, is basic to know

that

Lemma 2.

If Ve '\f(d)cfz: then the Scbrédinger operator H=HxV has a
ground state with eigenvalue E.
For the proof see Ref.[E-f].

11/

Lemma 3.

Let Ve V%d) and ¢ the ground state of H=Ho*/ . Since ¢'€s
strictly positive we fix ¢5:é— 4. Then there exist constants
>4 V>0, /ge//Q such that

X[> v = -foad = Los «Vix—5
¢ = Ao Ay

Proposition 6.
d ~h/4
If VEV()and $=¢ is the ground state, thendy>;,de/R

such that

(%) -foo(}75= %S (y-1)- (_Aﬂ}_%.\/) -
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Proof.

By lemma 3 .‘]Yupo / 1x12 Id_.\/()d--ﬁ/4 7 159./4 , %74 .

Put Yzdks>. By Harnack’s inequality h is bounded on the
disk [x{<VYo (since is compact!). Then the function W =
x“/~£/4-ﬁﬁ¢ has 1its negative part in Lﬁ {by hypoteses on

V) and a positive part that is continous by hypoteses on Vk
and 7) 1n‘Proposition 1. Then the operator-(y-)A+W 1is lower
bounded since‘w is in the Kato’s class. Now we can choose J&R
to obtain the thesis.

/]
The formula (%) is nothing else that the condition of the
Rosen lemma. Anyway we’ll follow the "comparison method” of

Eckmann and Pearson.

Proposition 7 - (Intrinsic hypercontractivity for potential
in the class of Eckmann and Pearson).

Let Ve V@ and HeHotV, Hoz-A its Schrédinger
operator. Let ¢ the ground state, U? its ground state
repreéentation,¥4¢= U¢{H~E)%}$ EEJ%/Vﬂﬁ the operator

corrisponding to the Dirichlet form C?¢,'O(§¥))=

D (kg <Lpel2(@'n). V9 GLZ(%/X)}

E4(0ip)- j}u. $2/vp/?
R

Then F4¢ is a Sobolev generator of index 2.
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Proof.
Since V¢&¥Xals by Proposition 1, Coé@d’ is a form case for
§¢.

Now consider (L-S) for the Gauss mesure

(11 fecs ) (2")‘d/2-fdx- SNIRICE (W m)"os(”” Pxezu)
(zr j}! ¢ ZZ‘/vggz

Put fE%‘e %EﬁfOOﬁ)and substitute in the previous formula,

taking advantage from the following

1 S 7l %l Phelvgl L dx x. Vil Hol Jdxod gl <

= [olxivgl? -Si:-SJx l%lﬂifo& X [yl

Then [1] is equivalent to

Sty Lyl ) (Saclal?) oy Saets )+ &iodlyas) figi* [dxivg?
g € Co(RY) .

[3]

Now we use a similar substitution to transform (L-8) for éié:
- ~h
P=o & %.gl"/"r where ¢ /4'

Let’s transform

h/a 2 9 h/2
) sy el - (Brire” )fg(fd R
¢ C.Sclx.é"‘/% lvﬂl 4 b,,j‘o/x.e— /p/Z Ype e (A{)ad},

using the identity
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h/a
[5] de.e ~}V(}€W4)12:§03X|V3'[2~%-YO}X1%[%[A%)+%IJX/9/%/V£/Z

in the previous formula. We obtain

ror Jx el lg] -1 ox W) Ly (jalx/gﬁ) + Lldxhlgr Ly faclg)? <

< e fdxlvyl® - ZQ‘SAX.(‘}I?(AXAH/_E.IJX/?/% [vR]*  geColtt?)

To verify [6] is than sufficient, by [3] check the following:

[7]
_ 2
..(e-;)ng3-Ag,- eSdlgl*(494) + efa’X/gz/?(YZ‘f’i) + bffa’x /34?.%{1&/«342{30

But this is eguivalent to

81 _(ena e n(bm) () y-4 50
L

4

Since V= A¢/¢ :“(Vaﬁ){-AJ%@), we have just to verify the

following

(e-1) (-A +-C—_%V) + ) .éi = ~/oéz §f :

This was done 1in Proposition 6.

/(]
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Remark 1.

In application of the Rosen’s lemma that we have seen,

we always verified the inequality

we verified -@szﬁééc"v“"h/'

in a "strong sense”, i.e.

and then we used the

boundedness of V- with respect to Ho“A, V- being in kb-

5.4 The probabilistic method

We want now show another criterion due to R. Carmona

(see Ref.[cl ). It’s originality resides in its

“probabilistic approach” to the proof of the inequality of

the Rosen’s lemma.

In the article of Carmona is prevailing the probabilistic

approach. He use the "Kac average" and with respect to a

class of potentials V= V- Vo with V;mesurab1e and with

. P d , - :
Voel +l pﬂwxﬁzh he define strongly continous semigroups by the

Feynman—-Kac formula.

Since the Feynman-Kac formula works for potentials 1in the

A

Kato c]ass:‘ V=Vi-\L V+€Kae,“ Voe Kd

see, the proof of Carmona depends
the Wiener mesure, we’ll suppose V
Moreover we’ll suppose thatH=Ho+V

regularity that we can deduce from

and since, as we’ll
only on the properties of
as above.
has its ground state with

Proposition 1.

d
Let (Jl;XH‘Wy;x@&d) the Brownian Motion in R , 1in the

sense that
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Q=C(RjRY) |, Xg: 22 RY | Xelw)=co (&) wed2

)]
VVX being the Wiener mesure conditionated at Xfeé@d-
Let t%(Xﬂ}) the transition function of the process, Kernel of

the Markovian semigroup &; on LQCRd):

_dly olx-yi?
lof(xl-jja (27{f‘) 2.e X ‘11 /Z'é é?o )(Lé éﬁd

Proposition 8.

With the above assumptions on V, we suppose also that

i) 30{701%/0‘-')&3‘ ‘ such that VXG//(\)&[
-\
WX{[X{?{é Oli . SOLASC{} . 0‘.3-\/.(,(8)'#,)()(,'8)-%){__1 {?_";)\4 q,‘.\/_f[x)-j-bl
o I4letd Rt

i1) SK»,Kz eR such that | +IxX1¥4+Vi(X) 2 K+ Vi )

Then 3d,,d, €& such that

~dog b e AV 44,

and H¢ is a Sobolev generator of index 2 on L2(¢Qdk)_

Proof.

Put  [4leo s Anax [4.1

Since V 1is in the Kato’s class, the ground state is locally

bounded away from zero. So, since {jjeﬂ@i;iﬁkwéd}
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is compact, E(d)fw]ﬁ[qs[g):/g/”fd} is strictly greater than
zero: &> o0

Now we have using Feynmann Kac: c;é(x) 8 /étHsﬁ)/x) =

t
{4’(&” j’dov,L(xam) +JJOV—[X4()}> (v- o o écgohv.()g//?ii)?/

—

e g A (i oa)

T

ot fdo\/ (x4))
7€ Ey {915 FACIN-A } wf(-)}wéd};(zxézw)iw =7Cé>(xé[‘°))>/£(d))>/

t

~Jda VL (X, (
7 e E’(ol) wa.{e 5’3 + (X4 0)) l Wé(‘)}aoéd}z

and using Jensen’s inequality

+tE

t
7€ . &@) £X[°{ yol/) EWX (W—(Xg” JIXA()}<O<>}

— K - X/K
7/<K>,o,\<e(o;1]=7t€ YR /K>>/
HE 1
) € -E(d)-Wx{\xff-)tmso(}&xp% \X/X[mmlwéd] .

-+ s B,k Va(x00) | lxom)wsa}
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Hence we obtain

~dog bix) € - TE ~Loge@y Logwadxeo gt} ¢ Wl «}44

t
. Sol/) .X’dg : Sdz V+(g)+>o (xig). }Dt_ﬁ(zij) <
Ml ed R

€ -tE - begee) 4@ Vo b - Logvof IXe()] <ot}

Buit ﬂQo%wx{lymlooéoéiécL"-(H/X/")

for some Q' , and then
~«Qo%<{>$ -tE —ﬁo%S(\ﬂ 45 ot Ve +a"-//+/',\f/’) £

$-tE-Lg €R) b 4(ava’) (1+m1% Vs (0) ¢

< dy-Veld) +d,

d.| s)(z-(a_lv C\_‘l)

daz ~tE ~dogf@ +L' 4+ x, (ava")
[/
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To verify i) we can take advantage from the Knowledge that V
is a continous function such that:

. . d
there exist a polynomial P. R*—R and costants @, >0

b ¢R such that

d_l'P‘{‘L’ £ v+ £ QQ'P'}' bz

S 2, 24,
with P(x,;---;xd)nzé gy - X Xd
el e

a&‘f“ 4d 70
For this potential the ground state exist (see Ref.BQJ page
56). The control of i) by previous estimates riduce to the

calculation of gaussian integrals of polynomials.
5.5 Convex combinations of Log-Sobolev mesures

Here we want to prove the following lemma, in which we
show that the convex combination of Log-Sobolev mesure is

again a Log-Sobolev mesure. However the local norm increases.

Lemma.
Suppose Mo He are two Log-Sobolev mesure with Sobolev

constants c¢;,c, and local norms ¥, 1 Y2 (obviously we are

65



in the situation of Definition 3).
Fixing o € {o;/) , we have that/%sd/ﬁ+ﬂ¢0/5is a Log-
Sobolev mesure with constants

C'—"C\VCZ

¥= WV Y. + K4 Kg = 4trax (-vpo;o(/' *Q; (/—ol)).

R

(L=Sip) it <2 iy 1opi2 ¢ (Bra ) oy ( Spf?) 4250 ()
e I (R, T W I
(oshpdoct <Gl couefpurmgle b () + 2aom ()
(=9 ol 60y @-afoftafectdaflegifo-afpesly o llip) 4+ ()
PR s = g o evenfjival +g (o) (§p7) +

b (S0 (3087) o0 (S f Moy ) Buct

* (SWWM(SW) “"”(SW??)@;@ (Jr1?)=

=l () = (51 g 2 o [y (0 - o
= (St dog (b4 ) 200 i) g e S pifyp) +
= (S0 (Spt) 4 kSl e enn (gt ey tm0)
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Thew -

S’r‘?z@"fﬂozé 2.05[4/[7#/2 + [fﬁjﬂe)@g/fﬁf?) +2(Y«V)’z+}2gc_g). fﬂfzf
< 2e et (5ep) by (10p7) g

< =aC, vy

Ya= Mivy, 4+ K
2 vV ¥ d/g Kd/?_:_el.mo\x ﬂ@aa;—éo;vﬁfd)).

/1)

67



PART 2
LOGARITHMIC SOBOLEV INEQUALITIES

FOR INFINITE LATTICE SYSTEMS
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INTRODUCTION

In this second part we’11l study some recent criteria due
to B. Zegarlinski to decide when a Gibbs mesure satisfies
Log-Sobolev Inegqualities.

We want to remark that the interest about hypercontractive
semigroups originated just in studies of infinite dimensional
problem, as the problems of Quantum Field Theory.

E. Nelson showed (see Ref.[N1] and [MW2].) that operators
built by second gquantization of contraction operators are
bounded from L} to L? for some F:>2 (i.e. are hyper-
contractive). Using these result Segal, and then Simon and
Hoegh—-Krohn (see Ref.[}+“K] ), showed the se1fadjointnéss and
the Tower boundedness of operators of the form Ho*V@there Ho
is the free hamiltonian of a bidimensional field theory and
V(g) 1is a cut-off potential of type PO#E . However just
recently, with the work of E. Carlen, D. Stroock and B.
Zegarlinski, we have at our disposal methods for (L-8) for
Gauss-Dirichlet from on infinite dimensional space.

In this perspective many wor in the seventies about intrinsic
hypercontractivity of Schrédinger operators are not of own
interest, but they seen to be steps toward the solution of
infinite dimensional problems. Only on the middle of
eighties, with the works of B. Davies and B. Simon (see Ref.

[04 27 and [pA-S1 ), was possible to see the whole fecundity
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of an approach with Logarithmic Sobolev 1Inequalities to

problems as upper and lower bound of kernels and
d

eigenfunctions of elliptic operators on domain of R~ , or

estimates of eigenvalues of Schrddinger operators.
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CHAPTER 1

GIBBS MESURE AND DOBRUSHIN CONTRACTION TECHNIQUE

1.1 Local Specifications and Gibbs Mesures

The set of the Gibbs mesure is specified when a Local
Specification is given. To be precise let S be a Polish space
and L (lattice) a countable set of sites. The elements of the
product space{L= SL, i.e. by definition the functions w: L—=>S§
are called fields or configurations. Since S 1is a Polish
space (separable complete metric space) so is-fL with the
product topologes, and is compact if S is compact.

In order to define on.L a family of m-algebras that we need
we consider for each Acl a projection PA=—Q'—“>SA‘ as /-)A{w)s LlA .
This function is continous, since the topology of . is the
product topology, and can be used to define the @ -algebra Z/\
on{: as the smallest one for which Pn is mesurable (on SN we
consider the Borel U -algebra). We’ll denote ZL as Z, . Biside
the family (2/\) (AclL ) great importance has the ¢ -algebra
2005@9&-}2/\‘: of “events at infinity", called "tail field".
We can say that its elements are mesurable outside each
finite region A.

Now if fH a mesure an (IL;Z) then we can condition with

respect each T -algebra of the famﬂy(z,\) (ncl finite) and

obtain a family of "stochastic kernel” Ep from(—Q;Z/\C) to (7).
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With this is mind we define a "Local Specification” EE(EA)(AC:L

finite) as a family with the following properties:

a) for eachwe E\(wi):(Q;g)—>R 1is a probability mesure
b) for eachAeXl E,(iA.n—>R is 2a° -mesurable

o) it felctie. f s 2 ¢ -mesurable) : ExCi{)=Y

Alwi )= iE/\(‘O}dw‘) L) )

(e
d) A
When we are dealing with a kerne]EAnﬂxE}—9@ we’ll write also
Eni%w' the function that takes a 2, -mesurable function fo ,
and give us an Z/\C -mesurable function E,\A? defined by
(FAD) ) = ERP = SEAlwidw)-f(w).

e
Sc by EWEX we denote the composition of this functions.
If £-(E.\(AcL Fm7e) is a local specification we define the set
N
G(E) of the Gibbs mesures as the set of mesure /& on (12;23)

such that the D.L.R. equation is satisfied:
EE/\=)’\ YAc L finite .

In an other may we can say that G(E) is the set of mesures M
such that its conditional probabilities with respect to the
sub 7 -algebra Zj,/\tis EA

The crucial fact is that G(E) doesn’t need to be a singleton,
a situation in which, we say, a phase transition occours.
WhenEAP is a continous function any time that /)is, we say
that E has the “"Feller property" and this implies that the

function M(L)sHI~> HEre M (L) (probability mesure) 1is
f M
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continous 1in the weak topology. Since ML) 1is a compact

convex subset in the space of all mesure and G(E)- ,QL J{f*‘ rE ’”}

EINITE
the Schouder-Tychonow Tfixed point theorem, tells us that
G(E)+ &,
If 8 is not compact some additional reguirement on

specification is needed. From the definition it’s easy to see
that. G(EF ) is a convex compact topological space and the
theory of the integral representation of Choquet, of the
elements of G(E) works. In particular each Gibbs mesure/«égﬁ-j)
can be represented in terms of the extremal elements of G(E):
the "extremal Gibbs mesure 2 G(E)".

A fondamental property of the extremal Gibbs mesure H€ 9§[E)
is that they can be caracterized as the elements of G(E) for
which the "tail field" Z}wis trivial: Ac oo -—"‘-7/1(A)e{’0i/} .
Hence any function "mesurable at infinity", ?ezoo, is M -
a.e. constant with respect to any extrem Gibbs mesure }463§’/E)
and dim Lb(rt\:l Pl.

In Statistical Mechanics one build Local Specification
starting from an "interaction"” ¢ , i.e. a family (?Sx) (X c L
finite) such that ¢x€2x.¢ is called differentiable if 525)(1'8

C'¥X. The "interaction energy in the region /A< L is defined

by:
’ U/\S Z. ¢X

Xan# ¢

Then one choose a "single spin space mesure” f on the space 8

and, putting FA:L%/\? for Ac L, on defines:
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—-U/\(GA® (/UAC)

dEY (Gro G = OLF/\(C”‘)e

Jdpu (3,). & alEnm e
S/\

& JZ%C(G&C)

c
. . AG . A
where Jlﬁé is the Dirac mesure on § in the point l,c € $

~ C
(we took .Q=3L=S PR }). Often one speaks about the mesure E,\‘w

as a mesure on S" referring to

OJ. F/\_ (5,\) e- U/\ (L:),\QCJAc)
Zn (wpe)

SN ON R IR
Zp (wpe) = fO/IDA(‘;") € $ )
SA

~ Lo o .
In what follows we shall indicate t?@ as E, &L

1.2 Dobrushin Uniqueness theorem

The Tfollowing criterion of Dobrushin has the advantage
to be very general about the nature of the space S and
provides also the decay of the correlation function for the

unique Gibbs mesure.

Proposition 1.
Let S be a Polish space and E a Local Specification.
Let’s define "the Dobrushin interaction matrix” (Cg)qags

follows:

©) ez aup{ BBy il « woud fear] el

. A .
Then if %Lf;wzﬁ(@ )Q' Y&eLor at ieast ; Q;)' <ot <A \V‘J;GL
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Then #g(f)=i

In proof of the Dobrushin theorem (see for example [Gorss],
[Lanford] the central fact is that the condition (D) implies
the strong mixing property of the semigroup (TA)ueﬂv on Q(Jl)

generated by the operatorTéB%“EF‘El - This property 1implies
not only the unigqueness of the Gibbs mesure but also its

representation in terms of the strong mixing semigroup (TWOMGJV

Az Lo T e 1 e o € ()

AN 7O

As we’ll see in the next Chapter 3, this miking property will
allows us to carry the Log-Sobolev property for a mesure from

finite volume to infinite volume.
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CHAPTER 2

DIRICHLET FORMS FOR INFINITE LATTICE SYSTEMS

2.1 Introduction

In recent years there was on increasing attention to the
theory of Dirichlet forms on infinite dimensional spaces.
Mainly for application to the Euclidean Quantum Field Theory
where the infinite dimensional space is sometimes the space
of tempered distribution JWQRd) (see Ref.[A‘R&] ).

A paralilel problem, but technically simpler, arise when we
want to consider semigroups (operators, forms) on the space
of all configurations of a statistical systems as (L= 5t
where L is an infinite lattice and S is a "good space”.

At our knowledge the problem was studied firstly by the needs
of the theory of the Stochastic Ising Model.

Recently, 1in the paper[bﬁi] , Deuschel and Stroocek proved a
more general result.

In this chapter we want to show these results without proving
them, in order to have a precise background for what we shall
describe in Chapter 3.

We Timit us to the case where S is Remannian manifold because

the case S=ﬁu—@ is completely similar.
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2.2 The theorem of J. Deuschel and D. StroocK.

vt
Let’s choose a family (X‘L}l of vector fields on S such
1 v
that X'(x),-.--.., X(x) span TS ¥xeS . For sel m=(u;jm)eN"
A_f Ary m r K
ser Xoc-—'()(;) 0 rsiet o (X;) ‘and 1M Zm;  where X} is a field on
L= _

}—th spin space.

Let C{(L) the space of continous functions onJlsgLand @a731)
the space of functions whose restrictions to finite subset /N
of L are e” on S/

Define

DW= Pl Ml ey Zy 5 16l gy <4 Ve 27

6L 1¢lm¢an

and the operator

Lps=7" ¢ (Vau(e‘uép}), PeDIL).

§sL

We can now state the following:

Proposition 1.

) peGE) < Jg;é)*{)'l—‘é=§§5r\(%f’v9> Psed(L)

2) there exist a unigue Markovian semigroup ﬁ; on C ()
(the space of continous functions on {2 ) with the

property that

t
Pep= 9+ fds ALY 50 PeD(L)
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3)

4)

5)

D(L) is P-t invariant and Y ¢N there is a Km ¢ o too)

such that Koot

189N, ke 1, oo PeD (L)

for each ﬁGS(E) there is a unique strongly continous

. S . . 2
semigroup P,g of selfadjoint contractions on L (/1) such

that PP<Pd Yiro Y ec(n)
HEIGE)if and only if RP— <{>>ﬁ in L*(p)
and if this 1is the case then P;P—-—? <{>>/’( in Lg[/{)///
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CHAPTER 3
THE THEORY OF ZEGARLINSKI FOR

LOG~-SOBOLEYV INEQUALITIES ON INFINITE LATTICE SYSTEMS

In Part 1 we saw that the (L-8) property behaves well
with respect to the product of mesures: if the mesures H{ and
Yy on R”‘ andl&M&satisfly (L-8) with costant ¢ and € then
s0 does pn®V on R&@Vuwith costant ¢ = max(qncu) . Since Gibbs
mesures of Local Specification coming from on interaction can
be considered as local perturbation of the "free" mesure,
there 1is a chance that the inductive property 6f (L-8) with
respect to product of mesures can be generalized to Gibbs
mesures. Anyway the method we are going to describe deals

with general Local Specifications.

3.1 Criteria for Log-Sobolev Inequality: continous single

spin space

We want to consider aCi—LocaT specification E=(En) (A c L
finite) on the spaceJl=SL where S is a complete smooth
Riemannian manifold and L 1is the lattice (for examp]e-zdcfb/)-
The two main qualitative hypotheses we require on the Local

Specification are following:

Ay ¥iel, Ywe () Elsatisfy (L-8) with a constant
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indipendent on « and w
B) there exist matrix(Cq)(fﬁeL) whose elements are non

negative such that

for ? differentiable. (‘G is the gradient operator with
respect to the site(}GL).
Because the function E{?Zdoesn’t depend on the site < ¢/ we
can choose Cd&=0 V<slL.
We remark that conditions A) and B) deal just with the
kernels Eé‘o and nothing 1is required on the kernels E/({d for
finite regions AcC L.
The following lemma is the first step towards the proof of
(L-S) and it enable us to understand why conditions A) and B)

are reasonable.

Lemma 1.
Assume that A) holds and ]et/4 be a Gibbs mesure fifgyéf).
For any sequence~({b~ui—~>l. the fTollowing ineguality

holds:
(L0 MQB"%P\Z Co‘(ﬁlvqp{z‘i‘ :Z\" )’1 IV,L'K“ (Eék HELlpz)%l’z)-}'l{‘j@‘;EﬂoP&)’%(Eé;‘Ei, 2)//2_

2
for Q positive differentiable with gzz /‘[Vlf/ LHoe

Proof. M)ﬁ’ﬂg? : ﬁE[,\D?Lg?= co EL;IVL,W%’ rx[(ELl{)Z)Qag(Eq PZ)//zJ: Cott Wé,?\z-kr
+ p [Cee, p?) Qc%(EL,PQ)V’]
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so (L1) 1is true forM={ . By induction:

Ar=2

Pl P ool 1T T, (B, P97 4 FI(E.;;,-EL, Py (z, ;-EL,,DZ)"ZJS
¢ o ([N E 1 Vil P B s L 5,

oM O i) T4 (Bt Yo, ]

Before to pass to the proof at the following two lemmas we
want to discuss briefly condition B).
To go TfTrom formula (L1) to (L-8) for/"egﬁz'_)we have to

establish two estimates in the right hand of (L1):

(L71) plva g+ 'é_lﬁ'lvlw CRADI C-g_ﬂ vl’s CEEY)

for same o©< C ¢ oo .

w1y | (BeanEa ) oy (B B 99 ] & ()0 (up)"

(L"1) will be verified if the sequence of operators EL;;%*'E(,',
possess a mixing property (see [Schaefer]) with respect to
the wuniform topo]ogy:E%—-.EL‘Pl—-ar«{)M-v;oo uniformly on . .
Such a mixing property is used in the proof of Dabrushin
Unigueness theorem (see for example [Lanford], [Gross] and is

derived from the following estimates:
(B”) SAI(EL?) &4 (Q) + CLAXLW) (}’J(.P); %}:{W{w)—{)(w‘)l.- ‘“"%"“’//a‘}

and (Cfi&}q'eL is the Dobrushin interaction matrix.
\ I
The condition (B) has only same minimal change with respect
to (B’), but we’ll obtain from it the same mixing property.

On the other hand in order to verify (L’1) we need a control
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on the gradients of the projections Ed¥z. The same condition
(B) contains these estimates and (L’1) follows by the 1its
remarkable interation property.

Besides these qualitative considerations we have to add some
guantitative one, otherwise the mixing property will not
always holds. As in the Dobrushin theorem the condition is
about the "smaliness” of the matrix (EQLJGL . We require the

following:

(©) Y ank aax (B %) Ze) < 1.

yel

Before to prove the main statements of this section we have
to fix the sequence¢lN~—»Z_ on which we will iterate
condition (B).

In order to have the mixing property we choose a sequence
that visit any site of L infinitely many times. It’s
precisely this averaging property of the sequence that will
imply, besides all above considerations, the mixing property.
Let’s choose on order 2 on L and an 1ncreasing seguence
[Awlani  of regions such that YAwL and <€M\u ,feNm, wem= <3
Fixing kM:;jj/\Ql OAd=cardina1ity of Ay ) we define the
sequence 4 IN—> L as follows:

kK e[1; K] «xe A, and 4;54',5 > K¢k KK'e [iik]
R e[kl e A BNG e $ G0 D wen ke [uiiur ]

So when K goes from Ka to Kuy, since KusmKa= Vel | <% visits
all sites of Nm+t following the order of L. In the short

sequenhce 1h~~;¢k“1 the sites of A appear in times, the
g 1
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sites of N4 (« times, the sites of N2 @-N-times and so
on. When a-=° the number of times that the sequence visit
any site tends to infinite.

With these positions we may investigate the mixing property:

Lemma 2.

Let 1 be an extremal Gibbs mesure ¢ 9§%¢&ﬁ’ CL Local
Specification satisfying condition A) B) and C) above. Than
for the sequence fékikémj we have:

Lo EZM”'EQ~?=¢4? uniformly on .

AA T 02

for £ e D (L) (42{ D‘elp' 2.2 %/@2)

Proof.
In order to manipulate expression (B) 1let’s fix the
matrices gg K

(L) } AN (4) ]
Al RG]

(1]

ij K::.L

« VA

then (B) will appearlag(aﬁzyélﬁ g;_AJK'(t*1D“?l )z

Now let’s define ?IPE(E?Zyé
b

(BB p)s 2 (Bor B 02)%- . U P

From (B) by interation we have

((. N . .
[ ac.(EL;{"EL,PZ)I/zl': ( d ?CK“?QN 4 E:C"L A{}‘:((ELK 1;))}( T ?L,flz)

in such a way we have

/
4

J

R RO I

(t;‘). !
-1 €L 2( EZK-J

- eg;}_ AL'JK' (l i T 'Tl} M L Eiy) éJxEGLA‘}“
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L

< J%..A(:;) J(:::l N (Elkl %ka?‘;cz ZI'H) U 2 A(LK) o (ELKE(KI 93;‘_?[“_?2'(/“”2):

4 k Jn-l
K dn-t }K

< (lu) (z“;J ' () (w) \
< SL)- J;«}n- A (E(uEén-: El/lg.):m) o\Z! /Z'Lu 22:[30:?! 28 (LK%%H}

From the definition of the matrices K%)and B it’s not
difficult to prove that:
(‘:' L;( o
(1)

<4 o (1) (-4)
F CaeBey  + By

So we can show that if <= <k

nalay T

B . [ c(>- . °-9 C' 2

o= ’('KL < o % e ¢ l
44 M_ & (rm}— -1 k} dun Tl e 4
ok Jg <P ece L
Actually the second sum is over all sub—chain{eriu«}of the
chain {11~'4ﬁ}
Now if K=Km Formui and-{elﬁk the number of times f[P'Jkk}
visit 1 s CM~K+Q and this produce a factor in the Tlast
) (ar~v4+ 1)

formula proportional to ¥ , that go to zero when mw—z<=.
1f %7 depends only on a finite subset of L we can estimate
Vw2, 1)) with [ 9%les  and obtain that sup AAAF19¢(EQ~--

|74
EQW)1~7oas m-—202 | We obtain the same result for general ?ﬂ
approximating them with “cylindric® functions.
So all~-derivatives of the functions of the sequence[?afaﬁ”g%f}(
(kew')  tend uniformily to zero and then the possible
accumulation point (in the uniform topology) are functions
that don’t depend on finite subset Ac L. They are mesurable

at the infinity, i.e. with respect to the "tail fie]d"Z&»,wLZ:“

FIMITE
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From the definition of the Local Specification we can see
that the Kernels Ec‘are Markovian operators in the sense that
they are positive preserving and E1=4 | so if-f is a bounded
function the seguence {{k} is uniformly bounded : ”%L”’°S‘”f[°o
This with the above property implies existence of an
accumulation point in the uniform topology for the sequence

{ht

Now if QG” and Cz@ﬁ are two accumu]atioﬁ point for the two

subseguences {%@},{%ﬁ} we have: [4(CJW)=]1(ééﬂo%&g):
:%&¢dﬁﬂz~%@¢45@~E@ﬁ=4%Wﬂf=ﬂ/)7

"(Ccz(?\)z S ’-{,P .

So t/((éx(l?))‘-rlj():ﬁ(cz(f)). But since M is extreme, the tail field is
trivial, so functions mesurable with respect to it (as Q??}CEOZ
are) are constant.
This means that CK@):CzGﬁ:ﬂ(PJ H —a.e. thus we have proved
that the only accumulation paint in the set of all classes of
functions H-a.e. equal is the constant /4f {or its <class)
this finish the proof.
[/

Lemma 3.

In the hypotheses of lemma 2 we have the following

estimate:
T 21 T, (BB 5] < 00 1741
J?G D(L) (nee D-Q-P.J:AA 2.2 G&a}\tu 2).
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Proof.

From the following estimate (proved in Lemma 2)
/ (Kl NYPAYA
Ig“‘*‘ (E‘“ E" 1 Z B<x+/} ( 23 Em /Dd 701 ) ‘

2
g
. . . E-Dp2\"
we obtain, squaring both sides: lbmu({in' EQP ) <

) () 14 _ A
< :/T—; 84k+1}.8¢k41}'.<&-¢;¢m54} [dez) 2 (Et'x' "E‘: [DJ'PIZ) 25

é‘% § Lxué B(K) ( K’ E(,bé‘?l i ELK Ecl{ad“)

=( B (Z B E "'Ez,J")a'W)

Taking the expdation of both sides with respect to M €2>§AE7

we have
bt ( (i) (kl )
. L Eop)e .
5 \ ear (E‘K Eqd ) 1 < JZ ch;},u})'{? 84@(} '/b{[ad {9/
()

The sum of the elements of any row of B does not exceed
L (k) _t (k)
;g.xa and so for Kue Z: Biﬁd <(I-¥) Developping 2; ELKHJ

(n)
in terms of the matrix (C"g) we obtain ch ;; ‘8:-14“0" 4
-t Lt =C
< (1-x) and the Lemma. e
/7]

Combining Lemmas 2 and 3 we obtain the Log-Sobolev
inegualities for an extremal Gibbs mesure whose Local

Specification satisfy condition A) B) and C).

Proposition 1.

Ltet [E be a Local Specification satisfying conditions A)

B), C) and let < be an extremal Gibbs mesurelﬂéw)gﬁEL Then

we have:
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(L-8) M)z_@g?é Go(\*Kﬁg[f//J + (/1/2)%} (ﬂfg)'/z fé D &) :

Proof.

Combine Lemmas 1) 2) 3).

1/

3.2 Applications to models arising in Statistical Mechames

General criteria for the 1inspection of hypothese (A)
are often too strong because they require for example the
boundedness of the potentials Ue uniformly with respect to
<€l (see Part. 1).

Because of this we think it’s better to verify hypotheses (A)
in concrete example when the criterion of Bakry-Emery, for
example, holds.

In the next proposition we give a general criterion fro
hypoteses (B) restricting the "game"” to the case of compact

single spin space.:

Proposition 2 - Compact single spin space

Let’s consider a C¥ -Local Specification arising from an
interaction Sﬁ as shown in Chapter 1, and suppose that the
single spin space S 1is compact. If condition (A) holds with
the Sobolev constant G, then the fo11owing estimate for (B)

is true:
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Proof.

Let QE()(g)(the domain of the Dirichlet form: see

Chapter 2)
Then (E. 9 ? differentiable and [Y@(Eg?q) } l&g_w_gﬁ_

2 (, pZ)’/z
Moreover V}E,_'.Pz: EL'V&{’2+EL'({)2} VJUL') where  F, (70270(—-(](_)
:EL({)%VJ ) (t‘-c?)(t-v,} ) is the truncated <correlation
function of Q and VU . Hence we have : 1\7(; E;{)zl < \EC'V}PZI-f-
+1E((¥%§QU[)\, Now we evaluate the 1last two terms

separately:

| BT = VB2 PWidl < 2 101 M 2ge,y- \l%?ﬂua =9 (B 2) (/51 /VJ[)/Z)/2

To evaluate the second term we use the indentity:
£ (1Y UJ:E‘ el (1016, (Gt - V,U.())

where L(®E. 1is the product of the mesure Er and Eo with
integration variable equal to w and w respectively. From this

we have:

| Ec(5%ug) | ¢ L Eco . 19%w)- e || Gu, - vyue@)| <

4
2

< 1 (AA'/blc\ !WUJQ}\—V&U:CCJ‘)\) E(@EC/P{L‘))-FP(&)“ P(w)-{}[ﬁ)z <

2
(%!’ IVL}UL(“) VU (w\)D (E P (E @E (f[w) 70[&5» )

<4
2
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Since Eg satisfy (L-8S) with constant Co so does Ebﬂfi'with
the same constant. Hence the Poincaré inequality is true for

the form arising fromE/®E, with mass gap equal to 1-

[~

Since <-P(w)- ?(5)>5(w)®é(‘3> = Q-@é{f[w)_?ﬂ/{w): o

we have:
, ! )
|03 %)l < L (24| pa-wen)) (67" et Ecor 1900 ilvz-fmz)] 2
£ CO!/Z.(% l %Ut(wﬁv‘)ucﬁw‘)l)-[ELfe)’/'2 (Ec/ chplg)!/z

Finally we obtain: 1V}[EL'_PZ){/2[ . ,%’EL’{?Q)<

P4 : £
2(E4Y"%

Sgﬁjﬁ‘z [2(E¢PZ)%MJV;W)% C’.:/"" (ﬁ‘HVMCW)-ﬂUL@}W‘[ﬁ[QP/Z) 1/2]

and this conclude

the proof. ///
Example 1: Stochastic Heisenberg Model

This model was 1nvestigatéd by Halley and Stroock in
EVSé] , where they proved with other methods that Log-
Sobolev inequality holds at sufficiently high “temperature".
Here the single spin space is the sphereﬁESM in AQM+Ifor nm 2
with its natural Riemannian probability mesure P - When we
discussed the method of Bakry-Emery we proved that F satisfy

-l
(L-S) with Sobolev constant ¢Co-= CM‘Q

(<o Gatenls (k)i o0
g g

The statistical model 1is defined by the following
nearest—-neighbrhood interaction(¢ , where we have inserted

the "inverse-temperature" parameter B :
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R (e wj) 4? x={cid]  1d-4l=1 L}ééLEZC{ o7 1
CPKZ

ol ﬂeewx/&e

. . {
(C')Rm« indicates the scalar product 1in R >

, . . Zol .
The potential at the site <€ ; UL' b

Ui 2 by = Bl F 0

1§-cl=t
Xt e 2 J e_u‘—.
Applying the Bakry-Emery criterion to the measure dEgE ?51_77
pe~«

we see that, because the Hessian of U is zero, the mesure E.
satisfy (L=8) wuniformly in 4'€Zr°[ and W€ (SM)Z{[C'} with
constant Co= UAﬂy‘ (U, is linear in the variable quES“),
To calculate Cj we see that VjUi= B

vector in the tangent space ZWS“ . And so: Qg:%jaﬁéiﬂbﬂﬂudw)—

=V, o= Lelf pllie-willi=cip <f [egl=d

and C(y=%otherwise.

—t
Than we obtain for Y = max(A“b§EQ34rELQQ in condition (C):

¢ 3

Y= b &%a \36;/2 = 2dp et - Zd'B(M“‘)-%'
L c
ty-L1=t

From this we see that the Stochastic Heisenberg Model satisfy
(L-S) at sufficiently high temperature (or sufficiently small

inverse temperature):

%
< —Zja'(&“() .
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To see how we case satisfy hypotheses (B) in the non-compact
case we restrict attention to a specific class of models.
This mainly in order to verify the condition (A) without too
restrictive general assumption on the potential Ug .
We choose as single spin space the linear spaceﬂQ’(§=4Q(but
the method apply word by word toﬁ€44«70. Let’s consider a
real matrix (Qg)qgezﬁ with constant terms on the diagonal:
GCoo= Goovo ¢ngﬂ The umperturbed mesure at each site is the

gaussian mesure:

y - Goo x 2
dp )= %)Z.JX-Q : xe/R=F5.

This mesure we have shown satisfy (L-S) with constant Co= Goo .

The interaction ?5 is a two body interaction.
L wewy < x={ci4l |
55)(; o f KI5 2 | X| = cardically of X
\ o X=[<}
4 -V
where V:R7R is a C -function such that € eL(P). In order

to define the interaction potentials Ul we have to restrict

Zoé
the space of configurations from n=R to:
S g, cseo Ve 2 .
.D_ngjweﬂ..‘&sz& < é} .

On this space we consider a Local Specification Eﬂ}defined by

the interaction potentials:

Vs T, Gavus; + V(w))
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Now we want to prove the following proposition.

Proposition 3.

Suppose that :z:f V'x)s st Goo and ?{"é"}; [Vi) <= . Then e
is a C{—Loca1 Specification on {lg , the mesure Ez&satisfy (L-
S) uniformly ﬂﬁ[éZ#and&Jélewith a constant Co ¢ Goo-ttt?® and

condition (B) hold with the following estimate:

ok e[ Gylenl. (1o ok up [Vi-ViEa)])

X4 eR

Proof.

Since V is C% Egis a ¢’ _|ocal Specification. To check
condition (A) we have just to apply Bakry-Emery criterion and
note that the Ricci’s tensor is zero.

To verify the last point we take the proof of Proposition 2
with the following changes: E. (#5%V:)= Ec'({ﬂ; C%;‘wJ: GLJ‘E&@? o) =
= G- Goo -[E;mﬂ- E (03 \/'):[ =Gy .@".[2 EDVSf - E % v’):(

k
[E50)] < l@q/coo![z (ecff (el (M Vi-viy) l)(EaPZ Ye )"

17,(2%] < IAREW ((Eé?’)‘/z-(E;lVJ?V)’/‘Jr[Ex’@fv«*w”) )

2AEpY% Z(ELQ)
¢ (B P)E 4 el (1S VeV ). (2 1ypp2)

Py (02
The essential point in the proof is E{(f,?wi)va-l'[ECV‘P‘EL({)I'V)]

where we used integration by part in the (v variable.

[1]
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Remark 1.

Unfortunatly this proposition does not apply to models
of statistical mechanics coming from discrete approximation
of models of Enchidean Quantum Eield Theory with polynomial
interaction (see Ref.E?R‘S] page 191). In these «case the
approximation of the operator ~4+iu? by "finite-difference
operator” provide an approximation of the “Free Gaussian
mesure” by a Gibbs mesure of the Local Specification
constructed with a matrix (@4) as above. But the polynomial
interaction 1in the theory gives rise to a local term V of a

polynomial type.

3.3 Criteria for Log-Sobolev Inequalities for descreete
single spin space and applications to the Stochastic

Ising Models

In this section we prove that the criterion given 1in
Section 3.1 for the case of "continous"” single spin space 8§,
can be extended to include cases where S is descreete. For

definiteness we consider

C= ZQ = f'ﬁ’l}‘l}

We saw in Part 1 that any probability mesure on S satisfy
(L-S) and that the Sobolev constant can be choosen uniformly

for a set of mesure(fh)der if exist constantsotms<HM<d guch
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thatO<N“$ﬁ4@&$r1<i VaeI | This property as we shall see
simplify partly the work.

We have already fixed in Chapter 2 what we intend for the
Dirchlet form in this setting where instead of the gradient
operator §7 on a Riemannian manifold we have now the "finite

difference operator” .
TN R P T Y S

The method we are going to prove works on the class of Local

7!

. &
>R e Z

Specification coming from a “"Gibbsian interaction” 95

_ | Pxll o < + 0
I $ll= ?:tb%L Il o <

—ud-ti= L5
and from the uniform mesure [o ©O% [+H‘Q 3F4[tl}“V{ d 72
This mesure satisfy (L-S) with constant 1.
The arguments we use to prove (L-8) for this “discrete” case

are completely similar to those used in Section 3.1. Instead

of condition (B) we can use this weaker one:
!
. . V 2 4 . N2 é
(B”) IB}<EL?2>2) & OZ"(EAlB}M )Z+ CCJ'(EA'IBC'?[ )
for a constant £ Jd4ee
Conditions (A’) and (B’) (changing‘vl with BJ) permit us to

state the following analogue of Proposition 1 in 3.1.
Proposition 4.

LetF, be a Local Specification satisfying condition (A)

(B’) (C). Let p be an extremal Gibbs mesure f4623g%25)
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Then we have:
g f € a2 co (6T Ep) 1 (1p Vo (177)% ccve b lE)

The following simple result tell us that for Gibbsian

interaction the condition (A) is redundant.

Proposition 5.
Let ﬁf be a Local Specification coming from a Gibbsian
(%]
interaction 95. Then the Kernels £, satisfy (L-8) with a

constant Co<* indipendent of €L and e 2. .

Proof.
In Part 1 we saw that any probability mesure on S:{“fﬁ}
satisfy (L-S). Moreover we have for Gibbsian interaction

that:

o< (e ES D) (e 4 e L

zuw)-‘ ( ~2)l¢l !
Since the bounds ([+¢€ , \[+€ are indipendent of
—éGL we have that the Sobolev constant can be choosen
uniform.

[l
Now we «can restrict our attention on methods to check
condition (B). We shall prove the following analogue of

Proposition 2.
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Proposition 6.
Let £ be a Local Specification builded by a Gibbsian

potential qs . Then condition (B’) holds:
[

18, (54| < o (EIBE)S ey (E,180417) 7

for any function:gil‘“>éq and with constants

oy i o 12 (| ¢l

o @CA ‘e “ Baucuoo. Co'/l- HBAULHO\Q

Proof. of Proposition 6.
In order to use the fundamental theorem of calculus we

introduce the following functions and mesures: -, € Eﬁru]

:?,3&5 A D +Bip- 24 Ag=T-By =2 %44 = Byf
ay O:L

UL.,'S‘)E A}Uﬁ' B}UL' oY
a5

18,0l jo
#lG0lee )

"()L‘,A' E;a.
Eguz foe T = |2En e
St e™Vens d E
Note that {r-p . We start Calcu1at1ng | By E.£2] -

|8 E: 2= _L| (Ed?) gyeui= (EFY) 03_,,{ - 55% MJEVHP@A&)}
gdA&[Q E. 4)@4 31) Y’ig)-\- EA R G)’b) 3’34 ‘l’bﬂ
+\

$ gd/s& \ 4y ('?43 aM P’saﬂ + 12' SIAAQ ‘ t&,'éJ' 704}' /JJ' UL,AJ)\

<

~

The first term 1n the last inequality gives:

2 1\
gdé [Eus?, {)0634)?«5)‘ gd’ﬁ M,% " (Em, 43 D ) < (@-u}(%}) ¢

+

% UBJULU ( [&C}N )t’/{ ié)) (,{/4;?4‘;)/14

I~
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. Qq.ll &MH«; (EL /@.;/)/2)!/-2 [E{A‘np? //Zé /%,; &) awd Q‘%O/AJ)S

£

¢ . Ly C/[BUCI /

¢a.9% ¢ AR Edgp)E

To evaluate the term—L AO{ IAJP%l %Jl we use same method

used 1in Proposition 2 and the "tricks" above. At the end we
41

btain: | ; Yo N80 | o . \
crran ngl’% iE<,'fs)' (f%)f%(}dﬂléZV‘AJ'[ECY)Z) fet M- (“_}"/Bi-w) \_840,(0)/)

d g
) l/ . {/ !
: [(%)?(Ec 1B:91% )4 2 (f,,/gép/z)/z]_
Combining the two result above we have: iBa E-Qq
I8yul A
YN {2'/2~66 Wl (a1 1 % 18U (BHEE

. [(%)%.(EJBLQP)%JVQ( EJBANQ)’/Z]}

Q . . .
Using the property[%9=2Aﬂ-BP we obtain the final result with

b el Vo 2liE,0dle fbd%@,ﬁo;‘.@!}
R R (1427 220U A oy 7’

BU)_ByU, ) D

U'A, O—d(

oL <2

To obtain the estimate that appear in the statement of the

proposition we have to use H@M%Ua# “¢U and'?Sbfgégﬁ"%é%EU£2“8J££LQ,
’ /¢

Applications: Stochastic Ising Models

In the series of paper DA*SKX (=16 Holley and Stroock

| | i
studied a class of stochastic process on the space (L= [“'%
with the property that every Gibbs mesure of a finite range
interaction is a stationary mesure every such a processes.
So the equilibrium states in Statistical Mechamics (The Gibbs
mesures) can be seen as the equilibrium states of a

(stochastic) evolution on (LY . They firstly caracterized this
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processes as solutions of martingale problems whose data are
given 1in terms of a finite range (hence Gibbsian) Local
Specification. In order to investigate the 1ink between the
ergodic properties of the processes and these of the Gibbs
mesures they computed the generators of the semigroups of the

processes. If‘ﬁ anf)the related Dirichlet forms are of the
. . a 2
following form: %/ﬂ-}p}:d’ezzdc}./g&p/

where &4 N—=2R are definite
coefficient functions (solutions of the “detailed balance
equation” see Ref.[H'SiJ ).

For example the C{é can be choosen to be:

c -_(‘~((_ B}Q'U&
$7 2 Ao‘ Q-UOL

d

} p=I-8y ¢€ &

!
We want to prove that the Dirichlet form g.satisfy a Log-

Sobolev inequality.

Proposition 7.

Suppese H is an extremal Gibbs mesure/ﬂ<99§2@/of a

Gibbsian Local Specification . Then if
Y= Aok (A/Z/‘-"’;QJ;/Sf(/’;C’Jg) < 1
)/2 ?ﬂaduclloo

[
where Q4=Cs € «ﬂ&QHuthen(g’ satisfy (L-S) with a Sobolev

constant dz-CaU"er.

Proof.

The proof follows from the fact that since 94 is
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o
: Ve
Gibbsian exist a constant @»>© gych that: o< & £Cj <1 7 Z .

2
Now since Y<! Proposition 5 imply that the form é?ééebzgs /é@fy

satisfy (L-8) with constant co{i~xT2 and then - ~on
Zi , 2
%y - (g ()" coli-a™ 22 16,41° -

- ' 2 -2 cy . -2 )
e (T BN eoln) - 2, S el L (-0 E g p) y

re /

3.4 Finite range translation invariation Local Specification

and Log-Sobolev Inequalities

We want to close this section investigating condition

(B’) and (C) in the high temperature region.

Lemma.

Suppose]AG 3%@% where E is a finite range translation
invariant Local Specification and é?@ is the related
"Specification at temperature ?%"

In this situation if ﬁ is a sufficiently sma11‘f1 satisfies

(L-8).

Proof.
Since E@ is finite range and translation invariant it s
Gibbsian for any B>o. Moreover since /h%(éﬂé ”¢%/ we have

by Proposition 6 that
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2 e iRl ep- gl

wB“ BdULuw < @o%-e ﬁ//BJULl/W.

( Co being the Sobolev constant of any fﬁd: see Proposition
5). But for<}6L fixed uBchuw is different from zero only
for a finite number of¢el . Because of the translation
invariance the same is true for J' if we Tix t‘GZ-. So we can

say that exist a constant Ko such that:

el 8
‘e CO%EWII(H. <l oLl

From this expression we can see that if

§>o is sufficiently small Y<!| and Proposition 4 apply.

[/

3.5 The connection between the theory of Zegarlinski and the

Dobrushin Uniqueness Theorem

As we saw in last sections the technique of Zegarlinski
is very chose to that of Dobrushin. But we were able to prove
Log-Sobolev inequality just for extreme Gibbs mesure. Many
arguments suggest that if a phase transition appears ( ]%(E>7

>|) then no exponential convergence to equilibrium should
hold. In particular this would imply that (L-8) holds only if

there is a unique phase (see Ref. [F2] for arguments based on

Large Deviation theory, and Ref. [D2] for recent

investigation). Whith this in mind,

in order to compare the criterion of Zegarlinski ad that one

of Dobrushin, we formulate 1in the next proposition a

condition that 1is a little bit stronger than that one of
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Zegarlinski in Proposition 2, but implies also the unigqueness
of the Gibbs mesure. We Tformulate the result 1in the

“"continous"” case and use notation of Section 3.1.

Proposition 8.
Let’s consider a Cé—tocaT specification coming from a
potential ¢ when the spin space S is compact.

Suppose the following estimate holds:

(8") |V EI € (EoIVl) + Cy (Bl pl)

and condition (C) on ¥ holds too.

Then condition (B) holds and there is a unique Gibbs mesure.

Proof.
For the unigueness we note that our conditions imply

IGED ¢ Bl vey B vl ¢ | VilootCy | vifllw =

[VEN ¢ Mol 4wl o

We can 1imit us to prove the

Proposition just for cylindric %9. Since (=0 we have:

§ I E D w < &va&w% - (- 5%).;1&74/)//00 < 20Vl (= 3)-1Vp L
4

This is precisely the starting point of the proof. of Lanford

in EL] , of the Dobrushin theofem where instead of “YQ?qu

There 44 SSCP)EZUAF{)¥ﬁOL-PhuU]:(dcbu‘o%yyéﬂi} .
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In the same way we deduce that there is a sequence <, -~ el

such that

MZ[% le L,fuaor‘o

K> el

Since S is compact there exist,rl?osuch that

J}(f V@?n So we have:
&;‘I Z (ﬁf (ECK EC/ ?p)
Having in mind that supf - inffﬁc;;‘x‘_ cgz,(-?) (see Ref. ) we

may apply word by word the first proof. of Lonford and deduce
the uniqueness of the Gibbs mesure.

We now verify that our estimates imply condition (B):

‘v.(EL_PQ)‘ IV&E ‘P‘ = 1 E i ? l Ce E <
s (B SEgTE (P)[ PP+ 2 Cy P‘M?]

(Bl 4 e (B 10:12)2.
i

Corollary.
In the same hypotheses of the last Proposition, if 3“41
then a unigue Gibbs mesure satisfy (L-8S) with Scbolev

constant  co{i-%¥Y "

I(

Example
As esample we take the situation of Proposition 3 of

this chapter with V=0. Then an integration by parts shows

that B (995U0)= G Eo(Biwd) = G/ Gus EcOf
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WEN B oy E,ap

with C(—A = GCA /G'oo .

11/
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