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1. Introduction

- Any differential inclusion may be interpreted as a system whose evolution is not
uniquely determined, i.e. as a non-deterministic dynamical systefn. From this point of
view, it is natural to look for some way to distinguish among all solutions those which are
more probable, why and how much. A possible way to answer these questions might consist
in a multivalued analog of stochastic caleulus, which would require to accept nowhere dif-
ferentiable functions as “solutions” in some generalized sense and to choose some measure

in the (enlarged) set of solutions.

We preferred an intrinsic approach, The questions above may be answered relying
exclusively on the structures naturally related to diﬂ'erential inclusions. In fact, measure
spaces may be substituted by metric spaces and probability by likelihood. The latter,
introduced in [B] according to an idea of A. Cellina, is based on the measure of non—
compactness. This choice, although arbitrary, may be justified observing that in any
complete metric space compact sets are negligible in the sense that they can be approx-
imated (according to the Hausdorff distance) to any degree of accuracy by sets with a
finite number of elements. Therefore, the use of measures of non—compactness may be

interpreted as a generalization of the idea of relative frequencies.

In the present thesis the ideas above are applied to the differential inclusion

(P)

{ #(t) € v(t) + r(£)8U
te[0,T)

z(0) =0
where QU stands for the relative boundary of a compact convex subset of R™,

A natural way to disinguish among the different solutions of (P) is to consider the point
reached at time T'. This leads to introduce the map assigning to any point in the attainable
set of (P) the set of solutions reaching it. Even in this simple and apparently very regular

case, this map may fail to be continuous. More precisely, it is the lower semicontinuity
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that may be lost, as will be shown by an example, while the upper semicontinuity holds
in general. Notice, however, that the results obtained hold also in the case 8U is replaced
by U.

Using these results, a formula allowing the computation of the Kuratowski index of
the set of solutions reaching a given point is estabilished. Next we estimate the same index
for the family of the solutions passing through a finite number of given points and of the
solutions reaching a closed subset of the attainable set. All this allows also to obtain an
integral formula for the metric likelihood based on the Kuratowski index « and evaluated
in any LP. The reason for the choice of a instead of Hausdorff’s 8 (as considered in [B]
only in the case of L) relies mainly in its being more intrinsic. That is to say, if Ais a
bounded subset of a metric space (M, d), then aar,a(4) = e(a,4,)(4). In other words,
the quantity a(4) may be defined independently from the metric space M, using only the
set A and the restriction to A of the distance.

After Chapter 2 that contains the notations and some preliminary results, Chapter 3
is concerned with the qualitative theory. The quantitative part is deferred to Chapter 4
while the most technical lemmas are collected in the last Chapter 5.



2. Notations and Preliminary Results

In any vector space V normed with || || v the following quantities will be of use:

du(z,y) = lly—=z|y (point-to-point distance)
dm(z,Y) = inf {dy(z,y):y €Y} (point-to-set distance)
diamy (X) = sup {d,(zx1,2:): 21,22 € X} (diameter)
d*v(X,Y) = sup{dv(z,Y):z € X} (excess)
dv(X,Y) = max{d*v(X,Y),d*v(¥,X)} (Haudorff distance)

where z,y € V and X,Y C V. By (z,r) stands for the closed ball about z with radius .

Let A be any bounded subset of V; its Kuratowski measure of non—compactness is

defined as

A can be covered by a finite
av(A):inf e>0:

number of sets of diameter < ¢

The main properties of ay are:

av(A) =0 <= A is relatively compact
BC A <= ay(B) < av(4)
av(AUB) = max{av(4), av(B)}
av(ANB) < min{av(4), av(B)}
av(4) = av(eo(4))
av(4) < diamy(4)

I

where B C V is bounded and eo(A) is the closed convex hull of A. The Hausdorff measure

of non—compactness, referred to in the introduction, is defined as

A can be covered by a finite
Bv(A)=inf<{e>0:
number of balls of radius < ¢
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and its relation with the Kuratowski measure is Sy < ay < 28y (both the inequalities
being optimal, see [FM]). As already pointed out in the introduction, ay(A) depends
exlusively on A and on the metric structure, while Sv(A) depends also on how A is
embedded in V. In fact, to evaluate By (A4) it is essential to specify the set where the
centres of the balls have to be chosen (see [D], pag. 42). General references about measures

of non—compactness are [Sa] and [BG].

Remark that when V = R® the subscript V will always be omitted, || -|| denoting
any norm in R™. In some proofs the choice of a particular norm, the Euclidean one for
instance, may lead to some simplifications without implying any loss of generality. In those

cases, such choice will be explicitely underlined. In particular, when the Euclidean norm

will be of use, the Euclidean scalar product shall be denoted by a dot.

For any real interval [a,}] equipped with the Lebesgue measure m, LP({a,b]) (with
p € [1,00[) is the Banach space of the measurable functions f: [a,5] — R™ such that the

b 1/p
1 fll zopabpy = (/ﬂ Hf(t)llpdt)

is finite. ACP{[a,b]) denotes the Banach space of the absolutely continuous functions

z: [a,b] — R™ with derivative in LP([a,}]), normed with

usual norm

2]l Ace(aspy = (@) + I2le ey -

Whenever S is a subset of ACP([a, b}}, § is the set of the derivatives of the elements of 5

that is to say
S ={feLP(la,b]): Iz €S, f=¢} .

All along the thesis, I stands for [0, 7] with T' > 0 and, for brevity, we put ACP = ACP(I)
and LP = LP(I).

A decomposable combination of two functions f,g in LP([a, b]) is any function of the

form fx +gx ,where x4 is the characteristic function of a measurable subset 4 of [a, b]
A AC
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and A€ = [a,b]\ 4 is its complement in [a,B]. A subset D of LP is decomposable if for any
two functions f, g in D, any of their decomposable combinations is in D. In the spirit of an
analogous definition given in [HU], a decomposable set I is said LP-integrably bounded
if there exists a function ¢ in LP such that Ifll < for any f in D. Given a subset 4 of
LP, de(A) is its decomposable hull, that is to say it is the smallest decomposable subset

of LP containing 4.

Concerning the theory of set—valued maps, general reference will be made to [AC] or
to [HU], the former for what concerns continuity properties, the latter for measurability
properties. Given a set—valued map F: ] — P(R"), the set of its LP-selections will be
denoted by Sel,(F"). Such a map is called LP—integrably bounded if there exists a function
k € LP such that ||F|| < k a.e. in I, where ||F|| (&) = | F@t)|| = sup {||z] : = € F(2)}.

If K is a convex set, 0K and ri K denote its relative boundary and its relative interior,
while extr K is the set of its extreme points. For the definitions and properties concerning
convex sets, we refer to [Ro]. Moreover, a set K is said strictly convex whenever K =

exir K,

- The following assumptions on (P) will always be assumed: pis fixed in [1, 00[, » € LP,
r is measurable and r(t) ¢ [Pm,7a] 2.e. in I, for some rps > r, > 0. U is a non eﬁnpty
convex and compact subset of R". Finally, 2:{v,r,I) denotes the subset of ACPF consisting
of the solutions to (P) and Az the attainable set at time T.

These regularity conditions allow to pass to a simpler but equivalent problem.

Proposition 2.1:  There exists a A > 0 such that (P) is equivalent to the normalized problem

(Pn)

y'(A) € OU
{ A€f0,A]

y(0) =0

In other words, there exists a bijective and continuous operator A: ACP([0,A]) » ACP(I)

transforming the set of solutions to (Pn) into the set of solutions to (P) hijectively. Further-




more, for any pair of solutions y1,yz to (Pn), it holds that

-1 1— %
(21)  m * vz — willaceqoap S 14v2 — Atillaceny STu” vz — v1llacepo,a])
(22) (4y)T) =y(A) +w

Proof. Let p(2) = [, r(r)dr, w(t) = J¥v(r)dr and A = p(T). Define

(Ay)(2) = y(p(t)) +w(t)

Remark that £(Ay)(t) = +()y(p(t)) + v(t) which shows that if y € ACP([0,A]), then
Ay € ACP(I). The invertibilty of A follows directly from that of p, which is due to p > 0.

Continuity follows from (2.1) and to prove it, simply compute

dy2 (P(t)) . dy (P(t))

P
t
dt dt d

T
Az — Aoy = ]

A
= [ ) - s e )T 4

and (2.1) follows via the bounds on r. (2.2) is trivial, with w = w(T). Q.E.D.



3. Qualitative Results

Aiming at a distinction among the different solutions of (P), it is natural to introduce
the set—valued map
S: Ay — P(ACP)
¢ —{ze€X(v,n,I): 2(T) = £}

and, according to the convention above, also the map

S: Ar — P(LP)
¢ — {f € B(o,n,I): /If=£} .

Purpose of this chapter is to study some qualitative properties of §. In particular, we
show that it is upper semicontinuous in the ¢ sense (see [AC] p. 45) from Az to ACP. An

example shows that stronger continuity properties require further assumptions on U.

The chosen norm in ACP makes derivation (i.e. the map assigning to a function in
ACP its derivative in LP) an isometry. Therefore, it is equivalent to consider S and §.
Moreover, in view of Proposition 2.1, it is enough to study the “normalized” version of (P)

withv=0andr =1.

What follows is the first part of Lemma 1 in [02]. Isolating it is useful in view of the

next generalization of the same lemma to any LP.

Lemma 3.1: Let K be a non empty decomposable subset of LP and Q = Eﬁ”{fI fife K}.
Call e an extreme point of (). Then, given any € > 0 there exists a § > 0 such that for any
pair of functions f,g in K, the inequalities ||e — L1 f|| €6 and|e— [, g| <& imply that for
any measurable subset A of I, || f,(f — g)|| < e-

Proof. Without any loss of generality, this lemma may be proved in the case where -1l

is the Fuchdean norm.
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If Q is a singleton, using the decomposability of K it is immediate to prove that also

K contains only one element. In this simple case the conclusion of the proof is trivial.

Assume Q is not a singleton, hence there exists a ¥ > 0 such that 9 < €/2 and
Q\B (e, V) is not empty. Observe first that clearly e ¢ Q\B(e,?) and since e € extr(@) it
follows that e g €6 (Q\B (e,9)).

Therefore, e can be (strongly) separated from to (Q\B (3,19)) by a hyperplane of the
form {n € R*:p-n = c}, where p€ R", ||p|| = 1 and ¢ = sup {p-mneQ\B (e,9)}.

Introduce § = p- e — ¢ and the half-space H = {n € R*:p-n > c}. The separation
stated above implies that

(3.1) QNB(e,d) € QNH C QN B(e,) .

Call y the characteristic function of A. Both the functions wy = f+(f—g)x and
w_ = f —(f — g)x arein K, hence their integrals are in Q. More precisely, due to (3.1),
to [le— f, f]] < & and to ”e-—fIg“ < &, both f,w; and f;w_ belong to @ N H. If
Jil(f —g)x] > 0, then f;w, is in H, otherwise Sl(f—g)x] <0and ffw_isin H. In any
case, || f,(f — 9)x|| < 29 < ¢, thanks to (3.1). - Q.ED.

Remark that both the previous lemma and the next proposition may be proved without
any change also for the case of functions defined on an arbitrary measure space. For the

purposes of this thesis, this wider generality is useless.

Proposition 3.2: Let K C LP be non empty, decomposable and LP—integrably bounded.
Define @ = & { [, f: f € K}. Call ¢ an extreme point of Q. Then, given any € > 0 there
exists a § > 0 such that for any pair of functions f,g in K the inequalities He - I; f” < § and
le = Jyg|| < & imply that ||f — gllye < e
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Proof. As before, the use of a particular norm is useful, without leading to any loss of
generality. Here, the choice [|¢|| = max{|¢,],...,[¢n|} shows that it is enough to consider

the one dimensional case, i.e. n = 1.

Fix € > 0, the previous lemma ensures that for any & > 0, with £ < ¢ /2, there exists a
6 > 0 such that if ”e - fIf” < § and ”e - fIg” < éthen f, |f — g| < & for any measurable
subset A of T.

Call ¢ a function in LP such that || < ¢ for any k in K. Let

Ay ={t € I:|f(t) - g(t)| > 1}
A< ={t € I:|f(t) — g(t)| < 1}

Clearly,
- P _ T P
[1f — gllge -/:42 |f — gl +/A< |f — gl

52"[42 [fpl”+fA<lf—gl-

For the former term in the last line, observe that

m(A?,)=/;>1£LZ|f—gISE

hence, due to the absolute continuity of the integral, this term may be made smaller than,
say, €/2 if € is small enough. The latter term may be made smaller than & < e/2 i § is
chosen properly, due to the preceding lemma. Q.E.D.

A simple consequence of this result is that an extreme point of ¢ is the integral of

only one function in K.

Notice that the requirement of LP-integrable boundedness may be avoided in the
case p =1 (as shown in [02]), but is strictly necessary when P > 1 as shown by the next

example.
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Example 3.3: The set K = {f € LP([0,1],R): f > 0} is decomposable but not LP-in-
tegrably bounded. 0 is an extreme point of its Aumann integral @ = [0,+co[. Define
fa=nXjon-7, forn e N \ {0}. 1t is straightforward to check that fﬂl fo =n~P and this
quantity tends to 0 for n that goes to infinity. Nevertheless, || fnllge = 1 for any n. This
shows that the functions f, are far from the null ‘function, although fol frn is arbitrarily

near tc 0.

Proposition 3.4: S and S are HausdorfF continuous in any extreme paint of Ar.

This follows directly from Proposition 3.2. Passing from extreme points to extremal

faces, we have the following

Lemma 3.5: Let L be a face of A and call H the smallest affine space containing L. For

any 7 in the relative interior of L, set &, = d(7, H\L). Then for any € > 0 it holds that

(el
. {1 £P —  d*1e(SP(n),57(¢)) < ¢ .
€ ~ n|| < min {5511 ) m%} -

(For the definition of face, see [Ro] p. 162)

Proof. The idea of the following procedure consists in modifying the function f» in order
to obtain a function f¢ in S(¢) whose LP—distance from f; is “small” and independent

from &, The chosen modification is “large” but on a set of “small” measure.

a) Consider the following continuous parametrization of the half-line leaving from ¢

in the direction of the vector £ — 7

p:[0,1{— H

A —"f'f"i—i“‘x(f—ﬂ)-

Due to the convexity of L, there exists a unique A, such that ¢(A.) € L. From the
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definition of &,, §, > 0 and §, < d(n,e(M)) = 1—_—};:- 1€ — 7], i-e.

1
1-X < = =] .
n

b) Let f, be in § (n). Applying Liapunov’s Theorem (see, for example, [Ru], p. 113)

we infer the existence of a measurable M, such that

/ fo=Am and m(M,)=\T.
M,

Set

1
fe=tixy, T e,

For a.e. tin I, f¢(t) € OU since the fact that L is a face of Ag implies that %L is a face

of U. Hence, f¢ is the derivative of a solution to (P). Moreover,
Jre=[ f+ [ Re)=ra+ 2t am@ -y =
re Y I\M_T(P ) TTTTON ) )

so that f; € §(¢). Furthermore,

=]

dre (fr, 5(8)) < 1fy = Fellpe = ( /I \ne I fa — fel!") , < diam(U)(T(1 - A.))

Lo

<eg

concluding the proof. Q.E.D.

Theorem 3.6: Let L be a face of Ay and ri I be its relative interior. Then S|z and S'l HL

are HausdorfF continuous.

Proof. The lower semicontinuity of § |riL Is a consequence of the preceding lemma. The
upper semicontinuity follows from noting that éy may be bounded from below by a (strictly)

positive constant whenever 7 varies in a compact subset of ri L. Q.E.D.




12

The situation is as follows: the set—valued map S, defined on the compact convex set
A, is continuous on ri Ar and on the extreme points of Ap. On the other extremal faces
of positive dimension, only its restriction to the relative interior of the face is continuous.
The next step consists in the attempt of “glueing” all these continuities together. In some

cases it is possible.

Proposition 3.4 together with Theorem 3.6 yield

Corollary 3.7:  If U is strictly convex, that is to say OU =extr U, then § and S are HausdorfF

continuous in all Ar.

The next result allows to widen the class of those compact convex sets for which S

and 5 are continuous.

Proposition 3.8: Fori =1,...,m let U; be a nonempty compact and convex subset of R™.

Denote by S;(£;) the subset of ACP consisting of the solutions to

z;(t) € U; (= € R™)
z;(0) =0
zi(T) = &

Assume that the maps § are continuous. If U = Uy X ... % Ur,, then the map § is (uniformly)

continuous.

The proof is straightforward.

For the case of the particular decomposable sets here considered the last two results
are a generalization of Lemma 1 in [02]. From the single-valued continuity in the extreme
points of Az we passed to the Hausdorff continuity on all Ar. For more general decom-
posable sets, the continuity of the map § (e.g. U a generic compact convex subset of R™)

need not be true, as shown by
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Example 3.9: Let n = 3. D = {(z,9,2z) € R*:22 + 3> = 1, z = 0} is the unit
circumference on the zy-plane and define 7 = @ (DU {(1,0,-1),(1,0,1)}). U is the
usual example of a compact convex subset of R® such that exir U/ is not closed. Put
T =1, so that Ap = U. In this case, both the maps S and § are not lower semicontinuous

in 7 = (1,0,0). In fact, the function

= (1,6,~1 1,0,1
=0Tk 0

is in S(n) but is far from any function f; belonging to $(£) with € # n and £ in the
circumference D. For any such fe, || fe — f;ll» = 2 (in the Buclidean norm), although the
distance between 77 and ¢ may become arbitrarily small.

Remark that in the example above, lower semicontinuity is lost in spite of the extreme
semplicity of the decomposable set considered: it is the set of the LP-selections of a costant

set—valued map with compact and convex values.

In the example above, only lower semicontinuity is lost. This is a general feature, as

shows the following

Theorem 3.10:  The map S is upper semicontinuous on Ar.

Proof. Without any loss of generality, we may restrict ||-|| to be the Euclidean norm
in R™. This is useful since the proof makes use of some ortogonal projections and scalar

products.

Fix n in Ap. By Theorem 3.6, we can assume 7 € 8.A7. Moreover, we can as well
consider 7 € ri Ly, Ly being a closed extremal face of Ay. Lp may be supposed of positive

dimension, since otherwise Proposition 3.4 would complete the proof.

Fix ¢ > 0. Let &§ be the modulus of continuity of .5'| riLp in 7 relative to £/2. Set
£1 = 1 min{e, 5T/}, Let ¢ € Ap and fe € (). Consider I, the projection of minimal
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{Euclidean) distance on L = -}—LT and set ¢ = [l o f. Then:
i) g isin LP;

i) for a.e. t € I, g(t) € L C OU;

iii) f;g € L.

Moreover, when || f¢ — g{l» < €1 we have

(3:2) ||e—- / gll < [1e= ol ST lfe = gle <3
and
(3.3) lo = fellge < 3¢

It is now necessary to find a § > 0 such that:

€ —nll <& implies || fe — gllpe < €1

Let H be a hyperplane intersecting U only along L, (for the existence of H see [Ro], p. 100).

Claim: For every v > 0 there exists a v{v) > 0 such that u € U and dg(u, H) < y(v) imply
d}_:;('u, L) <v.

Proof: Proceed by contradiction. If it is false, then there exists a sequence {u;:j = 1,2,.. .} of
elements of U such that dg(uj, H) < 1/7 and dg(uj, L) > v > 0. By the compactness
of U, there is a subsequence of the {u;} converging to a u, € U. Furthermore, u, € H

by the closure of H but dg{us, L) > v. > 0. This contradicts the choice of H.

Let h(t) = du(f(t), H). Clearly, h is measurable and A(t) € [0, diamg(U)]. Furthermore,
denoting by k the normal to H external to U with ||k|| = 1, it follows that h(t) = k-
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(£n - fe(t)) (the dot represents the usual scalar product). Let Jr = {t € I: h(t) > T}; by
Proposition 5.1 it follows that

m(Jp)g%£h=%£k.(%nuf5(t)) at

= 2k (7~ ) = zdn(&, T H)

1
(3.4 < liE=l

Now, choose:

Whenever ||{ — 7||5 < §, we have

Ife = gllgn” = fr L 22D ]J ds(fe, LY’

I‘E; _
[damz(0)) ~

<uVvPT + %—[d_izu;mE(U)]P2

where we used the claim to estimate the first term and (3.4) for the latter.

To conclude the proof, it is enough to observe that

due (fe, (1) < due(fe,9) + dre (9, 5(n)) <&

since both the terms on the right hand side are estimated from above by /2, due to (3.3)
and to (3.2), respectively. Q.E.D.
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4. Quantitative Results

The-principal aim of the present chapter is to derive some quantitative informations
about (P) from the previous qualitative results. Preliminarly, it is useful to generalize
some of the results in [CM]. The computation of the Kuratowski index of both the set of
solutions reaching a compact subset of Ar and the set of solutions arbitrarily near to a

given function y follow. Finally, a fully explicit example is given.

4.1. The Kuratowski Index and the Diameter of Some Subsets of LF.

The results of this section hold in the case of set—valued maps defined on an arbitrary
o—finite measure space with values in a separable Banach space. This generality is useless
for the scope of the present thesis. Nevertheless, the proofs are carried out so that the
simple “tipographical” substitutions of I with an arbitrary o—finite measure space and of

R™ with a separable Banach space lead to the general case.

It is straightforward to prove the following necessary and sufficient conditions for

LP-boundedness:

Proposition 4.1: Let F': I — P(R"™) be measurable with non ‘empty closed values. Then

the following statements are equivalent:
(i) F is LP-bounded;

(i} |F|| is in LP

(iii) Selp(F) is not empty and bounded.

The following proposition gives an explicit formula for the computation of the diameter
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of the set of the selections of a set—valued map.

Proposition 4.2: Let F: I — P(R") be measurable, with non empty closed values and
LP-bounded. Then

|diam F[|;, = diamge (Selp(F)) .
(where ||diam F|, = {[,[diamgn (F(£))]7dt}'/?.)

Proof. Some easy calculations give a first inequality.

diamgs (Sel,(F)) = (sup {ff 1f =gl fig € SCIP(F)})llp-
(/r sup {||f —g|i”: f,g € Selp(F)})”"
< [/I(Sup{uf ~gll: f,g€ Selp(F)})P] 1/p
|

i/p
< | [ (e dle = ol 2,5 € PO o

=[Flls -

To complete the proof, it is sufficient to find for any ¢ > 0 two functions f.,g. in
Selp(F) such that ||f, — g.flp, > |[diam F|l . — ¢. Let {fn(t): 7 € N} be a countable
subset of Sel,(F) such that F(t) is the closure of the set {fn(t): n € N}. Define

p:IxR" =R

(t,z) — sup [|£(2) —=|" .
nEN
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By means of this function it is possible to express the LP-norm of diam F:
|diam Fll,? = [ (aup (e — vl 2,3 € F@}) d

P
- j ( sup sup ||f(t)--z.u) dt
I \zeF(t) neN

P
- / ( sup  sup Ilf(t)—g(t)ll) dt
I \ g€Selp(F) nEN

= [z (e EORFOT I

g€Sel (F) \neN

-_-_—/ sup (t,g(t))dt
I

gESel,(F)

=  sup ]Itp(t,g(t))dt

gESel (F)

where to get the last line Theorem 2.2 of [HU] was used. Choose g. € Sel,(F) such that

‘/pr(t,gg(t))dt 2 sup /Itp(t,g(t))dt — -Z— .

gESel (F)

Let p € L! be positive a.e. and such that |, 1+ p = /4. Introduce the sets

Ap = {t el: (p(f,g;(t)) - ”fn(t) - gc(t)”p < P(t)}
By = Ay

Bo= 4\ |J An

m=1

The sets {Fy:n € N} are a measurable partition of I. The LP-boundedness of F' implies
that there exists a function k € LP such that ||F|| < k a.e.. Let N € N be such that

fUcu p. k < €/4 and, finally, introduce the function
N41 ™

N
= a T e -
fe=x Bf Exsug

N1 ™ m=0



Clearly, g. € Sel,(F') and moreover

15 - gellgs? = [U el

a

N

P
> /B We-s
N

]

23 [ Teto.e) — pto)]

Z‘/Iﬁa(t:gz(t))dt—Q/ ::.I_lek“‘/;P
£ e £

> fesszimj;fp(t,ga(t))dt ~17 2771

= [|diam F||g,” — ¢

which completes the proof.
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Q.E.D.

The following result generalizes Theorem 4 in [CM] in two different ways. On the one

side, the same formula are proved in any LP, analogously to the preceding proposition. On

the other side, the requirement of decomposability is relaxed: any (non empty) intersection

of a decomposable set with some closed hyperplane satisfies the same equations.

Proposition 4.3: Let § be a bounded decomposable subset of LP(I). Let H1,...,H,, be

m closed hyperplanes in LP(I). Then

a];p(;)(Sﬂ HN..NHy)= dia.mLp(I)(Sﬂ HN...NHy)

Proof. Since the proof is a straightforward generalization of the theorem cited above, we

follow the notations of [CM] supplying only the details needed to obtain the result.
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Replace S™ with the set S"* = {z € R™*! :):"+1 |z:|F = 1}. Let ky,...,km be elements

=1
of L% (g conjugate to p) such that H; = {¢ € LP: [, ki - ¥ = h;} for some suitable h; € R,

i=1,...,m.

In i), modify b) to

.
[ arau=ar 1117 du
Ala) I
[ talr du =2 [ ol du
Alc) I
/ k;-fdpzapfk;-fdy i=1,...,m
Ala) I

/ kg-gd,u.:apfk;-gdp i=1,...,n
\ /A(x) I

b) for every a € [0,1] <

Change the definition of the p; to: pj(z) = |20|” +... + |2;/°. As a consequence, the

properties of the partition N;(z) become

Jf HfHPdu==1zdpJ[Hprdn

Ni(z)) I

[ ol du= s [ lol? dn
N:(z)) I

j' hf@mhf/hiw
Ni{=) I

f ki gdp = Im;[pfk; - gdp
Ni(=) I

The remainder of the proof is obtained by simply replacing in [CM] || - {2 with || [i1-7
Remark that the two new conditions imposed on the A(a) ensure that the values of ¢,

arein SNH N...N Hy,. Q.E.D.

The result above allows to compute the Kuratowski index of the set of all the selections

of F'. In connection with it, it may be of interest to compute the Kuratowski index of the
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minimal family of selections of F' through which the whole F may be described. It is
known that there exists a countable family F of selections of F such that Fi(¢) is the
closure of {f(t): f € F}. In [CC] it is proved that F may be chosen relatively compact,
i.e. app(F) = 0.

4.2. Likelihood Estimates

Remark that due to (2.1) and (2.2), the computations for the case v = 0 and r = 1
lead to estimates for the general case. Therefore, it is enough to consider only v = 0 and

7 =1, while the dependence on the interval will be of use. Hence, let TP(I) = £7(0,1,1).

As introduced in Chapter 1, the quantity asce (5(¢)) may serve as an estimator of
the likelihood of a given point £ to be reached at time T by a solution._of (P). In the same
way, if K is a compact subset of Ay, apcr (5 (K )) evaluates the likelihood that a point of
K may be reached. In view of the results of the previous chapter, these two quantities are

related.

Proposition 4.4: let K be a compact subset of Ar. Then

apcr (S(K)) = :21;2 aace(5(¢))

Proof. The inequality aace (S(K)) > supgey aace (5(¢)) is straightforward. To prove
the opposite one, by the upper semicontinuity of §, it follows that for any & > 0 there
are some £;1,...,€n in Ay such that S(K) C Uiv Bace (S(é:),€), so that aace (8(K)) <
max; oacp (S(E,)) + 2¢, the proof follows. Q.E.D.

Therefore, it is enough to study the function apce 0 S: € — aace (S(E)) The
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following proposition is of key importance.

Proposition 4.5:  For any £ in Ar, it holds:

aace (5(€)) = are ($(€)) = diamze (5(6)) = diamace (S(¢))

Proof. The first and the last equalities follow from the fact that derivation is an isometry,
as already remarked. To prove the middle equality, notice that 3(I) is decomposable and
that S(E) = E(I) A HyN...N H, where H; is the closed hyperplane H; = {f € LP:fI fi=
¢}, for i = 1,...,n. The proof ends by applying Proposition 4.3.

Q.E.D.

The next theorem summarizes the main properties of aace (S (£)).

Theorem 4.6: There exists a function A:U — R such that:

(a) For any ¢ in Ar, eace (5(£)) = A(F£)T?.

(b) § continuous at ¢ implies A continuous at 3:£; the continuity of the restriction of § to

the interior of an extremal face L implies the continuity of the restriction of A to +L.
(c) 0< A(u) < diam(D).
(d) u € extr U if and only if A(u) = 0.

(e) If U is symmetric, then A(u) = A(—u) and A(0) = maxy A = diam(U).
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Proof. For any real & > 0, let A = kT and consider the two boundary value problems

( (t) € OU v'(\) € 8U
(BVP) { z(0)=0 tel0,T] (BVE): { 9(0)=0 A€[0,A]
2(T) = ¢ y(A) = k¢

The transformation 4: ACP([0,T]) — ACP([0, A]) defined by (Az)(A) = kx(%)) is linear.
Furthermore, when restricted to the set of solutions to (BVP), A turns out to be a bijection

onto the set of solutions to (BVP),. Besides, if z is a solution to (BVP)

”A-":“Acv([o,A]) = k' III”ACP({n,T;)

Set 8(¢,T) = aacr(jo,17)5(€)- The previous remarks about A imply that &(k¢,kT) =
k*/?&(¢,T). Choose in particular k = 1/T, define A(u) = ®(u,1) and (a) follows.

(b) follows from Proposition 3.4, from Theorem 3.6 and from the Hausdorff continuity

of the Kuratowski index.

To prove (c), observe that for any £, aace (S(£)) < aace (E(I)) = are (Z(I)). Since

ﬁ(I ) is decomposable, its Kuratowski index may be computed via Proposition 4.2.
(d) is a straightforward consequence of Proposition 3.2.

Passing to (e}, assume U is symmetric. The correspondence ¢ — —z is a bijective
isometry between S(£) and S(—¢). Therefore, A(%E)'“—" A(—#€), which proves the first
part of (e). Due to Proposition 4.5, apcr (5(0)) = diampe (S(O)) . Define 4: £([0,T/2]) —
5(0) by

(490 =sltx | O =o(T~tx ()

Since A is bijective and ”Agl[Lp(n = l/? HQHLP([U,T/ZD it follows that

diamyge ) ($(0)) = 2'/Pdiamgejo,7/21) (2([0, T/2])) = diam(U)T/?




24

were we used the same argument as in (c) to compute diaml,p({o‘g-/z])(ﬁ([ﬁ, T/2])).

Q.E.D.

The following result will be of fundamental importance in the computation of the
likelihood. Nevertheless, it is interesting on its own since it gives an explicit formula for

the apacoe of those solutions passing through a finite number of given (admissible) points.

Proposition 4.7: Let N be a positive integer and fix tg,...,tn be in R with t; > ;-4 for
i=1,...,N. Define

(41)  Q(&oy---1€Nitay---stn) = {y € ACP([to,tn]): 5 € U, y(t:;) = &, i=0,...,N}

where £1,...,€n are points in R™, Then:

(a) Q(fﬂ:---a&N;th---:tN)%@ > i‘mf‘_l el VT:-'-—"'].,...,N.

(b) i Q(&o,---,€nito, ..., tN) is non empty, then

p 1/p
xACP (Q(&u,...,ﬁN;tu,...,t;\r)) = {Z [A (i: _f:_ll)] (% --t;‘—l)} .

(c) Forfixedty,...,tn, themap Q:(£1,...,En) — Q(é1,...,EN) is upper semicontinuous on
its domain. IfU is such that S is Hausdorff continuous on Ar, then Q is Hausdorff continuous

on its domain,

Proof. (a)is trivial. To prove (b) and (c), assume first that ¥ = 1 and define

£ — o . (=t
ra— T) with (Ag)(t) =g ( T i+ to)

Q(gﬁa’Sl:tD:tl) -t S (
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A is bijective and []Ag”mu) [T/(21 — 10)]*/? ”g”LP({tD 4,])» therefore

aze (Q(&, é15to, b)) = A (61 ) (t — )17

and for any £p,£; in the domain of Q

dre(fto,a]) (@60, €120, 1), Q(Go, £ to, 11)) =

T \'* €1 — &o &1 — &
m(tl"fo) dLP(S(tl“tO) (fl—fuT>)

and the case N =1 is proved.

To prove the general case, put J = [{g,ty[ and J; = [t;1,:[, for i = 1,..., N. Define
L and T as in Proposition 5.2 and notice that

(H Q(El“1!£11 1—*11t )) (§O7£I;t0,t1)

Applying Proposition 5.3, the diameter of the set in parentheses on the left hand side may
be computed using the previous result for N = 1. Since T is an isometry, the proof of (b)

follows.

To prove (c), simply observe that T induces an isometry between the metric spaces
of the closed bounded subsets of LP([ty,tn]) and of Hiv LP([t;—1,t:]). So the continuity
properties of Q({1,...,€n;%1,...,EN) are equivalent to the analogous properties of the
Q(€i~1,8i3ti—1,1;), which follow from the case N = 1. In fact, it is easily seen that

Q(£1,€2;0,T) = &1 + S(&2 — £1). Q.E.D.

Let y be an absolutely continuous function on [0,7] and consider the set C(y,¢) =

{z € B: ||y — 2|l < €}. In the spirit of [B], we wish to compute

1133}1 aaACP (C(y, E))
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_ as a measure of the likelihood of y of describing the evolution of (P). The set €' is nonempty
for small ¢’s only for those y satisfying y(0) = 0, and y(t) € U for ae. t € 1.

We have the following

Theorem 4.8: If U is such that A is continuous, § € U a.e. and y(0) = 0, then

1/p
PB’GACP (C(y,€)) = (/I [AGEM®)] dt) = 1A o 9|lys

Proof. For any positive integer NV set ¢tV to be -N’:—T, 1=0,...,N, and denote

R(f}.:fz:---:!EN) = Q(O:&:Eh-“1EN;t(1]Vstivstfi"- :t%)

for £1,&3,...,&n in R™ and with Q given by (4.1).

For N large enough, C(y,¢) 2 R(y(t{v),y(tév), -, y(tN)) # 0, hence

cace (C(y, 5)) 2 apce (R(y(tllv)iy(t?r)v “e !y(t%)))

(Sl (G -}

=1

by Proposition 4.7. Passing to the limit over N and applying Proposition 5.4, we have

lim aacs (C(3:€)) 2 1A 0o

To prove the opposite inequality, set B; = B (y(t‘f\jr },€) and observe that for any

positive integer IV

C(y,e) C U U R(1,-.-,¢nN)

L eB ENEBy
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By (c) of Proposition 4.7, R is upper semicontinuous. Hence, for any v > 0, there is a

suitable net £},...£M™ in B;, fori=1,..., N, such that

U U Bt U U BERE - 60)

£ €8, ENEBN 1=l inN=1

This amounts to
aace (C(y,¢)) 52V-{-ma.x{aAcp(R(E{‘,....,f}’}v)):j; =1,0..,mi, 1= 1,...,N} .

Due to d( f‘,y(tfv)) < €, one may pass to the limit first for ¢ — 0, then for N — oo and,
finally, using arbitraryness of v the proof is completed. Q.E.D.

4.3. An Explicit Example

All the previous estimates depend from the function A. In some cases, A may be

writien explicitely.

Theorem 4.9:  /n R™ define the norm ||¢| = (X1, |&IP)HP and let U = [[}[~ci, i, with

c;20,i=1,...,n. Assumev=0andr =1. Then

n

1/»
(4.2) Alu) =2 [Z e e; - lu,])]

i=1

Proof. Consider first the case n = 1. If ¢; = 0, (4.2) trivially holds. Assume ¢; > 0,

Proposition 2.1 allows to consider only the standard case ¢; = 1. Define

= - d = ~
=X Ty 2 =X "X
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for some £ € Ar = [~1,+1]. Cleatly, fi,f2 € S(¢) and some calculations lead to

Ifa = Allg =2(1 - |€]/TY/»T1/?, providing a lower bound for diampe (S(E))

Take g1,92 in S(€). Call D = {t € L:g1(t) # g2(£)}. Then Jlgz — g1llg» < 2m (D).
Since fI g; = £ and gi(t) € {-1,+1}, it follows that

(43) m@tefgW=-1)="=f  m{{tela®)=+1}="1
for 1 = 1,2. D may be written as
(4.4) D={telg(t)=~1, g(t)=+1}U {t € Irg1(t) = +1, g2(t) = -1}

which implies

m(D) < m{{t € I:g1(t) = —1}) + m{{t € L1 ga(t) = -1} £ T — ¢
m(D) < m{{t € :gi(t) = +1}) + m({t € L:ga(t) = +1}) S T +¢

hence m(D) < min{T — ¢, T + £} = T — [£| and, therefore,
i : v e\ g
diamge (S(€)) < llg2 — gallpe < 2AT - §))/P =2 (1 - ?) /P

concluding the one-dimensional case.

Let n > 1 and fix a £ in Ap. For i = 1,...,n, define S{(¢;) and 5;({;) to be the set
of solutions (in ACP(I,R)) to the boundary value problems

(t) € [—eiy i &(t) € {~ci,ci}
2(0) = 0 t€[0,T] z(0) = 0 telo,T]
2(T)=¢ z(T) =¢

respectively. Observe that

(4.5) diamgz (Sf(fl)) = diamgs (5i(&:)) = 2 [c{-’—'l (i — ]u;I)T]I/p
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To prove the first of these equalities, simply repeat the previous argument replacing “="

with “<” in (4.3) and “=" with “C" in (4.4). The second equality is (4.2) for n = 1.

Call £ = (LP(I,R))" normed with |[(fi,...,fa)lls = (r, I fillze )}/?. Due to the
choice of the norms, there is a canonical linear isometry A between LP = LP(I,R"™) and

L. Clearly,
[Is:(e) < a(8@) < IT 5560

=1

so, by Proposition 4.5, Proposition 5.3 and (4.5), it follows that

n t/p
1n (V;) = dinanga (V) = 2 [z 2 e |u;-|>] 7i/s
i=1
(where Proposition 5.3 has been applied with %(£1,...,£,) = ||é[). Passing to the union
over j completes the proof. Q.E.D.
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5. Technical Proofs

Proposition 5.1: Let f:I — [a,b] be measurable and let c € ]a,b[. Define J. = {t €
I:f(t) > ¢} and f = 75 J; f- Then

1=

c—da

m(J.) <

Proof. Let § € R be such that m(J.) = (£=2 + §)m(I). Then

F= ), “aﬁﬂﬁ\ﬁ
(5.1) > 1~—f::m6)a+(f:;‘+5)c
On the other hand,
2 - (- ) (5)-
Subtracting (5.1) from (5.2) we obtain § < 0. Q.E.D.

Proposition 5.2: Let Jq,...,JN be measurable and disjoint subsets of the bounded interval

J such that |JY J; = J. Define £ =[]} LP(J;) normed with

N 1/p
”(fl""’fN)nc= (Z ”-fi“LP(J.')P) .
i=1

Then, the operator T: L — LP(J) defined by

(Y(fryeoo )@ = fi(t)  forae tinJ;
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is a linear and bijective isometry.

Proof. Linearity and bijectivity are trivial. Due to the choice of the norm in £, it follows

that
N 1/p N 1/p
I(frseees )l = (Z |lf='||r,p(1.-)p) = (Z/J ||f='(t)|lpdf)
=1 i=1 i
1/p
= ([0t )@l a) = TG il
which completes the proof. Q.E.D.

Proposition 5.3: Let (My,d1),...,(My,dN) be N metric spaces. Define M = [[V M;
and assume there exists a continuous function 1: RY — R non—decreasing in every argument

and such that the function d: M x M — R given by

d((z15--,2N), (¥15---,9N)) = ¥(di(z1,31), ..., dn (2N, yN))

is a metric on M. Then, for any choice of N bounded sets A; with A; C M;

N
diamps (H A:) = ’l,b(dla-li (A1)$ ceny d-ia'mMN(AN))

f==1
Proof. Assume N =2. Observe that if By, E» are bounded subsets of R, then

supp(E; x F,) = ¥(sup Ey,sup E;).

This in particular holds for E; = {d;(a,d'):a,a' € 4;}.

The general case N > 2 follows directly by induction. Q.E.D.
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Lemma 5.4: Llet o:UU — R be a continuous function and = be in ACP with &(t) € U for

a.e. t in I. For any positive integer N define tl¥ = -_,';:',-T, i=20,...,N. Then

N z(tNY — 2(tN
zéii’!“m}:*’( (t;;mig :'1)) -ty = /I o (£(2))dt

Proof. It is clear that the arguments of y are in U for any ¢ and N. For any ¢ € I let
N
sn(t) = W, /;_N &(r)dr xr‘N(f)

=1

where IV = [t} ,t][. A straightforward calculation leads to

N N
So (L) (- ) - [otentope
Let £, be the Lebesgue set of z. By the Lebesgue Differentiation Theorem, it follows that
ifteLl.\ Un {t)} then imy_.co sn{t) = #(t). Thanks to the continuity of ¢, this leads
to imp—co p(sn(t)) = @(#(t)) and, by the Dominated Convergence Theorem, the proof
is completed. Q.E.D.
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