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ABSTRACT

We analyse the constraints given by the low energy tests related to Flavor
Changing Neutral Currents on the Minimal Supersymmetric Standard Model and
its extensions. We explicitly show that the Minimal Model “passes” these tests

intact and its non-minimal extensions are severely constrained.
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MOTIVATIONS

Supersymmetry(!) is one of the most appealing approaches to go beyond the
Standard SU(3)¢ x SU(2)r x U(1)y Model. Immediately one could ask why go
beyond such a model, once it is so fantastically consistent with all experimental

available data. Or, why specifically Supersymmetry is such an attractive candi-

date.

Answering the first question is a little embarassing since it is related with
some aesthetic (or philosophical) reasons which suggest that the Standard Model
is not comiﬂete. We could quote some (already very famous) features of the model
which lead us to believe in its incompleteness. There is a large number of rather
arbitrary parameters and assumptions. There is no manner in the Standard Model
to justify the quantization of the electric charge (¢4 = %qe). Why are there three
generations of fermions? Why three colors? Why do fermions have an asymmetric
SU(2)r representation between left-handed and right-handed fermions? Surely
these questions do not have an easy answer and it is also not easy to say when (or
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if) a satisfactory solution to these problems will turn up. Anyway, theorists claim
they are good reasons to go beyond the Standard Model.

Why Supersymmetry is so attractive is a little easier question to answer. It
is a refined tentative of describing gravity in an unified framework together the
others fundamental interactions. Furthermore, it was noticed latter, low-energy
Supersymmetry is able to solve the so-called Naturalness Problem in the gauge
hierarchy(?), as we will see now.

Let us suppose that the Standard Model is the effective low energy approx-
imation of a more fundamental theory (as is evidenced , e.g., by the absence of
gravity in such “standard” approach) which becomes relevant at a scale p;. If we
call the scale where SU(2)r x U(1)y breaking takes place u,, and also consider
that there is no “new physics” near the Fermi scale, then g3 >> s, since exam-
ples of the former scale would be the Grand Unified Scale, Mgyt ~ 10*® GeV, or
even the Planck mass, Mp ~ 10'° GeV, and the latter one is of order the W mass,
mw ~ 10% GeV.

Such a enormous difference between the two quoted scales creates problems.
We may imagine calculating the mass of the Standard Model Higgs boson. The
relevant quantity for the low energy theory is the running mass at the scale us

which is related to the mass at the scale p; by the following schematic form(®:

23}
my(uz) = miy(u) + Cg® / dk* + g* R+ 0(g%) (1)

b2
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where ¢ is a coupling constant, C' is a numeric adimensional factor and R is a

quantity which has a logarithmic behavior as g7 — oo.

The naturalness problem of the gauge hierarchy arises due to our expectation
that the value of the mg(u2) should not be much larger than p,. This results from
the fact that large values for mg(p2) imply large value for the Higgs self-coupling.
For a Higgs mass of the order of a few TeV, its self-coupling becomes strong
enough to hinder the pertubative approach ‘in dealing with the Higgs interactions
and new phenomenolgy related to this Higgs strong coupling would be expected.
Here, we consider the alternative and more orthodox view that the Higgs presents

perturbative coupling and so its mass cannot exceed roughly 1 T'eV.

Equation (1) clearly indicates that in order that mi(u2) ~ pj < pi, one
must fine-tune the parameter m%(p1) in an extremelly accurated way in order
that it cancels the quadratically divergent second term in (1) up to at least 1072*
times its value. This is extremely “unnatural” and even if we were able to do it in

this first order approximation, higher orders in perturbation theory could destroy
this fine adjustment.

This is the famous Naturalness Problem. Composite Models(*) and Techni-
color(®) are clever tentatives to solve it. But they present their own difficulties
(6)

There is a third proposed approach to render such a theory “natural”. It

is known that chiral symmetries are able to preserve fermion masses from phe-
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nomenologically unacceptable too large values. They are, nevertheless, not suffi-
cient to do the same with scalar boson masses since terms like ¢¢* always respect
the symmetry. One could think of a symmetry that would tie together bosons and
fermions. In this way, the chiral symmetry that forbids certain fermion masses
would also forbid the bosonic partner masses. This is exactly what SUPERSYM-
METRY does(”. In the limit where Supersymmetry is exact and fermions are
chirally “protected”, masses in the scalar sector vanish. The actual small (com-
paring with GUT scale) value of the fermionic and scalar masses would be due to

suitable breakdown of the chiral symmetry and supersymmetry.

In Supersymmetry, it is required that each known particle has a supersym-
metric partner of the same mass and couplings and opposite statistics. In such
framework, one finds that there is always a loop of superpartners accompanying the
loop of normal particles. The extra minus sign that goes with fermion loops leads
to suitable cancellations in certain Feynman diagrams and the theory présents no
quadratic divergence. In terms of the equation (1), Supersymmetry guarantees
that C = 0. Therefore, in a supersymmetric case, the running ‘ma,ss mg(p2) can
be stable at a scale no much larger than p;. The “naturalness” problem is solved in
supersymmetric theories. With Supersymmetry, however, the fundamental ques-
tion as to why there are two hugely different scales in the theory, u; > pa, is not

solved yet.

It is interesting enough to be emphasized, that any solution of the “natural-
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ness” problem necessarily indicates the existence of some new physics at a scale
around O(1TeV). This can be seen again from equation (1). Naturalness is sat-
isfied if all the terms in such equation are of thé same order. This requires that
the integration which appears there must be of the same order of the scalar mass
at pq, or, equivalently, ¢?u? ~ p2 = py ~ pa/g ~ O(1TeV). This would be an

expected value for a region with new physics.

In the case of Supersymmetry, this new physics consists of a spectrum of new
supersymmetric particles (partners of the ordinary particles) which have masses no
greater than roughly 17eV and in some cases may be substantially lighter. There
has been an enormous interest iﬁ searching experimentally these superpartners,
and Table 1 provides the experimental limits on these supersymmetric particle
masses(®). Such limits are obtained in distinct ways. The most direct one consists
of trying to produce the new particles. The (up to now) negative results put some
lower bounds on their masses. These bounds are directly connected to the energy

available in the experimental apparatus.

The observation of any one of these supersymmetric partners with production
and decay through interactions dictated by Supersymmetry would be a direct
confirmation of the truth of Supersymmetry in a low energy scale. A typical
process of this kind would be the observation of charged scalar pair production at
et

e~ machines, which decays into electrons and photinos (which escape detection).
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Normalparticles(spin)

quark(%)
lepton(3)
photon(1)
gluon(1)
W*(1)
Z°(1)
Higgs(0)

Superparticle(spin) Masslimits
squark(0) > 80GeVT
slepton(0) > 26GeV
photino(%) - ——
gluino(3) > 90GeV

wino(L) > 26/40GeVH*
zino(s) > 40GeV*
higgsino(%) - ——

Table 1: Current experimental status of superpartners.

(1=CDF,}=TRISTAN,«=CERN)

There are, however, many indirect ways in which supersymmetry can be in-
fered. They consist mainly in looking for deviations from the predictions of the
Standard Model due to the eventual presence of virtual superpartners. Even if
these indirect tests are not complete confirmations of Supersymmetry, since they
have alternative explanations, they are indicative of new physics and place in-

teresting constraints on possible extensions of the Standard Model, in particular,

supersymmetric theories.

In this work we will concentrate on these indirect tests of supersymmetry.
In particular, we will pursue the very interesting non-standard flavor changing

interactions and their CP violation implications at the weak scale present in some

6



models of low-energy supersymmetry.

The extremely small experimental values associated to Flavof Changing
Neutral Currents have always been a challenge for models which intend to
describe phenomenology of Particle Physics. Neutral systems, like the mixing

¥ — ®%(sd « ds), have been a good testing ground for any new theory. In

in K
the Standard Model, the success in describing such phenomenon is guaranteed by
the so-called Glashow-Tliopoulos-Maiani mechanism(?), where the unitarity of the
quark mixing matrix ensures a natural explanation for the suppression of the flavor

changing neutral current processes. There is no g;¢;Z° coupling at tree level. Such

an effect of flavor changing proceeds as a second order weak interaction where it

2

is suppressed by Ami/mq,

with Am? being the difference of the squared masses
of equal-charged quarks.

Many extensions of the Standard Model have been severely constrained, as
Composite Models, or even ruled out, as Technicolor Theories, due to difficulties
in passing the low energy flavor changing neutral current tests.

As we will explicitly verify in this work, the “Minimal”® low energy super-
symmetric extension of the Standard Model accounts for the very small numbers
associated to the suppressions in the flavor changing neutral currents. This fact

can be considered as a large success of the Supersymmetric Theories.

Any extension of the Minimal Model should also respect these flavor changing

® see next chapter for definition and discussion of the Minimal Model.
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neutral current low energy tests. Therefore, it is very useful to quantitatively
determine the values which must be respected by the parameters of such models
related to these phenomena. This is what will be done in this work in a model
independent way. These results could be used as a guide to the choice of any
realistic Supersymmetric Non-minimal Model.

We organize this work in the following way: in Chapter I the low energy
supergravity models are introduced and we emphasize the new sources of flavor
changing neutral currents associated to the strong gluino-quark-squark coupling.
The relevant ideas about Extended Supersymmetric Models and the Mass Insertion
Approximation is also introduced. Just for completeness, in Chapter II, some
phenomenology related to the Mixing Phenomenon and its CP Violation effects in
neutral particle-antiparticle systems is discussed. The main part of this work is
Chapter ITI. There we explicitly calculate the supersymmetric contributions to the
mixing in the kaon system and display the constraints that any supersymmetric
theory must satisfy in order to be consistent with the current experimental data

related to the mixing phenomenon and its CP violation effects.



CHAPTER 1

Flavor Changing Neutral Currents in Supersymmetric Models

I.a. Building Models

Supersymmetry is very appealing. Besides placing bosons and fermions in
aesthetically attractive common irreducible multii)lets, it presents also the remark-
able feature of solving the naturalness problem of the gauge hierarchy, as we have

already mentioned in the “Motivations”.

Local Supersymmetry is of particular interest since it naturally leads to space-
time translations that differ from point to point: a general coordinate transfor-
mation. From this one might expect gravity to appear in locally supersymmetric
theories and this expectation turns out to be true. Local Supersymmetry is also
called Supergravity (SUGRA). The N = 1 supergravity models(1?) are the most
interesting ones since for N > 1 the fermions lie in real representation of the gauge
group and thus it is not straightforward to build phenomenologically acceptable

models.

Nevertheless it is phenomenologically known that supersymmetry cannot be
an exact symmetry of the Nature, as is evidenced by the fact that the masses of

the known particles and those of their superpartners are not the same.
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In N =1 supergravity models, local supersymmetry is broken spontaneously
by a gauge singlet, the so-called hidden sector. It is also assumed that the hidden
sector has no coupling in the superpotential with the observable sector, which con-
tains the quarks, leptons and Higgs superfields, the gauge multiplets and, in the
case of extended models (beyond the SM), the additional particles. These two sec-
tors only communicate through a very era.k interaction, which is naturally chosen
to be the gravitational interaction. After the local supersymmetric breakdown,
the gravitino (the spin % superpartner of the spin 2 graviton) acquires a mass m 3
through the super-Higgs mechanism. The degeneracy inside the supermultiplets
is destroyed and the model considered so far has all the features to be realistic,
except that it is non-renormalizable!

Nevertheless, we can relieve this fact assuming the flat limit(!1), where Mp —
oo (Mp is the Planck mass) maintaining m 3 fixed in the Supergravity Lagrangian.
In this way we turn off gravity and regain global N = 1 Supersymmetry with “Soft
Breaking Terms”. Soft terms explicitly break the residual global supersymmetry
in a very suitable Wé,y, since they preserve the theory from the unwanted quadratic
divergences. A complete list of soft terms in N=1 supersymmetric theories can be

found in the work of Girardello and Grisaru(!?), We can write the final Lagrangian:

L = Lsysy + LsorT (1.1)

where, as a first approach, Lsysy is the Lagrangian of the usual “Minimal” global
supersymmetric extension of the Standard Model. By Minimal we mean that
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the model presents three main features: The scalar kinetic terms present the
canonical form, or, in other words, the Kahler metric is flat. The superpotential
does not introduce new superfields apart from those which appear in the trivial
supersymimetrization of the Standard Model. Finally, there is no Baryon or Lepton
violating terms in the superpotential, or, equivalently, R-parity is respected in a

Minimal Supersymmetric Standard Model.

Lsopt is the set of supersymmetric soft breaking terms.

Lb. The Minimal Supersymmetric Standard Model

In the early attempts of constructing supersymmetric extensions of the SM,
it was soon realized that the superpartners of the known particles coud not be
identified with some other particle already present in the SM. The fermionic part-
ners of the gauge bosons are in a real gauge representation and this is not the case
for quarks and leptons. If the Higgs particle was the partner of the leptons, the
V.E.V. of the sneutrinos would break the lepton number, moreover, the sneutrino
is not able to give mass to both up and down quarks. If one introduces only one
Higgs doublet superfield, masses for both up and down quarks are not generated;
furthermore the fermionic partner of the usual Higgs doublet renders the particle
content of the model anomalous. Two superfields doublets are sufficient to cancel

anomalies and to provide masses to all quarks and leptons. The particle content
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of the minimal supersymmetric SM is given in Table 1.1.
For our purposes we need to write only the superpotential of the N = 1
global Supersymmetric Standard Model, which has the most general invariant

supersymmetric couplings which preserves the gauge symmetries of the theory(19):
W = hUQI'IluC + hDQHgdC + hLLHzec + [LHl.Hg (12)

Q, u°, d°,... are scalar superfields, namely they possess scalar and fermionic com-
ponents with the same quantum numbers, as was previously described in Table
1.1.

The set of supersymmetric soft breaking terms takes a quite simple aspect in

the case of minimal N = 1 supergravity theories. They are given by:

Lsorr = m? Z 161> + [Am(huQHyi + hpQH,d® + hy LH, &)

i=scalars

(1.3)
+BmypHH, + Z A*A% + h.c.

where the sum on ¢ extends over all the scalars and A and B are dimensionless
parameters of the trilinear and bilinear contributions, respectively, ) is the gaug-
ino, the superpartner of the gauge field, and a is a gauge group indice. Here m is
the scale of the low energy supersymmetric breaking. It is very often related to

ms and hereafter, we will use ms for m.
2
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Table 1.1: Supersymmetric Standard Model particle content.

Super fields ComponentFields 3c X2 x1y Name
quantumnumbers
Matter Frelds
U
Q (di) (3,2, ils) quark
(Z-L ) squark
L
U u§ (3,1, —% R—up
ug, squark
D ds§ (3,1, %) R — down
jz squark
vy
L oL (1,2—3 lepton
(IfL ) slepton
€L
E e, (1,1,1) R — lepton
s, slepton
GaugeF'ields
G gi(1=1,..,8) (8,1,0) gluon
' Ji gluino
Wi
Vv W3 ) (17 3a 0) w
3+
(1%773 ) W —ino
B B (1,1,0) B
B B —1ino

13



Table 1.1: Supersymmetric Standard Model particle content (cont’).

Super fields ComponentFields 3c x 2 x1y Name
quantumnumbers
HiggsFields
¢7 1 :
H; <Z5(1) (1,2, 3 Higgs
&) o
5 ggsino
¢y
¢3 1 :
H, 40 (1,2,-3) Higgs
(953 ) Higgsi
s ggsino
¢ ,

L.c. The Squark Mass Matrix

1t is well known that there is no Flavor Changing Neutral Currents (FCNC) in
the Standard Model at tree level. The FCNC transitions are obtained at the one-
or higher-loop order through the W exchange. The mere supersymmetrization
of these one-loop Standard Model contributions shows that squarks of the same
charge must be highly degenerated in order to account for the very small §m, in
the 5% — B® system(*®). It means that the mass difference between such squarks
has to be much smaller than their average mass. This is a possible justification to
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take equal masses for the scalars in the minimal N=1 soft-breaking terms, as in
(1.3).

Nevertheless, the interest in Flavor Changing Neutral Currents in supersym-
metric models grew very rapidily when was realized that another kind of FCNC(4),
with no parallel in the Standard Model, was possible in the minimal version of the
Supersymmetric Standard Model. Vertices involving neutral gauge fermions can,
in principle, give rise to FCNC processes. The vertex quark-squark-gluino is par-
ticularly interesting since it involves the strong coupling constant as. Therefore,
processes related to these vertices give severe constraints to the parameters of the
chosen model, as we will treat later.

Let us now analyse in detail this last type of FCNC process. From the su-
perpotential (1.2) and the soft-breaking terms (1.3), it is possible to evaluate the
down-squark mass matrix at tree level, or in other words, at the superlarge scale of
local supersymmtery breaking. We are able, in this way, to construct the relevant

mass matrix:

2 2
m% .. Mm% s
M2, = drdy drdy (1.4)
dd&* ~ \ m2 . m2 . .
* *
dzdy dzdy
where:
2 2 1 2
NS 2, = M5 5., = MM m3l 1.5
dpd; ¢ de dmg + 2 ( )
and
2 —
MY, der = Am%md. (1.6)



Up to now it is easy to realize that we don’t have any flavor change since it is

2

possible to diagonalize both mdml and m 1.dy by the same rotation matrix. This

2 3 1
Ipds from its value at superlarge scale (in

is no longer true if we renormalize m
which equation (1.5) holds good) to much lower ones like mw scale(’®), The
coupling h,QH,u¢ in the superpotential (1.2) gives rise to 1-loop contributions to

m?ZL ;- Proportional to myml as is evidenced by Figure 1.1.
L

HY
H'l" </’>‘\>
S S —Smem SRS . TNt A
1, q a, g,

2

Figure 1.1: 1-loop contributions to m o de proportional to m,m].
L

As soon as supersymmetry is broken, no exact cancellation occurs, and we
expect radiative corrections yielding a mass term for the scalar partner of the left-
handed down quark, proportional to kA, or, equivalently, to cm{m, (c depens on

the SUSY breaking parameter, in this work, m 3 ). The proportionality coefficient

16



“c” is calculated evaluating the renormalization group equations. For mz < m 3
100GeV and 45GeV < my < 120@€V, ¢ can range in the -1 to -0.1 interval(*®).

Similar terms do not arise for the “right-handed” squarks since they are
SU(2) singlets.

Nevertheless, there are radiative contributions to the off-diagonal terms in
the mass matrix, as indicated by the graphs showed in Figure 2.2. The graph
of Figure 2.2.a gives a contribution of the kind g?hp(HS) ~ mq and, therefore,
creates no possibility of flavor changing since it can be diagonalized by the same
rotation that diagonalizes my. That one of Figure 2.2.b gives a term proportional
to (assuming mz ~ 1) A*Buhphlhy (H?) ~ pmu%ﬁ{—gﬁ ~ c'pmy. The
proportionality coefficient ¢’ is usually taken to be zero in this minimal version of

the supersymmetric standard model, since it is very suppressed. Therefore, the

1-loop corrected squark mass matrix is finally given by:

M2

dd*

(mdm:fi + ngl + cmymi Am_:z;md ) (L.7)

Am%md mdmg + m2% 1
It is useful to note that up to now everything that one has done for obtaining
the down squark mass matrix would work for the up squark mass matrix. In this
way, to obtain the latter from the former it is sufficient to interchange u + d in
(1.7).
From the down squark mass matrix it is easy to infer that the only possible
source of non-standard flavor changing in the minimal supersymmetric standard

model is the mass term of the partner of the left-handed down quark since it is
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Figure 1.2: 1-loop contributions to the off-diagonal terms

in the squark mass matrix.

not possible to simultaneously diagonalize my and m,. Indeed, if my and m, are
simultaneously diagonalized, then the Cabibbo-Kobayashi-Maskawa mixing matrix

vanishes. If we call Ly, and R, , the matrices that diagonalize these quark mass

matrices,
LimeRe = m¥9, . (1.8)
d d d d
we immediately conclude that:
dia dia
g, = (4 1 4 e, 19)

here V = L] L, is the Cabibbo-Kobayashi-Maskawa mixing matrix.
At this point we have two ways to follow. In the first, we completely diago-

nalize the whole squark mass matrix:

UpM3;.Up =

18



(1.10)

((mjiag)z +m%1+ cVi(mdes)2V |A[m§miiagei6 )
= U] : ) b
D

[Almgmaose=e (o) + m3 1
where
=~ ei§m5 Ly 0
UD = 0 e_i.§m§ Rd UD (111)
and
=P, — 2<§m§. (1.12)

These angles @ are phases in the soft-breaking Lagrangian parameter A and in

the gluino mass my defined such that:

A=|A|e®4
(1.13).

myg =|mg| e s
The introduction of the gluino mass phase ®,,;, in the way shown above, leads to
the extraction of this spurious phase in the gluino mass term and in the interaction
Lagrangian (1.14).

There are many interesting informations in the matrix (1.10). First, we note
that the rotation matrix for the squarks contains an extra phase § which is CP-
violating. It is, nevertheless, severely constrained by the experimental upper limit
on the electric dipole moment of the neutron to be roughly less than 1073 « 1072
(18), Second, it is useful to emphasize that down quark mass and down squark mass
matrix can not be diagonalized in the same basis and so there is a possibility of
flavor changing. The source of this flavor changing is ¢V (m229)2V as is evidenced

19



by the fact that if we take the limit ¢ — 0 the Up matrix does not mix different
families of squarks. The same consideration applies for the up mass matrix. The
difference here is that the radiative term cVT(mjiag )2V, which appears in the up
squark mass matrix, can be neglected when compared with the up-quark type
masses.

This flavor changing feature of the down squark mass matrix will be directly
reflected in the gluino-quark-squark vertex which Lagrangian is given by:

Lygs = —V2gsT* 3 (GoPraldls + 70 Prildly, — ToPral @ — € PLgl @) (1.14)
i=u,d

where gg is the strong coupling constant, ¢° is gluino field, ¢° and g° are the three
generations of up and down quark and squark fields in the current eingenstates ,
T* is the SU(3)c generator and the projectors Py are the usual ones defined as
Py = (1F7)/2.

The transformation from current eingestates to mass eingestates is defined as

follows: ]
qr =Lqr

qr =Rar (1.15)
~0 1P -
.\ _[(e ™ML 0 U [ 9L
() -(73" tn) e (8):
Substituting the transformations (1.15) in (1.14) we note that the matrix Up
completely determines the mixing between different families. In the general case,

as Up is non diagonal, there will exist flavor changing gluino-quark-squark inter-
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actions. As we have already mentioned, down-squark mass matrix has stronger

flavor violations than those of up-squark matrix.

I.d. The Mass Insertion

There is another way to treat the flavor violations which appear in Supersym-
metric Models due to the non-trivial diagonalization of the squark mass matrix. It
consists of treating the term which leads to flavor changing as Mixing Mass Inser-
tions. Mass insertion can be thought of as a perturbation in the symmetric theory.
This is a very useful way to conduct calculation, specially in model independent
analysis of extensions of the Minimal Supersymmetric Standard Model where we
do not know exactly the squark mass matrix. We will largely apply this concept

in the future chapters.

In the present case, we isolate the term proportional to ¢ in the squark mass
matrix (1.10). In this way, the interaction Lagrangian (1.14) leads to diagonal
gluino-quark-squark coupling (we work in the so-called superKM basis(1®)). The
entire effect of mixing is placed in the squark propagators as a mass insertion

(detailed and denoted as a cross in Figure 1.4).

In order to apply the usual mass insertion approximation we must be sure
that such terms lie in the allowed region by perturbation theory. Very important
transitions used in this work are those wherein the b goes to s or s goes to d. In
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these cases, the related mixing mass insertions can be generalized:

(C”Lu”l'T )ij C“ f(lniiag)ilg ]ij %
u y ~ [/ 7.[/ " < 1. 1.16
]”2.3. 7 lzﬁ o K % ( )

2 2 2

v and j stand for b and s (or s and d). Vi; and V;; are the entries [33] and [32]

(or [32] and [31]) of the Cabibbo-Kobayashi-Maskawa matrix and we neglected

2
P

terms proportional to m:. We assume also m 3 around the weak scale (m 3~
100GeV) and 60GeV < m; < 130GeV (%), The Cabibbo-Kobayashi-Maskawa.
matrix elements follow the Cabibbo hierarchy described in Figure 1.3. The m?

contribution dominates (1.16) because we have:

miViVy _ miVivie mi N _ym?
i > L L~ 23X 1070 >,
m2ViVe: ~ m2VAV,y mZ A mg

since m; > 21lme..

Figure 1.3: the Cabibbo hierarchy. A ~ senfcgpisso ~ 0.2

In our calculations we will largely apply the mass insertion approximation,
even in the cases where the value of the mass insertion is not known (only in
the Minimal Supersymmetric Standard Model this value is known). We assume
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that we are in a range of validity of perturbation theory. We will conclude, a
posteriori, that there are upper bounds for the mass insertion terms which justify

this assumption.

I.e. FCNC in Non-minimal Models

In the minimal version of the supersymmetric standard model, treated hith-

erto, the major source of flavor changing neutral currents arises in the strong

g — d;r, — d;r interactions (¢ and j denote flavor), since only the submatrix m%L -
L

receives renormalization contributions non-proportional to mdml. For instance,

flavor transitions among squarks of the kind d;;, < CZ; ;, are suppressed since they
involve at least two mass insertions, indicated by A, as is schematically indicated

in Figure 1.4.

The above argument is not necessarily true in extended versions of the super-
symmteric standard model. There could be cases where the transitions dr, « d§
are no longer proportional to my and could induce flavor changing, or even, tran-
sitions like Ji > (Zi could lead to no more negligible flavor changing terms. Thus,

the above mentioned suppression may disappear.

There are some ways to arrive at Non-minimal Supersymmetric Models. In
reference (18), the authors discuss the additional sources of Flavor Changing Neu-
tral Currents in models where one gives up the requirement of putting the kinetic

23



dir, d.jL = [ALL]‘i_‘i — C[vf(miiag)zv]ij

. 4 =[Agglij — negligible

: N = [Aprly — % L G din
Figure 1.4: Squark flavor changing neutral currents in the

Minimal Supersymmetric Standard Model.

(1,7 indicate flavor)

terms of scalar field in a canonical form. In reference (20), non-standard superfields
were introduced and their couplings with the ordinary fields of the Supersymmetric
Standard Model again give rise to new Flavor Changing Neutral Currents. For this
reason, when one analyses the extensions of the minimal supersymmetric standard
model, all possible transitions, involving the mass insertions Ap L,Arr or Agrg,
are important. That is why we are potentially interested in extensions of the su-
persymmetric standard model. This is a very elegant way of conducting a model
independent analysis of the flavor changing phenomenon in extended versions of
the supersymmetric Standard Model(®*") and we will adopt it in this work. These

extra mass insertions are shown in the Figure 1.5.
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[Arr)ij

= [ARR]ij

i B o= (Al

Figure 1.5: Mass insertions in non-minimal models.
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CHAPTER 11

PHENOMENOLOGY

IT.a. Mixing phenomenon

Oscillations between particles and antiparticles were predicted for the x? — &°

system in 1955(2) and observed in 1956(23), There are some other systems where
we can expect particle-antiparticle oscillations, namely, systems containing c-, b-

or t-quarks:

D°(c@) — D’ (zu)
B°(bd) — B'(bd)
B(bs) — B,(b3)
T2(t7) - To(fu)

T?(t) — T (i)

B~ B’ and B s — B, systems are the only ones where oscillations present
sizable effects. The original formalism introduced for the k° «— &? transition can
be easily used in these other systems. The main differences are heavier masses
and shorter lifetimes, and many more final states available in the decays. We will
construct a very general formalism and specify it later for each case we will be
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interested in.

Nature has provided us with a wonderful physical situation to study the CP
violation phenomenon in the x° system. Id est, the closeness of the x® mass to the
three-pion masses. Due to this phase space limitation, xr, which mainly decays
into 3w, has a much longer lifetime than ks and can travel a few meters before
it decays away. The crucial point in this effect is that after a few 1071 seconds
mainly k7, will remain, which is almost an equal mixture of x° and %%, and this
is exactly the case of maximal mixing. The mass difference §m = my — mg and
the C'P violating parameters € and €' can be studied from the k1, and ks decays
separately, from w+ 7~ final states interference through the regeneration of kg in
a k1, beam, or from charge asymmetry of I* in the decays of k — 7¥[Fr (24 Tt
is remarkable (and a little frustrating) that so far the only C'P violation observed

is still the originally observed one in the system of x; and kg in 1964.

It is much harder to study C P violation effects in heavy quark systems. The
lifetime of the heavy k-, ks-like states are much shorter, since their masses are
very big. The observed charmed and b-particle lifetimes, 7. and 73, are of order
10713 sec and 1072 sec, respectively, and the lifetime 7, for the t-particle, is
expected to be less than O(1071%) sec(?®). There is no phase space limitation in
the decay channels available for either heavy - or ks-like states, as for x, itself.
The lifetime for these heavy quark states are expected to be comparable. There-
fore, it may be intefesting to study their C P violation effects via time integrated
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results(26),
In the construction of the general formalism for all available neutral particle-
antiparticle systems, we will consider a generical and fictitious G°® — fex system.
Due to the possible transition G® +— E", induced by weak interactions, the
original G® and ek eigenstates are no longer physical states. These physical states

are obtained after the diagonalization of the effective Hamiltonian:

H:( M- M12-§F12)
Ml*z*'zl‘rfz M“‘%

(2.1)

(M—%I‘+%(5m—§5I‘) 0 )
— i 1 i
where
1 i i R
‘2“(‘5m - §5P) = [(M12 — '2“F12)(M12 - §I‘12)]1/2 (2.2)

M;; and T;; are transition matrix elements and can be complex (27):

?

. . | H avor= A (A H avor= ]
Mij = mG6ij + (ZIHW,Aﬂavor=2 |.7> + P Z <Z| e nlzlG).(_ IE}\W’Aﬂ 1l]>
A

(2.3)

Fij =27 Z Q(iIHW,Aflavor=l P‘)(ALHW,Aflavor:l |])
A

and g is the density of the A states, ém = mp—ms, 6T =T —Ts,T = (T +Ts)/2
and M = (mg +mgs)/2. The requirement of C PT invariance and hermiticity was

used in the phenomenological Hamiltonian above. Its eigenstates are found to be:
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G2) = [2(1 + [ 72[(1 + &) |P°) (1 — ea)[P")),

(2.4)

B \/Mlz — il — \/Ml*z — 311

A/ M1z — 3012 + 4/ M, — 317,

Since the |G%) and |@0) do not communicate through strong interactions their

relative phase is not specified. |G®) and |’(f’) are related through CP transforma-

tion up to an arbitrary phase (:
CP|G°) = 2¢|G"). (2.5)

As a consequence of this fact, €g is not a physical parameter. It is useful, therefore,
to define an independent phase convention parameter for the measurement of CP

violation in the G-system. A very interesting one is:

M —ire |1
M1 — 5l

- 3
Mz — 2T

NG = (2.6)

1 —€g
1+ €q

The amount of CP-violation is given by the deviation of g from unity.
The very interesting mixing phenomenon is evidenced by the time evolution

of the physical states Gg:
|G’§ (1)) = ezp(imgt — I‘gt/Z)[Gg (0)) - (2.7)

If we consider the time evolution for the states such that |¢(t = 0)) = |G°) and
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ia(t =0)) = r@o), we obtain:
|6(2)) = ac(t)|G°) + a@—(t)[@O) (2.8)

[6(2)) = aa(1)|G°) + a5(2)[C") (2.9)
where

ac(i)

ac(t) = [ezp(impt — FLt/Q)__}_ewp(imSt —T'st/2)]

(2.10)

ag(t) _1-% : " ezn(i
= — —TI'rt t—T'st/2
an(t) ~ 17 EG[ ezp(impt —I'g /2)+ezp(zms st/2)]

As we have previously stated, the relevant quantity here is time integrated

probability of |#(¢ = 0)) = |G°) state goes into the |G°) and }-@0)

(“6° =G _ [ laglt)dt _

= (uGu N GO”) - J-OOO |ag(t)|2dt =Ta (2'11)

_ (u@'o — Gon) B fooo IEG(t)lzdt L

T = (“50 = @—0”) = e lﬁa(t)lzdt =ng A (2.12)
A o _(6m/T)" +(38T/T) (2.13)

2+ (6m/T)? — (36T/T)*

Analysing this last equation we note that there are two situations where the
mixing is maximal. Or [6T'/2| = T (i.e., either 'y, > I's or I's > I'1), or ém ~ I.
An example of the first case is the x-system, it does not matter which is the initial
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amount of G® or G in the initial state, after some time the system will present
only G or G5 (respectively) which is an appoximately equal mixture of G° and
@0, therefore maximal mixing. The second case is exampled by heavy b-quark
. =0 . .
systems, like B% — Bg. In such case, the system oscillates very quickly between
0 =0 « : » 0 =0 3 3
G? and G and appears as an “equal mixture” of G and G . Some simple relations

are very intertesting. In both cases of maximal mixing, described above, one has:
r.7 & 1. (2.14)
For small CP violation ng =~ 1:
rRT. (2.15)

In the extreme case where both maximal mixing and small C'P violation are

present:

raT AL  (2.16)

The neutral particle-antiparticle mixing phenomenon presents the very attractive

apparent effect that |G°) can have decay products that belong exclusively to |@O)

IL.b. The «° — 8® System

In this section we will consider the mixing phenomenon and its related CP
violations in the kaon system. We, first of all, define the phase convention between
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the |£°) and |r°) states as is commonly found in the literature:
CP|x% = |R). (2.17)

Since the observed CP violation in this system is experimentally small, we
are allowed to make some approximations which lead to a small value of €x. In
order to obtain the mentioned small value for €x, we use the approximations
ImM;; < ReM;; and ImI'y; < Rel';;. From the equation (2.2), which in the

above approximations yields:
dmyg — %H‘K = 2ReM;5 — tRel'y5 (2.18)
we can clearly find the wanted mass difference émg:
dmyg ~ 2ReM;,. (2.19)

The other relevant quantity is the CP violating parameter €x. From the equation

(2.4) and using the quoted approximations, we get:

L, (M — 3T1) — (M, — 3T%,)
40/(Myz — $T13)(M3, — iT5,)

€K

(2.20)

I’ITLM12
16Tk — ibmy

(2.21)

here we neglected the contribution ImT';, after examinating the possible interme-
diate states A = 27, 3x,wep, ... in the My, and I'y2, equation (2.3), for concluding
that ImM12 > ImI‘lz.
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Finally, we apply the experimentally known result in the kaon physics:

Sy ~ LK (2.22)

to obtain;:

(2.23)

We end this section by presenting some interesting experimental parameters
related to the decays of the kaon mesons. The basic CP violation parameters that

have been measured are the amplitude ratios:

(rtn”|Hlrr)

N+ = (W+7T”|H|lis) (2.24)

(x| H|xp)

I e 2.25
100 = a0 | Hlks) (225)

and the “charge asymmetry”:

T(kp — 717 D)) — T(kp — o~ 1TD))

§
I'(kp = o+ l-7) + T'(kp — 7~ 175))

If

From this last definition we note that it involves processes which are CP trans-
formed one of the other. Therefore, we expect this value different from zero if CP
is violated. In fact, its experimental value is § = (0.33 4- 0.012) x 1072,

In ks — 27 decays, the angular momentum vanishes. The spatial part
of the wave function is therefore symmetric and, since I(w) = 1, the symmetric
statistics of the pions assures that final-state pions are foundin I =0 or I = 2
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isospin states. Introducing the following numbers normalized to the amplitude

(I =0|H|ks):
(I=0H|rr)
o = 2.27
"= (T=0[HIrs) (220
1 (I =2|H|xL)
— bl AT 2.28
= VB (T= 0/ lxs) (229)
_ (I =2|Hlks) (2.29)
- (I=0lH|xs)’
One can relate the isospin states to the physical 27 states:
1 1
[ =0) =—=|r"7") — —=|n"x°) + —=|xFx7)
\/_ V3 \/_ (2.30)
T=2) =Tl + 4 Bn) 4 Telrte)
and obtain:
(e + 62)
= 2.31
(60 —_ 262)
2.32
Too = 1_\/—w ( )
" Because of the validity of the AT = 1 5 rule for CP-conserving decays, we

find w < 1 and it can be neglected. Furthermore, we can parametrize k* — 2
amplitude as:
(I =n|H|&®) = A, (2.33)
(I =n|HIR") = 4d,e" (2.34)
where §,, is the 7m phase shift in the I = n channel coming from the final state

interactions. A commonly adopted phase convention is to choose 4y to be real:

ImAq = 0. (2.35)
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And, by CPT Theorem, we find that:

A, = A

n

(2.36)

Therefore, it is straigthforward that:

(1= 0} (0 +e)lmo) — (1 - )0
€ = =€ = €. (2.37)
(I = 0[] [(1 )} + (1 - zx>|re°>]

In a similar way, we find:

1 (I =2H|[(1+exl)ro) — (1L —ex)IF’] _ i Imdsy 5, 50) _
[ -

€ = = €.
T V2T =0 H ][+ exmo) + (1— k)R] V2 Ao
(2.38)
With these relations for € and ¢ we can write:
Np— =€+ ¢€ (2.39)
and:
oo = € — 2¢ (2.40)

¢ is the CP-violation parameter in decay in an analogous way as € is the

CP-violation parameter in states. € is said to be a direct CP-violation effect. It

0

is a measurement of the difference in the CP violation amount in k7, — 7°#° and

-+

in K — 777~ decays.

35



CHAPTER III

SUPERSYMMETRY AND THE KAON SYSTEM

ITI.a. Kaon System in the Standard Model

The x° — ®? has always been a good test for new theories. In the Standard
Model, the absence of Flavor Changing Neutral Currents at tree level is insured by
the GIM mechanism. Quantum corrections are suppressed by terms like 5mg / mg,
where 5'm,g is the difference of the squared mass of the same charge quarks. Any
extensions of the Standard Model must produce such a fine cancellation in order
to pass the Flavor Changing Neutral Current tests.

For completeness, we will briefly present the computation of the kxf — ks mass
difference in the context of the Standard Model and then give this calculation
in the supersymmetric framework. Such mass-difference receives short distance

contributions through the equation (2.19) and the effective Hamiltonian:

Mz =M

K

oo = (k| HYL, [F°) (3.1)

From the graphs showed in the Figure 3.1, we can calculate the Standard

Model one-loop effective Hamiltonian to obtain(28);

Gr o
V2 4wsin?bw
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where:
_ N
6 =) ViViaV;iV;aO(zi,2;) (33)
ig=2

V is the Kobayashi-Maskawa matrix, N is the number of quark generations, z; =

m2. /m%, and, finally:

2z; -1 4(z;—1)2°

3 1

@(zi,mj) = -z | [— i
[m"—mj ! (3.4)

+x; &) — =
== =) - e =D =
d ¥ s d - f_l_ s
ulv ,\uj “l \ll]
un d d
wt wt
d v s d _E s
“i" uj “i\ ,«\uj
s - d s S PR d
ut at

Figure 3.1: the Standard Model contributions to the effective 5dsd operator.

(¢ and j are family indices)

Substituting this result in the equation (3.1) we obtain:

Gr o
V2 6rsin?0w

bmy = m f% BnRe® (3.5)

In the equation above we find the parameter fx is the kaon decay conmstant, 7
indicates all possible QCD corrections and B is a parameter which measures the
ratio between the matrix element (k°|(3r7v,dr)?|k°) and the same element with
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the vacuum insertion in it. There is some uncertainty in the calculation of this
last parameter. Several authors have been working on this subject(2=35), The
found values vary from —0.4 in the MIT bag-model(®®) approximation and 2.9 in
the harmonic oscillator approximation(?®). We assume throughout this work the
validity of the vaccum insertion approximation where B = 1.

The final result of this calculation is very ciependent on the charm—qﬁark mass

and is written as

(6mK)charm = 2 B x 107 GeV. (3.6)

We do not expect a significant deviation from this value even if the top-quark mass
is very large since this contribution is highly suppressed by Cabibbo-Kobayaski--
Maskawa factors. The value given above is to be compared with the experimental

one:

(6mk )ezp = (3.521 4 .014) x 10715 GeV. (3.7)

Comparing (3.7) and (3.6) we see that, if the vacuum approximation works (B =
1), the charm contribution to the mass difference in the kaon system doesn’t
saturate the experimental value (3.7). This could require an adjustment on the top-
quark mass or on its Kobayashi-Maskawa couplings (*¢), A fourth generation®”) or
a left-right symmetry (3®) were proposed as a tentative to explain the experimental
enhancement showed above.

Some kind of less-conservative “new-physics” could be invoked to account
for the extra contribution. Sw;lpersymmetry will be explored in the next section.
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We will see that supersymmetric models, besides presenting a possible explana-
tion to the enhancement detailed above, are also very constrained by this same

experimental result.

IIL.b. Supersymmetric Contributions to x°—&® Mixing and CP Violation

In this section we will consider the Non-minimal Supersymmetric Standard
Model contributions to the mixing phenomenon in the k% —&° system. The present
experimental value related to this phenomenon constrains the choice of the sponta-
neuously broken N = 1 Supergravity Theories putting very powerful upper bounds
in the possible values of the model independent parameters [Arr]sd, [ALR]sq and
[ARR]sa, which are the mass insertions related to the transitions 51, «» dr,, 3§« dr,

and 5§, < czi, respectively. These parameters were introduced in Chapter I.

Particularly interesting is the gluino-quark-squark vertex which induces flavor
changing, since it severely constrains the non-standard contributions to the mixing
phenomena due to the presence of the strong coupling constant in it. Here, we will
carefully consider the contributions of such vertices to the mixing in the % — ®°
system. The relevant Feynman diagrams with the gluino exchange are displayed
in Figure 3.2. We emphasize that there are diagrams (e.g., 3.2.b diagram) where

the Majorana nature of the gluino allows further contributions to the mixing.
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Figure 3.2: The supersymmetric gluino box diagrams contributing

to the k% — &® matrix element.
The matrix element induced by the gluino exchanging box diagrams:
Moz0(3) = (| HZL,(D)IF), (3.8)

will be explicitly evaluated, since they involve many subtleties. The final result of
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this calculation can be read in the equation (3.19). The relevant Feynman rules for
the present calculation are obtained from the Lagrangian L.s;, equation (1.14),

and are given in the Figure 3.3.
oa j
&5 q .
:‘:L\
{ —iv/2gs PR
‘T‘Q
oa
g A qr .
. . +iV2gsTEPr
..
c .
€ +iv29sT5 Pr

E, ic~?!
< z = [ CPZiﬁz]ﬂ)]aﬁ

£ M
ﬁ+i"'> . = [ee]

Figure 3.3: the Feynman rules for the calculation of the gluino

exchanging box diagrams.

In order to calculate the above mentioned supersymmetric contributions, we
will use quantities such as V’s, §’s, &’s, A’ and B’s(!"). They are defined in

41



the Appendices A, B and C, wherein are displayed the evaluation of the matrix

elements between x° and ®® states in the vacuum insertion method, some useful

Fierz identities, and some functional integrations, respectively. We also define M

as being the gluino mass and 7= as an average squark mass.

In the approximation of vanishing external momenta, the graph 2.1.a yields

the following contribution:

a=—2ig¢[ArL)%y

x (R |(5y7" PLd’)(Sayu Prd’)|s")(T*T*){(T°T*)5

1 d*k k2
XZ/( )% (k% — M2)2(k2—ﬁ12)4

B (y)
:2a:23[ALL]sd Ah 5
The diagram 2.1.b also gives contributions proportional to [ArL]?,

b=—2igs[ApL)2yM*

x (R|(5, PaC35)(d7° O PLd*) =) (T*T*Y(T*T*)]

d*k 1
(27t (k2 — MZ)2(k2 — m2)*

With the Fierz identity (B.1) of the Appendix B we can write:

b= —2igg[ArL]i M?

1 a a\x
X (K| (57" Prd®)(3p7, Pod® ) (TP T} (T°T*)3

dk 1
X / (2m)% (k2 — M2)2(k2 — m2)t"

Using the formulas in Appendices A and C, we find:

A(y)M g

b= 2as[A ] ( )
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The contributions shown above are exactly the same given by the graphs 2.1.a
and 2.1.b when one interchanges the external left-handed quarks by right-handed
ones. This implies that the contributions proportional to [Agg]?; would present
the same form as those above with the change [Azz]?, « [ArR]?,-

It is thus noted that the contributions of the graphs 2.1.c and 2.1.d are pro-

portional to ([ALL]sd[ARR],d), and are given by:

¢ =—2igs[ArLL]sa[ArR]saM?

X (R°|(SaPRd’)(34 Prd®)|s")(T*T*)5(T*T®);

o d4k 1 (313)
(27)% (k2 — M2)2 (k% — m2 )2
A(y)M?
:2&§[ALL]sd[ARR]sd——(%2§—SP-
and '
d=—2ig¢[ALL)sa[ARR]sd
X (EOI(Ea’Y“PLG@{)(dTﬁC_l’mPRd5)]’CO>(TbTa)§(TaTba)Z
o }/ d*k k2
4] @m)t (k% — M2)2 (k% — m2)e
= — 2ig5[ArL]sa[ARR]sa (3.14)

X (R [2(5 Prd® ) (5, Py (d°)|x")(T*T*)3(T°T™)]

o 1 d*k k2
4] (@m)* (k2 = M2)2(k% — m2)*

—203[Asz) il Aralsa DY) (25M),

4ms

In the above result we used the Fierz identity (B.2). All the remaining graphs give
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contributions proportional to [Arg)?;. From the 2.1.e we obtain:

e = — 2igs[Apg)?,M*

x (R*|(5aPrd’)(5+Prd®)|s")(T"T*)5(T°T*)]

d4k 1 (3.15)
X / (2m)t (k2 — M2)2(k% — m?)*
A(y)M?
=204{Azall, LS.
For the calculation of the graph 2.1.f, we will use the Fierz identity (B.3):
f =~ 2igs[ALrle
x (R°|(55,C" Pr3L)(d70C 1y, Prd®) %) (T°T*)5(T°T*);
y 1 / d*k k2
4] (2m)t (k2 — M2)2(k2 — m2)?
= — 2ig5[ALr]3, (3.16)
x (R°|(8y7y" Prd®) 3oy PLd’) | ) (T T*)5(T°T*)]
o 1 / d*k k2
4/ (2m)% (k% — M2?)2(k2 —m?)*
B
:2&23[ALR zd e (_ys) VM,
The latter graphs to be calculated are the 2.1.g contribution:
9= —2igs[ALR]iy
X (R°|(Sy7* Prd®)(Savu PLd’ )" W T T*)§(T°T")f
1 [ d*k k2 (3.17)
(2m)* (k2 — M2)2(k? — m2)*
By
=20125[ALR]3 4§_ 6) VP,
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and the 2.1.h:
h = — 2igt[ALR].aM?

X (z°|(3aCPRE$ )(dT '8C"IPRd‘S)|n°)(T”T“)g(T”T“)}

l d*k 1
(271')4 (k2 — MZ)Z(kZ _ 1?)'7’2)4
=2igs[ALr]saM?

1 1 a\o a
X (R*|5(5aPrd’)(SyPrd’) — (50 Prd’)(510,, d’|s*)(T*T*)5(T°T*)]

d*k 1
(27!')4 (kZ M2 )Z(kZ —m2 )4
A(y)M? 1 1
204 (Al A o 4 Lo,

(3.18)
Putting the equations (3.9) - (3.18) together, we write the final result for the
supersymmetric contribution involving the strong gluino-quark-squark coupling to

the mixing phenomenon in the £ — & system®:
MKOT‘T:O :M12

=m fxas

11 B(y) , 1 AWM’

[([ALL]d+[ARR’d)(108 277 s )

[ALL]sd[ARR]ad[( 1 1 my )2) B(y)

18 27 ms + my ™6
1 16, mx . Aly)M?
+(9+27(m,+md)) e ]+
7 2 B(y) 11 mi o, A(y)M?
Arrl (=L — ==
1 LR]“‘[ 54 9 ms—}—md)) Y ms—l—md) oY ]
(3.19)

# see Appendix A for definitions.
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III.c. Bounds on the Supersymmetric Parameters

The next step to be done consists in taking the current values of the quantities
which enter in the equation (3.19), and are given in the Appendix D, and of
comparing the result with the experimental value of émy through the equation
(2.19). We will be able, in this way, to constra,i;l the possible values for A’s,
putting an upper bound for each of them. In order to obtain such results, we
assume that no great cancellation occurs between the [Arr)%,, [Arr]%;, [ALr)%,
and [Arr)sa[ARR]sa contributions. In doing so, we are not considering the most
general case,but, significative cancellations between these terms occur only if they
are very close, which is a rare situation. Barring such a case, we can safely estimate
an independent bound on the A’s. We will look for the value of each A which
alone saturates the experimental value for émg.

In the limit where the gluino mass is equal to the average squark mass, y =

M?/m? — 1, we get:

1
i == 2
lim A(y) = 55 (3.20)
1
lim B(y) = — o= 3.21
lim B(y) = 55 (3.21)

In this limit we obtain the following upper bounds for the model independent

parameters:

2
Re(12LELay < 1 45 108

= (3.22)

46



[ALpp)sd[ARR]sd _g m?
< P,
) <5.5x10 M

Re( (3.23)

mt

and

~ 2
Re([ALL]’d) <1.1x10°% AT;W

(3.24)

We opted for showing these limits through the adimensional quantities [A]?;/m*

The last result can be transformed into a limit for [Agg]?, simply doing [Arp]?,; <

[ArR]?,.

The experimental value® of the CP-violation parameter €x can be used to

constrain the imaginary part of the parameters A’s through the equation (2.23):

[ALr]} g 1’
Im( o =ed) <39 107° e (3.25)
[Arz]sa[ARR]sa g 7
Im( =3 ) <1.6x10 QM%V (3.26)
and
[ LL].sd -7 m?
Im(*—=52%) <3.2x 10 (3.27)

MW )
We can again recover the limit on the [Agg]?; proceeding with the substi-

tution [App]®, « [Agrg]%; in the last relation. It will be useful for our next

discussion, to display the results of the equations (3.24) and (3.27) in a slightly

® see Appendix D for the current experimental values used in this work.
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different way. Remembering that

ReA? =(ReA)? — (ImA)?

, (3.28)
ImA? =2ReAImA
we can write the following results:
[ArL]sa —p ™
— <1. e 2
Rei= 2225 < 1.0 x 1072 3 .(3 9)
and
[Arr]sa -5 M
<2. —, .30
Im — <21x10 o (3.30)

The results shown in the equations (3.22) - (3.30) are very general and model
independent, i.e., all supersymmetric models must respect these limits in order to
pass the low energy tests related to flavor changing neutral currents in the kaon
system. One could immediately ask: does the Minimal Supersymmetric Standard
Model pass this test? To answer this question, we turn back to Chapter I to
find that the relevant (non-negligible) quantity related to flavor changing neutral

currents in this model is the [A]r, given by the equation (1.9) or (1.16):
[A?J_i,n sd = c[VT(miiag)ZV]_,d ~ CVJ;V@TI’L%. (3.31)

In order to write a numerical value for Re[Az‘};”]sd and Im[A}l”Ii”],d and then
to compare these values with those previously found in our model independent
analysis, we must analyse the current status of the Cabibbo-Kobayashi-Maskawa
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angular factors which enter in the equation (3.31). We adopt here the Wolfenstein
parametrization(®®) of the Cabibbo-Kobayashi-Maskawa matrix:
Vud Vus Vub - ATZ A AASPeiqb
V|V Vi Va|= 5\ HEUPC (3.2)
Via Vie Va AN (1 — peT?®)  —AX? 1

where A is the experimentally well known sine of the Cabibbo angle:
A = sinfcabibso = 0.221 4 0.002 (3.33)

and A, p and ¢ are parameters to be determined.

In this parametrization, the real and the imaginary part of [AT"] 4 can be

determined from the equations (3.31) and (3.32). We obtain:

Re[AT{™,a ~ cm?Re[V, Vig] = emZ[—A*X3(1 - pcosd)] (3.34)
and
Im[AT{Msa =~ em2Im[ViVig] = em?[— A%A5 psing) (3.35)

We now consider the available experimental information on A4, p and ¢. In
order to infer the value of 4, we must analyse some suitable exp’eriment where the
b — c transition is present, because V., = AX? and ) is known. In fact, 4 can
be fixed by the b-lifetime 75 and the semileptonic branching ratio Bsy = B(b —
evX). We will not enter into details of these calculations. For our purposes, it is
sufficient to say that the semileptonic width I'sy, = Bsi /T8 can be computed by

the parton model improved by QCD corrections to obtain:

[Vic|* = €T sp[sec] (3.36)
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where the coefficient ¢ is explored in reference (40). Using the current values for

Bgsy, and 78 (see Appendix D), one finds:
A=1.05+0.17 (3.37)

The parameter p is fixed by the ratio of the widths:

I'(b — uev)
R= T o) (3.38)
once that:
Vup 2 2
(0.47 £ 0.02)R = | v 1 = (Ap)*. (3.39)
cb

The numerical factor is obtained from the parton model plus QCD correc-
tions*?) and the last equality is read straightforward from equation (3.32). At

90% C.L., one has:
R < 0.13(CRYSTALBALL)

< 0.12(ARGUS)

(3.40)
< 0.06(CUSB)
< 0.04(CLEO)
Taking the CLEO result (the strongest upper bound), we find:
Vbu 2
R <0.04= !V—[ <014=p<06 (3.41)
be

Finally, on cos¢, one observes that it is strongly dependent on the top quark
mass m;. In fact, the Figure 3.4, taken from reference (41), shows that the exper-
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tos ¢

my (GeV)

Figure 3.4: Limits on cos¢ obtained from the experimental value of the CP
violating parameter € for the kaon system as functions of the top quark mass
m4, for various values of p. Here one takes 4 = 1.05 [the central value in
equation (3.37)]. The indicated values of p = 0.9,0.6 and 0.3 correspond to

R=T(b— u)/T(b— ¢) = 0.08,0.04 and 0.009, respectively.

imental value of the CP violating parameter € for the kaon system is consistent

with the currently large values of m¢ (m > 77GeV) if |cosé| ~ 1.

Furthermore, analysing the equation (3.34), we observe that the most disfa-
vorable situation concerning the value of the parameter ¢, i.e., the value of this
parameter which most pushes the absolute value of Re[AT%"],; up, towards ﬁhe
dangerous upper bound given in the equation (3.29), is, precisely, cos¢ = —1. It

is interesting to notice that, for this value, all CP violating effects vanish. So, it
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is not a realist value. Anyway, it is a nice value to perform our comparison.
Thus, using the values for A and p, given by the equations (3.37) and (3.41),

and cos¢ = —1, we obtain from (3.34):

RelAZL"lsd 99 10-2 - (3.42)

m2 Mw

The values of the parameters which enter in the calculation of the Re[AT#"],q
were chosen such that, respecting the eventual present experimental values, again
most push its value up. We used the top quark mass m; = 130GeV, the average
squark mass m = 80GeV and ¢ = —1.

The equation (3.42) is to be compared with the equation (3.29) which shows
the value of Re[Arr],4 which saturates the experimental value of émg in a Su-
persymmetric Model. We can conclude that, even for the largest allowed values
of the Cabibbo-Kobayashi-Maskawa angular factors, the Minimal Supersymmetric
Standard Model yields a contribution to §mx less than its experimental value.

It is an enthusiastic fact verifing that the Minimal Supersymmetric Model
is compatible with (3.29). Nevertheless, it is also true that such a conclusion is
a little frustrating since the results shown above do not lead to any interesting
constraint in any of the still free parameters of the model. For instance, it does
not yield any upper bound for the top mass or any other free parameter.

A different situation arises when we analyse the imaginary part of [Apz]?,.
If the top quark mass is heavy, the experimental value of |[éx| leads to a strong
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bound on one of the still free parameters of the model. From (3.28), (3.32) and

(3.35), we can write:
Im[Apr)?; = 28miA* A psing(1 — pcosd) (3.43)

This value is relevant in the Minimal Supersymmetric Standard Model con-

tribution to |€x|. Through the equations (2.23) and (3.19) we find:

2.4
My,m;

fhﬁ

[e™| = 6.86 x 10™*c* psing(1 — pcosd) (3.44)

Comparing with the experimental result of [éx| (given in Appendix D), we
obtain:

=~ 6

psing(l + pcosd) ~ 3.22— n
o2

—— 45
Mf,'zvmit (3.45)

For the extreme values ¢ = 1, m=80 GeV and m;=130 GeV, this value becomes:
psin (1 + pcos¢) ~ 0.461 (3.46)

which can be compared with that calculated in reference (40). There, in order
to reproduce the experimental value for |[éx| in the Standard Model, the authors

found:

psin (1 + pcos ) ~ 0.335 (3.47)

In fact, it is interesting to compare the Minimal Supersymmetric contribution
to [€x| given in equation (3.44) with the Standard Model calculations for this
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quantity(42):

2| =5.9BxA*(A*X*psin ¢)[n.m? + nemy A_tiﬂl .
t (3.48)
m
x A2X4(1 — peosd) + nctmilnr—n—t][(GeV)_z]

with:

1
4

— — s —_— —_ — l i

A(z;) = =4
z; = m} [ My
and 7., 7; and 7., are QCD correction factors which values are, approximately,
0.8, 0.6 and 0.4, respectively. Taking Bx = 1, m. = 1.5GeV and m; > 80GeV,
it is straightforward to conclude that the m? term dominates (3.48). So we can
calculate the ratio:

e 1, Mpym?

3.50
5 V5 (550

Analysing the extreme case when ¢ = 1, m; = 130GeV and m = 80GeV, the

ratio in (3.50) can be written:
1
K
I—SM ~ 5 . (3.51)
Therefore, we can conclude that for suitable values of the parameters ¢, m; and m,

the Minimal Supersymmetric Standard Model gives non-negligible contributions

to !EK|.
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APPENDIX A

In this Appendix A we give the matrix elements between x° and ®° evaluated

in the vacuum insertion method. One defines(*V):

Vg =(R[say* Pad®5yyuPad’ |v) x (T* T3 (THOTP), (A1)

545" =(R°[FaPad’5, Ppd’|s) x (T°T*)§ (T*T°P)7, (4.2)
B2 =R [Sa0 Pad®Sy0,,d°|x) x (T°THF(THOT D). (43)

where A, B = L, R and o, 8,7, = 1,2,3 are color indices. The following relations

are satisfied:

V+D(M) _VD(M) nggM), (4.4)
D) VD(M) Vlg_J(M), (A.5)
Sf(M) _ SD(M) SQISM), (4.8)
P —gDD _ SD(M) (A7)
5:D(M) EEE(M) _ Eg(M). (A.8)

The final result regarding the matrix elements, remembering the relation be-
tween k° and &° states, i.e., [R°(p)) = CP|x%(—p)), is

vP :é}{N (A.9)
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with:

D
=(—+ =R)N
5= 18+27)

11
M_(- - =R)N
5= =(35 ~ 5%

EngRN

»M _ZRN
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(4.10)
(A.11)
(4.12)
(4.13)
(A.14)
(4.15)
(A.16)
(4.17)

(4.18)

(4.19)

(4.20)



APPENDIX B

In this Appendix B we give some useful Fierz Identities used in the present

work:

(@PrCE) (T Pyd) :%(Efy”PLd)(Efy#PLc) (B.1)
(@y* PO )(cT C 1y, Prd) =2(aPrd)(bPyc) (B.2)
(E’y“PRCET)(cTC’“l'y#PRd) =(ay" Prd)(by,Prc) | (B.3)

(@CPRET)(¢TC " Prd) = %(EPRd)(EPRc) - —;—(a’a“”PRd)(anc) (B.4)
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APPENDIX C

In this Appendix C we give some useful functional integrations used in this

work, we define y = M?/m?, where, in our calculations, M is the gluino mass and

™ is an average squark mass:

d*k 1

(2m)t (k2 — M2)2(k? — m2)*
__r (-9y”

1672m8 6

S Aly),

=~ 16728

/ d*k k2
(2m)® (k2 — MZ)2(k% — )t

= — z (-9~ (——y3 — 9y2 +9y +1+6y(1+ y)lny)
1672m?o 3
]
= Tonzme P W)
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(~y* +9y* + 9y — 17— 6(3y + 1)iny)

(C.1)

(C.2)



APPENDIX D

In this Appendix D are given experimental or theoretical values for some

quantities used in this work:

my ~500MeV (D.1)
ms ~150MeV (D.2)
mg ~10MeV (D.3)
My ~80GeV (D.4)
fr ~1.23fr ~ 1.23 x 93MeV ~ 114MeV (D.5)
as ~1071 (D.6)
51n0Gapivbo =0.221 £ .002 (D.7)
émyg ~3.52 x 1071°GeV (D.8)
lex| ~(2.24 £0.02) x 1073 (D.9)
Bsr, =0.117 + 0.006 (D.10)
8 =(1.11 £ 0.16) x 10" *2sec (D.11)
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