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Introduction

The study of the diffusion processes in solids and particularly in semicon-
ductors is an important field of research in modern solid state physics.
It involves the knowledge of many properties of solids, both electronic and
vibrational. It has also a fundamental importance in the industrial process-
ing of electronic devices (it is not by chance that the interest in the sixties
turned from Germanium to Silicon and now towards the III-V compounds).
In particular, self-diffusion controls the annealing processes.

A number of possible mechanisms may be considered for the self-diffusion:
vacancy, in which atoms diffuse by means of jumps into an empty site, di-
vacancy (1], in which two bounded vacancies are considered (more complex
aggregates of defects have been also proposed [2]), interstitial and intersti-
tialcy, in which an off-site atom wanders in the crystal eventually exchang-
ing with an in-site, or even intrinsic (i. e., without defects) ones, such as
the “concerted exchange” model [3] in which two atoms directly interchange
their positions. Of course it is possible that more than one mechanism are
effective simultaneously.

From an experimental point of view, the situation for Silicon is far
from clear. In fact, due to some difficulties, e. g. that of discriminate with
certainty one kind of defect from another, both the formation and migration
enthalpy of the vacancy are still under debate. A considerable spread exists
in the data. The same is true for the self-diffusion coefficient data where,
in addition, a marked difference exists between high (> 1300 °K) and low
temperature data.

To estimate theoretically the diffusion coefficient at a given temperature
of a thermally activated defect (we shall refer to the vacancy) it is necessary

to evaluate: -

. . . — L . .
a) their concentration, proportional to e” %7, G4 being the Gibbs free

energy of formation of the vacancy;
—Cm

b) the vacancy jump frequency, proportional to e” %7, G,, being the
Gibbs free energy of migration.

The diffusion coeflicient then will be proportional to the product of
these factors.

The evaluation for a realistic model semiconductor of quantities like G4
and G,, is very difficult and, as a matter of fact, no such calculation exists



to date. Only the defect energetics at 7' = 0 has been performed.

A possible way to solve the problem consists in performing Molecular
Dynamics simulations, in which finite temperature effects are fully taken
into account. However, MD relies on the assumption that a satisfactory
jon-ion potential can be found. Usually an empirical potential fitted to
some bulk properties is chosen, such as the Lennard-Jones for rare gases,
but this way meets difficulties in the case of covalently bonded materials,
in which many-body effects are relevant.

In fact, due to the presence of relatively delocalized valence electrons,
the interaction between two atoms is affected by the presence of others,
giving rise to three- (or more) body terms in the potential energy.

The recently developed Molecular Dynamics - Density Functional scheme
[4] seems to be a promising way to tackle the problems illustrated above. In
this Thesis, we illustrate the preliminary work done to apply this method
to the case of the self-diffusion in Silicon due to the vacancy mechanism.

Both the problem of the vacancy formation and of its migration can be
tackled by using first-principle Molecular Dynamics: the knowledge of the
phonon spectrum allows one to get G [5], while a direct simulation of the
jump process gives a quantitative value of its frequency, fully taking into
account entropic, anharmonic and jump correlation effects.

The results of an extensive phase of testing show that a satisfactory
description of the ideal Silicon vacancy can be achieved, yielding results in
good agreement with other theoretical estimates. In particular, formation
energies are obtained with an error of a few tenth of an eV.

A first simulation of the jump process then has been performed, follow-
ing the time evolution of the system, heated to ~ 1300 °K, for = 2ps. A
first jump into the vacancy, followed by an immediate return and by some
unsuccessful trials has been observed, showing the feasibility of the simu-
lation. Higher-temperature runs, in which a sensible increase of the jump
rate is expected, are in progress.

We have not attempted to perform a full calculation of the free energy of
formation. Even if in principle a fully anharmonic treatment can be used,
great difficulties are encountered [6] and it is more simple, but accurate
enough, to do the job in the framework of the so-called quasi-harmonic
approximation [7,8]. This requires the evaluation of the dynamical matrix;
a possible computational scheme has been recently proposed by Bachelet
and De Lorenzi [9].
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Finally, a study of some alternative models (e. g. the Pandey model [3])
along the same lines is planned, allowing to compare these various mecha-
nisms for self-diffusion.

This Thesis is organized as follows:

e In the first chapter, the theory and the experimental results on Silicon
self-diffusion are shortly reviewed.

e In the second chapter the main aspects of the computational method
are illustrated.

e In the third chapter the results of calculations are exposed and dis-
cussed.

e In the last chapter we draw some preliminary conclusions and outline
the future work.
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Chapter 1

Self-Diffusion in Silicon

1.1 Thermodynamical Aspects

From a macroscopic point of view, the diffusion phenomena are described
by the Fick’s laws:
j = -D.-Ve¢ (1.1)
0 .
(—95 = -V.j=V.(D-Vc)= DV
where c is the concentration of the diffusing particles and Jj their flux. The
coefficient D is called “diffusion coefficient” and, in principle, is a posi-
tion dependent second-rank tensor. However, for systems with a sufficient
degree of symmetry such as cubic lattice materials D is a multiple of the
identity and therefore we shall consider it as a scalar. The last equality
in 1.1 is true only for homogeneous systems of this kind, which we are
referring to.
An early analysis of Einstein using a random walk model links D to the
mean square displacement of the particles:’ :

_<&(t)> TId
- 6t T 6

D (1.2)

where the second equality refers to a lattice!: I' is the jump frequency
between a site to another and d its amplitude. If more kind of diffusion

!For lattices having less than cubic symmetry the factor 6 should be changed.



processes (supposed incorrelated) are present, D is the sum of all the indi-
vidual coefficients.

The assumption of randomness of the jumpsis not always justified: since
the jumping particle has a peculiar dynamical situation, it probably has a
different, generally higher, jump probability from the mean. In the case of
the vacancy, for example, the possibility of an immediate return jump may
be large, so reducing the diffusion coeflicient. This is taken into account
by a multiplicative factor f; for self diffusion in elemental materials it is
(neglecting isotope effects) a mechanism dependent geometrical factor [10].
For interstitials and intrinsic mechanisms f = 1 (no effect); for the vacancy
migration mechanism f has been found to be less than 1 [6,60] (1/2 for the
diamond lattice).

For self-diffusion, we can write I' = we, with w the frequency of the single
process (e. g. the jump of an atom in a vacancy) and c the concentration of
sites available for it. For intrinsic self-diffusion, ¢ = 1; for defect-mediated
processes, we know that the defect concentration is [11] ¢ = e~CG#/mT =
e5t/koe~Hi /T where G is the Gibbs’ free energy of formation, that is the
G of the defect system minus that of the perfect crystal (and similarly for
H and 5).

The ratio of atoms reaching the saddle-point for migration is [12] z =
e=Cm/boT = Sm/kve=Hm/lT H  and S, being the enthalpy and the entropy
at the saddle point, measured respect to that of the defect system in the
minimum-G state, and if v is the frequency at which the saddle-point-
atoms goes into the new site (an unknown quantity of the order of the
highest vibrational frequency of the system), we get w = zv and thus

—Gu/ksT

I'=ve

— pe(St+5m)/ky o~(Hy+Hm)/ kT (1.3)

Putting this equation together with the eq. 1.2 we see that diffusion is a
thermally activated process

D = Dye”@/RT (1.4)

with an activation enthalpy Q = H; + H,, and a pre-exponential factor
Dy = %fdzve(sﬂrsm)/’“b, What then remains is to determine Dy and @ from
a microscopic analysis.

Such exponentially-behaved phenomena are at best described in terms
of Arrhenius plots. They are graphs in which the ordinate axis, which in



this case refers to D, has a logarithmic scale while the abscissa refer to the
inverse temperature. That is, what is plotted is log D versus 1/T and it is
easily seen that the curve, if the values of Q and Dy do not depend of T, is
a straight line with a slope proportional to —@ and an intercept with the
vertical axis at the point (1/T = 0,log Dy).

Deviations from this shape must be attributed to the failure of the
preceding assumptions, namely to a temperature dependence of @ and S,
or to the co-existence of two or more processes with different ¢) and Dy,
in which case two or more temperature ranges usually exist in which each
single process is dominant. A knee in the curve indicates the temperature
at which the cross-over between two of these regimes happens.

Even the presence of non-thermal processes may alter the graph.

1.2 Experimental Results

1.2.1 Self-Diffusion Coefficient

The experimental study of self-diffusion in semiconductors is not an easy
task [13]. The main way to perform experiments is to diffuse radioactive
isotopes in the sample and after some time to detect in some way the
position they have assumed. The results are then fitted to an appropriate
solution of eq. 1.1 to extract D at a specific temperature.

The first studies [14,15,16] were done by directly diffusing the only iso-
tope disposable: %!Si, with a half-life of 2.6 hours. It is clear that with
such a short lifetime a very small distance can be covered, so high tem-
peratures and refined microsectioning techniques are needed. A possible
alternative is the use of the stable isotope ®°Si, transmuting it ¢n situ in the
31Si isotope [17] or exploiting its resonance in the proton scattering cross
section [18,19,20], provided that the natural background of natural *Si (a
concentration of about 3% in the natural Silicon) is properly subtracted.

The experimental results are shown in Table 1.2.1 and in figure 1.2.1.
First, it must be stressed that an intrinsic uncertainity is inserted by the
way in which the data are manipulated to extract physical quantities. For
example, choosing for the data in ref. [14] a fitting value of 4.1 eV instead
of 4.77 one get Dy ~ 100 cm?s™! instead of 1800. The fitting procedure in
fact, due to the relatively small temperature range in which measurements
are done, is very delicate and so an error even of 100% in evaluating Dy is
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Figure 1.1:

Experimental data on self-diffusion coefficient in Silicon. Curve n.1:
ref. [14]; n.2: ref. [15,16]; n.3: ref. [21]; n.4.: ref. [18]; n.5: ref. [19]; n.6:
ref. [20]; n. 7: ref. [23] (" Ge diffusion).



Reference Dy Q Temperature
' (em? s71) (eV) range (°K)
Peart [14] | 1800 477  1473-1673
Ghoshtagore [17] 1200 - 4.72  1451-1573
Mayer et al [21] 1460 5.02  1320-1660
Fairfield and Masters [15,16] 9000 5.13  1373-1573
Sanders and Dobson [22] 5.8 4.1 1243-1343
Kalinowski and Seguin [19,61] 154 4.65  1128-1448
Demond et al [20] ~ 20 4.4 1103-1473
Hirvonen and Anttila [18] 8 4.1 1173-1373
Table 1.1:

Experimental enthalpy of migration and pre-exponential factor for Silicon.

not astonishing. This partly explains the large scatter in the values of Dy
at about the same T'.

Since the properties of the defects are sensitive to the charge state, a
doping dependence of D can be anticipated [24]. Table 1.2.1 reports the
self-diffusion data over a range of high doping, both p and n. The quantity
reported is the ratio between the self-diffusion coeflicient in the doped sam-
ples and that in the undoped ones. Except for the data of ref. [17], which
however have been questioned [25], all the data agree to give an appreciable
increase of the diffusion coefficient. This however could be partially due to
the onset of some impurity-mediated mechanism.

1.2.2 Fﬁrmation Enthalpy

The direct detection of formation enthalpy and so of the equilibrium density
of vacancies (and other thermally activated defects) is also a difficult task.

First, several kind of intrinsic defects may be created by thermal mo-
tion, and, at variance with the case of impurities, their concentration, either
absolute or relative, cannot be varied as wanted. This implies that single
phenomena cannot unambiguously be attributed to a single defect species,
unless some additional information on the effect of specific defect mecha-
nisms is available.



Reference Doping type Dopant conc. Dyop Temperature

and dopant (10 ecm™3) Doyna range (°K)

Fairfield n: P, As 8-18.8 1.35-3.15  1363-1470
and Masters [16] p: B 8-22 - 1.-1.75
Ghoshtagore [17] n: P 8.6 1.6 1451-1573
p: B 10 0.72
Hettich et al [23] p: B 0.6-1.2 1.4-1.2 1318-1515
Table 1.2:

Doping dependence of the pre-exponential self-diffusion factor for Silicon.
Tracer is *'Si. '

Second, due to the low concentration of intrinsic defects even at melting
temperature?, the physical quantities which can be affected by the pres-
ence of defects are much more altered by thermal effects. For example,
since defects behave as sources or sinks of conduction electrons the elec-
trical transport properties are sensitive to their presence; however, the de-
fect concentration in Silicon near the melting point is orders of magnitude
smaller than the concentration of thermally excited electrons.

The only way to proceed was for a long time to quench the crystal to a
temperature low enough to allow a sensible detection [27]. This introduces
a further source of error, because the Silicon vacancy, for example, is found
to migrate even at very low temperature [28]: the typical clustering times
being of the order of milliseconds, even cooling rates as high as 10° °K/s
do not exclude the possibility of substantial annealing and clustering of
defects [29]. ’

A few measurements of this kind have been performed, we refer here to
the work of Estner and Kamprath [27], who detected the reduction of the
free-carrier concentration in n-doped Silicon attributing it to the trapping
by single vacancies, yielding Hy = 2.4+ 2.5 V. Together with the value of
0.33 eV for H,, obtained by Watkins [28] from low-temperature annealing
data we obtain @ ~ 2.8 eV, far lower than reported in the previous section

2From self-diffusion data, under the assumption that the diffusion takes place via a
defect mechanism, it is possible to bound the intrinsic defect concentration at melting [26]
by 1077+ 10719,



(Q about 4 V). Since the data of ref. [28] are generally considered reli-
able, the probable explanation of the discrepancy relies in the difficulties
mentioned above.

Recently however the refinement of the positron-annihilation technique [30]
has allowed a set of measures [31] in a wide temperature range (300-1523
°K’), therefore avoiding the previous uncertainties. The reported value is
H; = 3.6+0.2 eV, in good agreement with the estimates cited above. These
authors also evaluate the formation entropy of the vacancy to be as high as
6 = 10 ky, but this value is subject to the uncertainity on the value of the
dielectric constant in the neighbourhood of the vacancy (estimated to be
~ 6, but actually not known) and to the assumptions on the temperature
dependence of the lifetime of positrons in the vacancy (a different choice
would not even allow to estimate S).

1.3 Interpretation in Terms of Microscopic
Mechanisms

A number of microscopic mechanisms has been proposed for the Silicon self-
diffusion. Here we limit ourselves to a short survey, referring the reader for
detailed discussions to the many reviews available [11,12,25,26,32].

Each mechanism has to explain some major features of the self-diffusion
data:

i) A neat discontinuity appears at about 1300 ° K, for under that value the
pre-exponential factor decreases, as jointly results from all the studies,
of about two orders of magnitude. @), over whose values a small error
is expected, decreases from about 5 eV to about 4 eV. As previously
said, this can be attributed to a variation of the migration mecha-
nism or to a strong temperature dependence of the thermodynamical
functions H and §. '

ii) The high temperature values of Dy are very high (so implying a very
high diffusion entropy) compared not only with metals but even with
Germanium.

A first possibility is that of an intrinsic, that is defect independent
mechanism, which could be a direct exchange or a ring exchange one [11].



For a long time this has been regarded as scarcely reliable, due to the high
energy required to break six covalent bonds. However, recently Pandey [3]
has shown that a mechanism can be thought requiring the breaking of only
two bonds at a time, bounding the need of energy within 5 eV, a value not
far from experiments. :

Other conceivable mechanisms are the interstitial or interstitialcy. Both
involve off-site atoms, the difference being the way in which the migration
happens. In the former the same ion wanders along the lattice hopping from
one stable site to another, while in the latter it pushes away a “regular”
atom which so becomes the interstitial one. What is the way in which
interstitials move is decided of course by the enthalpy barriers it encounters.

Two points have to be pointed out: a number of migration paths are
probably open, so increasing somewhat the migration entropy; and both
stable and saddle-point configurations are not at all obvious, so they need
specific analyses. Recently some indirect experimental evidence for this
mechanism has been found [32].

Following what is commonly believed about self-diffusion in Germa-
nium, a vacancy mechanism got wide consideration®. Actually, in Ge the
values of Dy are roughly in agreement to what is found in Silicon at low
T. This suggests that, at least in this range, this mechanism could be the
dominant one.

Theoretical (see sect. 1.4) and experimental reasons lead one to believe
that the vacancy has a low migration enthalpy of about 0.2+0.4 ¢V. Efforts
have been produced [1,62,59] in order to show that the atomic relaxation
and the phonon softening around the vacancy (“relaxion”) can bring the
formation entropy of the vacancy in agreement with evaluations made on
the basis of ii), which suggest S/k; ~ 8 + 16. It is worth that some experi-
mental evidence has been produced supporting them [31].

A similar way to obtain an high §,, is to choose a mechanism which
surely strongly perturbs the surrounding lattice. A divacancy mechanism
is a possible one [1,12,14,17], but it is not clear if the formation enthalpy is
low enough to allow a significant concentration of them to be present [25,31].
Further, it has yet to be shown that the migration may happen without
quick dissociation into a pair of single vacancies [2,12].

3Even a split-vacancy mechanism has been proposed [33], suggesting that this could be
the stable configuration. Experimental and recent theoretical studies, including ours, rule
out this possibility.



The concept of strong relaxation has been extended [2] both for vacancy
and interstitial up to suppose that some sort of local melting may take place
around those defects. The onset of this phenomenon would have to be at
the temperature at which the knee in the Arrhenius plots shows up; at lower
temperatures “normal” vacancies and/or interstitials would be found. This
would explain as the high entropy over that point as its sudden change (even
 Hj should be raised). Due to the complexity of this kind of model, however,
it is difficult to assess its validity; further, it must be noted that positron-
annihilation experiments [31] seem not to detect such a large modification
of the structure at any temperature.

1.4 Theoretical Studies

To support and test the various views some theoretical computations have
to be performed. They may be divided into two main categories: statical
(absolute zero) and dynamical. We shall expose them separately.

1.4.1 Statical Computations

In these schemes one carefully computes the thermodynamical functions
at the critical configurations, namely the local minima and the migration
saddle points, which for most mechanisms are not obvious and have to
be found by computations within a number of candidates. One then tries
to get connections with the dynamical quantities of interest. The system
is thought to be not only at thermodynamical equilibrium, but also at
absolute zero.

The first results of this type, although several different attempts had
been done [2,34,35], were unsatisfactory. As an example, we quote the work
of Seeger [2] which in spite of the efforts spent to improve its model, based
on semiempirical Morse potential, got a formation enthalpy of only 2.35 eV
which, being in (probably fortuitous) agreement with the experimental data
of Estner and Kamprath [27], is subject to the same strong criticisms.

Modern schemes are instead based over refined self-consistent meth-
ods and need large disposability of computer resources. The main results
regarding the Silicon vacancy are listed in table 1.4.1. The results of Bar-
Yam and Joannopoulos [36] were obtained by means of a supercell (up



770 VT
Reference H H, Q Hy H, Q
Swalin [34] 532 1.06 3.38
Benneman [35] 2.13 1.09 3.22 |
Seeger [2] 2.35
Bar-Yam et al. [36] | 3.6  0.5° 4.1 |46 03° 4.9
Car et al. [37,38] 4.2 5.1
Kelly et al. [39] 3.92 0.27 4.19|3.43 042 5.02

° empirical value

Table 1.3:
Theoretical enthalpy for the neutral and the doubly charged Silicon vacancy.

to 32 atoms) method, the others [37,38,39] using a self consistent Green’s
function method. All these authors included atomic relaxations. Note that
while the formation enthalpy of the neutral vacancy is independent of the
Fermi level uy, hence of doping, that of the charged ones does depend on
it: the values reported in the table 1.4.1 are obtained supposing that u
lies at the middle of the gap for intrinsic Silicon.

Some of the data are directly comparable with experiments. For exam-
ple, from section 1.1 we see that the empirical activation energy Q is the
sum of the microscopic H; and H,,. So we have listed even the sum of
these enthalpies which have to be compared to the value of 4.1 = 5.1 cited
in the section 1.2. The agreement is in general quite good, and similarly
when the single migration enthalpy is referred to empirical values, that is
the Watkins’ data (0.33 eV for the double plus vacancy and 0.45 for the
neutral).

We stress an important limitation of the static methods: they neglect
finite temperature and dynamical effects. They neglect the possibility “of
immediate return jumps, just after the crossing of the barrier top, the
possibility of multiple jumps, and are open to the criticisms that the true
relaxation of the system during the jump is not well taken into account:
for slow events a full relaxation is expected, but for fast ones its entity is
not in this way estimable.

In other words, they simply disregard the dynamical, finite temperature
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nature of the diffusion processes, that is one of their more prominent char-
acteristics. This is disappointing since, for example, as seen in the previous
sections there are experimental indications that temperature effects are not
at all negligible. ‘

What then cannot be done in a simple manner is the evaluation of
the contribute of the single mechanisms to self-diffusion. In fact, such
results do not carry sufficient informations to estimate quantitatively the
major contribute given by the formation and migration entropy to the pre-
exponential factor Dy. -

A bridge towards these data must be supplied otherwise. A possible and
largely exploited way is to use the so called “rate theory”, or the “dynamical
theory” (which however being physically and, up to the second order in the
potential, numerically equivalent to the former will not be examined here).

The task of the rate theory is, if ¢ is known, since D « T' = we, to
calculate w. If we assume that the system remains in the thermodynamical
equilibrium before and throughout the jump and do not take into account
the dynamical correlations we get [8,11]

w = Ke AV/kT (1.5)
where K is given by
I
K = N (1.6)

where w; are the eigenfrequencies of the system around the minimum of
the energy (here and later we shall subtract the center-of-mass coordinates
from the degrees of freedom), and w! the same but around the saddle point
and excluding the imaginary one, i. e. that along the reaction coordinate.

Eq. 1.5 contains the difference in the potential energy between the saddle
and the minimum point. Since the migration is a constant pressure process,
it actually is a migration enthalpy. To get a migration free energy we should
have to extract an entropy factor from K: if we put [B] N2 = T3N3, we
can write § = ky 13" ~*log(@/w!) and so K = weS/*. This choice however
is by no means unique. '

We then see that if the defect concentration, the eigenfrequencies around
the minima and the saddle point, and H,, are known this theory provides
us the value of the diffusion coefficient for the considered mechanism.

11



1.4.2 Dynamical Simulations

A well known way to take fully into account the aspects overlooked by the
previous methods is to simulate the true time evolution by means of com-
puter experiments: this is the Molecular Dynamics (MD) method [6,8,40].

In principle, the method seems to be plainly applicable to our systems.
It seems sufficient to start with a perfect crystal system, heat it and wait
for the formation of a sufficient number of the the wanted defects; then
their migration could be monitored, and the rates of creation and motion
would directly give the physical quantities sought.

But this simple strategy cannot be practically used. Left apart consid-
erations on the interatomic potential, on which we shall return later, the
creation rate of defects is far lower than detectable from today’s simula-
tions. These problems are less serious in the case of defect jump in which
the probabilities, at least near the melting point, are usually much higher:
using modern high-speed computers a direct simulation of defect migration
is sometimes possible.

One is then forced to an indirect evaluation of the concentration of de-
fects by computing the thermodynamical quantities of a previously created
one and using ¢ = e~¢#/%T, Even in this case, the direct computation of
the relevant thermodynamical quantities like F', the Helmholtz free energy,
or S, the entropy, is not practically possible because they are not cast in
the form of equilibrium averages of functions of positions and velocities.
They are written as configurational integrals which having quick varying
integrands are very hard to solve [40].

This may instead be achieved in a satisfactory way using the quasi-
harmonic approximation. Let us start Wlth the expressions of F,U,S,P in
the harmonic approximation [8]:

13N—3 3N-3 hwy
F o= o+ 3 hws+ kT Y log (1— e 5F)
3N-3 hwi
~ ¢o+ kT Z log (k T) (1.7)
3N 3 3N-3 ﬁw1
U = ¢0+ Z hw; + Z ~ ¢o + 3Nk, T (1.8)
' e"bT -1
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Doy 3N-3 ﬁwi/ka

3N-3 hwy
N

i ] — ekT
3N-3 h R
ke [ 3 log (762"—11) - 1} | (1.9)

0dq 15}
“a‘v—-‘[év F-

1

P = Py+P, = qso)} (1.10)

T

where ¢g is the potential energy at the minimum energy configuration and
the approximate equalities refer to the high-temperature case.

This approximation is not fully satisfactory. The anharmonic effects,
which in the case of defect jumps are expected to be important since the
particles sample unusually high energy regions, are responsible of a lot of
important physical effects, such as the thermal expansion; and since in
the eqs. 1.7 there is no volume dependence in the w’s we don’t find any
temperature dependence of the pressure.

In the Quasi-Harmonic (QH) approximation the anharmonicity is ap-
proximately introduced by a volume dependence of ¢, and w;, the latter
using Grinesein parameters, maybe empirical.

If we choose to compute them we have to perform a number of compu-
tations over different volumes (for each a new minimization of the energy
respect to the ionic positions is required) of ¢o and w; both for the bulk
and the defect crystal, then to fit the results to some suitable function and
at the end compute Fir and F,... The free energy of formation of the
vacancy is given by [9]

N -1

FCL = Fvac (%ulk’ T) - N Fbulk (%ulkv T) (1‘11)
if the lattice parameter is fixed,
’ N—-1_. N-1 .
FCV = Fvac (—Tv—-vbulk,T) - Fbulk (VbulkaT) (1'12)

if the volume is fixed,

N -1
N

N -1

GCP = Fvac (I/vaca T) - T

Fyue (Voutt, T) + Prat (vm - v;um)

(1.13)
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if the pressure is fixed (in this case in fact the appropriate thermodynam-
ical potential is G). Here Viq., Vouir are the volumes at which the internal
pressure and the external are equal.

The approach described above has been successfully applied many times
to simple cases, namely the ones in which a satisfactory potential function
can be found: mainly noble gases (Lennard-Jones systems) ionic systems
and some metals. For covalent semiconductors the problem is on the con-
trary hard: the presence of relevant classical and quantal many-body effects,
sensitive to the chemical environment up to now ruled out for general pur-
poses every proposed scheme. In fact, valence-force schemes [41] are fitted
and useful only near equilibrium position—not just our case!, and so it is
not clear what should be the choice of parameters in the case of dangling
or severely distorted bonds.

Regarding the transferability of the potential we note that, for example,
the widely used Stillinger and Weber’s form [42] has shown to be incapable
of dealing correctly with all the three phases (solid, liquid and amorphous)
of Silicon with the same parameters.

As a conclusion of the previous bird-eye view we can convince ourselves
that for an accurate study of the self-diffusion problem a first-principle
dynamical technique is particularly welcome. A strategy of this kind exists:
it is the joint Molecular Dynamics - Density Functional scheme, which will
be exposed and used in the next chapters.
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Chapter 2

The Computational Method

2.1 The Unified Molecular Dynamics - Den-
sity Functional Approach

In this approach the interatomic forces are directly derived from the elec-
tronic ground state. This is treated in the framework of the Density Func-
tional Theory (DFT) within the Local Density Approximation (LDA) for
exchange and correlation effects.

In the present method the electronic wavefunctions are regarded as clas-
sical degrees of freedom of the system. The “motion” associated with them
is a fictitious one, simply helping to keep always the electrons in their
ground state, but the ground state properties of the electrons correspond
to the “real” ones, and the study of quantities depending from the electrons
(such as the electron density of states) are naturally feasible in this context.
Note that this is of course not the case with empirical classical potential.

2.1.1 Density Functional Theory and Local Density
Approximation

At the root of the method lies the well known Born-Oppenheimer adiabatic
approximation (BO) that consists in considering decoupled the ionic and
electronic motion. The justification for this is the very large difference in
electronic and ionic masses; actually, such treatment can be shown to be

correct to the first order in /575 [43].
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According the BO approximation the interatomic potential for a given
nuclear configuration consists of the electronic ground-state energy plus the
direct electrostatic interaction between the nuclei. Then at temperatures
not too low, where quantum effects on the nuclear motion are negligible,
the atomic dynamics is well described by Newton’s equations using the BO
interatomic potential energy. The problem is then to compute the electronic
ground-state for a generic atomic configuration.

DFT provides a way of doing that, formally transforming the many body
electronic problem into a self consistent single particle problem. Moreover,
unlike Hartree-Fock, the resulting effective potential has a simple multi-
plicative form.

The theory is due to a very remarkable theorem demonstrated by P. Ho-
henberg and W. Kohn in 1964 [44,45]. According to that, the total energy
of a system of density n(r) in an external potential ve,:(r) can be written
as

Ein[n(r)] = —I—/drvez,t (r)n(r) —l—//d dr ,n(r E”I) + E..[n(r)]

(2.1)

where T'[n] is the kinetic energy of a system of non interacting electrons

with the same density n(r) and E.[n| is the remaining part (containing

the so called exchange and correlation energy). The universal functional
E..[n] contains all the many-body information.

We are left with the problem of finding the density n(r) corresponding

to the minimum energy. It would be desirable to obtain a single-particle-like
~ set of equations for some orbitals ¢;, to satisfy

Eln(r)] = min {E[¢:, R} (2.2)

for a given configuration of ions.

Applying the stationary condition (§F:.:/én = 0) to eq. 2.1 Kohn and
Sham [46] were able to work out the so called KS equations for electrons
acting under an effective potential ves/

{39 vy} b= b (23)

where

Vesf(T) = Veae(T) +/df"i:(’_rl), L [n(r) (2.4)

| dn(r)
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and the density is given by
n(r) = Z || (2.5)

The ¢; and ¢; are the so called KS orbitals and KS levels respectively.

The exact form of E..[n] is of course unknown. The simplest and most
used approximation is the so called “Local Density Approximation” (LDA)
in which Eq[n] is supposed to be the same of an homogeneous electron gas
having the same n. For this system, F,.[n] can be written as

Epo[n(r)] = / dr n(r)eqe (n(r)) (2.6)

where e..(n) is the exchangr—; and correlation energy per electron of an
electron gas of uniform density n and eq. 2.4 becomes

veslr) = venlr) + [ ' 5 Ut L e )y (27

— ]

The function ¢,.(n) has been extracted and fitted to an analytic expres-
sion [47] from accurate ground state Monte Carlo computations [48] of the
homogeneous electron gas.

2.1.2 The Unified MD-DF Scheme

In the Unified Approach to DFT and MD [4] the electronic wave function
and the ionic coordinates appearing in the 2.2 are regarded as dynamical
variables entering a Lagrangian of the type:

1 3 1o 1 .2
in'u;/ndrhm +ZI:§MIRI
UM BN+ D0 ([ drpiws—6s)  (29)

The last term in 2.8 takes care of the orthogonality constraints for the
variables ;. The Hermitian matrix A;; is the Lagrangian multipliers matrix
introduced to impose the orthonormality condition. M are the ionic masses
and p is an adjustable parameter.
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The Lagrangian of equation 2.8 gives the following differential equations

for the variables v; and R;:

pi(r,t) = — oF + > At (2.9)
k .

8
MRy = —Vg,E (2.10)

It can be shown that the equation 2.9, once the equilibrium condition for
electrons is reached (i.e. P; =0 is satisfied) is equivalent within a unitary
transformation to the KS equation 2.3. In this situation the eigenvalues of
the A matrix coincide with the KS eigenvalues.

Even different procedures can be adopted to solve eq. 2.2: a steepest
descent method to minimize with respect to the electronic (and iomic, if
required) degrees of freedom may be used.

Under the electronic point of view, this implies that the initial values
imposed to the 9’s must be such that the initial state is not orthogonal to
the ground state. A smart choice of the initial values of the ¥'’s of course
is preferable.

In the majority of the computations we diagonalize a small matrix built
by using the empirical pseudopotential introduced by Louie et al. [49] which
gives a reasonable starting approximation for the wavefunctions, usually
with the right symmetry. Eventually a small random displacement was
added to the electronic wavefunctions to give a missing component.

Once the minimization with respect to the {1} is done the system lies
in the BO surface; then the time evolution of the ionic position may start.
The equation 2.9 has to be seen essentially as a tool of gaining the BO
surface and to remain on it: no physical meaning has to be assigned to the
dynamics of the electrons. The equation 2.10 instead represents the correct
dynamics for the ionic system moving on the BO surface, under the effect
of the instantaneous electronic ground state potential Ej.

In our method we have two requirements to fulfill: the total energy has
to be conserved and the system should remain on the BO surfaces. This is
possible by tuning the two adjustable parameter 4 and A. The parameter
i has to be chosen such that the system remains as long as possible on the
BO surface: the energy transfer between electronic and ionic subsystems
has to be negligible.

A good compromise between the possibility of a faster integration of the
phase space trajectories (that would require large 1) and this BO condition
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has to be practically found. For silicon the value for the parameter u was
chosen to be 300-400 a.u. with an integration time step of the order of
1071%s. However, a good adiabaticity is difficult to achieve if the system
has a metallic behaviour, i. e. small electronic excitation energies.

Why introduce such a machinery? The most important point is that
the combined use of egs. 2.9, 2.10 allows to obtain the BO nuclear dynamics
while keeping the electrons very close to the instantaneous ground state.
Once the electrons are initially brought into it the classical system described
by the Lagrangian 2.8 evolves almost adiabatically and very few, if any,
additional electronic minimizations are required to keep the system on the
BO surface.

In addition, egs. 2.9, 2.10 can be solved quite efficiently: suppose we
want to solve eq. 2.3 for a system of IV electrons; if we use M plane waves
to represent a single wave function (the formal details may be found in
refs. [50,51]), the solution of eq. 2.3, using standard methods, requires the
diagonalization of a rank M matrix that give rise to O(M?®) operations.
Equation 2.9 instead requires O(N x M x In M) and O(N? x M) operation
(the last due to the orthonormalization process) that in case of M > N
is a considerable computational advantages making possible to treat larger
systems.

The computation of the electronic density n(r) requires a summation
over the whole Brillouin Zone of the system:

n(r) = Y br(r)du(r) (2.11)

nkeBZ

A MD cell is used on which periodic boundary conditions are imposed. If
the system is disordered (that is always if T # 0) a spurious periodicity
is then introduced which can be made harmless only by enlarging to a
sufficient extent the cell itself.

Using special points in the BZ can reduce the infinite sum appearing in
the 2.11 to a sum of only few terms [52,53] still having a good accuracy in
representing the density. Making a larger MD cell the BZ becomes smaller
and fewer k-points in eq. 2.11 are enough (for infinite cells only the k = 0
point appears in the sum).

Then, approximating sum 2.11 with just the k = 0 (T') point gives
satisfactory results if a sufficiently large cell is chosen. Moreover, invariance
under time-reversal allows to write ¢(k) = ¢*(—k), and so ¢(0) = ¢™(0);
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therefore, using only the ' point the periodic part of the wavefunctions can
be made real, resulting in almost halving the need of independent plane
waves coefficients. This leads to prefer large cells with respect to use many
k-points.

A pseudopotential approach is used [50]. The most rigorous approach
to this problem involves the so called first-principles norm-conserving pseu-
dopotentials [54]. We use the form given by Bachelet et al. [55] and
the Kleinman-Bylander method [56] for a fast evaluation of the integrals
needed.

2.2 Computing the Thermodynamical Prop-
erties

The application of the MD-DF scheme to the defect problem does not imply,
in principle, any difference from the usual MD methods. A preliminary
calculation [5] shows the feasibility of the method for the vacancy.

A peculiar problem however arises in computing the phonon spectra,
since the direct way of giving small displacements and to compute from the
energy differences the force constants (frozen-phonon approach) leads one
to a big number of self consistent calculations, wasting both human than
computer resources.

An efficient and automatic method to generate dynamical matrices has
been recently developed [9] with particular reference to the possibility of
quick generation of dynamical trajectories given by the MD-DF method.

The basic idea is simple. For an harmonic system we can write the
matrix equation : ‘
F=—-KR (2.12)

where Fj; is the force referred to the i-th atomic coordinate and R;; the

coordinate itself, at ¢ = ¢;. The K matrix is then the dynamical matrix
which now can be straightforwardly computed by matrix inversion (much
less expensive than a diagonalization, used in standard methods).

The times {t;} can be chosen in an arbitrary way. A smart choice,
expecially when using the MD-DF method, is to generate them such that
the corresponding values of R lie on a MD trajectory, that is t; = %o +
(j — 1)At, with small At. In this way a number of configurations can be
produced in a cheap and automatic way.
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For this method is effective two conditions have to be satisfied: the one
physical, the other mathematical. The former is that the system must show
small deviations from the harmonic behaviour along the whole trajectory;
this can be obtained choosing initial conditions such that the resulting
temperatureis low enough. The latter derives from the need that the matrix
R is non singular: the initial conditions thus must be such that all the
normal modes are excited and the displacements are linearly independent.
Further, it has been shown that the non-degeneracy can be reached only
if the phonon spectrum is no more than twofold degenerate; the remedy is
to use more than one MD trajectory, and more precisely at least as many
as the greatest degeneracy divided by two. From this fact is seen that this
method works at best for very low symmetry systems, for which a single
MD trajectory are sufficient.
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Chapter 3

Results and Discussion

3.1

Checking the Convergence

The joint MD-DF scheme allows, in principle, an exact evaluation of all
the electronic (ground-state) and ionic properties, within the LDA- plus-
pseudopotential scheme. Of course, the finite availability of computer mem-
ory and time forces one to resort to some approximations.

a)

Finite cells are used. In particular, while studying a defect crystal
it introduces an unphysical, large-scale ordered structure of defects.
The interaction between the elements of such an array shows up, for
example, in the broadening the flat band of the localized defects,
which can be, even for quite big cells, of the order of about 1 eV [49].

Since the crystal symmetry of Silicon is Ty, the choice of the cells is
limited to the ones having (IV being an integer):

2,16,54,128,...,2 x N® FCC cells
8,64,...,8 x N® SC cells (3.1)
32,...,32 x N® BCC cells

The integral in K-space are performed using a finite, and small, num-
ber of special points.

A finite number of plane waves must be used in expanding the elec-
tronic wavefunctions. This is usually expressed by means of the cut-
off energy E.: N,, ~ L0QFE? = +=0G.,°, O being the cell volume.
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This implies that the density n and then all the integrals are cut off

at G, = 2G,,.

d) However 1t is possible to substitute G. with some G. such that v =
CG:: = % < 4. The validity of this new cutoff is as better as higher
E. is.

e) The non-local part of the pseudopotentials is taken exactly into ac-
count only up to a finite order in the angular momentum. That is,
written V,nl > vaz the P’s being projection operators we state
that vi5y, ~ vy, and using the completeness relation Y, B, =1 we ob-
tain V o~ i, (v =, )Pl +v;,. This introduces a small error because
high-I components in the wavefunctions do not enter appreciably in
the core.

All these approximations can be quantitatively and independently con-
trolled, permitting to achieve (if the computer is powerful enough) the
desired degree of convergence, or at least to detect where the failure arises.

What values of the parameters have to be chosen must be discovered
by trials for each different system which must be simulated. To this end,
an extensive series of computations of the properties of the static (i. e. at
absolute zero; ionic relaxation is eventually allowed) system has been done.

3.1.1 Convergence in the Cell Size and in the Number
of k-Points

The formation energy of the unrelaxed vacancy, both neutral and doubly
charged, is shown in table 3.1.1. The cutoff enercy, here and later (unless
otherwise stated), was set to 6 Ry, deferring the study of the convergence
in F..

First, it must be stressed that the energy of formation for V° as a
function of E. has an unpleasant “sawtooth” behaviour, when computed
using the Baldereschi point. In fact, Ejo. has a maximum for the 32-
atoms cell. The possibility of a bad choice of the initial tria]l state has
been excluded by repeating the runs with highly randomized electronic
coordinates. This strangeness is probably due to the fact that for too small
cells, at k = Baldereschi point at least. a conduction band state exists with
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k-point I' | Baldereschi | 2 Chadi-Cohen
# of atoms | point points
8 ; 2.94 3.80"
16 3.89 © 3.66
32 4.72 4.52
54 3.47 4.35 4.28
64. 4.16 4.44
* 4 points '
Table 3.1:

Formation energy in eV of the unrelaxed vacancy as a function of the special
points used and of the supercell size. The number of atoms refers to that
of the perfect crystal. E, = 6Ry,l. = 1 and v =4,

energy less than the gap level. The former is filled and what one obtains is
a situation physically very different from what was sought.

Again from table 3.1.1 we see that the convergence in the number (and
kind) of k-points is reached when the cell size reaches 54-64 atoms. In
the case of 54 atoms, the Baldereschi point gives a value within 0.1 eV to
the converged one, while using 64 atoms we obtain a difference in energy
between that and T' of about 0.3 eV, that is with an error within 10%.

In table 3.1.1 the convergence in size up to 128 atoms is examined,
using the I' point and v = 1. Because the use of a different 7, the energies

I#ofatoms} 54 [.64 ] 128 |

Etom | 378 441 ] 457
Epwr | 1.14]1.110.93

Table 3.2:
Formation energy and gap-level position (measured from the top of the
valence band), in eV, of the unrelaxed vacancy as a function of the supercell
size. E. = 6Ry,l. = 1. The T point and v = 1 ' are
used.
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| E. | 6 | 8 | 10 | 12 | 14 |
Eform | 4.16 [ 3.73 [ 3.423.22 | 3.14
Ejever | 1.11 | 1.05 | 1.01 | 0.99 | 1.00

Table 3.3:
‘Formation energy and gap-level position (measured from the top of the
valence band), in eV, of the unrelaxed vacancy as a function of the cutoff
energy E.(in Rydberg), in a 64 atoms — 63+vacancy supercell. Only the T
point was used; [, =1 and v = 4.

are shifted. However, to our end is sufficient to see that the variation in
E¢orm while passing from 64 to 128 atoms is only of 0.16 eV. On the other
hand, the differences encountered going from a 54 to a 64 cell are still quite
substantial (0.63). This rules out the possibility to perform calculations
using a 54-atom cell, using only T'.

3.1.2 Convergence Respect to the Plane-Waves Cut-
off

Once made sure that a 64-atoms cell with only I' is a sensible choice, we
studied the effect of the cutoff E. using such a cell (Table 3.1.2). By ex-
trapolation, we estimate the converged value of Ey, under the conditions
illustrated, to be ~ 3 + 3.1. Therefore, even with a cutoff as high as 10
Rydberg the error remains about 0.3 + 0.4 eV, while using 12 Rydberg it
is at least halved.

3.1.3 The Relaxed Vacancy

Even at T' = 0 the atomic structure of the vacancy is not the “ideal” one,
but a relaxation of the nearest atoms at least must be allowed. In this case
it is sufficient to allow the ions to move according 2.10 using a fictitious
steepest descent dynamics.

Table 3.1.3 shows the results for a 64 atom cell, at different cutoff. The
formation energy behaves in the same manner than in the unrelaxed case;
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| E. | 6 | 8 | 10 | 10 || 10 |
Etwm | 3.88] 3.28] 296 298] 3.14
Epmig- | 0.56 | 0.40 | 0.33 0.37
AQ, | —0.31 | —0.48 | —0.53 || —0.49 || —0.48
AQ, | +0.39 | +0.45 | +0.45 || +0.38 || +0.38
Epwe | 0.76 | 0.66| 0.66| 0.711] 0.45

Table 3.4:
Left: formation and migration energy and gap-level position (measured
from the top of the valence band), in eV, of the relaxed vacancy as a
function of the cutoff energy E.(in Rydberg), in a 64 atoms — 63+vacancy
supercell. Even the relaxation of the first shell is shown. Only the T' point
was used; [. = 1 and v = 4. Right: v = 1.5, 64 atoms cell; v = 1.5, 128
atoms cell.

the energy gained in the relaxation process is scarcely sensitive to E,, being
about 0.45 V.

The atomic relaxation of the first neighbors of the vacancy can be writ-
ten in terms of two normal coordinates per atom, since only a symmetric
and a tetragonal distortion are expected. We call @, the component of
the position vector of these atoms along the line joining the position they
have in the ideal situation with the vacancy (“breathing” mode), and Q,
(“pairing” mode) the component of the vector position in one of the direc-
tions orthogonal to the previous one. In particular, the second coordinate
is chosen such that the plane defined by the Q, and Q, directions of one
of these atoms contains one of the others (what other is chosen does not
matter); that is, (), indicates some “pairing” (or “unpairing”, if @, <0).

To be more explicit, if we choose Cartesian axes such that the coor-
dinates of the first neighbours of the vacancy are (in units of the lattice
parameter)

0= {LLLV3
1

rs = E(l,-l,-l)/ﬁ
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(_171a —1)/\/§

rs =

[T A

(-1,-1,1)/v/3

ry =

then @, will be given by r-(1,1,1)/v/3 for the atom 1 (r being its position)
and similarly for the others. The @Q,’s will be

~—

ry - %(_17_172)/\/{;

r, - &(—1,1,—2)/\/6

‘r; - i(l,—l,'—Q)/\/g

1
ry - 2(1,1.2)/\/6

instead of 0, as in the ideal geometry. By symmetry all these values must
be the same for each atom, as explicitly verified in our computations.

In the presence of Jahn-Teller effect both the coordinates show a neat
variation, not too sensitive to the cutoff. Note that breathing relaxation
turns out to be inward, in contrast to earlier assumptions [49,63], however in
agreement with some recent accurate computations [39]. It is noteworthy
that using a 54 atoms cell (as used in ref. [49]) we also get Q, with the
positive sign, but @), with the negative one, which is almost certainly wrong.

Finally, we performed a series of calculations over the so called “split
vacancy” configuration, an important issue since it is believed to represent
the saddle point in the migration path. In fact, the difference in the values
of energy between the split- and nonsplit-vacancy systems should be the
activation energy for the migration via vacancy mechanism, and here is
referred as E,,;g,.

When relaxing the system in this configuration care must be used to
avoid that the atom on the saddle rolls downwards. We achieved this
goal by imposing to the gap level wavefunction to have the degeneracy
appropriate to the saddle point symmetry D,y; this allows distortions only
on the plane perpendicular to the migration path, which anyway did not
appear.

As immediately seen, not only it shows a good convergence (see also
Tab. 3.1.5, next section), but the agreement with experimental data [28] is
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| v [ 1 J15] 2 | 4]
Eform | 3.37 ] 3.42 ] 3.42 [ 3.42
Flever | 1.02]11.02 | 1.02 | 1.01

Table 3.5:
Formation energy and gap-level position (measured from the top of the
valence band), in eV, of the neutral, unrelaxed vacancy as a function of ~,
in a 64 atoms - 634vacancy supercell. E. = 10 Ry and [, = 1. Only the T
point was used. '

quite good. This makes us quite trusting in the reliability of jump calcula-
tion.

3.1.4 Convergence in v

The results of the test over v in the ideal vacancy configuration are reported
in Table 3.1.4. As immediately seen, at least for this cutoff (10Ry) the use
of v = 1 yields a very small error (~ 0.05 eV'), while greater values offer
an exceedingly good approximation, below the limits of accuracy of the
method. The use of a greater E., as previously said, surely improves the
situation. Note that this choice of v allows to save about 50% in computer
resources.

The effect of v on the relaxation has been tested letting the neutral
vacancy relax with v = 1.5, letting the other parameters as above. Even in
this case the differences are very small.

3.1.5 Effect of the d-Component of the Pseudopoten-
tial |

We have not included terms of order greater than 2 in the expansion of

the pseudopotential (the only insertion of the [ = 2 term causes a 30%

increase in the computer time). Actually, the Silicon-Silicon bond is an s-p

hybrid in character, and the range of these terms is small: so the chemical

importance of their inclusion it is not likely to be substantial.
Table 3.1.5 shows that the introduction of the [ = 2 term (E. = 10Ry
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Lt [ 1] 2]
Efom | 342] 354
Eper | 1.01| 0.92

Eform | 2.96 | 3.39
Emig» | 0331 0.33
AQ, | —0.53 | —0.41
AQ, | +0.45 | +0.44
E., | 0.66| 0.64

Table 3.6:
Relevant energies, in eV, and deformation parameters, in a.u., of the neu-
tral, unrelaxed (above) and relaxed (below) neutral vacancy as a function
of l;, in a 64 atoms — 63+vacancy supercell. E. = 10 Ry and v = 4. Only
the I' point was used.

was used) makes rise Ef,., and substantially reduces the gain due to the
lonic relaxation. Note that the ionic positions (monitored by the Q’s) are
almost the same.

The variation in energy then seems to have a moderate influence on
the ionic motion and, as seen by the fact that the migration energy is not
changed by changing I., may probably be neglected while computing the
dynamical properties of the vacancy.

As a conclusion, we conclude that the choice of a 64 atoms cell, E. =
10 Ry, T point, ¥ = 1.5, =1 is a sensible one. Let us estimate the error
expected in the formation energy: the cell size lead us to underestimate it
of ~ 0.2 eV, the T point of ~ 0.3 eV, [, of ~ 0.4 eV, while E, = 10 Ry
leads to an overestimate of ~ 0.2 eV. The algebraic sum yields ~ 0.7 eV
over ~ 3.5 eV, an error not greater than 20%.

For the migration energy the estimate is even better: the underestimate
of E, due to the cell size is ~ 0.04 eV, while setting the cutoff to 10 Ry
gives an overestimate of ~ 0.06 €V, the other parameters giving negligible
effects. The converged value then should be ~ 0.31 eV, with an ~ 0.02 eV’
error.
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3.2 The Jump Simulation

For the first dynamical simulation, following the suggestions reported in
the previous paragraph, we choose a 63 atoms + vacancy cell, only the I’
point to sample its BZ, and l. = 1; the cutoff was set to 12 Ry, since this
choice implies a very small increase in the use of computer resources respect
to E. = 10 Ry. The parameters were chosen as follows: At = 7a. u. =
T x 2.42 107 5 = 1.69 107'¢ s; p = 400 mg, where mg is the true electron
mass. The lattice parameter, and hence the volume, has been kept fixed to
the empirical value of 10.263 a. u.. '

An accurate minimization of the electronic energy has been first per-
formed, using a steepest descent procedure and the algorithm proposed in
ref. [57]. A randomization of the initial wavefunctions was done to make us
sure that the found v’s were the true ground states ones. Even the ionic
coordinates has been slightly randomized in order to put the atoms in an
off-equilibrium situation as the dynamics starts.

After leaving the system go, its temperature was monitored to be about
35 °K. To raise it, we introduced a thermostat by rescaling the ionic
velocities [58] in such a way that the average kinetic energy corresponds
to a temperature of 500 °K; this was done each time the temperature
went out a 50 °K range about the desired value. After 100 time steps of
this treatment 200 others followed in which the system was left to freely
oscillate. Then this procedure was repeated for 7' = 1000 °/K and 1500 ° K.
The final temperature, averaged over about 500 steps after reaching the
final stage, was seen to be about 7' = 1300 °K. This period was used even
to allow the system to get as close as possible to the thermal equilibrium.

The figures 3.4, 3.2 respectively contain the square displacements of
the 63 ions from the initial positions and the distance of the first four
neighbours of the vacancy from its lattice site, for the whole run (10000
steps= 1.7 ps). If a jump into a new site (most likely, in the vacant site)
takes place by one of the atoms it is immediately seen by the track it leaves
in the upper part of the graphs. In particular, the figure 3.2 is intended to
discriminate between the displacements of the vacancy neighbours towards
or away from the vacancy; they are expected to have a big amplitude (soft
modes [59], due to the lack of some bonds).

As immediately seen, in fact, the four first neighbours perform big oscil-
lations around the equilibrium position. and one of them jumped into the
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7 — Tyac| Of the first shell as a function of the number of steps (see text)
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vacancy in approximately 1900 steps after the end of heating. The distance
from the old vacancy site is not zero because the inward relaxation towards
the news vacancy, that is in the site just emptied.

After about one oscillation in the new site, it came back at the original
position and no more hops are observed. Some trials instead can be seen,
at about 5400 (the same atom just jumped) and 6800 steps, but none of
them was successful, in spite of the fact that they have reached or maybe
overcame the energy watershed lying between their original position and
the vacant site; this distance is marked by the horizontal line. This shows
that purely configurational arguments, i. e. based on neglecting the detail
of the dynamics, such as ‘those used by the rate theory, have to be taken
with some care. Up to now nevertheless we cannot draw any firm conclusion
under this respect.

The fact that the only jump observed happened at the beginning of the
run leads to the suspect that it is due to the choice of the initial condition,
and to an imperfect equilibration of the system. More statistics is needed
to solve the problem.

Figure 33 shows the behaviour of the system temperature during the
run. Of course the thermodynamical limit is far and the what we call
“temperature”, which actually is the instantaneous kinetic energy of the
ionic system divided by 3Nks, undergoes large fluctuations of amplitude
~ 200 °K.

In addition, a systematical shift is observed. In fact, the final tem-
perature results to be approximately 1180 °K, 120 °K lower than at the
beginning. This is the flag, rather than of the non-conservative nature of
the discretized Newton equations which should have a minor role for these
short times and high ionic masses, of the non perfect adiabaticity of the
motion, which drains energy from the ions (hot) to give it to the electrons
(cold).

To monitor in a more exact way this effect, we report in fig. 3.4 the
values assumed by the total energy of the system minus the electron kinetic
energy E.on,. In the case of perfectly adiabatic motion the curve should
be a straight horizontal line, but we observe that apart small, short time
scale oscillations a neat trend towards lower values. Evaluating the total
energy loss of the ions and reporting it into temperature unit we have
AE..., ~ 140 °K. Therefore the temperature lowering is almost entirely
due to the gradual drift away from the BO surface.
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Figure 3.4:
E.ons as a function of the number of steps

35

—2479

Number of steps



The relatively high value of this effect is probably due to the presence
of partially filled gap states which have among them an electron excitation
energy much lesser than in a bulk semiconductor.

The possible remedy for this could be the introduction of a continu-
ous thermostatting of the ionic system, such as the Nosé method [58], to
preserve the original temperature, and of a periodic minimization of the
electronic energy to regain the BO surface. For the run shown this latter
operation would be sufficient to be performed only each 5000-10000 steps.
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Chapter 4

Conclusions

The work here exposed has shown the feasibility of the MD-DF study of
the Silicon vacancy. Its use in principle permits to overcome all the short-
comings affecting the other methods used, being both a first-principle (and,
as such, capable to give the right ionic potential in any configuration) and
a dynamical, finite temperature method (so exactly taking into account all
the dynamical and thermodynamical effects).

The possible obstacles rise mainly from the necessity of small MD cells;
the inclusion of the d-component of the pseudopotential does not seem to
play a major role in the dynamics and even if it would result to be so it
can be included without an untenable effort. The other approximations do
not sensibly affect the results. Qur statical computations show that the
formation energy is estimated within a 20% error, an acceptable value.

The dynamical simulation performed has shown that we can proceed
without any trouble at least up to ~ 2 ps, and longer runs can be achieved
by using the simple methods indicated at the end of the last section. Even
if the meaning of the observed jump is not completely clear, leaving us
doubtful that only a peculiar dynamical circumstance has led us to see it,
the number of attempts seen indicates that a reasonable number of atomic
jumps probably can be observed.

The next step in our research is, to have the maximum hopping prob-
ability, to do a new run at higher temperature; since the MD simulated
materials have an higher melting point than the real ones (for Silicon is
1685 °K) a temperature as high as 1800 °K can be reached. Since the
migration barrier is about 0.3 eV” high an increase in the jump rate of a
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factor 3, respect to the run done, is expected.

Afterwards, the computations of the G-function and so the vacancy
concentration will have to be done: the chosen method is that exposed
in sect. 2.2 which was explicitly conceived for joint use with the MD-DF
scheme and so it should be by far the best one for our purposes.

As a longer term project the study of other migration mechanisms
is foreseen. An intriguing one is the Pandey concerted-exchange mecha-
nism [3].

As the outlined job will be terminated, a cleaner theoretical framework
on the Silicon self-diffusion will hopefully have been built up, and will allow
to more deeply understand this controversial question.
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