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O. MOTIVATIONS AND RESULTS.

In the study of many models of Quantum Field Theory and of Statistical Mechanics the
solution of the dynamics is usually obtained in terms of variables or fields that (formally)
satisfy the Canonical Commutation Relations, but that it is not possible to represent
as operators in a Hilbert space. A typical example is the massless scalar field in 141
dimensions, that does not exists as a field operator in a Hilbert space. Such a phenomenon
has, in our opinion, very general roots (tied to infrared structures) and shows up, for
instance, in the following models: in Statistical Mechanics, the infinite quantum harmonic
lattice in thermal equilibrium and the free Bose gas, both in d < 2 space dimensions.
For the former, the operators representing the deplacement from the equilibrium positions
are not well defined. For the latter, the local particle number is not well defined as an
operator in the Hilbert space. In QFT, in the Schwinger model (in its bosonized form)
the fields which are charged under gauge transformations display the same problem as in
the massless scalar field case, and the same happens with the Stiickelberg-Kibble model in
141 and 241 dimensions.

Faced to this problem, the stategies followed in the literature are substantially two.

1. To give up representing the fields in a space with a positive metric. This strategy has
been followed for the Schwinger model (see for instance [LOW], [RAI], [PIE]), in the
standard treatement of the massless scalar field [WIG] and in the case of the Stiickelberg-
Kibble model. )

2. To search for a formulation that does not introduce the variables that give rise to such
a problems (for instance, to treat the massless scalar field in terms of the derivative of the
field [STR1]).

The problems and the limitations of these approaches, especially if one looks at a system-
atics of such models, have already been displayed in the literature. The indefinite metric
leads to unphysical degrees of freedom while, for instance, using only the derivative of the
massless scalar field it is impossible to construct the Wick ordered exponentials, which
play a crucial réle in the solutions of twodimensional models.

The aim of this thesis is to reconsider the problem from its grounds, searching for a solu-
tion within the framework of canonical commutation relations and their representations.
This in order to take as much as possible advantage of the results of the canonical formu-
lation, in which the variables defining the model (and partially also the dynamics) have
a mathematical status which is under control. Moreover, we want to clarify the relation
between infrared structures and mathematical structures they give rise to in the canonical
formalism.

As we will see, the solution of this problem is to use and to study the properties of
the nonregular representations of algebras of variables satisfying the CCR. As we will show
the so emerging mathematical structure is very compact; moreover, under quite general
assumptions, nonregular representation of a CCR algebra are univocally determined by
their (maximal) regularly represented subalgebra.

The usefulness of this strategy for the solution and the discussion of the properties of
models of QFT and of Statistical Mechanics is outlined in Section I.2.
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The study of nonregular representations of CCR algebras turns out to have interesting
implications also in the discussion of a different but related problem, namely the structure
of the representations of fields algebras F charged under a gauge (that is, with the property
of leaving pointwise invariant the subalgebra A of the observables) group G.

We study the case in which an observable algebra A is given in canonical form (that
is, obeying the CCR). We will see that the charged fields can be introduced as eztension
of the algebra A, so as to obtain a field algebra F O A with a canonical structure. We
will show how the charged fields identify (thanks to the canonical structure of F) a gauge
group G.

Nonregular representations allow for an analysis of the representations of F in terms
of those of A. In particular, the relevant results are

A. If the gauge group is unbroken, then the (vacuum) representation of F cannot be regular
and the representation space is a direct sum of charged sectors.

B. If the gauge group is completely broken, then the representation of F is regular and
coincides with the vacuum representation of the observables.

C. If the gauge group is unbroken and S is a symmetry (not of the gauge type) of F which
is unbroken in the vacuum sector, then this symmetry is unbroken in the representation of
F, too.

Connections between the strategy developped in the thesis and the approach of Doplicher,
Haag and Roberts [DHR2] are briefly discussed.

Finally, nonregular representations and "extended CCR. algebras” play a crucial role
in the bosonization problem in 1+1 dimensions. The treatement given in the literature
solved the problem in terms of correlation functions [COL] and the attempts of exhibiting
an operatorial formulation which expresses the fermionic field in terms of bosonic fields
are limited to an heuristic level [MIAN] or do not completely solve the question [RULJ].

In the framework of nonregular representations of CCR. algebras we are able to
1. Construct fermionic degrees of freedom in terms of CCR algebras, independently of the
dynamics. ‘ '

2. Construct local fermionic fields, that is the ACR algebra, as strong limits of bosonic
operators (solving in this way a problem which is completely open in the literature (*)).

(*) compare with [STR2] and [RUIJ] where the possibility of constructing fermion field
operators as strong limits is discussed in rather pessimistic terms and almost ruled out.
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I. NONREGULAR REPRESENTATIONS OF CCR ALGEBRAS.

I.0. Introduction.

In this thesis we study a class of nonregular representations of CCR algebras. In this
analysis, we are strongly motivated by a phenomenon which occurs in models of Quantum
Field Theory and Quantum Statistical Mechanics. Indeed, it happens that the solution of
certain models, that is of the dynamics defining them, displays variables complying formally
with the Canonical Commutations Relations, but that do not admit a representation as
operators in a Hilbert space.

A very clear example of this phenomenon is given by the massless scalar field in 1+1
dimensions (QFT). It is well known that it can be quantized in a consistent way [WIG],
in a positive metric, only if the testfunctions space with which we smear the canonical field
¢ is made of elements with zero integral: for instance

0S:={fesS: /f(:c)d:c = 0}.

This is equivalent to treat the model in terms of the derivative of the canonical field é(z):
in this way one gives up introducing the variable that gives rise to problems.

The same behaviour shows up if we try to quantize, again in a positive metric, the
Stiickelberg-Kibble model in 1+1 dimensions: the canonical field #(f) does not exist as a
field operator unless we restrict f to be in 8S. "

In the case of QSM, it is interesting the example of the infinite harmonic crystal
lattice in thermal equilibrium, in d = 1,2 dimensions. The variables describing the de-
placement from the single site equilibrium positions are not well defined operators, and so
the equilibrium positions are not defined: the lattice is destroyed by thermal fluctuations.

As a final example we notice that also the field operators of the free Bose gas in
d = 1,2 dimensions are well defined only if we restrict the test function space to be 8S.

Such a behaviour has, as we shall see, a number of physically relevant implications,
and we want to study it from its grounds, searching for a description of the underlying
mathematical structures in the framework of canonical commutation relations algebras
and their representations. In this way we can benefit of the advantages of the canonical
formulation, in which the variables describing the models have a mathematical status which
is under control.

These phenomena are indeed well described, in the canonical formlism, by the intro-
duction of a particular type of nonregular representations of the CCR algebra we use to
study the model. They come, by GNS costruction, from states with the following property:

* For some element F belonging to the symplectic space that labels the Weyl operators,
w(W(AF)) =0 VAEIR,A#0 (0.1)

where w is the state.



The map A — w(W/(AF)) is not continuous in A = 0 since, by the normalization
condition of the state, w(WW(0)) = 1; the representation is thus nonregular, and the Stone’s
generator of the nonregularly represented Weyl operator does not exists as an operator in
the Hilbert space. In the standard interpretation of the model (for instance by extrap-
olation from higher dimensions) these generators would be exactly the above mentioned
ill-defined variables.

For instance, treating the massless scalar field, we show that the CCR algebra gen-
erated by the exponential of the canonical field ¢(f) is represented nonregularly by the
space and time translation invariant state. A detailed discussion of the above mentioned
models from this point of view is given in Section I.2.

In general, we shall substantially confine our analysis to "generalized quasifree states”,
i.e. nonregular states which generalize in a natural way the notion of quasifree state, which
has been extensively studied in the literature.

The analysis of the regularity properties of the representations of CCR algebras arising
from generalized quasifree states (g.q.s.) will lead us to the notion of (maximal) regu-
larly represented canonical subalgebra and of CCR extension of CCR algebras and to the
problem of the extent to which a g.q.s. is determined by its restriction to the regularly
represented subalgebra. It turns out that such a restriction uniquely determines the state if
it is "maximally regular”, i.e. if it has no regular extensions. On the basis of these notions,
we establish a direct approach to the discussion of the structure of the representations of
field canonical algebras charged under a gauge group.

This approach is established in Sections I.3.1 and 1.3.2 where we study the case in
which an observable algebra is given as a of CCR algebra. We will see that the charged
fields can be introduced as an eztension of this algebra, so as to obtain a field algebra
obeying canonical commutation relations. We then show how the fields algebra identifies
a gauge group under the action of which our algebra of observables is pointwise invariant.
The structure of the set of the charged states is then analyzed.

At this level, several lines of development appear as workable. Firstly, we are inter-
ested in applications of our methods to QFT, beyond the problem we treat in part II.
They can be relevant in studying models that present screening or confinement phenomena,
or the Higgs mechanism. Second, we have to investigate the properties of the g.q.states. In
Appendix A this is made as far as an explicit characterization of pure and primary states
is concerned, the latter being not complete (see [MIAN2] for the regular case). It can be
interesting to try to fill this gap, and, for instance, to establish the type of the factors
induced by primary g.q.s.. Lasty, one may wonder how to control nonregular states satis-
fying (0.1) but not quasifree in their regular part and how to introduce noncommutative
gauge structures.

We give now a sketch of the content of part I: more details can be found in the
introductions to the single sections.

In section I.1.1 the essential properties af Weyl algebras are pointed out, togheter
with the definition of quasifree state on it. We are in particular interested in the necessary
steps towards the construction of a C* structure for the generic CCR *-algebra. This
problem had not been well focused in the first works on the argument ((MAAN1] and
Manuceau’s contribute to [CAR]) In particular, in order to solve the existence problem
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it is necessary to exhibit a nondegenerate Hilbert representation. The only one which has
been explicitely constructed for every CCR *-algebra originates from a nonregular state
([SLA] or th. 5.2.8 in [BRA]). The uniqueness of the C* structure turns out then to
be equivalent to the nondegeneracy of the symplectic form. We will recover these results
in a way which is completely elementary, straightforward and independent of previous
literature.

In Section I.1.2 we introduce the notion of g.q.s.. The extension from the class of
quasifree ones, characterized ([MANZ2]) by a Hilbert quadratic form g(-) over the real
symplectic space of interest (V, o), occurs in a fully natural way with the introduction of
the notion of generalized quadratic form (g.q.f.); the latter can assume the values zero
or infinity over certain elements in V. Prop 2.2 shows that every g.q.f. satisfing the
condition

lo(F,@)|? < q(F)q(G) VE,GeV :¢(F)< 400,q(G) < +c0 (0.2)

(generalization of the standard positivity condition) gives rise to a state on the CCR *-
algebra A(V, o). Such states are said then generalized quasifree states (g.q.s.). The section
ends with the explicit construction of the GNS representation induced by the state woo: it
will be shown to coincide with the one mentioned above and introduced in [SLA] to show
the existence of at least a C* structure.

In Section I.1.8 we introduce the notion of mazimally regular g.q.s., and we state
some of its properties. The exact definition is the following. Let A(V;, a4) be a *-subalgebra
of A(V,0). A quasifree state w, on the former is said maximally regular in A(V, o) if there
is no linear space V1, V5 € V3 C V, such that w, admits regular extensions to A(V;, o). In
the key Prop. 3.3 it is shown that the maximal regularity of w, is equivalent to everyone
of these statements.

a. wg has no regular and quasifree extensions.

b. Fixed anyhow G € V but not in V;, o(+,G) is an unbounded linear functional on
Vo, equipped with the inner product induced by q.

€. wg has a unique extension to A(V,o), namely that associated to the g.q.f. ¢g
obtained from ¢ by extending it this way: we impose that qg(F) = +oco for every F in V
but not in Vj.

The striking property of uniqueness of extension of maximally regular states has several
noticeable consequences. In particular the structure of the representation of A(Vo,09)
induced by the unique extended state §2 is completely characterized as follows:

consider the quotient space V/V;. We show that as a representation of A(Vj, 0y),

m= @ 7

FEV/Vy
where 7F is the representation of A(Vp, o) defined by
mr() = 1o (§(~F)-8(F)), FeV.
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In Section 1.2 we treat the examples we have already mentioned. We adjoin to them
a little investigation about the onedimensional harmonic oscillator; we obtain g.q.s. for
limiting values of the physical parameters (mass, frequency and temperature). Most of the
abstractly discussed features will be recovered already in this model.

In Section I.3.1 we introduce the notion of extension in a CCR ambit of a *-algebra
A(V,o). It takes into account the structural properties of such algebras: one of such
extensions is defined as the *-algebra labelled by a symplectic space (Vi,01) such that
Vi DV and Tlyyy = O-

It is then shown that those extended algebras admits an interpretation in terms of
charged fields. Indeed, we show that to every algebra A(V1,0;), viewed as an extension
in a CCR ambit of A(V,0), one can associate a group Gy, v of *-automorphisms of the
former such that the latter is the gauge invariant part. Moreover, we introduce the group
of *-automorphisms of A(V, o) implemented by the generators §(-) of A(Vy,01).

In Section I1.3.2 we continue this analysis, supposing that a g.q.s. {1, is given on
A(V1,01), which is regular on A(V, o). We then characterize the unbroken part of Gv, /v
and the decomposition of the Hilbert space in terms of representations of the regularly
represented algebra A(V,o). The resulting structure is compared to that arising in the
Doplicher, Haag and Roberts [DHR2] construction of charged representations of the ob-
servable algebra.

In Appendix A we give an explicit characterization of pure and primary g.q.s.. The
one for factor states is really, up to now, a conjecture: we were able to set up only the
necessity proof. The whole job is developed as a suitable generalization of the standard
case (see for instance [MAN2]).



1.1 GENERALIZED QUASIFREE STATES OVER CCR ALGEBRAS.

I.1.1. Generalities about Weyl systems and CCR algebras.

A Weyl system is a mapping W from a real linear space V, equipped with a nondegenerate
symplectic form o (nondegenerate symplectic space (*) (V, o)) into the group of unitary
operators on a Hilbert space.

It is composed by elements W(F'), F € V, such that, VF,G € V

W(F)* = W(~F)

1 1.1
W(E)W(G) = W(F + G)exp (~50(F,G)). (1)

Finite linear combinations of such operators define an involutive algebra. If the mapping
A+ W(AF) is weakly continuous in A € IR for every F € V then our Weyl system is said
to be regular. This condition is equivalent, by classical Stone’s theorem, to the existence
of the generator of W(F') , that is selfadjoint operators ®(F) such that

W(F) = exp (1®(F)). (1.2)

If V is finite dimensional, by Von Neumann’s theorem all regular Weyl systems over it are
direct sums of Weyl systems unitarily equivalent to those defined by armonic oscillators.
The ground state 1, of a harmonic oscillator defines a functional over the single operators

($ores W(Fase) = exp (- 74(F)) (13)

where ¢(-) is a Hilbert (that is, arising from an inner product) quadratic form, nondegen-
erate on V.

In general, given a Weyl system on a Hilbert space H with a ciclic vector 7 that satisfies
(1.3), from the positivity of the inner product in H it follows at once that VF,G € V

|o(F,G)I* < g(F)q(G). (1.4)

Weyl systems of this type are called quasifree.

Conversely, given a nondegenerate symplectic space (V,¢) and a quadratic form q(+)
on V which is nondegenerate and that satisfies (1.4), one introduces the vector space H,,
given by the linear span of elements of form ¢z, F € V; one then defines operators W (F), F
€ V,on H, by

7
W(F)¢G ‘= eXp (—§U(F7 G))¢F+G VE,GeV.
The so defined operators satisfy (1.1). By identifying ¥, = W(0) it is immediate that

Ho = Span{W (F)¢, : F € V}.

(*) We will always use this explicit denomination if o is nondegenerate.
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A sesquilinear form (W (F)vo, W(G)vo) is uniquely determined on H by the defining equa-
tion

(Yo, W(FYo)y = exp (~3a(F))  VF €V

and by equation (1.1). The form (-,-); is a true inner product: by explicit calculation,
inequality (1.4) is equivalent to the positivity of the two point function

(o, (B(F) + AB(C))"(B(F) + AB(E))pa)y 20,  VAECVE,GEV

a necessary condition and sufficient condition for the positivity of (-,-),. The proof of this
claim is really elementary but it needs introducing a Fock space structure: see theorem 2
in [MAN2] for this. Then H,, equipped with this inner product, is a prehilbert space. In
the standard way, by quotienting and completing, we obtain a Hilbert space H: it contains
%o as ciclic vector. The W(F') operators, F' € V, define then in an obvious way Weyl
operators on H: it follows from (1.1) and ¢(0) = 0 that they are isometric on the dense
set H, and extension to unitary operators on H is straightforward.

This construction, in particular positivity as a consequence of (1.4), is independent of
nondegeneracy of o, if ¢(-) is nondegenerate. Indeed, we can deduce that positivity is a
property which one can study on the dense H,, and which is essentially related to Weyl
systems in a finite number of canonical coordinates. The latter are always extendible to
quasifree systems with o nondegenerate: to do this it is enough to add a suitable number
of degrees of freedom (*), extending then conveniently g¢(-).

Clearly, we cannot proceed in this way, if (1.4) holds and ¢(-) is degenerate. In his
generality, this question will be treated in Prop. 2.2, where it will become clear that g(-)
nondegeneracy is irrelevant, if property (1.4) is true.

We want to reformulate (and to generalize) these concepts in terms of C* algebras
and their representations. We collect our results in several steps.

1. Definition of the *-algebra A(V, o).

Let then (V,o) be a symplectic space, and let’s denote with A(V, o) the involutive
algebra generated, as a linear space, by elements §(+), labelled by vectors in V, with the
following properties, holding for every F,G € V:

a. §(F)6(G) = 6(F + G)exp (—%J(F, @) and it follows that 6(0) = 1.

b. The involution is defined by §(F)y* =6(—F)
and it follows that
§(F)Y 1 = §(F)". (1.5)

Remarks. 1. Notice that we have not assumed that o is nondegenerate. This property
implies that A(V, o) is simple, by the following argument (**). One needs only to prove
that every nondegenerate representation m of A(V,o) is faithful. To this end, following
[MAN1], we will show inductively that {m(§(F)) : F € V} is system of linearly indepen-
dent generators. Indeed, we have firstly that, VF € V,n(6(F)) # 0 by (1.5). We argue

(*) In another context, see 2.1.1 in [MAN1].
(**) See 2.2.3in [MAN1].



now by contradiction. Suppose that there exist a family {F;}i=1,--.n of vectors in V such
that, for suitable a; €C,

Z a;w(8(F;)) = 0.

This implies that, for appropriate b; €T,

n(5(0)) = 3 bex(5(G)

with G; = F; — F,,. From the fact that m(§(F))r(6(0))w(6(—=F)) = w(§(0)) VF € V it

follows at once that
n—1 n—1
D bim(8(Gi)) = Y biexp (—ia(F, G:))m(8(Gy)).
i=1 =1

The inductive hypothesis implies then that exp(—io(F,G;)) =1 VF € V, that is F} =
--+ = F, by 0 nondegeneracy: we should have (for example) 7(§(F,,)) = 0 and this contra-
dicts our first observation. This proves that {w(6(F)) : F € V} is a system of independent
generators. We will call explicitly A(V, o) CCR*-algebra if o is nondegenerate.

2. If V, is a linear subspace of V, on which o is eventually degenerate, a. and b.
imply that A(V,,o) (*) is a *-subalgebra of A(V, ).

2. Existence and uniqueness of C*-structures on A(V, ). '

Our aim is to build up a C*-algebra starting from A(V, o). To this end we need to
exhibit at least one nondegenerate Hilbert representation of A(V,o): the operator norm
associated to this representation will induce over the algebra an abstract C* structure.
As a second step one will have the problem of classifing all possible C* structures; for
instance by taking as a reference one of them which is somehow ”minimal” [MAANS3].
The importance of the first step was not so clear in the early works on the subject (see
for instance [MIAN1]). On the other hand, where this aspect is taken into account (see
[MANS3] or [SLA]), it is somewhat hidden into refined analysis of wider problems, from
which it is not so easy to extract a syntetic and autonomous logical line referred to it.
The following arguments, independently from [MANS3] or [SLA], solve the existence and
uniqueness problem of the C'* structure, in a straightforward way.

Let’s denote thus with I(V, o) the set of, even degenerate, norms over A(V, o) which
enjoy the C* property (that is, norms such that ||4* 4| = ||4||? VA € A(V,0));let || ||. the
generic element in I(V, o). Then the closure of A(V, ) in the norm || ||, is a C*-algebra.
For every || |«

A*(V,0) :i={4 € A(V,0) : [|A]|, = 0}

is an ideal of A(V, ). If o is nondegenerate on V, so that A(V, ¢) is simple, then A*(V, o) =
0 for every || ||« € I(V, o), which consequently contains only nondegenerate norms. Let’s
concentrate now on the structure of I(V, o).

(*) Here and in the following we will often use: oV, xV, = 0.
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i. We will show in the next section that I(V, o) is not empty, by explicitely constructing
a nondegenerate, actually faithful, representation of A(V, ).

ii. We prove now that every nondegenerate (and therefore faithful) representation
defines on A(V, o) the same C'* norm.

Lemma 1.1(*) If || |1 and || ||2 are two nondegenerate norms over A(V,c) which enjoy
the C* property, then they are equal.

Proof. If || || is a nondegenerate normin I(V, o), then the closure of A(V, o) in the topology
defined by it is a C'*-algebra, and as such isomorfic to a selfadjoint, norm closed algebra of
operators on a Hilbert space (**). Let then || ||; and || ||2 be two nondegenerate norms in
I(V,0): we can thus construct them as operator norms over suitable Hilbert spaces ()
and H(s). Let m; and 7 the representations of A(V, o) so defined.

Let A € A(V,0) and let ||A]|2 be its norm as an element of the abstract C'*-algebra
obtained by closing A(V, o) in the || ||; norm. Then, for every vector ¥ € Hy)

(¢, m (A")m (4)4) Al — 1 Al2 -
5.9) < [|Aat4ll. = [[Alz- VA e A(V,0)

As a consequence

2._ s (¢7W1(A*)W1(A)¢) 2 .
All} = Sup XD <|4ll;  VAe A(V,0).

By inverting the argument we obtain ||4|; = ||4]2 VA € A(V,0).

g.e.d.

It follows that, if o is nondegenerate, there exists (by ¢.) a unique (by ii.) C*-algebra,
denoted by A(V,c), obtained from A(V,o) by closure in the (unique) C* norm. This
uniqueness is obviously defined up to isomorphisms; it follows directly from 2. that also
A(V, o) is simple (¥**). '

3. Nonuniqueness of the C* structure.

The nondegeneracy of o is not only sufficient but also necessary in order to have a

unique C* structure over A(V, o). Indeed, let 7 be a faithful representation of A(V, o) (it

exists by 1.); if o is degenerate, then

{m(6(F)) : F e kero C V} C n(A(V,0))' Nnm(A(V,0)),

which is thus non trivial. It will contain in particular a projector P # 1. It is immediate
to verify that setting

[Allp = [I7(4)Plln, VA€ A(V,0)

(*) Compare with th. 3.7 in [SLA] and corollary 4.23 in [MAN].
(**) Th. 2.1.10 in [BRA].
(***) Compare with corollary (4.24) in [MAN3] and th. 3.7(iv) in [SLA].
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we define a nondegenerate C* norm || ||p, different from that induced by the operator
norm on H., which is then not unique.

Notice that if V, is a subspace of V, A(V,, o) admits a unique C* structure exactly
when o}y, v, is non degenerate.

4. Representations of A(V, o).

a.By settin
g ; W(F) ==n(6(F)) VF eV (1.6)

we establish an isomorphism between Weyl systems and representations of the correspond-
ing CCR C*-algebra.
b. For every representation m of A(V, ) it is true that

[m(AIF <[4l VA e A(V,0)

where in the right hand side we have used any C* norm in I(V, o). Thus 7 can be extended
by continuity to a unique representation of the C*-algebra obtained from .A(V, ¢) by closure
in the || ||« norm (:= A(V,a‘)*).

c. Every state w (that is, positive(*) and normalized linear functional) over A(V, o)
is continuous in every C* norm in I(V, o). In fact, let’s consider the generic C*-algebra
A(V, a)*. If A e A(V,o), then A*A is a positive element in A(V,U')* and as a consequence,
by the spectral radius formula, A*4 < ||A*A4||.1. By using this inequality, togheter with
the Schwarz’s inequality applied to w as a state over A(V, o), we obtain

WA Sw(A"A)o(l) < |44l = 42 VA€ AV, 0).

Then w admits then a unique continuous extension to A(V, a)* Such an extension is also
positive. This follows immediately from the fact that w(A*A) is real and that ||1—

1VAe A(V,cr) (see prop. 2.3.11 in [BRA]).

d. An analysis of how to proceed to the GNS construction (see 2.3.3 in [BRA] or th.
1.2.14 in [EMC]) shows that it goes trough also for involutive algebras, since the Banach
(or C*) structure is necessary only to guarantee that all the elements of the algebra are
represented as bounded operators. In this sense, A(V, o) is the best one would desire since
the unitarity property (1.5) holds. It implies at once that, given a state w over A(V, o) and
built up the GNS representation space (Hy, ¥y, ), the m,(6(F)) are actually isometric on
the dense set in H,, obtained by appling A(V, o) to the cyclic vector ¥,,. Hence they are
unitary on H,. As a consequence (7., Ho, ¥,,) represents A(V, o) with bounded operators.
The continuity of w established in the precedmg remark implies that this property holds
also for the generic C*-algebra A(V, o) cr) .

fafrlls <

Our interest will concentrate now on studying nonregular representations of the *-
algebra A(V, o) arising from states generalizing the quasifree ones.

(*) This means that w(A4*4) >0 VA4 € A(V,0).
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I.1.2. Generalized quasifree states over CCR *-algebras.

We start by studying nonregular states (and relative representations) which generalize of
the quasifree functionals mentioned in the previous section. We have seen that the latter
are completely caracterized by Hilbert quadratic forms satisfing the positivity condition
(1.4). Since we are looking to quasifree states, we are naturally led to the notion of
generalized quadratic form q (see Def. 2.1 below). It is a Hilbert quadratic form on V
majorizing o with two kinds of singularities: it can be degenerate (that is, there are in V'
vectors of zero lenght in the norm defined by it); it can take an infinite value over certain
elements in V. As we will see, the nonregularity of the state we are going to associate to
it is determined by the latter singularity.

Indeed, the main result in this section is the proof that every generalized quadratic
form over the generic symplectic space (V,o) gives rise in a natural way to a state over
the *-algebra A(V,c). To this end, the crucial point will be to get the positivity of the
functional (linearity and normalization will be immediate): this is guaranteed by a con-
dition analogous to the standard one. We suppose indeed that (1.4) is required only for
every vector on which g is finite (vectors of finite length) As a second result we will show
that nonregular states of this type are weak limits of regular quasifree states. Finally, our
analysis will lead in a natural and elementary way to the proof that any *-algebra A(V, o)
admits at least one C*-norm; this will be obtained by explicitely exhibiting a (nonregular)
state over A(V, o). In particular, we verify it generates the type II; factor introduced in
the literature ((BRA],[MANS3],[SLA]).

Definition 2.1 We call generalized quadratic form (g.q.f.) over a symplectic space (V, o) a
map ¢ : V — IRTU{+co} such that the following properties hold, VA € IR\{0},VF,G € V

A.
g(A\F) = Nq(F)  g(F)20  ¢(0)=0

q(F + G)M? < q(F)'? 4 g(G)/?
¢(F + @)+ ¢(F - G) = 2¢(F) + 2¢(G)

(with the obvious convention when ¢(F) or ¢(G) equals infinity). It can be that

{FeV:qF)=+co}#0
quzz{FEV:q(F)z()}#{O}.

B.
o(F,G)|* < q(F)g(G)  VF,GeV:g(F) < +00,q(G) < +oo.

Remarks. 1. Let ¢ be a g.q.f. and let
Vo={F eV :q(F) < +oo}. (2.1)

Then A.implies that V, is a linear subspace of V and that qv, comes from an inner product,
even degenerate, denoted with [-,-];. The form ¢ defines then over the *-subalgebra A(V,, o)
a regular quasifree state, as it is clear from the definition.

12



2. Property B. abstracts from the positivity of quasifree states, and it reduces to it
if V; =V with ¢ nondegenerate.

3. Obviously, given any symplectic space (V, o), it always exists a g.q.f. over it:
namely that defined by

1o(0) =0, goo(F)=+c0 VFEV,F#0 (2.2)

The following proposition shows that every g.q.f. over any symplectic space (V, o) defines
a state over A(V, o).

Proposition 2.2 Let (V,0) be a symplectic space, q(-) a g.q.f. over it; A(V,o) the *-
algebra associated to (V,o). Then the linear functional w, defined over the generators of

A(V,0o) by

0, if g(F) = +oo.

and then eztended by linearity is positive and thus defines a state over A(V,c). It will be
called generalized quasifree state (g.q.s.) associated to g(-).

wq((S(F)) _ {CXP(“%‘J(F)L if ‘J(F) < 4005 (2.3)

Proof. In order to study the positivity of w, it is useful "to approximate ¢ by finite forms”.
To this end, we introduce over V nondegenerate inner products [, ], m, with n,m € IN,
defined by the following steps.

a. Let V) := {F € V : g(F) = 0}. We decompose then V = V, + V' and V, =
Vg +V,. To do this one needs only to specify a basis in V7. It is then always possible
to extend it to V,; and finally to the whole V. As a consequence every F € V admits a
decomposition (which is unique, once specified the basis): F = F, + F'; F; = Fy + Fy with
eV, FpeV,FleV'

b. We choose arbitrary nondegenerate inner products: [-,-]° on V5 [-,-]' on V'.

Then, VF,G eV

1

[F, Glnm = [Fy, Gqlg + n[F',G']' + R[F;’G;]o'

We have then a two label sequence of Hilbert quadratic forms, nondegenerate over the

whole V, defined by
Gnm(F) = [F,Flom VYFEV.

This sequence has the following properties:

i. Fixed anyhow 7@ € IN and a pair < F,G >€ V x V, the positivity condition (1.4)
applied to it is verified from a certain np e on. From a suitable ng on, this is true also
for any pair of vectors in any finite dimensional subspace E in V. The ”counterterm”
=[-,-]° makes it possible that (1.4) holds, if n is large enough, also over pairs of vectors
< F,G >€V x V such that ¢(F) = +oco and ¢(G) =0

w. It converges pointwise to g (provided one takes the limits in the order specified
above) the limits:

lim  lim gnm(F) = q(F) VFeV.

m—+ 00 n—-+oo

13



We show now that the functional wg in (2.3) is positive. This, togheter with

(1) = w0, (5(0)) = exp (- 7a(0)) = 1

implies that it is a state.
The generic A € A(V, o) is by definition of the form

k
A=) XN6(F)  XNeCFeVik< +oo.

Thus

nFﬂa~

we(A*A) = wy( (Z X;6(F,

The r.h.s. can be written in the form
> aiwg(8(Gi)) @i €C,6: € V;N < +oo

and it is equal to

N
1
; aiexp(=7q(G)) = lim  lim Z o exp ( qn m(G:)). (2:4)
The G; vectors generate a finite dimensional subspace E, over which the ¢, forms satisfy
the condition (1.4), for every fixed m, from a suitable ng on. As a consequence (2.4) is
not negative and w, is a positive functional.

g.e.d.

If wis a g.q.s. we can use the GNS construction to obtain a representation (H,,mw, ¥y)
of A(V,0). As we have discussed in the previous section, property (1.5) guarantees that
the §(-) are represented by bounded operators. It follows that

Corollary 2.3 The set I(V,0) of C*-norms which can be associated to A(V,c) is not
empty, for every symplectic space (V, o).
Proof. It is an immediate consequence of the preceding reasoning and of the fact that the
functional we, associated by (2.3) to the g.q.f. goo, defined over every (V, o) by (2.2), is a
state, by prop.2.2.

q.e.d.

Thus the *-algebra A(V,0) admits at least one C* structure, for every (V,o). By the
discussion of the previous section, the nondegeneracy of ¢ is equivalent to the uniqueness
of such a structure .
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Remarks. a. The proof of prop.2.2 gives a basis to the claim of the previous section
that (in particular) ¢ nondegeneracy is irrelevant for the positivity of quasifree states, if
condition (1.4) holds.

b. If ¢ is not everywhere finite on V, then wy is not regular. Indeed, if ¢(F) = + o0
for some F' € V one has (t € IR)

w6 ={g 20 25)

and so ,, (§(tF)) is not weakly continuous in ¢ € IR. As we have seen in the previous
section, w, and 7, extend by continuity to every C'*-algebra A(V, 0')*, with || ||« in I(V, o),
and such extensions are unique.

c. Let then V, a subspace of V. Every quasifree state wy over the *-subalgebra
A(Vo,0) can be extended to a g.q.s. over A(V,0); namely that associated to the g.q.f. g5
over (V, o) defined by

qg(F)=q(F) VFeV,

ge(F) = +oo VE e V\ V.. (2:6)

d. The g.q.s. we associated to the g.q.f. (2.2) gives rise, by GNS construction, to
a representation 7., of any *-algebra A(V, o), as we have already seen. This state has a
simple physical interpretation, namely as weak limit, for 8 — 0%, of equilibrium (KMS)
states associated to suitable classes of dynamics on A(V,0) (see par. 5 in [ROC] or, for
explicit examples, section I.2 in the following). A representation 7, which we’ll see is
unitarily equivalent to the type II; factor 7, was introduced by Slawny (prop. 3.4 in
[SLA]) as a decisive step in the proof of the existence of at least one representation of the
CCRs over the generic nondegenerate space (V,0) (see also th. 5.2.8 in [BRA] or lemma
3.1in [MANS3]). We now show that 7, and 7., introduced on very different grounds, are
unitarily equivalent.
Indeed, (7, H,) is defined by:

a. The Hilbert space H,.

Hy=C(V)={L:V —C: >  |L(f)} < +oo}.
FEVIL(f)#0

Thus every element L in {*(V) has a unique representation as

L= Z OAiLf‘.

fi€eV

where the a; €€ are such that Zi‘!aiIZ < +oco and the Ly, are defined for every f € V by

1
Li(g)=0 VgeV,g#f.

15



A dense set in H, is defined by

N
Dy:={L€H,:3N < +00,{fitim1.N €V :L =Y a;Ls,a; €C}.

=1

The Hilbert structure of H; is defined by the inner product

(Z O‘iLfnz:fB:ing )s = Z a;p;

el j€J 1€l:35€J: fi=g;

where I and J are index sets (finite for vectors in D, otherwise countable).
(3. The representation ;.

ND eiLy = ajexp(—zo(fi, f)) L5
i€l el

On the other hand, (7w, Hoo) is defined by
a'. The Hilbert space is that associated to we by GNS construction over A(V,c). A
dense set in it is by definition given by

Deo i={¢ € Hoo : IN < +o00,{fi}iz1.N €V i = Za Too(6(fi)) oo, i €C}

1=1

where ¥, is the cyclic vector state in Ho, associated to wes.
The Hilbert space structure is defined, by (2.2) and (2.3), by extending to H the following
inner product on D,

Za 7r00 fz ¢OO7Zﬂ]TrOO gz))'(/’oo)oo = Z o f;.
j=1

i:3j: fi=g;

B'. The representation 7., is obviously originated by

Za%o ))boo = Za exp ——U(f FNT(6(f + £:))boo

over Do, and then extended by continuity.
So it is clear that the operator U : H, — Heoo with domain D, and defined by

ZaLf‘) —Zaﬂ'oo i)Yo

is isometric from the dense set D; onto D, and hence unitary from H, onto Ho and
implements the unitary equivalence of 7, and 7.
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I1.1.3. Extensions of generalized quasifree states. Maximal regularity and
uniqueness of the extension.

In this section we study some very important (and carachteristic) properties of the g.q.s.
defined over the generic *-algebra A(V, o). The problem is the following.

Let a g.q.s. wy be given over a *-algebra A(V,o); let 7, the associated GNS represen-
tation. It is then univocally determined the *-subalgebra of A(V, o) regularly represented
in m,,, and it coincides with A(Vy, oy, xv,) (see formula (2.1)). One may wonder if and
in which sense 7, can be recovered from its restriction to A(Vq,J[quVq). A simple ar-
gument shows at once that this will never be the case for g.q.s. whose nonregularity has
been "unnaturally” induced: we can have a tipical example of it by considering a g.q.f. qo
which is finite over the whole space V and a second g.q.f. ¢ which coincides with g over a
certain linear subspace V; of V and it is infinite otherwise. Clearly the arbitrariness of this
definition is such that the knoweledge of g over V, does not uniquely determine qg. We’ll
not consider this possibility in this section.

The need of studying g.q.s. is strongly motivated by explicit examples as clearly
displayed in Section I.2.

With these motivations, we select in this section a class of g.q.s. univocally deter-
mined by their restrictions to the subalgebra they represent regularly: to this purpose it
is convenient to introduce the concept of mazimally regular g.q.s..

Definition: Given a *-algebra 4(V, o) and a *-subalgebra A(Vy,00). A regular state
over this latter is said mazimally regular in A(V, o) if there exists no linear space Vi,
Vo € Vi C V, such that w admits a regular extension to A(V1,0).

In a very analogous way the definition is given of maximally regular g.q.f.. Propo-
sition 3.3 plays a crucial réle for the following sections. The following implications are
worthwhile to be stressed.

.. If w is quasifree, that is w = w, for some finite g.q.f. ¢(-) over (Vp,00), then
the absence of regular extensions is equivalent to the absence of regular and quasifree
extensions.

w. If w is quasifree, its maximal regularity is equivalent to the following property:
chosen anyhow G € V\V, o(-, G) is an unbounded linear functional on V;, the latter being
equipped with the inner product [-,-], induced by g. As we will see in a moment, this
fact makes possible a precise analysis of the structure of the representation of A(Vj, )
induced by the (unique!) extension of w, to A(V, o).

wi. If w is quasifree, its maximal regularity is equivalent to the existence of a unique
extension of it to A(V, o), exactly the one defined by the g.q.s. associated to the g.q.f.
obtained by extending ¢ this way:

g(F') = 40 VE € V\V.
Thus in this case Vo = V. It is clear that for these states a lot of properties can be

decided, thanks to the uniqueness of extension, by studying their regular restriction, and
hence with standard methods.
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Thus, indipendently of the Appendix A in wich a general treatement is given, we
can establish the purity (factoriality) of a g.q.s. as a consequence of the maximal regularity
and of the purity (factoriality) of its regular restriction.

Interesting applications arise in studying problems of spontaneous symmetry breaking
and in the search of states invariant under groups of automorphisms (like the dynamics,
for example). We will study these problems in Section 1.3

The second part of this section studies the structure of the representation m,, of
A(Vq,0) in the case in which the restriction of w, to this algebra is maximally regular. If
this restriction gives rise to the representation my and we define

mp = (6(—F) - §(F)) VFeV

then we obtain (prop. 3.6)

ro= @ 7

FeV/V,

The equivalence relation defining V/V, is given by F ~ F' iff ¢(F — F') < +o0, with
F,F' € V. The essential input in order to obtain this result is the characterization of the
maximal regularity anticipated in .. This last result will be very useful in Section I.3.2.

Definition 3.1 Given a *-algebra A(V, o) and a *-subalgebra A(Vy,00) of it, a regular
state w on this latter is said mazimally regular in A(V, o) if there is no vector space V1,
with Vo € V3 C V, such that w admits a regular extension to AV, ov, xvr )-

Definition 3.2 Given a symplectic (V, o) space and a subspace V; of it, a g.q.f. ¢(-)
over this letter is said mazimally regular in (V,o) if there is no linear space Vi, with
Vo € Vi C V, such that ¢ admits an extension to a g.q.f. finite over (V1 01v, x v, )-

In the case in which w is a quasifree state we have the following result.

Proposition 3.3 Let A(V,0) be a *-algebra, A(Vy,0) a *-subalgebra of it, w, a regular
quasifree state defined on A(Vy,o), characterized by a finite g.q.f. q(-) on (Vg,0).

The following statements are equivalent.

1. wg is mazimally regular.

2. wq has no regular and quasifree eztensions.

3. For every G € V\Vy, a sequence {F} v in Vo ezists such that

lirf o(Fr,G)=a#0 (3.1)
lir_{{l q(Fn) = 0. (3.2)

4. wg admits as unique eztension ) to A(V,o) that defined by the g.q.f. on (V,o):

Ny
3
I

Q(F)=+c0  VFeV\V.

(hence Vy = Vq)
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In particular if wy is pure then also  1s.

Proof. 1.= 2. In fact, if wy has no regular extensions, then in particular has no regular
and quasifree ones.

2.= 3. If 3. does not hold, G € V\V, exists such that

l(BO)P
FE‘I/)'Q q(F)

< 400

We can then extend g to Vy + Span[G] defining

G,F],=0 VFeV,

o B P
q(G)_FE‘go q(F) ‘

Such a form gives rise to a quasifree state which extends w, to A(Vy + Span|[G],o) and
this contradicts 2..

3.= 4. In fact, let () be an extension of w, to A(V,0). Fixed anyhow G € V\Vj, take
{F,} asin 3.. Then

lim Q(6(Fn)8(G)6(—Fy)) =

n—-+oo

= lim Q(5(G)) exp (in(G, Fa)) = E(G) exp (i) (+)
by (3.1). But (3.2) implies that

lim Q(8(F,)) = hm w,(8(F,)) =

n—-+oo n—-+0co
1

= 1 ——q(Fyn)) =1.

Jim exp (—2q(Fn))

It follows that ||ma(8(Fn) — D)alln, =2~ 2Q(6(Fr)) — 0 from which

s — lim Wﬂ(lS(Fn))'po - l/JQ

n—-+oco
Hence that
lim Q(6(F,)8(Q)8(—Fy)) = Q(8(G)). (**)

n—- oo
Comparing (*) and (**), a # 0 implies that

Q6(@) =0 VG e V\W.

Then ) coincides with the g.q.s. associated to the g.q.f. in 4.. Clearly, if w, is pure so is
! by uniqueness.
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4.= 1. If wy is not maximally regular then there exists at least one extension of it different
from the one in 4., since this latter does not extend the regularity space. This contradicts
the uniqueness of the extension asserted in 4..

g.e.d.

Remarks a. It is very important to notice that condition J. is equivalent to the fact
that, chosen anyhow G € V\Vy, o(+, @) is an unbounded linear functional on V;, when Vj
is equipped with the inner product induced by ¢(:). This is easily seen by noticing that the
negative of both these assertions is equivalent to the existence of a G € V\V; such that

o(F, Q)P )
Sup gy Ses e *)

The only nonobvious point in this claim is to verify that

M =+ VGeV (%)

sup
FeVg Q(F)

implies condition §. Now, choose anyhow G € V. If (%) is true, there exists a sequence

{F.} € V; such that
o(Fn G)J?

L = 4o,
n—-+0o q(Fn)

One notices then that the ratio in (**) is an homogeneous function in the variable F,.
Hence condition 3. follows by rescaling.

b. It is clear that, if w, is a quasifree state regular over A(Vj,0p), its maximal
regularity is equivalent to that of the form ¢ that defines it. By Prop. 3.3 condition 4.
is equivalent to the maximal regularity of the form q. To verify maximal regularity for
states reduces then, in this case, to verify condition 8. (or the equivalent unboundedness
condition in the preceding remark) that is maximal regularity of forms.

We show now how the structure of the representation space of A(V, o) associated by the
GNS construction to a maximally regular g.q.s. is rather special and in particular contains
only once the GNS representation of the regular *-subalgebra A(V,, o).

We have seen how, given a *-algebra A(V, ), a g.q.s. w, on it defines, by the GNS con-
struction, a representation m, (A(V,0)) as a *-algebra of bounded operators on a Hilbert
space H,, . Our aim is now to analyze the structure of Heo, -

Let A(Vy,0) be the *-subalgebra of A(V,c) regularly represented by w, and let’s
denote with H, the Hilbert space of the GNS representation my of A(V,, o) induced by the

restriction of w, to it (we call it wy). For every fixed F € V, let pr be the automorphism
of A(V,, o) defined by

pr : 6(G) — 6(G)exp (10(F,R)) VG e V,. (3.3)
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Lemma 3.4 Let w, be a g.q.s. over the *-algebra A(V,o); let FF € V. Let the regular-
restriction wo of wy be mazimally regular in A(V,o). Then pp is unitarily implemented on
Ho ezactly when q(F) < 4oo. In this case pp is inner in (A(Vy,0).

Proof. Since wq is a regular quasifree state, it is well known(*) that a necessary and
sufficient condition for the implementability of pr is that o(F,-) be a bounded linear
functional on Vg, equipped with the real Hilbert structure induced by gq.

Let us suppose now that ¢(F) < +oco: then F' € V; and the positivity condition B.
in Def 2.1 immediately implies the boundedness, in the sense already defined, of the
linear functional o(F,-) on V,. It follows that pr is unitarily implemented on Hy: the
unitary operator on it 7 (6(F')) € mo(A(Vy,0)) implements pr which is thus inner. Clearly,
mo(6(F')) is also the only, up to factors in m(A(Vy,o))’, operator in B(H;) that does this
job.

Conversely, let ¢(F) = +co. Then F € V\V,. The supposed maximal regularity of w,
implies, by condition J. in Prop 3.3:

- o(F,-) is an unbounded linear functional on V,, equipped with the inner product
[,:]¢, as we have observed in Remark a. just above. Hence pr cannot be implemented
on Hy.

g.e.d.

Let’s denote with wp the states obtained from wy by composition with the pp:

WE (= Wy O PF.

They are well defined as states on A(V,, o) and let (rr, Hp,¥r) be the GNS representation
of this algebra induced by them. We observe that, since the pr are automorphisms, they
are such that

my is irreducible iff 7 is.
7o is a factor iff 7r is.

Let us define now in V an equivalence relation: given F, F' € V, we say that
F~TF' if F—F' eV, (3.4)

We denote V/?V, the quotient space of equivalence classes. As a simple consequence of
the last lemma we have the following

Proposition 3.5 In the hypothesis of lemma 3.4, 7 is equivalent to wp iff F ~7 F'.

Proof. Since mr = my0pF, the generators of A(V,, o) are represented, in the different np’s,
by operators of the form :

7r(6(G)) = (70 0 pr)(8(G)) = exp (io(F, G))m (8(G)).

Thus it is clear that 7y is equivalent to mp iff pp 0 p5/ is unitarily implemented in .

(*) Theorem pag. 155 in [SEG]
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By Lemma 3.4 and by the fact that
propp : §(G) — §(G)exp (ic(F — F',G)) VG eV,

it follows that this happens exactly when ¢(F — F') < +o0, that is F' ~% F".

g.e.d.
Clearly, the class of automorphisms of A(V,, o)
{pr asin (3.3) with F € V}
coincides by definition with the class
{Ad o (6(F))(-) with F € V}.
Hence we have
wr(+) = (wo 0 pF)(-) = wo(6(—F) - 6(F)) (3.5)

as states on A(V,, o), where §(F) € A(V, o).
Now, it follows from the definition of GNS construction that, for every F' € V, 7p is a rep-
resentation of A(V,, o) contained in the representation m,, of A(V,c). As a consequence,

HrF is a subspace of H,,,. Again from the definition of GNS construction it follows at once
that:

Trwq C U TE qu C U HF-
FeV Fev
There is again a large redundancy in this description: in fact, for every F € V, it is true
that
Qﬁp = 7‘[‘0(6(F))¢0 € Hg.

But then (*) 7z is a subrepresentation of my and Hr is a subspace of Hy. By applying the
same argument to pr' (which exists), we obtain Hp = H, VF € Vy. These considerations
and the previous proposition imply the following result.

Proposition 3.6 In the hypothesis on wy of Lemma 3.4 we have

Heo, = @ Hp T, = @ TE.

Fev/av, Fev/av,

(*) Lemma just before th. I1.1.2 in [EMC]
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I.2. EXAMPLES OF GENERALIZED QUASIFREE STATES IN MOD-
ELS OF QUANTUM STATISTICAL MECHANICS AND QUANTUM FIELD
THEORY.

We give in this section some examples of g.q.s. in quantum systems. Very surpris-
ingly, the first one is the one-dimensional harmonic oscillator in thermal equilibrium. It
is identified by a quasifree state (canonical Gibbs factor) on the Weyl algebra labelled by
IR?. For limiting values of the physically relevant parameters (mass, frequency and tem-
perature) one obtains g.q.s.. We can, already at this level, find out some of the phenomena
we abstractly studied: in this case maximal regularity and existence of a nontrivial null
space for the g.q.f. associated to the state. Thus, the main interest of this example comes
from the possibility of having a first control on what happens with nonregular states.

In order to escape from limiting cases (we have already noticed that the state wo, can
be interpreted as the infinite temperature limit of the canonical ensemble on the generic
Weyl algebra in a finite number of degrees of freedom, for certain classes of dynamics) one
can study system with an infinite number of degrees of freedom.

Indeed, as a second example we study quantum harmonic cristals in thermal equilib-
rium. It is well known they do not exist, in dimension d < 2: the argument, due to Peierls,
consists in showing that the dispersion of the deplacement from the equilibrium positions
vector diverges, in the thermodynamic limit (*). Thermal fluctuations are responsible of
this divergence, but we’ll observe that , unlike the d = 2 case, the onedimensional lattice
is destroyed even at T=0 by quantum fluctuactions. In order to treat this example, we
introduce the Weyl algebra associated to the finite lattice and we explicitely calculate the
action of the state determined by the canonical density matrix (it will come out obviously
a quasifree state). By going to the thermodynamical limit it gives rise to a g.q.s.:which
represent nonregularly the Weyl operators associated to the single deplacements from the
equilibrium positions. This is indeed not surprising, given the form (1.3) of quasifree ex-
pectations, since ¢(-) is nothing but the mean value of the square of the Weyl operators’
generators.

The third model is the free Bose gas. We’ll observe that, while in d > 3 the well
known condensation phenomenon occur, in d < 2 it is substituted by the appearing of
nonregular representations of the Weyl algebra describing the kinematics of the system
(that is, the one labelled by S(IR?)). This fact has been observed (see for instance sect.
5.2.5 in [BRA]) but not so much attention has been paied to it.

One may wonder what is happening if we remove the ultraviolet cutoff represented
(in our second example) by the crystal lattice. From our point of view, and hence for
d < 2 and since we are studing quasifree theories, this removal involves no problem and
we obtain quantum field theories without ultraviolet complications. The quantum lattice
is characterized by the dispersion functions w,(k), whose behaviour is linear in |k| in the
range of small frequencies, in full generality. Our fourth model will be the analogous, in
QFT, of the harmonic lattice, namely the free massless scalar field in d + 1 dimensions,

(*) see 137/138 in [LAN] or problem 3 in chap 24 in [ASH]
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with d = 1,2. We construct the ground and equilibrium state on a suitable CCR C*-
algebra. We read in our language the statement that ” the massless scalar field in 1+1
does not exists” (*) by showing that the standard algebra, namely the one labelled by
§ x 8, is represented nonregularly by the vacuum. Even more, the well known cure for this
phenomenon (preserving the positivity of the state space) gives rise to a Weyl subalgebra
of it on which the vacuum state is maximally regular.

The last example is the Stlickelberg-Kibble model in 1+1 dimensions. It is the twodi-
mensional version of a model that, in 3+1 dimensions, is usually regarded as the prototype
of gauge theories exhibiting the Higgs phenomenon. Since we choose the Coulomb gauge,
which gives rise to a long range interaction, we give a short account on the procedures
which are necessary to properly define the dynamics (it needs to take a suitable limit of
infrared cutoffed dynamics). The standard CCR algebra is not going into itself under the
dynamics. We select one of its subalgebras, which is stable and pointwise invariant under
the gauge automorphism. On it we determine the space and time translations invariant
state, and we discuss the (maximal) regularity properties.

Not considering the first, there are substantial affinities between these models. The
basic idea is that the divergences of the form g that defines the state identify a certain class
of collective effects. Having in mind for instance the form (4.1) of the thermal state for the
harmonic oscillator, one tries to couple an infinite number of them so that the frequency
w(k) develops a continuous spectrum and, this is the essential point, without a mass gap.
We have indeed in our last three examples that w(k) ~ |k|?, with p = 1 or 2 (in the free
Bose gas), for |k| — 0.

Thus, it is clear that the rising of nonregular representations is strictly tied to infrared
effects, which are magnified in lower dimensions. This receives a support from the fact

that it is necessary to go to the thermodynamical limit: for instance even the massless
scalar field, if infrared cutoffed, has no singular behaviour (at least for a class of boundary
conditions).

0. The onedimensional harmonic oscillator.

We treat the general case of finite temperature. In order to fix constants, let

be the quantum hamiltonian. The Weyl algebra describing the kinematics of the model is
generated by the operator

W(w) = exp (i(u1d + uah)

with u :=< uy,uy >€ IR*. The symplectic form is
o(u,v) 1= u1vy — ViU, (4.1)

. . 2 2
which is nondegenerate on IR* x IR”.

(*) see the classical treatement in [WIG]
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It is an easy calculation to find the canonical density matrix, at inverse temperature B,
associated to the above hamiltonian operator; it comes out the quasifree state defined by
1 u? wpf
W(u)) = —-{* 3} coth =), 4.2
98 (@) = exp (~ 3 {1 + mun3} coth 22) (4.2)

There are several interesting limitig cases: we discuss the w — 0 one, in the whole range
of temperatures, since it summarizes the relevant behaviours. We analyze first the ground
state, by taking the limit 8 — 4oo.
w — 0. It is clear from (4.2) that in this case we obtain the g.q.s. wp on A(IR?, o) defined
by

wo(W(< 0,u>))=1 Vu € IR

we(W(<v,0>))=0 VveRwv#D0.

It is indeed easy to verify it is complying with Def. 2.1, with an associated g.q.f. go such
that (the notations are those of Section I1.1.2)

Voo =V ={t e R* :u =< 0,u; >}.

The restriction of wy to A(V,, o) is maximally regular in A(IR?, o). This is easily seen if
one consider that if there is a regular quasifree extension, it would be associated to a finite
2 x 2 matrix q. Since w, extends wg, we would have ¢(< 0,u >)=0 Vue€ R. Given the
positivity condition

lo(u,0)I* < q(w)e(v)  Vo,u € R

this contradicts the nondegeneracy of o. In the nonzero temperature case, the w — 0
limit produces a state with a different behaviour. Indeed we obtain the g.q.s. wg defined
by

wg(W(<v,0>))=0 v#0

wg(W(< 0,u >)) = exp(——%uz). (43)
Hence only the variables in the abelian C'*-algebra generated by {exp (is2),s € IR} are reg-
ularly represented, while thermal fluctuactions allow nonzero momenta for the equilibrium
state, unlike the 7' = 0 case.

In general, as we will see later, thermal states define representations of the Weyl
algebra with regularity properties not better than those of the representations associated
to the corresponding ground states. Finally, it is clear that the § — 07 limit (for w # 0)
gives the central state we.

1. The quantum harmonic lattice.

We treat in this example quantum crystal lattices in harmonic approximation. We intro-
duce first the necessary notation.

We consider a Bravais lattice in a finite volume in d dimensions: let R be the vector
identifying the single lattice site, K the one identifying the sites of the reciprocal lattice,
v the volume of the primitive cell. We suppose to have a quantum harmonic oscillator in
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every site. Its kinematics is described by the canonical coordinates ¢(R) and p(R): we
fix here the origin in the centre of mass of the lattice, hence the variable g(R) represents
the deplacement from the mean value of the position as to referred the origin. One has,
forgetting about domain problems, the CCR

[gu(R),pv (R")] = 6, 8mmr pyvy =1, d.

The dynamics is given, supposing one has only a nearest-neighbor interaction, by the
quantum hamiltonian

= SRRty Y gu(R)Du(R - R (R). (4.4)
> PR

<RR'>,p,v

We have thus a system of coupled harmonic oscillators.

Since our aim is to take the thermodynamical limit, we construct now a CCR algebra
that describes kinematically the infinite lattice, 1dent1fy1ng the subalgebras associated to
finite subsystems. To this end, we denote with V the set of lattice functions with values

in R? x R? such that, if a(R) :=< a1(R), a2(R) >€ V, it holds

Zal(R)2 < +o0 Za2(R)2 < +oo.
R R
Let then o be the nondegenerate symplectic form on V defined by

o(a,f) = a1(R)-B:(R) = > as(R) - B1(R).
R

R

V is a real linear space and hence our infinite lattice is described by the CCR *-algebra
A(V, o). We use instead one of its subalgebras, enough to describe every finite subsystem.
Indeed, we think of the lattice as imbedded in IR? and let Ay C IRy be open, bounded
and containing in its interior N sites of the lattice. We denote with V the real linear
space of maps from Ay with values in IR? x IR?. The restriction of o to VN x VN is still
nondegenerate: hence A(Vy,0) is a *-subalgebra of A(V, ). Lasty, |J, , Vv is a subspace
of V' and the * subalgebra associated to it, we call it .4, contains the whole information
relative to finite subsystems. If §(a) is a generator of A(V,0) contained in A4, then it
exists a Ay such that o € Viy. Such a generator admits an obvious representation as Weyl
operator
Wia) = exp (i 3 {a(R)- oa(R) + p(R) - ca(R))).

ReAN

We identify A(Vy, o) with this representation.
We now proceed to the calculation, chosen Ay € IR?, of the Gibbs canonical equilib-
rium state

TrAexp (—,BHA:N)
Trexp (—,BHAIN)

ﬁ(4)_

wir BeR"
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with A € A(Vn, o). Hy, is the above hamiltonian with sums restricted to the sites in Aly.
For simplicity, we always choose Ay to be a parallalepiped centered at the orgln and Wlth
suitable (referring to the structure of the lattice) sides. In order to calculate wy ,, one needs
to diagonalize the hamiltonian: the procedure is standard. One introduces wave vectors k
and imposes Born-Karman periodic boundary conditions. This restrict the allowed wave
vectors to the first Brillouin zone: their number is thus N. Polarization vectors ¢,(k) and
normal frequencies w,(k) are obtained as solutions of the eigenvalue problem

Duv(k)fv(&) = mw(_@)z 6#(_]3)

where

D (k ZDW(R exp (ik - R)

with the sum restricted to nearest neighbors of the origin.
It is absolutely essential to notice that

in the range of small |k| (see for instance chap. 23 in [ASH]). Furthermore, since we use
coordinates which are referred to to centre of mass, there are no zero modes. This done,
a very long but standard calculation gives for the Gibbs state in a finite volume

ay(k)-e 2
of,, (6(a)) = exp 4NZ{' el

:Bws(lc.)
2

+mw,(k)|dz(k) - €,(k)*} coth ) (4.5)

where &(k) 1= > g, exp(—ik - R)a(R) and §(a) € A(Vy,0). It is then easy to go to
the thermodynamical limit. Let indeed §(a) € A and let Al IR? in the sense that it
eventually contains every bounded A C IR?. It is then 1mmed1ate that

lim de, (6(a)) = ﬁ(‘s(g))
Ay IR

where w? is the g.q.s. on A defined by

v d;, @ (k) - e 2
WP (8(a)) = exp (- / é?f;_d Sy (fi, 3@()@)1 N
Bus (k)
2

e, (k)|G2(k) - €,()|?} coth ). (4.6)

Remembering the small wave vector behaviour of the frequencies w,(k) we have the fol-
lowing results, since the sums in (4.5) approximate the integral in (4.6)

ifd<2andif ) a;(R) = a1(0) # 0 then wP(§(a)) = 0 for every B € RT.
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if d=1 and if &;(0) # 0 then also limg_, 4o wP(6(2)) = 0.

Moreover, since a(R) € U, , Vi, it follows that &(k) is analytic in k. Hence the above
conditions are also necessary for the expectation value to be zero.
The standard argument consists in showing that

lim wﬁN(q(R*)Q) = +o0
Ay ~IR?

for every site R* in the lattice. It is easy to recover it. Indeed, for expectation different
from zero, and hence also for the all states wa, it is true that

o (1)) = exp (~ 20 (a(R"))).

But
expig(RY) = 6(ay,. ) € A

with a;_, (R) =< érr-1,0 > and hence

G5 (0) = L.

As a consequence of ‘
A o
N
we obtain
hmIRd wa(q(R*)z) = +o0.
AN

More abstractly, we can say that
wP(8(as,.)) =0

for every site in the lattice implies that m,s(8(Aas,.) is not strongly continuous in A.
This implies that in the representation m,s of A the Stone’s generators of the group
T8 (8(Aas, . ) do not exist, if d < 2.

These last would have an interpretation as the operators that, in the quantum case,
describe the deplacements from the equilibrium positions of the single lattice sites. The
fact that they do not exist implies that, for an infinite crystal lattice in thermal equilibrium
in d < 2, the absolute (that is, referred to the centre of mass) site positions are not well
defined; are instead well defined the relative positions, and more generally all correlation
functions of vectors of the form > p a(R) - ¢(R) with Y. «(R) = 0.

2. The free Bose gas.

The free Bose gas gives a good example of nonregular representation of a CCR algebra in
quantum statistical mechanics. We use the treatement given in chap 5.2.5 in [BRA].
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We suppose that the gas is confined in a volume A € IR, Tt is described kinematically
by the CCR C*-algebra A(L?*(A),0) = Ay, where

o(f,9) =Im(f,g)  Vf,g€L*A). (4.7)

The dynamics acts at the one particle level and defines on A, the one-parameter group of
*-automorphisms ot :

ot (8(f)) = (A f)  Vfe L*(A)

where Hy is the selfadjoint extension of the Laplacian —A on L%(A) corresponding to
Dirichlet boundary conditions on 9A. : '

It is immediate (prop. 5.2.28 in [BRA]) that it is well defined on .4, the Gibbs
grancanonical factor with chemical potential x € IR and inverse temperature 8 € IR™, we

call it wxﬁ, associated to Hy. It is, by explicit calculation, the gauge invariant quasifree
state defined by

(f, (N + ze™PHA) (1 — ze~PHa) "1 F)

AP(8(1)) = exp {~ |

s (4.8)

for every f € L*(A) , with z = e¢##. This state is regular.

For d > 3, in the thermodynamical limit there are two distinct regimes. In the first one
there is a single phase, characterized by high temperature and low density (corresponding
to z < 1 for Dirichlet boundary conditions). In the second one (low temperature and high
density, corresponding to z = 1) a finite fraction of particles occupies the lowest energy
level (Bose-Einstein condensation). There is a multiplicity of phases, overyone of them
characterized by its own value of the particle density, all values in the interval [p.(8), +-oo[
being possible for it. p.(8) is the critical value of the particle density (local particle number
per unit volume: it is independent of the shape of A, for these boundary conditions (see
again 5.2.5 in [BRA])) i

pelB) = (2m)7* [ dipenr (= e85y, (4.9)

This is the value, in z = 1, of the density as a function of 8 and of the activity z given by
pl82) = (2m)7¢ [[atpe (1 — zePe) 3, (4.10)

The integral defining p.(3) is divergent in d < 2: it is obtained as the (divergent) limit of
well defined Riemann sums giving the value of the local particle number per unit volume
when the system is confined in A. The critical density goes to infinity but nonregular
representations appear, as it shows the following

Proposition (5.2.31 in [BRA]) With the above notations,

W (4) = lim whP(4)
A IR A
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ezists for z = 1 and for every § € IRT, A € Up Ax when A" IR* in the sense that
eventually contains every A C IR®. The limit state is the gauge invariant quasifree state

defined by

W (5(f)) = &5 exp {~

(2fr)d [@f@rerma -y )

for every f € |J, L*(A). In particular, w*P(§(f)) =0 if d = 1,2 and [ d%zf(z) # 0.
g.e.d.

We obtain hence, in d < 2, a g.q.s. with

Vo ={fe|JI*A): f(0) =0} (4.12)

and f~(0) is well defined since f(p) is analytic.

Remark. It is very important to notice that w*? is not locally normal, thanks to the
discontinuity of w*P(§(Af)) in A = 0 for every f € L*(O) with f(0) # 0, chosen anyhow
an open set @ € IR%. In this model, this property is confirmed by the nonexistence of the
local particle number discussed above. '

3. The massless scalar field in 141 dimensions.

We start with a brief presentation of the model and of our notations. Since we are working
in canonical formalism, it needs first to identify the CCR algebra describing the kinematical
structure. On general grounds, it is generated by the canonical ”time zero” fields ¢(f) and
7(g), where f and ¢ belongs to a suitable testfunctions space, usually identified with
SIR(R) (we’ll always write S, for simplicity). It is useful to introduce the operator

O(F) = ¢(f1) + 7(f2) (4.13)

with F':=< f1, f» >€ § X §. As operators acting on some Hilbert space, ¢(f1) and 7(f2)
give a representation of the CCR

[2(F), 8(G)] = ~i{(f1,92) = (f2,91)} = —io(F, G). (4.14)

It is immediate a formulation in terms of abstract CCR *-algebras. Identifying in this
case the objects introduced in Section I.1.1, one has that V = & x § and o is the
nondegenerate symplectic form on V defined in (4.14). This last property implies, as we
have seen, that to the CCR algebra A(V,0) is associated a unique CCR C*-algebra, we
denote with A.

A(V,0) it is generated by elements §(F'), with F € S x S, of simple interpretation: it
is clear indeed that, chosen anyhow a regular representation 7 of A(V, o), we can identify

m(&6(F)) = exp (19(F)) = exp (i{4(f1) + 7(f2)}) (4.15)
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by representing A(V, o) as the concrete algebra generated by exponentials of the fields.
Particular properties of the fields depend of the chosen representation; everyone of them
corresponds to a definite model of QFT. We study here a particular representation of
A(V, ), denoted with 7, whose construction proceeds as follows.

The massless scalar field is defined by the quasifree dynamics acting on A(V,o) as a
one-parameter group af of Bogolubov *-automorphisms by

al(8(F)) = 8(T¢F) VFeV
where (T¢F)(p) = Ti(p) F'(p) and

R cos w(p)t —w(p) sin w(p)t
Tolp) = w(p)~!sinw(p)t cosw(p)t (4.16)

with w(p) = |p|. i

It is important to notice that 7 : S x § —+ & x § for every fixed t. We will recover
the standard treatement of the model if we can exibit a Hilbert space, containing a space
and time translations invariant cyclic vector, and (unbounded) operators such that their
expectation values over this vector give the correlation functions of the massless scalar
field. This program is implemented by searching for a state Qg on A(V, ) such that

OftD*QO = QO CCZQD = QQ (417)

where o is the space translations automorphism. The GNS construction gives us a repre-
sentation (mg, Ho, o) in which to carry on the analysis of the model. In particular, if g
is regular, we can calculate by differentiation the correlation functions of the fields, using
(4.15). :
It is well known [WIG], instead, that, if one wants to preserve the positivity of the
Hilbert space metric, it needs to restrict the testfunctions space labelling the field ¢, by
allowing exactly the subspace of S identified by the condition f(O) = 0. We set thus

08 :={f€S:f=20g for some g € S}. (4.18)

It seems then to be natural to introduce the subspace V; := S x S of V, and the non-
degenerate symplectic space (Vp,0p), where o is the restriction of ¢ to ¥y x V5. One
costructs then the associated CCR *-algebra A(V;, 09); we denote with Ay its unique C*
closure.

We are wondering which form the just discussed phenomenon assumes in our formal-
ism. As we have seen, the first step consists in searching for states on A(V, o) such that
(4.17) holds. We'll not completely characterize this set.

We concentrate instead ourselves on a particular (ground) state, containing already
many relevant informations. We require as a first thing that g is pure. Since the dynamics
is a quasifree one, we search for a state in the class of quasifree functionals, in particular
of the form

o (5(F)) = exp (~390(F))
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with ¢o a quadratic form on V. The space translations invariance implies that ¢y is of the
form

0(F) = / dpf:(p) 5 (p) MY (p) (4.19)

with 7,7 = 1,2 and where Mioj(p) is an hermitian matrix. The purity of {2y implies easily
that DetMJ;(p) = 1 for every p € IR. By imposing the time translation invariance condition
one obtains, after formal calculations

=@ o 20

The meaning of the word ”"formal” lies in the fact that, by inserting this matrix in go(-),

one obtains ill-defined expressions for every F € V such that f;(0) # 0. We notice also
that we can follow the very same procedure restricted to A(V;,09), since

Tot:I/o—ﬁVo,

this time being all well defined. We recognize then an examplification of the abstract
structure discussed in the previous sections. Indeed it is immediate to verify that the
restriction wg of Qy to A(Vp,09) is a regular quasifree state. We want to show that it is
maximally regular in A(V, o). Hence our state Qg will be the unique extension of wy to
this algebra, whose regularity space V,, as defined in (2.1), coincides with 48 x S. To this
end one needs only, by Prop 3.3 and following remarks, to show

Lemma 4.1 Fized anyhow G € V\Vy, o(-,G) is an unbounded linear functional on Vj,

when this is equipped with the inner product induced by qq.
Proof. We argue by contradiction. Indeed, if, fixed anyhow G € V\V,, (-, G) is bounded,

we can extend it by continuity to Vo ™. This space contains elements of the form F, = <

0, fr. >, with
sy [l el <8
fn(p) { 0 lp| > 6.

It is easy to see, for instance using mollifiers, that the continuous extensions of o and gq
to Vo'° are still given by the standard integral expressions. It is then immediate that

1
[p| 7w dp = né.
)

o(F) = [ fup)Fdp = /

If G € V\Vp, then ¢ > 0, b > 0 exist such that

[Regi(p)| >b  if |p| <e.

With € = § we obtain

é
Ip[_H‘? |Reg1(p)|dp > 2bné~.
é

)
(P @)l = | [ 17 aeapl = [
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It follows that, for every G € V\ V4,

|o(Fn, G)I°

> 46°n
Q(Fn)

and o(-, @) is not bounded.
g.e.d.

By Proposition 3.3, wy admits as unique extension to A(V, o) the pure state defined by

Qo (§(F)) = {Wo(c?(f)) VF e Vo (4.21)

0 otherwise.

Hence Qg is determined by wy and it is invariant under af*. Such a state is thus identified,
as unique extension, by the restriction to S x § of equations (4.16) and (4.17), that is by
the solution of the same problem on a subalgebra, solution that gives a regular state.

As a further step, we search now for equilibrium states associated to the dynamics «f,
as acting on .A(Vy, o). We do that by determining a solution of the (af,3)-KMS boundary
condition on A(Vy,0q) (we are not interested to the most general solution). To this end
we introduce the following sesquilinear form on Vg:

S5(F,G):= (S3F,G) VF,GeV,
where (+,-) is the usual L? inner product and S5 is the matrix

w(p)~! coth % 0

Sz =
g 0 w(p) coth -w(—g)—é

(4.23)

with 8 € IR™. Tt is then easy to verify that the linear functional wg on A(Vy,09) defined
by 3

wg(6(F)) := exp(—;ll—SB(F,F)) VE eV,

is a regular quasifree state: the positivity condition (1.4) is satisfied since | coth f%ﬂél >
1 Vp € IR. Moreover, this state is complying with the (af,3)-KMS boundary condition
on A(Ifo, G'Q).

Indeed, both maps t — oo(F,T{G) and t — Sg(F,T¢G) are analytic in the strip
0 < Imt < 8 and continuous on the boundary, chosen anyhow F,G € V;, as one can see
by inspection. The explicit form of Sg is then determined by the fulfillement of the KMS
boundary condition. It is important to stress that all integral expressions we are using are
meaningful, since we are dealing with 4§ x S.

In order include in our treatement the algebra A(V,o) we state the following well
known result (see th. 4.11 in [ROC])

Lemma 4.2 Let wg be the state on A(Vy,00) defined by (4.22), (4.23). Then it admits
an unique ezxtension to A(V,o) in the class of (af,B)-KMS states, namely the state Qg
defined by

Qs(6(F)) = {%(5(1’)) VE € Vq (4.24)

0 otherwise.
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g.e.d.

Indeed, Qp is a (af,3)-KMS state on the C*-algebra A. It clarly suffices to check the
validity of this condition for the generators of A not contained in .4;. Choose §(F) and
6(G), say, as the generic generators. Then, if F — G ¢ V,, we have

Qa(8(F)ab(8(G)) = 0= Qs(8(G)S(F)) Wi R

since (T¢F),(0) = f1(0), as it is easily verified. We now extend Qa(8(F)af(6(@))), as
a function of ¢, to the whole complex plane by setting it identically equal to the zero
function. Hence the analiticity properties and the boundary condition required by the
KMS condition are trivially satisfied.

If, instead, F' — G € Vp, then also F —T'g € V; Vt € IR. In this case we can use wg
instead of Qg in all calculations, and so the KMS condition is satisfied by construction.

As a consequence, we notice that {1z is primary. Indeed, it is well known that wg is
primary (one can check for instance that the continuous extension of o to Vo is nonde-
generate), and hence it is an extremal (af,3)-KMS state on Ag. But then also Qg, as
unique extension of it in the class of (af,)-KMS states, is an extremal (af,8)-KMS state
on A. By prop 5.3.30 in [BRA] the extended state is also primary.

4. The Stiickelberg-Kibble model in 141 dimensions.

This model is an extrapolation to 141 dimensions of the original one, defined in 3+1
dimensions, in canonical formalism, by the formal Hamiltonian

Hy = %/d%[(v(ﬁ)? + 7]+ % /kdsavdg’:wr(a:)vr(y)V(93 ~y)

where V(z — y) is the Coulomb potential. The model is also characterized by a gauge
automorphism 7/, namely the one acting as shift on the field ¢(z): ¢ — ¢ + p.

The kinematics of the model is thus described by the standard CCR C*-algebra A
labelled by testfunctions in Sreaz(IR3) X Sreal(ms)-

To give a precise meaning to this Hamiltonian, one introduces (see [MOR2]) an
infrared cutoff. A careful handling of his removal, in representations defined by phisically
relevant states, gives rise to a well defined limiting dynamics of A, where the bar denotes
the closure in the topology induced on 4 by the class of relevant states.

A similar procedure can be followed also in 1+1 dimensions (we use the notations of
the preceding example). The standard algebra A(V, o) is not stable under the limiting
dynamics aj: it goes into the CCR *-algebra labelled by the space S x 07%S, where

07*S:={feC>:9°fcS}. (4.25)

This algebra is not, unlike the 3+1 dimensional case, contained in A(V,0), with the bar
taken in the above sense, and we treat it in the following section as an example of extended
CCR algebra. Instead, we select in this section a *-subalgebra of A(V, o), using the criterion
that it must be the largest among those which are gauge (in the sense precised above)
invariant and stable under a¥..
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Indeed, it results that the limiting dynamics acts on A(V, o) in the same way as in
formula (4.16), with the matrix

p2

- m(p)t - 1IN W, (p)t
Ti(p) =, fof‘” (») ) S0 wm(P) (4.26)
=235 sinwi (p)t cos W (p)t
with wim(p) = (p* + m?)7. The subalgebra we use is then A(8%S x S,00) with
S:={feS:f=08% for some g € S}. (4.27)

One can easily verify that it satisfies the above requirements.

Since aj is a linear dynamics, it is easy to find a (regular) pure quasifree state on
A(0?S x §,09) invariant under it. Again in the notations of the preceding example, it is
given by the state wy associated, as in (4.19) and (4.20), to

wm (p)
o 0
MK(p) = % p? . (428)
wm(p)"

We call g the finite g.q.f. on 89S x § associated, by (4.19), to Mx(p).

It is interesting to notice that wg gives rise to a representation in which the limit of
the infrared cutoffed dynamics (restricted to A(8*S x S,0¢)) exists. The state wx admits
an extension to A(Vp,09), call it Qg, defined by the natural extension of gx to (Vp, )
(recall that V; = S x S. We want to show that Qx is maximally regular in A(V, o). This
is proved, using Prop. 3.3 in the next

Lemma 4.3 Chosen anyhow G € V\V,, a sequence {F,} € Vy ezists such that
lim o(Fn,G) = §(0) |

n-—r—+ oo

lim ¢ (F.)=0.

n—-+oo

Proof. Let G =< g,0 >€ V\V,. Let 6,(p) a sequence of functions in S, obtained by
scaling of a positive and symmetric functions f(p) € S, approximating in S’ Dirac’s delta
function. We set as our sequence

Fo(p) =< 0,—68,(p) > .

It is then easy to see that

im o(Fn,G)= lim [ &.(p)3(p)dp = §(0)

n— -+ oo n—-+oo

and that, using the dominated convergence theorem,

33

) . 1 —
lim ¢x(F,)= lm - /psz( ) 1lf(p)yzdp = 0.
n—+ 0o n—-+oco T

g.e.d.

We continue our discussion on this modelin Section 1.3.2, where we treat the dynamics as
acting on A(V, o) and we show that, unlike the 3+1 case, the gauge symmetry is unbroken.
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I.3 EXTENSIONS OF CCR ALGEBRAS.

I1.3.1. Charged fields as extended CCR algebras.

The structures we introduce in this section are motivated by looking at the generic situation
in Quantum (Field) Theory, where the variables are described by an algebra of observables
A and an algebra of gauge charged fields F, the former being contained in the latter. The
observable algebra coincides with the algebra whose elements are pointwise invariant under
the gauge group. We want here to study the situation in which the observable algebra is
given in canonical form, call it for instance A(Vp,09). We want to show that, in this case,
a charged field algebra can be exhibited within the class of CCR algebras, by constructing
a suitable extension of A(Vp,ay).

Fixed an algebra A(Vp,op), its extensions in a CCR ambit admit an immediate in-
terpretation in terms of charged fields. We shall discuss a number of examples of this
situation in models; the general structure is characterized in terms of a "gauge group”
of *-automorphisms of the extension A(V,s). From this point of view, it is relevant to
observe that it is easy to construct a gauge group of *-automorphisms of A(V,7), we call
it Gy/v,, characterized by the fact that A(Vp,00) is left pointwise invariant by the action
of this group. In this way, we can interpretate an element in .A(V, o) as charged under the
action of the group Gy y,.

The peculiar structure of CCR *-algebras is supplying to us a very natural way in
which to extend them. Clearly this means, generally speaking, to find an algebra of
which the starting one is a proper subalgebra; the problem has a sense if the former has
some structural affinities with the latter. In our case, CCR algebras are characterized by
the symplectic space (Vy,00) (we assume here oy to be nondegenerate) and to search for
extensions of A(Vh,00) in the class of CCR algebras reduces to the problem of finding
symplectic spaces (V, o) such that V; C V and T\ VoxVo = T0-

In concrete terms, we have to establish whether it is possible to extend ¢y to linear
spaces V' D Vp which are in someway relevant. If it is so, Section I.1.1 tells us how to
proceed in order to build up (at least) one CCR C'*-algebra associated to (V, o). It can be
that o admits several extensions, or that there is uniqueness but with degeneracy: these
events will lead to a plurality of possible C* structures. We'll not treat this aspect.

We establish now

Definition 5.1 Let A(Vp,0q) be a CCR *-algebra. Let (V, o) be a symplectic space such
that V' O V5 and oy, v, = o0. Then the *-algebra A(V, o) is said to be an eztension in a
CCR ambit of A(Vy,ay). '

The construction of such extensions is sometimes immediate. The question is more inter-
esting if a regular g.q.s. state wg is given on A(V}, 0¢). One may wonder how to characterize
extensions of w, to A(V, o), for instance if there are regular ones, and how the canonical
representations of A(V, o) defined by everyone of them represent A(Vp,00). From this
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point of view, it is relevant the case in which w, is maximally regular in A(V, o). We'll
develop this point in the next section.

We now show that, given a *-algebra A(V,00) and an extension A(V,0) of it in a
CCR ambit, this latter admits an interpretation as a charged fields algebra. To this end
we proceed to the construction of a gauge group, namely of a group of *-automorphisms
univocally associated to A(V, o) as an extension in a CCR ambit of a A(Vp, 09 ), and acting
as the identity on this last. For this reason, the single elements belonging to the extended
algebra but not to A(Vp,00) are called charged under the gauge group they determine.

Let then A(Vp,00) be a CCR *-algebra and let A(V, o) be an extension of it in a CCR

ambit. The equivalence relation
F~"F iff F-FeV,

with F, F' € V, defines the quotient space V/V,. It is a real linear space with the following,
elementary, property (whose routine proof we omit)

Lemma 5.2 The algebraic dual of V/Vy is isomorphic to the set V(o) of real linear func-
tionals on V that are zero on Vj:

(VIVa) ~Vigy:={s €V :¢(F)=0 VF eV} (5.1)

g.e.d.

In many cases, V/Vy ~ IR™ for some n and so (V/Vo) ~ IR"™.

We can thus associate to every extension in a CCR ambit of the algebra A(Vo,cro)
the real linear space V (0)- Even more, we assign to every ¢ € V(o) the *-automorph_lsm of
A(V, o) defined by

ag(6(F)) =exp ip(F))6(F) VFeV. (5.2)

This way we establish an isomorphism between the set V('o) (additive structure) and the
set

Gvv, i={ag € Aut(A(V,0)) asin (5.2):6 € Vy)} (5.3)

(equipped with the abelian group structure arising from morphisms composition). This
is our (abelian) gauge group. It is clar that, for every ¢ € V(’o) and for every F € Vj,

ay(6(F)) = 8(F) holds. Hence A(Vy,00) is pointwise invariant under the action of Gyv,.

As a further point, there is class of automorphisms of A(V}, 0y) which is "naturally”
attached to A(V,c), viewed as extension of A(Vp,09) in a CCR ambit. We introduce
indeed the class 7(y ;). To this end, let G € V. Then

1&(6(F)) = exp (i0(G, F))§(F) VF eV, (5.4)

defines an automorphism of A(Vy,09).
As a consequence we let

T(V,o) i= {7& tn (5.4) with G € V}. (5.5)
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In the same way one introduces 7(v, o,). This class of *-automorphisms of A(Vp,00) is
contaned in 7(y,;). It is clear that every automorphism in 7y, ,,) is inner since it is
implemented by the corresponding generator:

78(6(F)) = §(—G)§(F)6(G) := Ad(§(G))(6(F))  VF € Vo.

We will use these automorphisms in the following section. We’ll study the state space
of the field algebra A(V, o) in terms of the state space of the observable algebra A(Vp,09).
More precisely, we put a g.q.s. on A(V,c) and we construct the GNS representation of
A(V, o) associated to it. The question is - how this representation is described in terms of
the representation the restriction to A(Vy,0q) of the state gives rise to? The relevance of
the class 7(y,,) is thus clear if one looks at Prop. 3.6.

Example. We discuss an application to QFT of the above ideas. As an example we use
the CCR algebras suited to describe the kinematics of canonical models in 141 dimensions.
We described these algebras when dealing with the massless scalar field, the fourth example
in the previous section: we refer to it for the notations. We had as algebras of interest the
ones labelled by V =8 x § and by V; = d§ x §; the corresponding symplectic forms o
and oo are defined in formula (4.14) and in the discussion just after (4.18). In order to
construct a sensible extension of A(V,c) in a CCR ambit, let

8718 :={f € C*(R): 8f € S(R), lim f(z) = 0}. (5.6)

T—r— 00
We defer to the following section and to part II for a motivation of this choice.

Let then V7 := § x §71S. Clearly, V is a linear subspace of the vector space V3. In
order to naturally extend the symplectic form we define on Vi x V;

7(F,6)i= [ 0le)fi(@) = fa()os(2))de (5.7)
It follows immediately that ¢y is nondegenerate on V7 x Vi and that

Jilvxv = 0.

Thus A(V1,01) is an extension in a CCR ambit of A(V, ) (and hence of A(Vj,00)).
We come to the gauge group Gy, v,. We notice that

V]/Vo ~R xR
and every equivalence class of functions F € V; is labelled by
<q1,q2 >pi=< fl(o)v(a}z)(o) >

This is easily seen by fixing a vector F' in Vi with < 91,92 >z=< 1,1 > and by noticing
that F'— < q1,¢92 >p -F € V; for every F € V; (with obvious notation). Hence, one can
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always write F' = Qpﬁ‘ + Fy with Fy € V. The algebraic dual of V;/V; is spanned by the
real linear functionals .
$1(F) = £1(0)

$:(F) = (0f2)(0)  VF e Vi/Vs.

To them one can associate the two one-parameter groups of automorphisms of A(V1,04)

a3 (§(F)) = exp (iAf1(0))8(F)

- 5.8
ot ((F)) = exp ((07:)(0))8(F) (>:)
for every F' € V15 A, 1 € IR. As a consequence, Gy, /v, is isomorphic to IR x IR.

In different models, the two one-parameter groups in the above formula admit dif-
ferent interpretations. Thus, in the massless scalar field, viewed as the bosonized form
(we will dedicate the whole Part II to this problem) of the massless fermionic field, o}
- corresponds to chiral transformations and af to gauge transformations (fermionic charge).
In the free massive scalar field, which can be interpreted as the bosonized version of the
Schwinger model, the first group implements the (broken) chiral symmetry, while the sec-
ond represents the (unbroken) gauge transformations associated to the electric charge.
In the Stiickelberg-Kibble model the gauge transformations are instead given by the first
group. We’ll better study these correspondences in the next section.
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I.3.2. Nonregular representations of extended CCR algebras, spontaneous
symmetry breaking and charged states.

In this section the notions introduceed in the previous section are combined with the
introduction of states and representations. The resulting structure is discussed from two
points of view:

1. its interpretation in terms of observables and field algebras:

we are indeed thinking at a structure tipical in QFT, namely a field algebra F and
an observable algebra .4, the latter being left pointwise invariant by the gauge group.
We suppose we are given a representation of F, for instance arising from a state w on it
(call 7, the representation). One may wonder whether the representation of A associated
to the restriction to it of w someway determines the structure of 7. In particular, one
looks at a decomposition of 7, in terms of representations of .4 and at a discussion of the
properties of the gauge group, for instance its (partial or complete) breaking. We study
this problem in the setting of the previous section, where, given a CCR algebra A(V;, o)
and an extension in a CCR ambit .A(V, o) of it, we reconstructed the gauge group Gv/v,-
In this section we let a g.q.s. Q; be defined on A(V, ). Then we show how to characterize
the unbroken part of G'yy,. Moreover, we exhibit the decomposition of mq, in terms of
charged sectors, namely of representations of A(Vp, o) containing states which are charged
with respect to the gauge group Gy, v,.

2. The appearence of spontaneous symmetry breaking:

we explore the consequences of the observation that if a state has a unique extension to a
larger algebra then the extension is invariant under those automorphisms whose restriction
to the smaller algebra leaves invariant the original state.

In particular, in the search for g.q.s. invariant under physically relevant automor-
phisms groups, like a; or ., it is enough to verify the invariance properties on the restric-
tion to the regularly represented algebra, provided this restriction is maximally regular.

Furthermore, it is sufficient to study the latter in order to establish whether a sym-
metry defined on the whole algebra is spontaneously broken or not. A typical case will be
that of automorphisms reducing to the identity over the regular algebra.

An example are the gauge automorphisms naturally associated to every extension in
a CCR ambit of a *-algebra A(V;, 0g), which we constructed in the previous section.

We start the above sketched analysis by introducing a CCR algebra A(Vy,0¢) and an
extension in a CCR ambit A(V, ) of it. Moreover, let Q, be a g.q.s. on A(V,o) which
represents regularly A(Vo,0). Let w, be the restriction of 2, to A(Vp, ay).

Besides Vy and V, (this latter defined in formula (2.1) as the maximal subspace of V
over which the g.q.f. ¢ is finite) we introduce

Ve:={F € V:o(F,-)1is a continuous linear functional on Vj, (6.1)
equipped with the inner product induced by q}. '

It is very important to stress that in general
VWweV,CV.CV.
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Indeed, if F' € V,, then it belongs also to V, since ¢ is majorized by g, in the sense of Def.
2.1,B. One notices also that if the restriction w, is maximally regular in A(V, o), then
Vo =V, = V.. We then define, in strict analogy with the definition of ('O) (see equation

(5.1))

Vip={¢¢€ VIIR :p(F)=0 VFeV,} (6.2)

Vi ={s¢ VIR : 6(F)=0 VFeV}.
It is then clear that :
Viey € Vigy € Vioy-

In the same way in which we defined Gy, in (5.2) and (5.3), we define the two abelian
groups Gy,y, and Gy y,. We have then the natural immersions

Gyyv. € Gyyv, C Gyyv,-
The group Gyyv, is the gauge group associated to A(V, o) as extension of A(V,,00) in a
CCR ambit. We want to show that

1. Gy, is the subgroup of Gv/v, which leaves the vector representing {2, invariant.

2. V/V. describes the decomposition of mq, into charged sectors (i.e. inequivalent repre-
sentations of A(Vp,00)).

1.

Proposition 6.1 Let Qg a g.¢.s. on A(V,0), regular on A(Vy,00). Then ay € Gyy,
leaves the state Q, tnvariant iff ¢ € Vin-

Proof. We prove first the necessity part. To this end we show that ayfly = Q.
Notice first of all that, since ¢ € V('q), ag is the identity automorphism on A(Vg, o).

Furthermore, for every F' € V such that ¢(F) # 0 one must have F' € V\V, and hence
wq(6(F)) = 0. It follows that, for every F' of this type,

(a52)(6(F)) = Qq(8(F)) exp (18(F)) = 0 = Qg (6(F)).

Combining these two statements we are done, since A(V, ) is generated by the §(-). Con-
versely, if ¢ & V('q), then there is F' € V;, such that ¢(F') # 0. Since F' € V, it follows that
Q(6(F)) # 0. hence

(a3)(8(F)) = Qq(8(F)) exp (i¢(F)) # Qq(8(F)).

g.e.d.

We have then the following, consequence, which is connected with the basic motivations
of our work:

Corollary 6.2 If Gy,y, is nontrivial and it leaves Qg invariant, then Qg cannot be a
regular state on A(V,0).
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Proof. If Gy v, leaves Q, invariant, then V('q) = V(’O) and Vy = V. Hence, since Vy € V
by assumption, V; € V and Q, cannot be a regular state on A(V, o).

g.e.d.

By the very proof of the above proposition we get even more
Corollary 6.3 If¢ € V’q , then oy 1s implemented in (mq,_, Ha ,%a,) by a unitary operator
leaving ¥q, invariant: Ugha, = q,.
Proof. It is a standard result, having proved that agfly = Q.

g.e.d.

We concentrate now our attention on particular subgroups of Gy,v,. Fixed ¢ € V('q),

consider the one-parameter subgroups of *-automorphisms ag defined by
ay(8(F)) = exp (iA$(F))§(F)  VF € V,¥Ae R.

The first information about them is

Lemma 6.4 Let ¢ € V(’q). Then the one-parameter group of unitary operators Ugz(A) in
Ha, implementing a; in wq, 18 strongly continuous in A € IR.
Proof. A(V, o) is generated by the §(-)’s. Hence one needs only to calculate, fixed F € V,

[Us(X) = Dma, (6(F))a, || = l|(exp (1AG(F)) — 1)ma, (§(F))pa, || =
=|exp (iA¢(F)) — 1] — 0 for A —0.

J

g.e.d.

We are so equipped with a set of "charges”: the Stone’s generators Q4 (*) of the single
one-parameter groups Ug(A):

Ug(X) := exp (i1AQ4). (6.4)

It is immediate from this whole construction that the set of charges

Qa, :={Qs1n (6.4): ¢ € V('q)}

has the structure of a linear space, isomorphic to V('q). It coincides with the set of unbroken
charges. We also have

Lemma 6.5 Ug(A) € mq, (A(Vo,00)) Vé e Viy-

Proof. 1t follows at once from the fact that 0‘2 is the identity automorphism on A(Vj, 09),
8 Vi,
g.e.d.

(*) see th. viii.8 in [REE]
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2.

Our aim is now to analyze the charged sectors coming out of our setting. To this end
it is relevant the space V/V, introduced above. We first look at the automorphisms T
G €V, of A(Vh,00) defined in (5.4) of the previous section. We then notice that the set
of representations of A(Vp, a9)

(Va . _ o*
T ). {qu'c Twy,G = Tw, 0TG, G € V}

has the structure of an abelian group, isomorphic to V/Vj.
By the definition of GNS representation, Hq,_ is contained in the (disjoint) union of
(Vio),

the Hilbert spaces associated to the single elements in 7,

Ha, C U Hg.

GeV

By the very same arguments used in the analysis given in the second part of Sect. 1.1.3

it follows that
D o
GeV/V.

Indeed, looking at the proof of Lemma 3.4 it is clear that G; and G define disjoint
representations iff G; — G, € V.. Hence V/V, describes the decomposition of 7o, into
charged sectors.

Furthermore, the representation that mq, gives of A(V, o) has the property that auto-
morphisms in 7(v,,) are implemented in it by unitary operators in mq_(.A(V, o)), inner ones
(those in 7(v,,0,)) being implemented in ., (A(Vo,00)). Hence the fields algebra A(V, o)
is entirely represented in it. Even more, mq, contains every sector exactly once (compare

with Prop. 3.6).

In the following examples we are mainly interested in the situation in which Vo =V, = V.

Example 1.

The massless scalar field in 1+1 contains structures that go beyond the previous,
simple, analysis. It is indeed possible to give a precise identification of the unitary imple-
menters and of the associated charges constructed above. We have seen at the end of the
previous section that

Vi/Vo ~IR x IR.

It follows that
I/(’O) o~ IR. X IR,

We had also a basis for V(o) it is formed by the following two real linear functionals

)

(0 (6.5)
f)(0)  VEeW/V

$1(F) := f1(0
$2(F) := (9

43



to which correspond the two one-parameter groups of automorphisms of A(V3, 1)

at(8(F)) = exp (iAf1(0))6(F)

A
! N (6.6)
ay (6(F)) = exp (in(0/2)(0))6(F)
for every F' € Vi; A, u € IR. As a consequence, Gy, v, is isomorphic to IR x IR.
We now consider the state wy on A(Vg, 09) defined by (4.19) and (4.20). It was showed
in Lemma 4.1 that it is maximally regular in A(V, o). One can use the very same proof
of it, by using this time the sequence {F?} :={< f2,0 >} ¢ Vo' given by

2= { =lpl= |pl <
" 0 lp| >

[ |

in order to show

Lemma 6.6 The regular g.q.s. wo on A(Vy,00) is mazimally regular in A(Vy,01).
g.e.d.

We conclude that wy admits a unique extension to this larger algebra, we call it 2. We
obtain also that

W=V, =V..
Using Prop. 3.6 we have then that

Ha = @ Hr

Fevi/Vo

where Hp carries an irreducible representation of A(Vy,00).

Furthermore, as a consequence of Prop. 6.1, both automorphisms in (6.6) are un-
broken in 7q, and by Corollary 6.3 and Lemma 6.4 they are implemented by strongly
continuous one-parameter groups of unitary operators in H,,,.

We call U;()) and Uz(n) the respective unitary implementers and Q1, Q, the associ-
ated generators. We can now give a precise identification of them following Lemma 4.1.
Indeed let {F1} :=< 0, f} > with

ity = {7 <

; 5 ip| > (6.7)

3[=3 =

For n fixed, F! € ;™ and so Two(8(F})) is an unitary operator in WwO(A(VOqO,Uo)) -
Two (A(Vo,0))". Indeed, if F! € V5°°, there is a sequence {F; .} € Vo approximating it
in the ¢ norm and hence o-weakly with respect to V;. It follows that m,,(6(F})) is unitary
as a strong limit of a sequence of unitary operators with strongly convergent adjoints.
By the same argument, s — lim;,,— 4 oo 7w, (6(F})) exists and it is an unitary operator

in Ty (A(Vo™,00))" = 7o (A(Vo, 00))".
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Moreover, let’s notice that the sequence {f1(p)} tends, as n goes to infinity, in &' to
6(p), and that im,— ;o ¢(F}) = 0.
Hence

Ui(A) =s— Hm 7, (6(AFL)). (6.8)

n——+o0

It follows from this and from Lemma 6.5 that
Ur(A) € 7w (A(Vo,00)) N 7wy (A(Vo,00))". (6.9)

If we fix n < +o00, there exists the Stone’s generator ®,,,(F1) of m,,(§(AF1)), X €IR.
{®wo(F)} is a sequence of selfadjoint operators on H.,,, in the same way as it is Q;.
It follows then from (6.8) that
(I)wo(Fé) - Ql

in the strong resolvent sense (*). |
The same holds for U,(u), with a sequence {F2} := {< f2,0 >} € ¥ ° given by

o= { wlpl® | < (6.10)

0 lp| >

3 [ [

Let finally be i=1,2. We can differentiate with respect to the parameter and obtain

$:(C)ma(5(C)) = - o (ma(6(C))pco =

= [Qi, ma (6(G))]

the last equality being true at least in a weak sense on a dense domain.

(6.11)

Example 2.

We analyze here, with the same notations of the previous example, the canonical free
scalar field, with mass m, in 141 dimensions. It is well known that this model describes also
the vacuum sector of the bosonized version of the Schwinger model, in the Coulomb gauge
([MOR]). The kinematics is described by the canonical CCR algebra A(V,0), already
introduced in the previous example. The time translation automorphism a?_ is defined as
in (4.16), with the only difference that this time we have

w(p) = (p* + m*)T = wn(p). (6.12)

Calculations absolutely analogous to those of the previous section lead to a space and time
translation invariant state w,,, the vacuum state of the model. It is a regular quasifree
state on A(V, o) defined as in equations (4.18), (4.19). We call g,, the g.q.f. associated to
it. Explicitely, the analogous of (4.19) is

M(p) = () (6.13)

(*) th. viii.21 in [REE].
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We introduce also in this case the algebra .A(Vi,01). In this interpretation, A(Vi,o1)
corresponds to the algebra of the fields charged under the gauge symmetry, so that A(V, o)
is the neutral algebra (and hence describes the vacuum sector).

Indeed, the gauge symmetry is represented by the one-parameter group af of *-
automorphisms of A(Vy,01).

We want to show that w,, is maximally regular in this extended algebra, and hence
it admits a unique extension, call it Q,,, to A(V1,01). It follows that the gauge symmetry
is unbroken, thanks to Prop. 6.1, in mq_,

By Prop. 3.3 one needs only to show

Lemma 6.7 Chosen anyhow G € V1\V, a sequence {F,} € V ezists such that

Im oy(Fn,G) = (8272)(0)

n—+4co

Im ¢n(F,)=0.

n——4co

Proof. Let G =< 0,9, >€ V1\V. Let 6,(p) be a sequence of functions in S, obtained by
scaling of a positive function f(p) in S, approximating in S’ Dirac’s delta distribution. We
set as our sequence

Fo(p) =< —ipbn(p),0 > .

It is then easy to see that

m o)(Fn,G) = lLim i / pd2(p)6n(p)dp = (932)(0)

n—-4 oo n—-+oco

and that, using the dominated convergence theorem,

n—-+oco n—+oco n

fin_gn(Fr) = lim [ pen(Z) 5Py = 0.

g.e.d.

Since the gauge symmetry is unbroken in 7 _, we can speak of gauge charged fields
as really distinct from the vacuum sector.

The status of the would-be chiral symmetry is different. It is well known that it is
spontaneously broken in this model. Hence the fields which are charged under it are degrees
of freedom contained in the vacuum sector. In the bosonic setting, the chiral symmetry
corresponds to the one-parameter group of *-automorphisms of A(V,0) af (shift of the
field ¢ — ¢ 4+ Ai: we give in Section II.1 a detailed discussion of the reasons of these
correspondences between automorphisms). The vacuum state w,, is regular on A(V, o)
and hence it is not invariant under a}*:

oy wm(6(F)) = e Owp, (5(F))
Hence «f is broken in .
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Example 3.

We study now the Stuckelberg-Kibble model, the last example we treated in Section
I.2. We already noticed that, if we insist that the dynamics o) acts on the algebra A(V, ),
then, given the form (4.26) of the dynamical matrix, we are forced to consider the CCR
*-algebra labelled by the symplectic space (Va,02) where V2 = § x 8728 as defined in
(4.25) and o3 is defined by the same expression as in (4.14). Clearly, V is a subspace of
V2 and o3y xv = 0. Hence A(V2,0;) is an extension in a CCR ambit of A(V,s). One
of its *-subalgebras, namely the one labelled by (V',02) where V' = S x 871§ (for the
suitable definitions, see (4.18) and (5.6)), has the property of being maximal with respect
to the criterion that select gauge invariant and a) stable algebras, as it is easily verified.
The state wx admits a natural pure regular and quasifree extension to A(V',03), call it
V%, namely the one associated to the g.q.f. qx, viewed as acting on V'. We want to show
that Q% has a unique extension to A(V2,02). We use Prop. 3.3 and so we are reduced
to prove, taking into account that half of our work has already been given in Lemma 4.2
and thanks to the product structure of our symplectic spaces

Lemma 6.8 Chosen anyhow G € Vo\V', a sequence {F,} € V' ezists such that
q

im oy (Fn, @) = (8242)(0)

n—-+oo
I m(Fn) = 0.
G gm(Fr) =0
Proof. Let G =< 0,9, >€ V3\V'. Let §,(p) be a sequence of functions in S, obtali:hed by

scaling of a positive function f(p) in S, approximating in S’ Dirac’s delta distribution. We
set as our sequence

Fr(p) =< p*8a(p),0 > .
It is then easy to see that

lim oy(Fp,G) = lim [ p*Ga(p)dn(p)dp = (8%g2)(0)

n—-+ oo n-—- 00

and that, using the dominated convergence theorem,

lim gn(Fa)= lim —1—/p2wm( )11 £(p)[2dp = 0.

n—-co n—-4+ocon

3

g.e.d.
We call QY the unique extension of Q% to A(Vz,02).

In the definition of the Stiickelberg-Kibble model it is also contained the gauge sym-
metry 77, which acts as a shift on the field ¢. In the exponentiated form, it corresponds
to the *-automorphism of A(V, o) defined by

QM (8(F)) = 6 F).
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It is then easy to show that this symmetry is, unlike the §+1 case, unbroken in the rep-
resentation of A(V, o) defined by the natural extension of the time translation invariant
state we discussed in the previous section.

Indeed A(Vh,0q) is, as we have seen, a maximal gauge invariant (even if not time
invariant) algebra contained in A(V,o). Furthermore, the state Qg is, by the previous
lemma, maximally regular in A(V, ), and so it admits an unique extension, call it 0%, to
A(V,0). Hence Prop. 6.1 implies that a is unbroken in TQo -

It is thus interesting to observe that infrared effects ( in this case due to the lowering
of the dimension) can change the status of the relevant symmetries of the model.

We now want to study more general symmetries of the field algebra A(V,o).  We
assume now a slightly different point of view, namely we start with a state on the observable
algebra A(Vy,00) and we ask whether its extension preserves its symmetries. In general,
a symmetry of a physical system is translated to an automorphism of the algebras used to
describe it. By duality, the automorphism is extended to the states. An automorphism 3
is said to be broken in the representation 7 if 7 0 8 is not unitarily equivalent to 7. Called
B* the dual automorphism, the breaking of # from the state w is equivalent to

Bw £ w

where we means inequivalence of the respective GNS representations.
We are interested in investigating the relations between symmetries of states and
symmetries of their own extensions. In this direction goes the following

Proposition 6.1 Let be given a *-algebra A(V,0), a *-subalgebra A(Vy,ay) of it and a
g.9-5. wg on A(Vy,00) mazimally regular in A(V,0). Let B be an automorphism of A(V, o)
such that

B(A(Vo,00)) C A(Vo,00) (*)

and let B be a symmetry for w,:
B wq = wy.

Then, wy has a unique extension Q to A(V, o), satisfying

B*Q = Q.

Proof. Since () holds, 8*w, is a state on A(Vy,0q). By Prop. 3.3, w, has a unique
extension to A(V,c) and so our statement immediately follows from the fact that 8*Q is
an extension of 3*w,.

g.e.d.

This proposition holds obviously even if 8 is substituted by an one or more parameter
automorphism group B(g) It has two fundamental consequences.

1. In the search of invariant states. In the assumed hypothesis, one needs only to verify
the invariance of the regular part: maximal regularity provides us the invariance of the
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whole state. Relevant applications arise in the case of the space and time translation
automorphisms, and hence in the search for ground states in field thories.

2. In the analysis of phenomena of spontaneous symmetry breaking. Proposition says
that to this end, it is enough to limit ourselves, in the assumed hypothesis, in studying the
action of the symmetries on the "regular part” of the state.

Thus, with this proposition, we can treat, in the maximal regularity hypothesis, sym-
metries which are not of the gauge type, like for instance those considered in the first part
of this section. Indeed, we tacitly used the above proposition in Section I.2.3, when we
said that the state 2y of the free massless field is, thanks to its maximal regularity, space
and time translations invariant.
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Appendix A. Pure and primary generalized quasifree states.

We collect in this appendix two problems in the study of the properties of the generic
g.q.s.. Indeed these questions, while being of some interest, have a technical character; in
the same way the treatement is slightly less expository and more bristly of theorems. In
fact, we study how to characterize factoriality and purity for g.q.s..

The 1dea is to find suitable generalizations of the well known characterizations of the
same properties in the case of regular quasifree states: our basic reference is thus [MAN2],
dedicated to this very problem. From this point of view, the method of presentation of
our results is the same in both analysis: we formulate first, introducing the appropriate
notation where it needs, the standard result. We circumscribe then the aspects we want
to generalize, with suitable new definitions (verifing they reduce to the standard ones in
the regular case). Looking at them we’ll conjecture about a possible extension to the g.q.s.
of the characterization. Finally, we prove such a conjecture, in the case by subsequent
generalizations.

This program is not yet complete: it is not so clear how to set up the sufficiency proof
for the condition we think to be equivalent to the factoriality, while the necessity one is
easily carried through.

We briefly explain the content of this appendix; as an aside, we notice that the fol-
lowing proofs elaborate and enlarge ideas and logical line used in [MAN2] in the regular
case.

Factoriality. A regular quasifree state w, over the algebra A(V, o) is primary exactly when
the continuous extension of ¢ to V" is nondegenerate. This is the standard case. Notice
that o is supposed to be nondegenerate on V. The new aspect consists in introducing on
V' a topology, appropriate to the case in which ¢ is a g.q.f. and o is degenerate, reducing,
when we have regularity and nondegeneracy, to the one induced by ¢ on V. It is called
the og-topology. Our conjecture consists simply in sobstituting V% to V¥ in the above.
The necessity of this condition is then verified. We notice also the very relevant fact that
we are able to tackle the case, not treated in [MLAN2], in which w, is regular but ¢ and
q are degenerate. We end with a proposition classifying all extension a primary g.q.s. on

A(V, o) admits to A(V"?, o).

Purity. In the regular case, the positivity condition (1.4) implies that there is D, € B(V?)
such that o(,-) = [, D¢]g. One then shows that 4, = —D;?! exists. The standard
equivalence says that a regular quasifree state wy on A(V, o) is pure exactly when A;Aq = 1.
Our generalization goes in the following direction: we introduce the notion of minimal g.q.1.
over a symplectic space (V, o). This means that there is no g.q.f. ¢’ different from ¢ such
that ¢'(F') < ¢(F) for every F € V. We show that, in the regular and nondegenerate case,
this property reduces to the previous one. On these grounds we hypotize that minimality
of a g.q.f. is equivalent to the state associated to it being pure. The proof is by no means
immediate and requires a series of intermediate propositions, in the direction of a gradually
increasing generality. Also in this case we are able to treat regularity with degeneracy,
as an improvement to [MAN2]. Finally, we explicitely control that our construction is
consistent, that is purity implies factoriality (both in our sense).
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Primary states

We first of all recall the standard characterization of primary quasifree states (prop. 11

and th. 3 in [MANZ2]).

Let A(V,0) be a CCR *-algebra (o is assumed to be nondegenerate). Let w, be the
quasifree state associated to the finite and nondegenerate g.q.f. ¢ : V — IR. Then w, is

primary iff the continuous extension of ¢ to V" is nondgenerate.

We start our analysis by noticing that, if w, is primary, then o degenerate on V implies
g degenerate on V.

Indeed, if F' € V exists such that ¢(F,G) =0 VG € V, then, in every representation
7 of A(V,0), m(§(F)) belongs to the centre of it. If m is factorial, then unitarity implies
n(6(F)) = A1 with |A| = 1. In particular, if 7 arises from a quasifree state, 7 = m,_, it
follows that

1= (s (6(F), )| = exp (~2(F)

that is ¢(F) = 0 and ¢ is degenerate on V. The next step is the introduction on V of a
topology generalizing to the case of g.q.f. that induced, in the regular one, by q.

Definition A.1 Let (V,0) be a symplectic space and g a g.q.f. over it. We call og-topology
the locally convex topology defined by the neighborhood basis at the origin I, g, where,
for every finite set {G;} € V and with ¢,¢; € IR

I, ={FeV:¢gF)<e , |o(FG;)| <e} (A.1)

In other words, let G € V. Then |¢(G,)| : V — IR is a seminorm on V. The og-topology
is generated by the set of these seminorm and by the ¢(-) norm. We notice that we can
take the G; to be in V\V,. Indeed, if G; € Vg for some 7, then the second condition is
implied by the first, with ¢; = €q(G;), by the positivity condition (1.4). Hence, if V =V,
this topology reduces to the strong topology on V induced by the ¢ norm.
The quotient topology induced on V/V, by the og-topology is the discrete one.

In a generic situation, that is if both ¢ and ¢ are degenerate, there can be elements
F € V such that ¢(F) = 0 and o(F,-) =0 on V. Hence the og-topology is not Haussdorff.
This problem is removed if we notice that we are not really interested to V as a space
equipped with the o¢-topology. Therefore we introduce

Definition A.2 We call V°7 the space obtained from V adjoining to it all limit points of
ogq-Cauchy nets and then going to the quotient with respect to the nets that admits the
origin as a limit point.

V7 is the space we are interested in. If V = Vs V7% coincides with Vq, the Hilbert
space canonically obtained from (V,[-,]4) by completion and quotient over the zero se-
quences. As a first result we obtain at once

Lemma A.3 Given a decomposition V = Vy + V', then vV = anq + V'. Furthermore,
q(-) and o(-,) are continuous (o is jointly continuous) in the oq-topology and they have

. . . oq
then a unique continuous extension to V. .
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Proof. The first statement is an immediate consequence of the definition of V74, Tt follows
that, if the net {F,} € V is o¢-Cauchy, one can write F, = G, + H, {Go} € V a
og-convergent net and H € V', fixed. The continuity of ¢(-) follows at once. The joint
continuity of o(-,-) follows from the preceding decomposition, from the o-weak and the
g-strong convergence of {G4} combined with the standard positivity condition, true on
pairs of vectors in V. '

g.e.d.

g and o can well be degenerate on V' °, but if there is Fy € V_° such that g(Fo) =0 and
o(Fy,G)=0 VYGe V% then Fy = 0in V°° by definition. We have also the important

Lemma A.4 Let {F,} be a net in V oq-convergent to F € V' °. Then {F — Fa} is

"

convergent to zero g-strongly and o-weakly. In particular limg 7, (6(Fo)) € o, (A(V,0))".

Proof. The first statemént follows from Def. A.2 and Lemma A.3. The second one from
the fact that ¢-strong and o-weak convergence imply in an absolutely standard way that
there exists

s — ].iin Tw, (6(Fa)) € 7w, (A(V,0))".
g.e.d.

‘We can now state our

Conjecture A.5 Let (V,0) be a symplectic space, q a g.q.f. on it and w, the associated
g-9.5.. Then wy is primary iff the continuous extension of o to Vo s nondegenerate.

Lemma A.4 allows to control the elements of the centre and this let us to set up the
necessity proof of the conjecture. 'This proof is a simple generalization of th. 3 proof in

[MAN2]. Notice that we cover also the case, not treated in it, in which g is finite but
degenerate and o is degenerate.

Proposition A.6 Let (V,0) be a symplectic space and q a g.q.f. on it. If the continuous
. 550 . . .
eztension of o to V' © is degenerate, then wy 1s not primary.

Proof. If o is degenerate on V' °, let F, # 0 in V7% such that o(Fo,+) = 0 on V% and
let {Fy} be a net in V' og-convergent to Fy. By Lemma A.4, lim, 7, (6(Fy)) exists
and defines an element U in 7w, (A(V,c))". Since o is degenerate on Fy and {F,} is og
convergent to Fy, U is in the centre 7, (A(V,0)) Nm,, (A(V,c))". Notice then that U is
unitary: it is a strong limit of unitary operators with, by the definition of adjoint in Weyl
algebras, strongly convergent adjoints. If w, is primary, and so the above centre is made
of multiple of the identity, we must have

U=12x1 Al = 1.
But Fy #0in V' ' and since o is already degenerate on Fy, necessarily ¢(Fy) # 0 and so
L= A = [, U, )| = i exp (~ q(Fa)) = exp (—2a(F3)) < 1
where the last equality follows again from Lemma A .4.
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Hence wy is not primary.
q.e.d.

We end the discussion about factoriality by studing whether it is possible, given a
primary g.q.s. wg on A(V, o), to characterize its primary extension to A(Vaq,a). It turns
out that such an extension is unique up to phases.

Proposition A.7 Let A(V,0) be a CCR *-algebra, w, a primary g.¢.s. on it. Then
primary states ezist extending it to A(Vaq,cr) and they all are of the form

Q(E(F)) i= exp (ig(F)) exp (~1.(F)  VE €T (4.2)

with q.(-) the unique continuous eztension of ¢(-) to V' ° and #(+) a real additive functional
on V%, Furthermore, A(V, o) is strongly dense in A(V' ", o) in any representations defined
by the Q.

Proof. We organize the proof in three steps.

1. Let Qo(8(F)) := exp(—1¢.(F)) VF € V°!. Then the g.q.s. Qp on AV, o) is
primary iff w, is primary on A(V,0). Indeed Lemma A.4 and the definition of V' °
immediately imply that 7, (A(V,)) is strongly dense in mq,(A(V " ?, o). In particular the
centres of the associated Von Neumann algebras coincide and this proves our statement.
2. Qo primary implies (g primary, for every real additive functional ¢(-). Indeed, if ¢(-)

—0q

is such (linearity is not needed!!), then exp (i¢(-)) defines an automorphism of A(V'*, ).
Hence (14 is obtained from Qg by composition with an automorphism and this proves our
statement.

This way we have shown that all states {2, are primary.

3. Let, conversely, Q be a primary state extending w, to A(Vaq,cr) (it exists by 1.). We
want to show that = Q4 for some real additive functional ¢.. Let then F € V' . If {Fa}
is a net og-convergent to F, it is clear that, for every G € Voq,

lim[6(F, — F),5(C)] = 0 (+)

in the C*-norm sense (the unique C*-norm on A(Vaq,a): wg is primary and hence the

continuous extension of o to V' is nondegenerate!); indeed o(F, — F,G) — 0 VG eV’
by definition.
By the same reason and using Lemma A.4 we obtain

s — lig1 Ta(6(Fo — F)) =5 — liglﬁg(5(Fa))7rQ(5(F)).
Since 7 is a factor it follows from (+) that
s —limm(6(Fo)) = exp (—ig(F))ma (6(F))
where ¢(F') € IR by the already observed unitarity of this strong limit.
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As a consequence, fixed anyhow F € V',
Q(S(F)) = exp (i$(F)) Qs — lim ma(6(Fa)) =
= exp (ig(F)) limwq(5(Fa)) = exp (i6(F)) lim exp (1 9(Fa)) =
= exp (ig(F)) exp (~ 140(F)).

This shows also that ¢(F') is independent of the net used to approximate F'. The additivity
of ¢(-) comes from the fact that exp (i¢(-)) is obtained as a strong limit and that the strong
operators topology is jointly continuous on the unit ball. By the above construction it is
also clear that A(V, o) is strongly dense in A(V" ", ) in all representations defined by the
Qys.

g.e.d.

In the very same way one can prove the following, useful in applications

Corollary A.8 Let (V,o), (W,c'") be symplectic spaces such that V. C W, Tlysy = 0.

Let wy be a primary g.q.s. on A(V,0) and let V be oq-dense in W. Then primary states
ezist extending wy to A(W,o') and they all are as in formula (A.2) where g. is the unique
continuous extension of g to W and ¢ a real additive functional on W.

g.e.d.

Pure states

Our aim is to characterize the set of pure g.q.s.. We remember to this end the one given
in the regular case, introducing also the relative notation (we always refer to [MAN2]).

Let Q be the set of quasifree states on the CCR *-algebra A(V, o) associated to g.q.f. ¢
satisfing the following condition

g is a finite g.q.f. over the nondegenerate symplectic space (V,o) and the continuous
extension of ¢ to V" is nondegenerate.

Then (*) D, € B(V") exists such that D} =-Dg, DID; <1 and o(-,-) = [-, Dg]4 on Ve
The polar decomposition Dy = J|D,| gives J*> = —1 and J = —J.
One shows that A, = —D, exists with a dense domain and that it is a normal operator
on it. Furthermore, one obtains that A, = J|A4,| with [4,| = |D,|7* > 1; Al 4, > 1.
Remember that if DID, = 1 = AlA, then |D,| = |4,| = 1 by the uniqueness of the
positive square root. By the above, this is equivalent to DZ =-1= Ag.
We arrive finally at the standard characterization:
wg € Q is pure iff AZAq =1.

Our generalization is based on the following

(*) prop. 3 in [MANZ2] and following ones.

o4



Definition A.9 Let ¢ be a g.q.f. on a symplectic space (V, o). ¢ is said minimal on (V, o)
if there is no g.q.f. ¢’ on (V, ) different of ¢ such that

¢(F) < q(F) VFE eV (A.3).
The existence of minimal forms in the space of g.q.f. over the generic space (V,0) is a
direct consequence of Zorn’s lemma. Our goal is to prove the following

Proposition A.10 Let ¢ be a g.q.f. over the symplectic space (V,0). Then the g.q.5 w,
on A(V, o) is pure ezactly when q is minimal.

The proof is given by a series of lemmas, the first following immediately. Let us denote
with Q(V, o) the set of g.q.f. over the symplectic space (V, o).

Lemma A.11 Let g € Q(V, o). If ¢ is minimal then q)y, it is also minimal on (V,, o) and
mazimally regular in (V, o).

Conversely, every ¢ € Q(V,0) which is not minimal is contained in one of the following
disjoint sets:

Q1(V,0) = {g € Q(V,0) : qv, is mazimally regular in (V, o) but there is a g.q.f dominated
by it, in the sense of (A.3), on (Vy,0)}.

Q2(V,0) ={q € Q(V,7) : qv, is not mazimally regular in (V,o)}.

g.e.d.

The first step consists in the proof that we are generalizing the standard treatement. We
need a preliminary result.

Lemma A.12 Let g be a finite g.q.f. over the nondegenerate symplectic space (V,o). If q
is minimal then the continuous eztension of o to V' is nondegenerate.

Proof. We notice that nondegeneracy of o on V, the positivity condition (1.4) and finiteness
of ¢ immediately imply that also ¢ is nondegenerate on V. This is true also for the inner
product [-,],.

Suppose now that o is degenerate on V': in this case zero is an eigenvalue of the operator
D, and so D;Dq < 1 (strictly); hence |D,y| < 1. Let’s introduce then the sesquilinear form
onV

[ Jamin 2= [ [ Dgl-]g-
It is easily verified that it is a finite g.q.f. on (V,0): one needs only to notice that

o(-y+) = [y J]gmin on V with J normal and ||J|| < 1.
On the other hand, it follows at once from |||D,||| < 1 that, for every F € V,

Gmin(F) = [F, Flg,... <q(F).

By the minimality hypothesis we have then that ¢min(-) = ¢(-) on V and by density this
equality is true on V", too. But this means |Dg| = 1 and we are arrived to an absurd.
This proves our statement.

g.e.d.
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Lemma A.13 Let g be a finite g.q.f. over the nondegenerate symplectic space (V,0). Then
wg € Q 18 pure iff ¢ 15 minimal.
Proof. We argue by contradiction; first we prove the necessity part.
Let then wy € Q be nonpure. Hence D;fDq < 1 strictly and the proof is the same as in the
previous lemma.

Conversely, let ¢ € Q(V,o) be finite and nonminimal, and let ¢, be a finite and
minimal g.q.f. in Q(V, o) dominated by it. We have then on V x V'

o) = ['7D<I']q o) = ['7qu']qm

with D;Dq < 1 and ng D, = 1 (this last equality comes from the sufficiency part just
proved).
But if ¢, is dominated by g, then I, € B(Vq) exists such that, on V¥ x V7,

with Iq"“ =I;and 0 < I, < 1.
So we have that Dy = I, D, and

DD, =D} Il1,D, <1
strictly. Hence w, (which is in @ by the preceding lemma) is not pure.

g.e.d.

We go ahead in generalizing by firstly removing the nondegeneracy assumption in the finite
case. As before, we state a preliminary lemma.

Lemma A.14 Let ¢ be a minimal and finite g.q.f. over (V,o). Then ker o = kergq.
Proof. Finiteness of ¢ and positivity condition (1.4) imply that kerq C kero. Let then
Fy € kero, that is such that ¢(Fy,G) = 0 VG € V. Since o(+,+) = [+, Dg-]q we have
that Fy € ker Dy = ker|Dy|. By the definition of ¢m;, in Lemma A.12, this implies
gmin(Fo) = 0. But also ¢ is minimal and so ¢(Fy) = gmin(Fy) = 0. Hence Fy € ker ¢ and
kero C kerg.
We conclude that ker o = ker q.

g.e.d.

Lemma A.15 Let q be a finite minimal g.q.f. on (V,0). Then the state w, is pure on
AV, o).
Proof. Lemma A.14 shows that kero = kerq. It easily follows from it that

7qu(5(Fo)) =1 VFy € ker q. (*)

Consider now the quotiet space V/kerq. Schwartz’s inequality and ker o = ker q imply
respectively that ¢ and o are well defined on it. (V/kergq,o) is thus a nondegenerate
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symplectic space and ¢ a finite nondegenerate g.q.f. on it; so A(V/kerq,o) is a well
defined CCR *-algebra and ¢ induces a g.q.s. wg on it. But then from (x) it follows that

T, (A(V,0)) > w0y, (A(V/ ker g, 0)). (%)

One can verify that ¢ is still minimal on (V/kerq,o) and so, by Lemma A.12, the

continuous extension of o to V/ ker qq is nondegenerate. By Lemma A.13 w, is pure and
Tu, (A(V/ ker ¢,0) is irreducible. Using (#x) one concludes that so it is also m,, (A(V, o)),
that is wq is pure.

g.e.d.

We can finally establish
Proposition A.16 Let (V,0) be a symplectic space. Then minimal g.q.f. on (V,0) define
pure states on A(V,o).

Proof. 1f ¢ is minimal on (V,o) then, by Lemma A.11, so it is its restriction to (Vo).
By Lemma A.15 the restriction of w, to A(V,, o) is pure. But the above restriction of ¢
is also maximally regular, by Lemma A.11, and so is also the restriction of w,. By Prop.
3.3 we conclude that w, is pure as a state on A(V, o).

g.e.d.

In order to prove the second half of Prop. A.10, we take advantage of Lemma A.11
and we start with

Lemma A.17 If ¢ € Q1(V,0) then wy 1s not pure on A(V, o).
Proof. We know that gy, comes from an inner product, say [-,-]q. Since ¢ € Q1(V, ), let
9< € Q(V,,0) dominated by the restriction of ¢, but different of it. Clearly, ker ¢ C ker g<.

Being a closed subspace ofo, ker ¢+ is a Hilbert space, over which [-, ‘]q is nondegenerate.
Also g< comes from an inner product on V,, and since is dominated by g on it we have

["’]q< = ['7A']q

with AT= A4 and 0< 4 < 1.
Since 1— A # 0, € > 0 exists such that there exists a onedimensional projection P of 1— A

relative to a spectral interval contained in [e, 1], projecting on a vector Hp € V. As a
consequence

eP <1-— A. (%)
We define then on V; x V,
{'7'}* = [')']q - e[-,P-]q.

Clearly, q.(F') < ¢(F) VF € V,, where q.(-) is defined in an obvious way. Furthermore,
(*) implies easily that
¢<(F) < qu(F) VFeV,
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We extend q. to V by ¢.(F) = +oo VF € V\V, and similarly for g<. It is easily verified
they are g.q.f. on (V, o) and

g<(F) < q.(F)<gq(F) VFeV.

So also ¢, is dominated by ¢ on (V, o).
On the grounds of Prop. 2.2, let w’ the state on.4(V, o) defined by

W (§(F)) = {exp (ta[Hp, Fl,)exp —%q*(F)) VF eV,

o 0 otherwise

with a € IR. It is easy to verify that

so that w, is not pure.
g.e.d.

Lemma A.18 If g € Q2(V,0) then the state wy is not pure on A(V, o).

Proof. If ¢ € Q2(V,0) then Gy € V and a g.q.f. ¢’ on V exist such that ¢'(F) = ¢(F)VF € V
except that ¢'(Gy) < +oco while ¢(Gg) = +oo. Following the notations of Prop.2.2, fix
V" C V such that V' = V" 4 Span(Gy). For every F € V, we decompose then with
obvious notation

F=F,+\NF)G,+ F".

Let wy the state on A(V, o) associated to ¢'. Since A(F) is a real linear functional on V,
the state on A(V, o) given by

wer (8(F)) = exp (iaX(F))wgq (8(F)) VEeV, aclR

is well defined. One easily verifies that

We now exhibit a decomposition of w,.
To this end, take I, o = [—a,a] with 0 < a < 7 and I, n its translate by 2n7, n a
relative number. Let then I, := |J,_ {l,,»}. Let’s now define

1
wgl) =w* — lIm —— wf;, da

n—+co 2na I.N[—nm,nw]

w® = w* — lim

=1
q n—+oo Qn(ﬂ' — a) {R\Ia}n[—nw,nw]

w;da.
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They are states on A(V, o) as w*-limits of sequences of states; furthermore the decompo-
sition ( )
a T—a
— (1) (2)
Wy = —w —_—tw
¢ = W + - g

holds so that w, is not pure.
g.e.d.

Collecting the last two lemmas and Lemma A.11 we obtain

Proposition A.19 Let (V,0) be a symplectic space. Then nonminimal g.q.f. on it define
nonpure states on A(V, o).
g.e.d.

Proof of Proposition A.10. It needs only to do the logical union of Prop. A.16 and
Prop. A.19.

g.e.d.
We show that our characterizations of pure and factor g.q.s. are consistent.

Lemma a.20 Let ¢ be a g.q.f. on (V,0). If g is minimal on (V,o) then the continuous
extension of o to V' © is nondegenerate.

Proof. Suppose indeed that the second statement is not true and let Fy € V' © be an
element, different from zero, giving rise to ¢ degeneracy. Looking at Lemma A.3, we
decompose Fy = Fy + F,, with F} € qu and Fy € V'. Now, F;, is zero: indeed, the very
definition of Fp implies that

o(F,G)=0o(-F,G) VGeV'"

Thus o(F3,-) would define a bounded linear functional on Vg, equipped with thg inner
product induced by ¢g. But this implies ¢ being not maximally regular (see Remark a.
to Prop. 3.3) and this contradicts, by Lemma A.11, the minimality hypothesis. Now
let’s consider V;/kero = V,/ker ¢ (the equality is true by the minimality hypothesis). If
Fy # 0, then {Fy,o} € V, exists such that g(F, — Fy) — 0 but limg q(F,) # 0 since the
degeneracy condition already holds. Thus {F,} defines an element different from zero in
Vy/kerq and this contradicts Lemma A.12. So Fy = 0 and o is nondegenerate on V' .

g.e.d.
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II. FERMIONS BOSONIZATION IN 1+1 DIMENSIONS.

I1.0. Introduction.

In general, by ”"bosonization” it is meant the possibility of constructing, in theories with
an infinite number of degrees of freedom, fermionic kinematical variables out of bosonic
ones, and conversely.

In one of the two directions, namely to sort bosons out of fermions, the question is
simpler and more transparent. One of the basic aspects was pointed out by Schwinger in
1959 [SCH1] with the observation of the "paradoxical consequencies” on the algebra of
fermionic currents which follows from the most general principles of QFT, in particular from
the positivity of the hamiltonian: anomalous commutators appeared, nonzero precisely
because of the so-called Schwinger term. These last never come out in first quantization;
and that this state of affairs is general enough was realized later.

Simply stated, relativistic hamiltonians like Dirac’s one are not lower-bounded; in
order to remedy this, one introduces a ground state with the procedure of "filling the
Fermi sea” (the above way of second quantizing the system). This entails a redefinition
of creation and destruction operators (a canonical transformation): products of operators,
and hence commutators, must be rearranged in order to be normal ordered in the new
fields operators. This induces subtraction of vacuum expectation values that originates
the above anomalous commutators.

This behaviour appears to be common to a large class of relativistic models with Dirac
hamiltonians; in any case, being necessary the particular Fock structure of the CAR’s, it
is not intrinsic, that is algebraic: it needs to make reference to well defined models. Even
more, it is not typical of QFT, but more generally of canonical models: in particular,
in many-fermions systems it is illuminating the way in which Lieb and Mattis [MAT)]
treat the Luttinger model (onedimensionalll), whose exact solubility is due to this very
phenomenon.

Now, the whole mechanism goes when one analyzes the right kinematical variables, in
the just cited case the operator density of momentum p(p) or, in QFT, the currents. These
are always composite operators in the fundamental fermionic fields (it is just their product
nature that allows anomalous terms). One is thus faced the problem of their construction.

By referring to QFT, it is well known that in simple models, and hence in a definite
representation of the field algebra, this is possible by following standard procedures: they
include normal ordering (this is sufficient for the free fermionic field), limits of non-local
expressions obtained with a point splitting (this is necessary in interacting models like
Thirring’s one, see [SCH1], [JOH], sect. 4.4 in [WIG], [KLA]). In gauge field theo-
ries models, like Schwinger’s one [SCH2], it needs also to insert, before the limit, the
"olonomy” operator

Pexp (1 ‘/: A, (z)dz)

to make the whole expression gauge invariant.
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In 141 dimensions, the currents so defined satisfy canonical commutation relations.
On this basis explicit identifications between fermionic and bosonic models were proposed.
In particular Coleman [COL] establish a correspondence between the Thirring model
and the quantum sine-Gordon equation (in certain parameter regions). This happens by
comparing the perturbative expansions of the correlation functions of relevant observable
quantities. More precisely, by looking at the Green’s functions for m#), on the one hand,
and for B‘% cos f¢ on the other, one notices that they coincide if

47
ﬁ2_1+_

—mPP = — 57 > cos B

where g is the coupling constant of the Thirring model.
Further, the commutation relations of j#(z) with %1 on the one side, and of 8,¢(z)
with cos B¢ on the other suggest that

8 o, =
27

It has to be noticed that for 8% = 47 one obtains the vacuum sector of the free massive
Dirac field. These "bosonization formulas” do not establish per se a bond between the
two models: the weak sense in which they holds does not even allow, for instance, of
establishing if, at the level of their field operators, these last live in the same Hilbert
space. In this sense improvements have been proposed, for the very same pair of systems,
by Mandelstam [MLAN], but assuming the converse point of view.

Indeed, the other horn of the problem, namely the reconstruction of the foundamental
fermionic ﬁelds from the current algebra (this side is typical of the QFT) is even more
ancient: apart from the pioneering works by Jordan, it was Skyrme in 1961 [SKY] to
introduce the argument in QFT. This has been then studled on the basis of the Thirrig
model, in [DELL] and precisely in [MAN]. The basic idea is the following.

Anticommuting variables are obtained from canonical bosonic fields by constructing
suitable "vertex operators” (in [MAN], following the current fashion, they were dubbed
"soliton operators”), that is, immaginary exponentials of the fields. The word ’suitable’
indicates which condition one has to impose in order to obtain variables that satisfy the
CAR’s. It consists, apart of fixing certain constants, in "smearing the exponentiated fields
with step functions”. There are, so to speak, two ways of doing this. The first one, already
due to Skyrme, suggests directly formulas like Mandelstam’s one

Y(z) =: exp {—2miB ! /f dén(§) — %ﬂ(,ﬁ(z)} :

and the field 7 is smeared with the step function §(z — €) (¢ and 7 are the canonical
bosonic fields of the sine Gordon).

It is clear that one is able to control such an expression only in a restrict ambit: in
this case comparison of commutators with the currents they give rise to and checking that
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the right equations of motion are satisfied. The whole job is done in terms of correlation
functions for a class of models. Formulas like the above are so given a meaning only in
definite representation, and it is not clear what is the status of the so constructed variables
with respect to the bosonic field variables.

In our opinion, it is essential for the control of the above expression to separate the
various aspects of the problem.

1. Aninfrared problem, originated by the fact that one is smearing bosonic field operators
with test functions which do not vanish at infinity, and of an essentially algebraic nature,
as we will see.

2. An ultraviolet problem, consisting in searching for a sense to give to the limit in which
our test functions are going to a step function, where the challenge is trying to prove the
limit operator exists in the strongest possible sense, in this case in the strong operator
topology on the Hilbert space of the (bosonic) model.

The status of these problems can be understood on the basis of [DELL] where the
Thirring model is treated, [STR1] interested in the (infrared side in the) massless scalar
field (and [STR2] that gives an account of both) and more recently [RUIJ], with a
bibliography on this subject (refs. 14-42). The best results obtained in these papers, with
respect to the ultraviolet problem, arrive to a proof of the existence of the limit, starting
from special test functions, in the sense of the strong operator topology on a dense set
in the Hilbert space of the bosonic model. If this result is natural in [DELL], since the
Thirring model is not canonical, it seems not to be the best possible in [RUIJ], in which
the free massive Dirac field, which is satisfying CAR’s and hence a bounded operator, is
reconstructed. As we’ll explain in a moment, our improvement will concern also this point.

We have indeed something to say even at an algebraic level. In [STR1], [STR2]
it is proposed that the right environment in order to treat the infrared side is DHR’s
scheme we have already mentioned. In fact, the bosons-fermions correspondence in 1+1
dimensions can be seen as a face of a basic problem in QFT, namely the different status
of charged fields (the fermions) and observables (the currents). About it two opinion
lines are available, very differentiated both in the philosophical presuppositions and in the
mathematical methods used.

The first of them, Wightman’s one, assumes the point of view that all types of fields
enter in the basic formalism, in particular the fermionic (that is charged) ones. The fields
are then the fundamental objects (and hence use of operator and distribution-theoretic
techniques).

Alternatively, Haag and Kastler algebraic approach takes the point of view in which
the basic object is the algebra of local observables (with its associated state space). DHR
construction is the proof that this program is a practicable one, at least for localizable
charges. It is very important to observe that in DHR’s ”charged field” is a derived con-
cept, not only in a suborder with respect to the observables, but even consequent, in its
construction, to the structural properties of the charged sectors, which are exhibited first:
thus charged fields are always constructed in a definite representation of the observable
algebra.

We are thinking that in the case of bosonization something better is possible (nearer
to Wightman’s approach). We show in fact how, on the basis of part I, one can construct,
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from the current algebra in its abstract form, with algebraic methods, that is as elements
of a strong closure of an eztension in a CCR ambit of it, Wightman fermionic fields. This
without passing from the states, as in DHR.

The strong closure is due to the necessity of operating the above mentioned ultraviolet
limit; our qualifying point is that we are able of removing, in the case of canonical fermions,
the limitation of the dense set. The use of extensions in a CCR ambit, that is of an infrared
construction on the observable algebra, gives us the tools we need to formulate and to
directly solve the problem of the construction of charged fermionic fields.

We now briefly sum up the contents of this part IL.

In Section II.1 we set up a treatement of the algebraic properties of the problem.
This is the infrared side already cited. We rely here upon the structures we have devel-
opped in part I. In particular we give motivations for the identification of A(8S x S, o) as
the "current algebra” relevant to our purposes. We introduce the algebra A(S x 8718, ;)
and give reasons, completing the analysis carried through the examplifications in Sec-
tions I.2 L.3, for its recognizing as the algebra of charged fields naturally related to our
current algebra. In particular, we study the commutation properties of elements localized
in disjoint intervals. This leads us to ”ulraviolet cutoff fermions”. We show in two steps
that one can remove the ultraviolet cutoff in a large class of representations of the current
algebra. Working first in a definite representation we state then the main proposition of
this part, namely the one showing that the ultraviolet limit already discussed exists in the
ultrastrong operator topology. Finally, we identify a class of representations in Whlch one
can control this very problem for free, on the basis of this result.

The whole Section II.2 is devoted to the proof of the main proposition. The repre-
sentation 7 of A(0S x S,00) we use is that induced by the vacuum state of the massless
scalar field. We construct canonical fermions whose correlation functions coincide with
those of the free massless Dirac field.

In Section II.3 we construct the canonical (chiral and fermionic) currents from these
very fields. We show then that they coincide, at least in a weak sense on a dense set, with
Stone’s generators of the Weyl operators defining the algebra 7(A(0S x S, 09)).
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I1.1. Extended CCR algebras and fermionic degrees of freedom.

The extensions in a CCR ambit introduced in Section I.3.1 induce representations of the
starting algebra containing states which are charged with respect to a suitable group of
*-automorphisms, constructed togheter with the extension (see Section I1.3.2). We show
in this section how to construct, given a CCR algebra which is interpreted as the algebra
of fermionic currents in 141 dimensions, extensions of it in a CCR ambit giving rise to
operators with fermionic quantum numbers. In the next section we’ll show that building
canonical fermion fields starting from a canonical pseudoscalar field in 141 dimensions
reduces, in this framework, to the control of a particular ultraviolet limit, on the grounds
of the extended algebra of this section.

The choice of the ”current algebra” is based on the well known equal time commutation
relations for the currents of free massless fermions [WIG]

(@), 32 (0)] = 268'(2 ). (11)

Given the current algebra, we construct an extension that provides ”fermionic fields
with an ultraviolet cutoff”. The identification of this extended algebra is made on the
grounds of the explicit form of the automorphisms defined by the chiral charge and the
fermionic charge. We’ll state then the proposition which will be proved in the next section,
namely that in a class of representation of the current algebra the ultraviolet cutoff can
be removed and the limit exists in the ultrastrong operator topology. The class of repre-
sentations is defined by the property of being locally quasi equivalent to that induced on
the current algebra by the vacuum state of the (massless) bosonic field.

We start by introducing our ”current algebra”: on it we set up our treatement of the
bosons-fermions correspondence. It is

A(8S x §,00) = Ay (1.2)

where the symplectic form o is defined in (4.14). This choice follows from the equal time
commutation relations of the canonical fermionic currents

[#(2), 3¢ 0] = =88/ (z ~ )

togheter with the fact that, in 141 dimensions, it is true that ysv* = €*¥+,. It is indeed an
easy consequence of these two relations that the algebra generated by the (exponentials of
the) chiral current j{'(f) (or of the fermionic current j#(g)) coincides with A(8S x S, ay).
The correspondence is given by
1

0/ N 1 -1 ———1—~7r:r.
J(w)—ﬁ3¢(z) J(w)—ﬁ()

It is very important to stress that this identification is dynamics-independent (and hence
largely model-independent). The choice of a model only enters in the definition of a
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(vacuum) state, which has consequences on the properties of the representation of the
currents, for instance determining the breaking of the charges associated to them, as we
will see.

In order to identify the "field algebra”, we start from the explicit form of the auto-
morphisms defining the chirality and the fermionic number. We use to this end a pro-
cedure which substantially consists in costructing the local charges associated to our cur-
rents. Indeed, let’s introduce the following elements of A(8S x §,0): §(< 0, fr >) and
6(< 0fr,0 >), where fr(z) = f(%) with f € D and

2 Jz| <1
2 =1 V=
/=) {0 |z| > 2.

Hence there exists the pointwise limit img_,4+o fr(z) and it is equal to one for every
z € IR. We now search for our field algebra within the class of extensions in a CCR ambit
of A(0S x §,00). Call A(V7,01) the generic algebra in this class. The choice criterion is
thus that the two one-parameter groups of *-automorphisms of A(V;, ;)

atr = 6(< 0, A fr >)716(@)8(< 0, \fr >)
abp = 6(< pdfr,0 >)718(G)6(< pdfr,0>) VGeW

are well defined in the limit R — +oco and nontrivial. Now, the existence of the limit is
guaranteed, in the norm sense (for every C*-norm on A(Vi,01)), if there exists the limit
of the phases these automorphisms give rise to. At this level, there are more than one
possible choices for our field algebra. We are not interested here in classifying them; we
make instead a ”minimal” choice, looking at the example given in Section I.3.1.

We are thus led, in order to introduce fermionic degrees of freedom, to the algebra
A(Vi,01). Vi1 = 8 x 8718 is defined in Section I.3.1 and o; as in formula (5.7,1). We
call A the C'*-algebra obtained from it by closure in the unique C* norm. We could still
add the constants to the space 87'S; we do not consider these possibilities here, since
we are mainly interested in discussing the ezistence of fermionic degrees of freedom in
CCR algebras. On A(Vi,01) the automorphisms e}y and aby converge in norm to the
automorphisms defined by

o} (8(6)) = Jim odn(8(G)) = exp ((V2A72(0))5(G)
o4 (8(6)) = lim oka(8(G)) = exp (iv2u(032)(0))5(G).

We notice finally that the group of automorphisms generated by aj and af coincides
with the gauge group Gv, /v, (see Section 1.3.1) associated to 4(V7,01) as extension of

A(0S x §,0p) in a CCR ambit.
From this analysis it follows that we can say that §(G) € A(V7,01) has chiral and
fermionic charges

<q,q >=v2< g”I(O),(ﬁgyz)(O) > (1.3)

The fact that we are on the right way is confirmed by the following observations:
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The generators of 4 define a class of localized automorphisms on 4y. Before seeing
this, a little discussion of the localization properties of this last is in order. Indeed, it
is important the following remark. Since A4y is labelled by a function space, the locality
properties of the single generator is determined by the union of the supports of the pair
< f1, f2 > labelling it. But if Suppf; is not connected, the condition [ f(z)dz = 0 defining
08 may fail to be true on every single component. Hence, given an open interval I, one
must to request that the whole interval spanned by Suppf; is contained in I, in order to
6(< f1,0 >) being properly localized in it. For this reason, in the following, when dealing
with localization properties, we’ll always refer to intervals of the real line.

Thus, following the notations of Section I.3.1, we notice that §(G), G € Vi, imple-
ments in .4 the *-automorphism 75 acting on A, by

T (8(F)) = exp (101(G, F))é(F) VF € V. (1.4)

Fixed anyhow G € V;, 72! is a local automorphism of Ay, localized in every interval I
containing Suppgs U Supp(dg-).

Indeed, it is immediately verified, thanks to the explicit form of o3, to the factor 88
in the product defining V4 and to the fact that G is locally constant on IR\Ig, that

76 (6(F)) = §(F) (1.5)

whenever §(F') € A, is localized in an interval I disjoint from Ig. It is important to notice
that, if Go € Vo, 75} is localizable in every interval in which also §(Gy), its implementer
in Ay as inner automorphism, is. It is important to stress the above localization property,
since our aim is to construct canonical fermions with the aid of 4: these fields must be
local with respect to the current algebra they give rise to.

We continue our analysis of the properties of A which are relevant for our purposes
by sketching the commutation properties of the generators of the abstract algebra 4. We

are mainly interested in those between elements with the same charge. Given F,G € Vi,

this means that ) 1
?;/fl(w)dw = %/gl(w)dm (=a)
%fg(—i»oo) = —\;—;r:gz("l"oo) (= ¢2)

Let then 8(F) be localized in Ir and §(@) in Ig, with Ir N Ig = . It is then immediate
that

(1.6)

6(F)8(G) = exp (Fingi42)8(G)5(F) (L.7)

where the minus sign holds if Ig is on the left of Iy and the plus sign conversely. In
particular

Proposition 1.1 Let F,G € § x 87§, and let (1.6) hold, with 12 = (2n +1), n a
relative integer. Then

{8(F),6(G)} =0 (1.8)

if IrpNIg = 0.
g.e.d.
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This way, A has good properties in order to exhibit fermionic degrees of freedom.
The features discussed up to now are representation independent. The construction of the
CAR algebra is tied to the introduction of a class of representations of .A. To this end it
is indeed necessary to adopt a limiting procedure, of a local (ultraviolet) character. This
limit does not exists in the norm sense, and we are led to introduce representations. Here
is the procedure we’ll use.

As a first step, we choose a reference representation of A(9S X S, ay), namely the one
defined by the vacuum state of the massless scalar field in 141 dimensions. We follow the
notations of Sections I.2.3, I.3.1 and 1.3.2, so that this state is denoted by wy and Q
the unique (by Lemma 6.6) extension of it to A(V;,0y).

Chosen f € D(IR), f(z) > 0, with [ f(z)dz = /7, let fo(z) = 1f(2) VzeR,a€
R*. By defining

F =< fo(z —y),(0 % fo)(z —y) > (1.9)

we obtain an ”approximated (right-handed) fermion localized in y”. An “approximated
left-handed fermion” is defined by

G =< ~fule 1), (0 fu)(z — v) > (1.10)

Then the construction of the CAR algebra results from the following

Proposition 1.2 Let Fy and G% as defined in (1.9), (1. 10) Then, with C a suitable
constant and if g € S,

¥2(0) = <5 [ mals(FNs)ey (1)

defines, Vg € S, a family of operators which are uniformly bounded in norm. The limit for

a — 0% ezists in the ultrastrong (equivalently, in the strong) operator topology on ’HQ It
defines a canonical (right handed) fermion ¥"(f):

{7 ()97 (9)} = (£,9) (1.12)

{£7(f),¥"(9)} = 0. (1.13)

The same is true for lefi-handed fermions ¥L(f) in terms of 6(G5), with the same C. It
also holds that

{#7(£),9'(9)} = 0 (1.14)

Proof. 1t is the content of the next section.

g.e.d.

As a second step, we want now to show how to characterize a class of representations
in which the same strong convergence result holds. We associate to every open subset

O € IR the local CCR C*-algebra Ay(O) defined as norm closure of the *-subalgebra of
A(0S x §,0p) labelled by functions F' € S x S such that Suppf; U Suppf, € O.
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Proposition 1.3 Let w be a state on Ay which is locally normal with respect to wo (A is
equipped with the above local structure). Choose anyhow an eztension of it to A, call it w'.
Define 1a(g)(x,,) as above, using the representation m.» (we do not ezplicitely write the
superscript I or r). Then ¥4(g)(x,,) is convergent, as a — 0%, in the ultrastrong operator
topology on B(H.r). Moreover, equations (1.12), (1.13) and (1.14) hold for the limiting
operators.

Proof. We refer to the proof of the previous proposition given in the next section.

Lemmas 2.1 and 2.2 are independent of the representation one uses, as we already
noticed. Concerning the other steps, let’s introduces the operator 7q(§(p)) € mq(A). We
first show that the convergence of 9, (g) in the ultrastrong opeérator topology on B(Hgq) is
equivalent to the convergence of mq(8§(—p))¥.(g) in the ultrastrong operator topology on
B(Mu,)- Notice first that, obviously, mq(8(5)) has the same (fermion and chiral) charges
as 14(g). It is clear that all the lemmas in the next section remain true when we use

70 (8(=$))%a(g) € Tuwo(Ao)

instead of 1,(g) and we refer to the vacuum sector. The only nonobvious point is Lemma
2.3, where we explicitely use vectors i € Hg. But it is clear, by the first observation in
its proof, that only the vectors v such that mq(6(—p))¥ € H,, are relevant. Moreover,
7q(6(p))D is dense in H,,. This implies we can use the very same proof as above and
hence 7q(6(—p))%a(g) converges in the ultrastrong operator topology on B(H,, ).

But mq(68(p)) is a fized unitary operator and hence the convergence of %,(g) in the
ultrastrong operator topology on B(Hq ) is equivalent to the convergence of mq(8(—5))v.(g)
in the ultrastrong operator topology on B(H,,). This way, we have shown that our whole
proof can be carried through with out leaving the vacuum sector, and estimating only the
convergence of uncharged operators.

Choose now f € D. Then, since p(z) has compact support, mq(6(—5))¥.(z) is in
Tuwo(Ao(O)) for some O € IR and hence there is a suitable O, determined by @ and

Suppf, such that
7 (6(—5))¥a(9) € Tuo(Ao(O))"

for every a > 0. Hence also the strong limit of this expression belongs to my,(As(O!))".
Take now a representation 7 of A and consider the operator m(§(—5))v, (g)(m)- By the
above, it is ultrastrongly convergent in all representations 7w of 4, which define on the
local algebras .49(O") the same ultrastrong operator topology as 7,,. Among these rep-
resentations it is well known that there are the ones arising, by GNS construction, from
states w on Ag which are locally normal with respect to wy. Hence, by the same argument
as before, 14(g)(x_,) is ultrastrongly convergent on H,:, with w' an arbitrary extension
of w to A. In the same way anticommutators are controlled. Indeed, they are obtained
as strong limits in 7g of the corresponding approximated expressions. Moreover, using a
suitable charged operator as mq(6(—p)) above (the anticommutator {%,(g)",%.(g)} needs
not it!) we can reduce the proof to the vacuum representation of suitable local algebras
an then use the above argument in order to extend the class of representations.

g.e.d.
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I1.2. Local fermion fields as strong limit of extended Bose fields.

This section contains the proof of Prop. IL.1.2 stated in the preceding section: we con-
struct canonical Fermi fields as strong limits of extended Bose fields, in the representation
defined by the vacuum state of the massless scalar field in 1+1 dimensions. This fact
gives an answer to a question which was unsettled. It was indeed clear how to construct
"approximated fermion fields” as in the preceding section, where we made this by intro-
ducing the extended CCR algebra A. In order to recover canonical fermions, for instance
by giving a precise meaning to formulas like Mandelstam’s one (I1.0.1), it is necessary to
take the ultaviolet limit discussed in the introduction to this part. The question is -in
suitable representations of .4, does this limit exists in the strong operator topology? Up to
now, the question was unsettled, with propehension for a negative answer (see for instance
[STR2] or [RULJ}).

Since canonical fermions are bounded operators, all algebraic manipulations (like con-
structing anticommutators) we do on the approximating fermion-like fields commute with
the strong limit (see [DIXV]). Hence, if we want to multiply our fermions, one needs only
to multiply the approximating fields and to take the limit, with gain in simplicity. Since
the strong and the ultrastrong operator topology coincide on the unit ball in B(H), the
existence of the limit in the former implies the existence of the limit in the latter. We’ll
use always the word ”strong” in this section.

In order to prove Prop. II.1.2 we start by collecting our notations. Our "approxi-
mated fermi fields” are suitable elements in the COR C*-algebra A := A(S x 01§, ;).
this algebra is an extension in a CCR ambit of the CCR C*-algebra A, := A(3S x S,01)
(the current algebra). We take the strong limit using first the representation of .4, defined
by the vacuum of the massless scalar field, called wy. We have seen in Lemma 5.1,I that
wp admits an unique extension to A4, called 2.

We construct our approximating fermion fields by introducing

5(z) i=< p(2), (8 % p)(c) >€ § x 075
with p(z) a nonnegative and symmetric function in D(IR), and Suppp(z) C [—1,1]. The
1

charge of our fermion is determined by 5(0) = # [ dzp(z) = — - Following the

interpretation of the preceding section (with the degree of arbitrariness there explained),
we can say that §(p) has unit chiral and fermionic charge.

Remark. We notice that the above value of the charge implies the approximated anti-
commutation relations of Prop. II.1.1. Fermions with higher charge are constructed,
as strong limits, by taking products of charge one fields. Here it is essential the already
mentioned joint continuity of the product in the strong operator topology, on uniformly
bounded operators. Furthermore, it will be clear from our proofs that we are able to
control also the case in which the two charges differ by a sign.

In order to take the ultraviolet limit, let po(z) := 2p(2), a € IR™, and let jq(z) correspond
to it, in the same way as before. Clearly, im,_,¢+ po(z) = §(z) in S.
We set then, fixed o € IRT,

$a(e) i= ma(aa(5(50)) 1)
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where C is a suitable constant, to be determined, and o, is the standard space translation
automorphism. This operator is the ”approximated canonical fermion localized in z”. It
has unit chiral and electric charge. It clearly belongs to mq(.4). The object we want to
estimate is the following

ba(f) = / ba(2)f(z)de (22)

with f € S(IR). This expression is well defined as Bochner integral, since a, is strongly
continuous in z. It follows that ¢,(f) € B(Hq). We then define 9,(f)! as the operator
obtained, in the same way as before, by using —p(z) instead of p(z). This is natural in
view of the unitarity properties of the generators of .A: we simply take the adjoint of the
Weyl operator.

We want to show that s —lim, .o+ ¥.(f) exists on Hq, so that it defines a bounded
operator in mq(.A)". This is done in the following three steps.

Step 1. ||1o(f)]| is bounded, uniformly in a € IR™.

Step 2 The strong convergence of 1,(f) on the dense set Apgq in Hq is implied by the
strong convergence of the vector ¥,(f)¥q in Ha.

Step 3. The vector ¥,(f)¥qa converges strongly in Hq, as a — 07.

Remark. As it will be clear from the proofs, the first two steps are really independent of
the representation one chooses. They are then intrinsic to the structure of A.

Remark. It is very important to notice that one needs only to verify the existence of the
s —lim,_,o+ for real testfunctions f in (2.2). One then extend the result to complex (as it
is generally required) f by linearity.

Remark. We have in this way constructed a right spinor. In order to construct left
spinors, one needs only to use the function

pile) =< —p(z), (8 % p)(2) >,

as we have seen in the previous section.

We then explicitely verify that our limiting operator satisfies canonical anticommutation
relations. Furthermore, when the dynamics o is applied to it, it satisfies Dirac’s equation
for the massless fermionic field. This last point is made simpler by the observation that
we are really constructing left and right movers field, since the chiral charge assumes
a definite value. We also identify ¥q as the fermionic vacuum. The gauge invariance
of fermionic correlations will be a direct consequence of the particular structure of mq, Q
being nonregular: charged products (in one of the two charges) of "approximated fermions”
have zero expectation on g, which goes through the strong limit. By Prop. 1.3 in the
previous section, the strong limit exists, once it exists in 7q, in all representations of A4,
arising from states which are locally normal with respect to wq.

Step 1. We start by noticing that, fixed anyhow a € IR, one has

{Ya(2),%a(¥)} =0  if le—y|>a (2.3)

as it follows from Prop I1.1.1. Hence we have
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Lemma 2.1Vf € S, Then ||1o(f)|| is bounded, uniformly in a € IRT.
Proof. We have already noticed that, at fixed a, ¥,(f) € B(Hgq). It follows that

lba(? < $a() %alf) + $a(Fa(H)]

since both summands in the righthand side are bounded and positive operators on Hgq.
Hence

[%a(HN? < 1ba(F)1bal(F) + PalHva(H)] = H/dwdylf(w)f(y)l{¢a(w)*%ba(y)}ll
202

= dedy) (=) 1)

lz—y|<a

< / dedy f(2) f()[[{#a (2)!, ba(®)}] <
|z—y|<a

where we have used equation (2.3). This expression is finite if « € IR" and it is a continuous
function of a. Hence our statement follows from

lim 25 dedyf(2)f(y) = 4C?| |1

a—0t+ a lz—y|<a

g.e.d.

It is clear that the proof of this lemma is independent of the representation we used. It is
a consequence of formula (2.3), which is true in A.

Step 2. The uniform (in a) boundedness of the family {¥a(f)}.cIr of operators in
B(Hgq) has a simple consequence: one needs only to show that the strong limit exists on a
dense set D in Hga. We select as our D the set of the finite linear combinations of vectors
in :

Dy :={¢p € Ha : ¥ = ma(8§(G))¢pa, G € S x 871S}.

This set is dense in Hg by the very definition of GNS construction. Then our second step
will be completed, by finite additivity, with the following

Lemma 2.2 VG € § x 07'S, and for any state Q such that s — lim,_g+ ¥ (f)bq ezists
V€S, s —lim, .o+ Yo (f)ma(8(G))ba ezists Vf € S.
Proof. We show that, as a — 07, {o(f)mq(8(G))¥a} is a Cauchy net. Indeed, we make

the crucial observation that

{e () = a(£)}ma(8(G))ball = llvbar (' F) — Yale®* flal

where ®,(z) := 01(G, p2), with pZ(y) := pa(y — z). It is immediately seen that ®,(z) is a
C*®® function in z. The same property holds for ®,(z) := lim,_¢+ ®o(z) = (g1 * 0)(z) —
g2(z). From this property it follows that s — lim ¢, (e®° ) exists.

Furthermore, since p,(z) is a C* approximation of the deltafunction, ®,(z) converges
uniformly to ®¢(z).

By an § argument, one needs then only to show that lim, g+ [|¥a((e*%e —e*®) flvq || =
0. This follows from the previous lemma.
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Indeed, let’s define g, := (e®+ — e'¥°)f. Then, independently of ¥q,

[a(F)((eF= — %) f)all <
[pa(F)((eF — e®)f)|| <

202
<= dzdylga(z)g.(y)| <
@ Jijz—y|<a

202 ; i
Sisup lei®e 61%12/ dzdy|f(z)f(y)| — 0.
a z—y|<a

g.e.d.

As in the previous step, it is clear that this lemma does not involve any property of the
chosen representation, apart from the existence of s—lim,_,¢+ ¥4 (f)¥n. Collecting our first
two lemmas, we can reduce the proof of the convergence of ¥,(f) in the strong operator
topology on Hg to the proof of the strong convergence of ¥,(f)¥q in Hq.

Step 3. It comes now into play the representation mg. In order to show that the
family of vectors 1, (f)¥qn is strongly convergent in Hq we argue in two steps.

a. We show that 1,(f)¥q converges weakly with respect to the dense set D. Then Lemma
2.1 implies that that it converges weakly.

b. Once 94(f)¥a converges weakly, it is well known that strong convergence in Hg is
implied by
Jm_[a(Fbal = || lim gu(fball

We notice that this last equation is like to say that

Jim, (ba(Fba, Yo(iba) = lim, lim (ba(f)ba, bs(F)a). (24)

a. We calculate first

Jm (Ve (£, ¥o(f)a)- (2.5)

It easily follows from (2.2), the rules for the product of elements in .4 and the explicit form
of 2 that

(P, (Fn) = o [ dody (o)) ex (<ol = 3) exp (10— v)
where Lk
Top(z—y) =3 mlﬁ(ak) — p(bk) exp (ik(z — y))|*

Soale ~) = [ 5 sinlk(z — )F(ak)F(ek).
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The kernel (exp (=T, +154,))(z,y) is a polinomially bounded and continuous function
and hence it defines a distribution. We take now the b — 07 limit. As an application of
the dominated convergence theorem we obtain

Jim, Susle —v) = 5 [ sinlh(z —)a(ab). (2.6)

Moreover, it is immediate that, introducing a change of variables k& — ak

—v) = [ Sty

The second integral is easy to calculate by parts and it gives

5 [ TR -

dk __ b 1 a

—{p(=k)? — p(k)*} = Zlog —.

PGk —p(k)'} = 5 log 5
The first integral is easily controlled, in the b — 07 limit, by using again the dominated
convergence theorem. We obtain as a final result

C? C?
Jm, (an)F P (=Top(z ~y) +iSap(z —y)) = — exp Rao(z — y)

where

+oo
Res(e—v)i=2 [ T () ex (ik( )~ (R (2.7)

It is clear that this limit exists at least in S(IR®)'. Indeed, all expressions we use are
continuous and polinomially bounded on the whole plane, uniformly in b, and this is true
also for the limiting function. Hence, fixed a, we obtain that

2

Tim, (£ W, (£ )a) = = / dzdyf(z)(y) exp Rao(z — ). (2.8)

These calculation are substantially what is needed to prove

Lemma 2.3 Chosen anyhow v € D and f € S, there ezists the limit
a]irgl+(¢7¢a(f)¢ﬂ)’

that 13, Yo (f)Pa 1s weakly convergent with respect to the dense set D.

Proof. By the definition of D, one needs only to prove our statement for vectors in it of
the form 9 = 7,(6(G))pqa with G =< ¢1,0xg; >€ § x 871S. In fact, the fermion number
and chiral charge selection rules in mq say that we obtain an identically zero value for
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this correlation unless §1(0) = 5(0) = g2(0). In this case the calculations are absolutely
analogous to those just made and we obtain the well defined (and nonzero) limit

alinoa (ma(8(@))a,va(fva) =
+co
_¢ / df(2) exp ( / FLBH) + S (BBF +BEP (2.9

+ 7 exp( ikz) (g, (k) + 72(k))})

so that our statement follows.
g-e.d.

Hence

Lemma 2.4 Chosen anyhow f € S, ¥.(f)¥a 1s weakly convergent in Hq, as a — 0F.

Proof. 1t is a direct consequence of Lemma 2.1 and Lemma 2.3.
g.e.d.

Remark. We will use these two lemmas to prove that, if there exists the strong limit of
the family of operators ¥,(f), it is independent of the choice of the function p(z). This
appears to be surprising, in view of the explicit p dependence of equation (2.9). But,
integrating by parts the whole exponent in it, the p contribution to it is given by

C':= +°odkl ki'k2
L 0 Og dkp( ) *

At the end of this section, when dealing with anticommutators, we will show that one needs
~c!

to choose C' = (&5 ). From this it follows immediately that the whole expression (2.9) is
really independent of the choice of p(z), and hence the limit operator itself is independent
of it.

This completes step a.

b. We come now to the crucial point of our job. A calculation analogous to the previous
ones gives

e, ba(Fpn) = & [ dwdys (o)1) exp Bule )

where

teo dk )
Re—w)=2 [ TlemHEEY) - 150 (2.10)
We have to show that the @ — 0% limits of the expressions appearing in equations (2.7)
and (2.10) are equal. We start with an observation.
The function f is real. Hence, only Reexp Ro(z —y) and Reexp Rqo(z —y) con-
tribute to the respective integrals in (2.8) and (2.10). Indeed, one has only to notice that,
since (k) is real, Ro(z —y) = Ro(y — z) and Ruo(z —y) = Rao(y — z).
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We want to show that, in the @ — 07 limit, these expressions give rise to well defined
distributions and that these distributions are equal. We prove this by showing that

A. For every a > 0, both L Reexp R,(z) and 1 Reexp Ra0(z) are positive distributions.
B. Their supports shrink to the point z = 0.
C.

a—0

lim+ l‘/dar:Reepr (z) = lim l‘/d;J:Reexp Rao(z).
a—0T @

These three points imply that the limit distribution exists and it is proportional to §(z —y)
for both our expressions and so we would have completed b. and Step 3..

A. We already observed that both 1Reexp R,(z —y) and 1 Reexp Roo(z —y) are poli-
nomially bounded continuous functions, for every a > 0. It is then clear from (2.7) and
(2.10) that one needs only to show that the following functions are positive, for a > 0:

1

Foo(z) = cos Wi

% o (k(2)(E)
and L rdk
Fu(z) = cos | / T sin (H(2)a(k).

This point will be completed if we show that the argument of the cosines in both these

expressions is a (nondecreasing) continuous function of z, with range contained in the

interval [—7F, 7].

Now, it is clear that both arguments are differentiable functions in the variable z, and

that
d 1 T, VT
5 Ar9 Fapo(e) = m/dk cos (k(=))A(k) = 5—p(=) 20

foArg Fo(e) = o [ dhcos (MENAERY = o= (ox p)(2) 2 0

Hence both arguments are nondecreasing. Finally, one easily observes that

Arg ReF, ,(a) = —Arg ReF, o(—a) =

. ke VT . —
= sostmP [ Let50) = Yitm(=i) [ €1 - ity =]

having taken into account our convention in the constant of the Fourier transform (cho-
sen so that it is isometric) and the support properties of p, togheter with the fact that
J p(z)dz = /7. We notice also that the value of the argument remains 3 forjlz—y|>a
and hence Fj o(+) is zero. In the very same way one shows that, for z > a,

Arg ReFo(z) = -

and the the opposite for z < —a. Hence point A. is completed.
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B. It is an immediate consequence of the results of the previous point.

C. Thanks to the explicit a dependence of our expressions in (2.7) and (2.10) one has only
to show that I; = I,y € IR, with

I; := /daz exp 2(/0-'*‘00 éﬁ(e‘k” 1)a(k)?)

and
+oo
fai= [asexpa( [ F T ) = ().

By integrating by parts, one reduces these mtegrals to the following ones:

: +oo
I; = /d:z:exp (——2/ dklogk d( *25(k)%))
0 dk

and

+oo
Ipg = /dzexp (—ﬁ/{; dklog k%( *z 5(k)))

up to a common constant 2C' = 2 f dklog kdkp(k)z. Now, taking into account the
constants arising from our definition of Fourier transform, and using the well known Fourier
transform of the distribution log k%, we finally obtain

Id—/dzexp —2(G * \/__ \/_)(a;)

and

p
Ig= /dz exp —v/2(G * \/_2_7;)(3:)
with G(z) = log(—i(z — y) + €). Both integrals can be evaluated easily in the complex
z-plane. One has to notice that, thanks to the analiticity properties of the logarithm, the
integrand is an analytic function in the upper halfplane Imz > 0. We can thus close the
contour in it with a big semicircle and do the integral on this curve. Since p(z) has compact
support, the integrand has a leading term, obtained by taking log z instead of log (z — )
in the convolution with p(y), with behaviour 1 as |z| — co. The error in the exponent is
bounded by O(%) uniformly on a semicircle of radius R and therefore it contributes with
a factor which goes to one as we let the contour go to infinity.

The coefficient of the leading therm in the exponent is respectively

/( PP No)dz =1

and



The final result is then
I = I,4 =m.

The result is a real number and hence coincides with the value obtained when we take the
real part of the integrand. Thus also point C. is complete. As a consequence, we have
shown that formula (2.4) is true so that we can state

Lemma 2.5 Chosen anyhow f € S, the vector ¥,(f)q is strongly convergent in Ha, for
a— 07T,
g.e.d.

In this way also Step 3. is completed.
We have thus shown that it exists

$(f) = s — lim, a(f).

Remark. It is important to notice that our whole proof can be applied also to the
case in which the chiral and electric charge of the approximating fields v,(f) are equal up
to a sign. Indeed, the only change that occurs is a minus sign in front of S, () and of

Sa,a(+).

We want briefly to analyze some properties of this operator on Hg,.

Anticommutators. In order to treat anticommutators, one first notices that, again by
linearity, one needs only to use real testfunctions f. We start by studying the anticommu-
tator of the above constructed right spinor ¢,(f) with its adjoint. It will be clear from our
analysis that the same procedure, with the same results, can be applied to the left spinors.
We want then to estimate ‘

{¢(f)T7'l/)(g)} f;gES.

Since the field ( f) is obtained as strong limit, we can calculate the above anticommutator
by using the approximating fields #,(f), and then take the a — 0% limit of the result. But
this has been already done in our last step b., since it is only the real part of the two point
function that gives contributions to the anticommutator. Indeed, we showed that, in S,

lim (b (@b, Y (v)bn) = CPre 8(z — y).
This, togheter with the equation for 9,(z)!, implies that, again in S,

Jim (o, (o (=)', $o(0) ) = 6(z 1)

if we choose C = (e;: )7. This is the canonical result for the anticommutator if we are
able to show that it is a c-number in mq: in this case one can well calculate its value on
the vacuum state and this gives the exact result. We remember to this end that Q is a
pure state on 4 and hence 7g gives an irreducible representation of this algebra. Our aim

is then to show that

{$(A)',3(9)} € ma(A)'.
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Since {¥(f)!,%(g)} is obtained as a strong limit (and hence coincides with the result
obtained by taking the weak limit of {¢o(f),%.(g9)}) and given the structure of A, one
needs only to show that

w = Tim [{$a(H), ba(e)} 7a(8(G))] = 0

for every G € §x97'S. Again, by Lemma 2.1 it is enough to show this on dense set in Hq
and an argument like that in Lemma 2.2 (this time applied to [{.(f)!,%a(9)}, ma (6(G))])
implies that we can restrict ourselves to use the vacuum vector. But then, moving on the
left the operator mq(6(G)) in the first summand of the above commutator, we obtain that
we have to show that, with the same notations as in Lemma 2.2,

Jim (Yo, 7 (8(G) (e (¢"* )1, $a(e™ = 9)}ba) =
= Jlim, (Yo, ma(5(G)){¥e (N, $a(9) 1)

which is true since

Jim (0, {6 (=), $o(y) ) = (2 — )

in §' and hence the two phases in the left hand side of the above formula cancel, in the
limit. Using exactly the same procedure we obtain the same result for the anticommutator
of the left spinor with its adjoint.

The other anticommutators are controlled in the following way. We remember again
that they all are obtained as strong limits and so one needs only to study the corresponding
approximated expressions. Now, consider, in order to recover (1.14), the expression

{$2(2), ()}

It is then easily shown that it is identically zero as a consequence of the fact that

o(palz = @), put(z — 3)) =
for every a > 0, for every z,y € IR. Hence also the limiting expression is zero, proving
(1.14).
In order to recover (1.13), one notices that it is enough, since it is obtained as strong

limit and hence coincides with the weak limit, to show that (by arguments we already
exposed)

lim (¢Q7Wﬂ(é(G)){'l)ba(f))":ba(g)}'ﬁbQ) =0

a—0+

where G is chosen so as to obtain a nonzero expression. We do not include here the explicit
calculation showing that this is indeed true: it is a consequence of the fact that

Q(6(G)az(8(pe))ay(6(pa))) — 0

as a — 07T,

78



In this way the proof of Prop. I1.1.2 is completed.

Equations of motion. We consider the natural extension (namely the one defined by
applying the matrix 7§ in (4.16) to the function in V; that labels the generic generator
of A) of af (the massless scalar field time evolution) to .4. In order to see which time
evolution this dynamics induces on ¥(f), one needs only to study what happens to the
approximating fields v, (z), since af(-) is strongly continuous. Now, thanks to our choice
for the charge density function j(z), ¥4(z) is really a right or left mover, respectively if
the chiral charge has the same or the opposite sign with respect to the electric charge.

Indeed, the solutions of the wave equation with initial conditions < +p(z), p(z) >, as
it is in our case, is of the form

p(2,1) = plz % 2).
~ Since af precisely induces such a behaviour on the labelling functions, it follows that

ota(=) = pale £ 1)

with the same sign as in

< £p(z),(8 % p)(z) > .

By the strong continuity of af the operator valued distribution 1 (z) defined by the exis-
tence of s —lim, 4+ ¥, (f) for every f € § satisfies the massless Dirac’s equation

d d
E;'Qb(ma t) = iz{‘/’(“%ﬂ

where 7(z,t) := af9(z). The pure, gauge and chiral invariant state Q is mvanant under
af* and hence can be interpreted as the massless fermionic vacuum.
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I1.3. Fermionic currents and bosonic variables.

Our aim in this section is to identify the algebra generated by the chiral current and by
the gauge current associated to the canonical fermionic field constructed, as an element of
mq(A)", in the previous section. We work indeed, in this section, only in the representation
defined by the vacuum state wg. In agreement with the motivations of our construction,

this algebra results to coincide with the CCR *-algebra A(9S x S, 7).

Remembering that, in 14+1 dimensions, y5sv# = €*”7,, it is enough to study the gauge
current j#. We define a "regularized gauge current”

Gt o(2) := : Pa(x + €)7*a(x) : p=01 >0

where
pa(x) =< Py (), ¥ (2) >
with the superscript [ (left) associated to the case in which we have a left spinor (gehiral =
—Qfermion) and 7 (right) associated to the opposite one (gehiral = fermion )
The canonical point splitting as been introduced and : : means subtraction of the
expectation value over the vector 7,,; it is essential to notice that j¥ (z) € mu,(A4o). We
show that, following this order in the limits,

1
Vi3
where the limit is taken in the sense of the weak operator topology on D; x Dy, with D;

a dense set in H,,. By definition,

0°¢(f) is Stone’s generator of m,,(6(< 0, f >))
0'¢(f) is Stone’s generator of 7, (6(< —8f,0 >)).

It follows that the algebra generated by the (exponentials of the) currents j# and ;£
as defined in (3.1) coincides with A(9S x S, o).
We come to the proof of (3.1). We choose Dy = Span[A(9S x S, 0 )y, ]: it is dense in H,,,
by definition of GNS construction. We notice that D; is in the domain of 9,¢(f), f € S.
Hence, chosen anyhow %7 and 1, contained in D;, we want to show that

5#(f) = lim lim 2, (f) = - —=e8,8(f)  VfeS (3.1)

e—0a—0

(F) = Tim Lim (g, 72 (F)ba) = —%ewwl,am(fwz) Vfes  (32)

In order to do that, we first notice that it is enough, by finite additivity, to verify (3.2)
only in the case

71[)1 = Mg (6(—G(1)))¢w0; 1/)2 = Wwo(é(G(Z)))¢wo (33)
with G G € §S x S. It is then easy to calculate the right hand side of (3.2) and the
result is
p=1

2o (6(ED)GCN; [ dplplRelFp) G () + 3 (21

" (3.4)
5 [ wFeE 6+ F e
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=20
-%w(,(a(am)&(am) - / dplp| Relipf(p)(3. (p) + 31 (P))]+

/ dppf ()35 (p) + 3 (2))}-

We calculate now the left hand side of (3.2).

p=0.
‘We notice that

(3.5)

Jea(®) =9y (z + ) g () + P (2 + €)T9i(z) :
and we remember from the preceding section that

2

+oo -
wo(Ya (e + )i (2)) = % exp 2/0 %(e—’?’% ~1)f(p)* (= Sale))

and
wo(¥i(z + €)1P7(2)) = Sa(—¢).

The left spinors contribution to the left hand side of (3.2) is then (including the vacuum
subtraction)

[ al6(@ )i (e + €)1 (=)@ f(w)ie =

= (B(C)S(Eun(Wh(y + &)1 0) - [ daf(e)

(exp (5 [ P alan)RelG00) +3)e 751 - =) (= i)
exp (-5 [ %iplﬁ(aw)Re[—i(g (0)+5 )L —eTHY) (2B
exp (5 [ Litan)-500) + 7)1 - ) (= e e)

exp (—I—2 /dpp(a:c)( —3s ( ) + ’(2)) —lPE(l "1P5)) —1} (= elg(e,z))_

[\

The expression for the right spinors contribution is given by the same formula with opposite
sign in front of I¥(e,a) and I§(e,a). We now take the a — 0% limit. By the dominated
convergence theorem

Ii(e,z) := lim I“(s z) 1=1,2,3,4

a—0t

is well defined, and it is a C'* function in the variable ¢, Since we identified, in the

preceding section, s —lim, g+ %4 (f) as the massless fermionic field, it follows in particular
that, Ve > 0, \
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Jim_ wo(hy + Wk (v) = 5 (36)

We now sum the left and right contributions to (3.2), subtracting the vacuum expectation
value. We can safely take the ¢ — 0 limit, thanks to the dominated convergence theorem,
since the product of the exponentials minus the vacuum subtraction gives a factor of order
€. One can easily check that all constants combine to give the right factor. The job to be
done in the p = 1 case is absolutely analogous, since the only change with respect to the
# = 0 one consist in subtracting the right spinors contribution from the left spinors one
instead of summing it. The final result is that formula (3.2) is true, chosen anyhow G(1)

and G?) in 88 x S.
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