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1.Introduction

1.1 General overlook

String theory, albeit originally arisen from attempts to justifying some peculiarities
of high energy physics, soon became a candidate for unification of all forces in nature,
including gravity, a task which, up to now, seems hardly achievable in the framework of
ordinary quantum field theory. Moreover, the rich mathematical structure underlying string
theory has opened new channels of interplay between physics and various branches of current
mathematical research, such as infinite dimensional global analysis, including Lie groups and
algebras, algebraic geometry in dimension 1,2 and 3, theory of modular forms ... In some
sense the study of string theory has also prompted the unexpected unravelling of connections
between such different areas (see, e.g., the work of Arbarello-De Concini, Kac and Procesi
- [ADKP] on the link between the topology of moduli spaces and the cohomology of the
Virasoro algebra).

We will be mainly interested in algebro geometrical techniques involved in the develop-
ments of string theory, and the plan of the work is first to describe how algebraic geometry
provides a natural arena for setting and possibly solving problems of the "bosonic” string,
and then to try to extend them to the case of the fermionic string in the spirit advocated
by Manin [M1]. According to this line, we will only study the case of the so-called closed
string, where the powerful methods of complex algebraic geometry can be (at least in the

bosonic case) applied.

More specifically in the first part of this thesis work, after having sketched how string
theory involves the geometry of moduli space of Riemann surfaces , we will review in some
detail the main properties of the latter, with special attention paid to "global” aspects, such
as its Picard group and its compactification(s). Then we report how this techniques can be
used to investigate physical issues, such as the holomorphic factorization theorem and the
boundary behaviour of the string partition function.

Having in mind fermionic string theories, a section is subsequently devoted to the de-
scription of a compactification of moduli space of §-characteristics as recently investigated
by M. Cornalba.
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Chapter 3. is finally devoted to the discussion about a similar setting for Superstring
theories. Namely, we will try to clarify a little bit the arena in which one should move when
arguing about such topics in this framework. In particular, we will discuss in some details
integration theory on superspaces and the supermoduli problem, and finally, give an cutlook
on the perspectives of this research programme.

1.2 The Polyakov path-integral as an integral over

moduli spaces of Riemann Surfaces

In the standard Polyakov formulation [Poll](which is, ab initio, Euclidean in the sense of
quantum field theory and is, essentially, a theory of random surfaces), the degrees of freedom
of a string are described by a mapping X from a two-dimensional riemannian manifold (X, g)
to a D-dimensional "target manifold”(M P, h), whose dynamics is dictated by the following
action

1
= dx|? 1
S= 5oz | a1 1)
which, in local coordinates reads

1

S =
2ral

/ d’¢+/(g)g" 0: X 0; X" hyyy,
=

where o' is the so-called string tension, a dimensioned parameter which, from now on, will

“be set equal to 2—17;

Polyakov’s proposal for the quantization of the theory was to define the partition function

Z = / DgDXe S
Metx Emb

where the domain of integration Met x Emb is defined as

as

Met := {space af all metrics on T}
Emb := {space of C*®-maps from I to ML}
As all derivations in this section will be heuristic in spirit, we will not bother in defining
correctly the topology of the infinite dimensional manifolds we will encounter. It suffices to
say that, in any case, a nice mathematical structure of differentiable manifold can be given
to them [EE].

The action (1) has a huge symmetry group ¢. Namely, ¢ contains
a) The isometry group of the target manifold (A7 . h)
b) The group Diff(X) of diffeomorphisms of the surface ¥ acting on X € Emb by compo-
sition and on g € Met by pull-back
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¢) The group Weyl of conformal rescalings of the metric g, acting as g~~~pe? - g, where o
is a real valued C'*°-function.

Forgetting about the finite dimensional group of isometries of (M P, k), which, in the case
of a flat target manifold, reduces to the euclidean group, one is left with the semidirect
product Dif fxWeyl. Now, as it is customary in perturbative quantum field theory, such
"gauge degrees of freedom” must be removed in doing Feynman path integral in order to get
sensible answers in the computation of n-point functions. This can be done in different ways,
none of which has a sound mathematical status due to the still incomplete understanding of
path integrals. Anyhow, they are at least useful heuristic tools in passing from

Z = / DgDXe S
MetXx Emb

to
Z = / ., DgDXe™® (2)
Metx Emb/Dif f x Weyl
i.e. to integrate only over the space of gauge non-equivalent points ([g], [X]), or to "mod
out the volume of the gauge group”. Now, in string theory, there is a great merit in doing
so. Namely we will be able to give a precise meaning to (2), as the space on which one
ultimately lands is a finite dimensional space order by order in string perturbation theory.
Before sticking to the manipulation of the integrand, we feel necessary to describe a
little bit more [EE|the geometry of the fibration

DiffxWeyl — Met,
™

M,

where the subscript p refers to the genus of the surface.

First of all the group of conformal transformations acts freely on Met(,), and the quotient
is the space of conformal structures on L. A section of the fibration (which is topologically
trivial, as Weyl is contractible) is given, e.g., for p > 1, by [g] ~~ §, where § is the metric
with constant curvature Ry = ~1.

The local description of this fact relies on the possibility of introducing isothermal coordi-
nates for any metric g on the surface I, i.e. a sufficiently fine covering {U,} of % and local
coordinates {z,, yo} such that the metric takes the form

Jo =¥ (dzy ® dzg + dya ® dyq)
or, introducing complex coordinates
Za = T+ 1Yq

T4 = Tq — 1Yy

Ja = ePalZaiZa) (dzo ® dZ.)
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Now, fixing a conformal structure on L is the same thing as fixing a complex structure.

In fact it can be easily seen that requiring that a coordinate transformation preserves the
above form of the metric is tantamount to requiring that it is an analytic (or antianalytic)
function when expressed in terms of the complex parameterization. Notice also that, be-
cause of dimensional reasons, any almost complex structure on X is integrable and so this
local argument is straightforwardly globalized. Now one is left to discussing the quotient
Conf(Z)/Dif fT(Z) of conformal structures on ¥ modulo orientation preserving diffeomor-
phisms. .
As we shall discuss in greater detail in the next chapter, an oriented surface ¥ together with
a fixed conformal structure p is, by definition, a Riemann surface. Equivalently, Riemann
surfaces can be defined as connected 1-dimensional complex manifolds. A conformal map f
between two Riemann surfaces (I, p) J, (', 1"} is an orientation preserving diffeomorphism
which is conformal w.r.t. the given conformal structures pand p'. Two Riemann surfaces
connected by a conformal map will be called equivalent.

Now, let 4 € Conf(Z) be a conformal structure and f : ¥ — ¥ an orientation preserving
diffeomorphism; f*p will denote the unique conformal structure v on ¥ obtained by fixing a
riemannian metric v in the conformal class [¢] and taking v := [f*(y)]. Now, take another
Riemann surface (X, ¢) (notice that the underlying C'*-manifolds are the same). Then, if
¢ = f*(p) then (I, p)and(E, ¢) are equivalent and conversely. This argument proves the
following
Fact: let Dif ft(Z) act on Conf(X) by means of f - := f*(u). Then the quotient space
is (in canonical one to one correspondence with) the set of equivalence classes of genus p
Riemann surfaces, i.e. the so-called moduli space of genus p Riemann surfaces.

After having pointed out what will be the domain of integration for the string partition
function, we have to discuss the actual reduction of the integrand to the quotient space
M, = Met/Dif fxWeyl.

To see what is going on we will consider a finite dimensional analogue, namely the integration

on a finite dimensional quotient space [Bo].

Given an m-dimensional vector space F', consider the line A™( F*). This can be identified
with the set of densities over F, i.e. the set of scalar valued functions o defined on the set
B(f) of bases in F such that for any T € GL(F)

o(Th) = detT - o(b)
We shall denote with [v; A -+ A v,,] 7! the unique density o s.t. o(vy - v,,) =1

The following construction will be of prominent interest in the sequel.

Given an exact sequence of vector spaces

0= By lop ... — 22 F 0



there is a canonical isomorphism

{'137 1 ]

e

max *
7=0 A Fyin

A sketch of the proof of this can be given by the following argument. Let us decompose
F; = Ker(T;) @ E; and let us fix a basis {v] ..} in E;. By the exactness of the sequence
above, Ker(T;) = Im(T;_,) and T;(F;) = T;(E;). Then a basis in F; will be written as

{Ui,l’ e 'vi,me} = {Ti—l(vz{—l,l)’ e 'Ti*l(vztl.r‘t.-)’ vt{,ne+1’ o 'v‘;.me

so that one can define

[nj:l

2 — 5 -
@ wgjn A - A vzgmy, ] ™h) = ®j—0 [v2j411 A AVajptma )

and the exactness of the sequence ensures that I is an isomorphism.

Let then V be a differentiable manifold carrying of a smooth action of a Lie group G.
Suppose moreover that F is a vector space on which G acts linearly on the right and the
following set of data is provided:

(1) amap @ : V — positive quadratic forms on F
(2) amap A: V — positive measures on E
(3) amap H : V — positive measures on Lie(G)
(4) a C™-measure p on V (in this framework a positive section of A™e2T*V)
satisfying the following compatibility conditions:
(a) Vo,2,h€e VX EX G Qun(h-z)=Qu(z)
(b) Yv € V' A, is invariant under the action of the little group K, C G of v over E.
Then one can define a C'*°-density on V/G, via an integration over E modulo G of the
following volume form over E x V'

o(z,v) = e 3P(®) 3 (2)u(z)

by means of the following construction. Let 7 € V/g and v € Vbe such that 7 = v-G. The

preimage of 7 under
(ExV)/G — V/G
[z,v] e (o]

is the quotient E/K,. Notice that any density on A™%® LieK determines an invariant

measure w on K, and so, as A, is I{,,-invariant, a transverse measure \,/w on E/K,.

So we can define fE/K e*%Q”(‘E)/\U(a:) as an element of A™% [ie ' by means of

/E/K 3Qule)) () i /Ee_%Q”(m)Au(z) UI w]_l y



We have at our disposal the exact sequence
0 — LieK, — LieG25T, V25T, V/G — 0 (3)

where a, is the tangent map at the origin of the group action g~~~pv - g and b, is the
tangent to the canonical projection V' — V/G Then, as discussed above, we have a canonical

isomorphism of determinants
I, : N™*(THV/G)) ® Am“m(LieG)*—t» ANTEE(TyV) ® A% (LieK, )~
which can be recasted in the form
I, : A™*(TX(V/G)) = Amee (T, V)® A™®(LieK,)" @ (N™**(LieG)*)"

From eq. (6) we had that
/ '€~%Qu($),\u(z)
E/K,

was an element of A™*®(LieK,)* and hence we can consistently define
v(v) = I [ [ @ euw e B (4)
E/K,

For any v € V this is an element of A™**(T,V/G)*. Thus, supposing i G-invariant, the
equivariance and the positivity property of A, and H(v) yield that »(v) is a measure on
V/G.

Suppose now we are given, for any v € V scalar products < -,- >, on E and (-,-), on
LieG, and a riemannian metric g on V. Then we have:

()Au(z1, @) = [det < &, 25 >]H/2 z; € E
(i) H (v)( X1, - - Xpr) = [det(X, X 5)]H/? X1 € LieG
(iii)/‘v(Yly T 'Yd) = [detg(YonYﬂ)]l/z Ya € TvV

and, if T, is thé symmetric operator such that Q,(z) =< @, T,z >,, then
(iv) [pe 2@, (2) = (det T,)~/?

Let {¢1, - i} be a basis in LieK, and {¢1, -1, } a basis in T-(V/G). Furthermore,
due to the exactness of the sequence (3), b, is an isomorphism between (Ima,)* C T,V and
T.V/G so that in (I'ma,)* there are unique n vectors 91, ¥, such that ¥; = b t4;. Then

‘ L. 1/2
oA Ape] @y @ Hv) ™) = [de“azav det < 1y, Uy >u]

[det(ipr, 00) 2] o1 A A )



where det’ means the product of nonzero eigenvalues.

Finally one gets

. 1/2
v(v) = (detT,)~'/? {/ [P A+ A cpk]"l} [det'af,au -det < 9,1 >v}
K

v

[detl(r, )] ]y A A gl

The last purpose of this section is to apply, at least at a formal level, the above results
to get an expression for the string partition function. Let us then start by identifying the
various building blocks of the construction.

We will set

V=M el(p)

G = DifftxWeyl

E = Emb(Z,RP)/RD.

Their tangent spaces are easily identified as follows:

Ty(Met(p)) = C®(Z, S2TT) is the space of sections of the symmetric tensor product of the
real cotangent bundle of X.

L(Difft) = C=(Z,TrE)

L(Weyl) = C=(Z,R)

Remark As the space of riemannian metrics is an open cone in a vector space its
tangent bundle is trivial (whence no remnant of g in the Lh.s. of the above expression).
What actually depends on g is the decomposition S*Tj(Z) = C, & N, where N, is the
vector space of g-traceless quadratic forms.

Let p denote the projection on N,. Then the infinitesimal action of Dif f* on Metp)
is given by[D’H-P,Bo]

C®(5,TaT) 5 C°(3,§2TET)
3 > p(Leg)

where L here stands for the Lie derivative.
One has the following commutative diagram

C®(S,TeS) -2 €, TeS o k)
! . )
C®(3,TrS) —% C=(Z, N,)
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Considering the Teichmiiller space 7,, which can be realized as the quotient of the space
of metrics by the semidirect product of the Weyl group with the group of diffeomorphisms
homotopic to the identity (see Ch. 2 for a thorough discussion of this and the following
topics), one can establish the following cartesian diagram:

Co(S,TcE Q@ K) — HYZ,Te(XD)
! l
C*®(Z,Ny) - Tig) I(p)

The stabilizer K, of g in Dif f,- xWeyl can be identified with the group of conformal
automorphisms of (X, g), i.e. the group of holomorphic diffeomorphisms of (¥, ¢). Summing
up one has the following commutative diagram, the rows of which are exact [Bo]

E]
0 — HYZTex) — I(Z,Tc %) — IZ,TcE@w) — HY2,Tex) — 0
1 ! 1
B, Tym
0 — CAutE — C(Difft) — (N,) — Ti1Tip) — 0
Tz [m T" I
4, Ty
— LK, —  L(DiffTxWeyl) — T, Met — Ti1 Tie) - 0

where T'(-) stands for C°(X, ) and A, is the differential at the identity of Diff*xWeyl of
the action of this gauge group on Mety.

Notice also that every space in the diagram above naturally has or inherits an ”L2”
inner product.

The integration over £ = Emb is gaussian and hence gives

L-e_s(g,X) — (ﬂlﬂz)D/z . (det/Ag)——D/Z

Suppose now {1, - ¢} is a basis for LieK,, {¢1, - -¥n} a basis for Ty 7(p) and ¥; the
preimages under T,m of the ¢;’s into Kerd} = I m(A,)*. Then the naive application of

eq.(4) gives

dEt(“Zjir %Z}J)g
?det(p,, ®s)g

det’Ag

-D/2 1/2
frnnd —_— -1 I A ] . ] -1
v(g) = ( e ) /K o1 Ao A il {det 454 } [r Ao Al

By chasing around the exact diagram above one can prove that the determinant of 434,
can be substituted with det' P; P,, thus getting for the integrand

det’Ag P/ .
13

. 1/2
dEt( 11)2'7 u"])g
det(Sﬂm ‘195)9

det'P; Py -
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We are now in a position to discuss the invariance properties of the integrand w.r.t.
the action of the conformal group. We prefer to skip the somewhat tedious and nowadays
well known computations [Alv,Poll,D’H-P]. We just report that by passing to the complex
analytic counterparts of the quantities appearing in the above expression one gets that the
integrand is turned into

e _D/2
det’(@oag)g IS* 8§ det(‘I’i,‘Ilj)g
—_—— -det'f0_,0_4 - ———= 15
( ME O Get(6,, 62)g 12

where ¥; and ¢, are the complexification of the ; and ¢, and 0; denotes the Dolbeault
operator coupled to j-tensors, i.e. the 0-operator with values in (TZE).
Polyakov’s conformal anomaly formulas give[Poll,Alv]

det’(-éggo)g, '= @R . det'(gggo)g
[112 112
det(‘I’i, ‘Pj)gl

) det(‘I’i,‘I’j)g
det(¢ra ¢s)g’

" det(fr, bs)g

det'5i15_1 = el?)L(g,R) * det’§i15_1

Here g' = efg is conformally equivalent to g, R is the curvature (1,1)-form of T¢ X and

1 -
L(p,R):%/E@p/\ap-l-%%R

is the Liouville action. So, if D = 26 the dependence on the conformal factor p actually drops
out and so one is left with the following finite dimensional integral as the p-loop contribution
to the string partition function

e -D/2
= - det’(a 80) = = det(‘I’,- ‘I’)
= L 27009 - det' et Wl Ml 04J
Zp = / |‘I’1 A A ‘I’gg__g,f ( "1“3 ) det 8_1(9_1 det(¢r,¢a)g

r

This formula, albeit derived in a heuristic way, will be the starting point for the analysis
to be surveyed in the next chapter. In particular we are going to give a sound meaning to the
regularized determinants and to describe the geometry of the ”integration domain” of eq.
(17). This will enable us to draw some physical consequence out of analytic geometry and,
furthermore, will introduce and somehow justify the approach to the superstring problem
that will be pursued in the last chapters.



2.The bosonic string from

an algebro-geometrical standpoint

2.1 Determinants and determinant bundles

As we have sketched in chapter 1, determinants of differential operators on Riemann
surfaces play a dominant réle in string theory. This section is devoted to give a clear
characterization of their definition and to the study of the geometrical features they induce
on a family of vector bundles parameterized by some variety B. As it is well known in
physical applications, one has to face the following twofold problem. First, one has to
deal with operators that are unbounded when defined in the physical Hilbert spaces of the
. theory, and second, in most significant cases, the relevant operators (such as the chiral Dirac
operator in Yang-Mills theory) map their domain in a different vector space, so that the
notion of a determinant for them must be somehow supplied.

To begin with, let us follow the strategy of chapter 1 and stick to a finite dimensional
example. Let D : V — W be an invertible linear operator between vector spaces of the same
dimension n. Its determinant det D is defined as the unique linear map making the following

diagram
v 2w
Any R Anpy
commutative.

As noticed in chapter 1, detD is an element in (A™V)" @ A"T1” which, choosing a basis {v;}
in V (and hence getting the dual basis {a;} in 177), is given by

detD=oy3 A---ANa,® Duy A---A Du,.
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Sometimes we will not making explicit reference to the dual basis {a;} but will use (as in
chapter 1) the notation

oy A Ao =g A Ay

From the above equation it is clear that, actually, the definition of detD does not depend
on the choice of the basis in V.

In the cases in which D fails to be invertible, its determinant vanishes. Actually one can
take care of zero modes, by means of the procedure described in chapter 1 (which is very
well known from the theory of anomalies in quantum field theory) which we now specialize
to the case of complexes of length 4. Given D € Hom(V,W) one can set up the following
exact sequence

0 — KerD—V 2. W -2.CokerD — 0

thus getting an isomorphism
(A™¥V) @ AW ~ (A™**Ker D) ® A" Coker D
Then one defines [F1]
detD :=det'D [v) A---AW) |7 @w) A - A w

Here det’D is the determinant of D considered as an isomorphism between V/detD and
W/CokerD, | = dim KerD , k = dim CokerD, and {v{} (resp. {w?}) is a basis in KerD
(resp. CokerD). Notice that in this case the prescription is ambiguous, due to the choice
~ of a basis in KerD and CokerD, which amount in a multiplicative factor in front of detD.
This is a feature one has to take into account when dealing with families of operators, as
one should control this ambiguity as a "function” of the parameter space B.

Let us now discuss some issues related to infinite dimensionality. Let Ey—5M and
E, % M be smooth vector bundles over a compact riemannian manifold M. Suppose we
are given metrics hy » along the fibers of F; and E,. Then the completion of the spaces
T[(E1),T'(E,) in the obvious L? metrics, denoted by Hjand H; are separable Hilbert spaces.
Let H; ——1:—>Hz be an elliptic Fredholm operator. Then we can construct self adjoint operators
TIT € End(H,), TT € End(H;) such that

H; = @jez'}‘(g,i =1,2

where H{ is an eigenspace of the nonnegative operator T fT relative to the eigenvalue A;
(and the same for TTtin H,). The ellipticity of T insures that

i) the decomposition above exists, i.e. the spectrum of TTT and 71T is discrete.

ii) the nonzero eigenvalues of 7Tt and TIT agree and T and 71 are isomorphisms bhetween
the corresponding eigenspaces.

One the can proceed in the following way, in order not to be troubled too much by infinite
dimensional subtleties [BF,F2]. Let a ¢ Sp(TTT) and let Hga) = @AJ,@H{ be the direct
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sum of eigenspaces with eigenvalue A; less than a. Then, again because of ellipticity, HE“’
is finite dimensional and consists of smooth sections. The exact sequence
0 — KeTIT - #* L #* - KeaTTl - 0
I I
KerT KerT'

induces an isomorphism

(des7(”)” © det{™) ~ (detKerT)” ® detCokerT

Notice that, whenever a < b and both do not belong to § p(TiT) we have isomorphisms

bet ween
a,b b a 1(1 b a a,b

Then what is left to do is "to let a.go to infinity”. Obviously to have a sensible answer
we must give a prescription for regularizing the infinite product of the eigenvalues which is
going to occur. A natural way to do so is the use of Seeley’s [RS] (-function regularization.
This scheme works in the following way. Let D be an elliptic differential operator of order
p (p > 0) on the space of C*®-sections of a vector bundle E over a compact manifold M.
Then it is essentially self-adjoint, the spectrum of its closure is a closed and discrete set of
the real numbers and any eigenvalue has a finite multiplicity. One defines the (-function of
D, {p by means of the formal power series ‘

+ o

o= ()

n=0

where the A,’s are the non-zero eigenvalues of D, counted with their multiplicity. It is a

. . e . dimM
classical result that this Dirichlet series converges for Re(s) > and defines a holo-
. . or . . .
morphic function on the right complex half plane whick admits a meromorphic continuation

on the whole C which is holomorphic in 3 = 0. A more explicit expression for {p is given
the in terms of the Mellin transform

1 (oo}
(p(s) = ) -/0 [tre™*P — dimKerD] - ¢*~dt

Recall that the identification of the regularized determinant with zero-modes omitted
with exp (p(0) is prompted by the following (formal!) computation:

—C—l—"[ __C}_—FZOO(\ )~ F -~d—+zooex (—slog \,) =
dsgD s=0 " (s —~ o =0 ds — P{=5108 An; =0
+ oo +oo + o
- log A, exp(—slog A, = log A = log An
2 loehnemplslonall = I
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and by the fact that in finite dimensions the manipulations above are actually rigorous.
Furthermore, the (-function regularization is well-behaving w.r.t. "finite dimensional shifts”
in the following sense.

Let Hysq and Hysp be the complements in H of H(“) and H(® introduced above. Then, if
det’ is defined by means of the (-function it holds

det'Dly,, . =det'Dly, - J[ N
a<A;<b

Let us now discuss the family version of this construction. Suppose we are given the
following geometric data;
i) a smooth fibration Z Ay
ii) a complex vector bundle E-—Z endowed with an hermitean metric < -,- >p
iii) a metric along the fibers gZ/¥
iv) a family of elliptic Fredholm operators D, parameterized by Y acting on the sections of
E .
Then [BF-Q)] one has the following
Theorem . The geometric data above determine a smooth line bundle detD — Y together
with a natural hermitean metric < -,- >¢g on it.
We will give just a sketch of the proof of the theorem, referring to [BF] for the details. What
is relevant for us is the following construction. Let us consider the spaces Hga) HE“"” as
constructed above (notice that, typically, the subscript 1 is referred to E, and the subscript
2to E®Ty,y). Consider the open set

Us:={y € Vs.t. ag Sp(Dy)}

As D, is elliptic, the finite dimensional spaces HE“) glue to give a smooth vector bundle over
U,. But it is clear from the above construction that also

L = (detH({‘))* ® (demg"))

is a well defined line bundle on U,. On U, N U, we can glue L£(¥and £® by means
of the transition functions detD(, ;) , and, as the U, are a covering of ¥ the line bundle
L = detD—Y is well defined. Notice that the infinite dimensionality of the spaces of
sections is completely circumvented with this construction.

Closely tied to the argument above is the construction of the Quillen metric < -,- >¢
on detD. Let us consider the fiber bundle H——Y and its subbundles having as fiber H(%).

se

The natural L? on H metric induces, by linelar algebra, a metric on (detH(la)) ® detH(Za).
The point is that this metric is not even continuous on ¥, because of possible jumps in the
dimension of the kernel and the cokernel of D.

To remedy this situation, Quillen’s proposal [()] was to insert a regularizing term taking
into account non-zero eigenvalues by means of the (-function regularization, thus yielding
a smooth metric on detD. To grasp how this works, let us denote by ¢(®) the L? metric
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induced on U, and see what happens in the intersection U, N Up. The glueing of two local
sections s, and sp is done by identifying

8, ™~ 8p - det D(@:b)

so that
det D(*®) = (7 A - APx) ® (D1 A -+ - A Dipyy)

and

N
det D@D = T 1wi1? - 10wl = [ X
i=1 a<A;<b
so that g(®) = g(@). Macr,<p i
By the abovementioned properties of the (-function regularization,the definition of the

Quillen metric as
|-1% = det'DTD - |- |2,

gives a C'™ metric on £ = detD.

But this is not the whole story. In fact, as we will see later on, the Quillen metric
satisfies another very important property, in relation to the Atiyah-Singer family index
theorem. Before considering that we need to state the holomorphic version of the results

above.

Theorem. Let 7 : Z-Y be a holomorphic fibration with smooth fibers. Suppose Z admits
a closed (1,1)-form T which restricts to a Kahler form on each fiber X. Let E — Z be a
holomorphic hermitean vector bundle with its hermitean connection. Then the determinant
line bundle £—Y of the relative 8 complex coupled to E admits a holomorphic structure.
The canonical connection of £ is the hermitean connection for the Quillen metric.

We are not giving the proof of this theorem, which has been recently generalized by Bismut
and Bost to the case of families admitting singular fibres, but simply notice that in our
context the additional hypothesis of the existence of a relative Kahler form will be always
satisfied.

2.2 The Grothendieck-Riemann-Roch Theorem

In view of the applications to be done in the sequel. we are going to discuss the
Grothendieck-Riemann-Roch theorem with relation to determinant bundles switching from

the previous differential geometrical approach to a truly algebraic geometrical one. To do
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so we have to list some terminology and properties of complex spaces and sheaves [see, e.g.,
Hart].

Let X be a complex manifold of dimension n and let O denote its structural sheaf, i.e.
the sheaf of local analytic functions on X. '
Definition. A sheaf of abelian groups on X is called analytic if
i) the stalks S, are O -modules
ii) the map |J,c x Sz X Op — S, defined by the module operation is continuous.

Definition. An analytic sheaf S is called coherent if V& € X there is a neighbourhood U,
of z and a short right exact sheaf sequence ‘

Py — 0ty =Sty =0

Here OP =0 @ ---® O p-times
What matters for us is the following
Fact. if F is a complex analytic vector bundle on X, then the sheaf £ of local holomorphic
sections of F is coherent analytic [Hirz].

In order to take into account families of holomorphic structures, one has to define the
so-called direct image sheaves as follows.
Let XY be a holomorphic map and S an analytic sheaf over X. One defines the ¢* —
direct image sheaf RIf.(S) by means of a suitable presheaf in the following way. Let V
be open in V. Then the cohomology space H¥(f~1(V),S) is an Ox [ f-1(v)-module. By
composition of maps it is also an Oy [-module. The map Vs H(f~1(V),S) defines a
presheaf on Y whose associated sheaf is, by definition, R?f.(S). Naively, the stalk at y € ¥
- of Rf,(S) can be identified with H(f~1(y),S).
Coherent analytic sheaves have ‘simple’ cohomological properties. Namely
Proposition 1. if § is a coherent analytic sheaf over an n-dimensional manifold X, then

HYX,5)=0 forg>n
Proposition 2. If xLvisa proper holomorphic map,
RiIf(S)=0 forg>dimX

and R?f.(S) is coherent for ¢ > 0.

One can define the set of virtual objects in this framework. Let C'oh(X ) denote the set
of isomorphism classes of coherent analytic sheaves over a complex manifold X, and let F(X)
denote the free abelian group generated by Coh(X ). If R(X) is the subgroup generated by
all elements of the form § — 8’ — S” where

0 -8 —-8§—-8" -0
is short exact, one defines the Grothendieck group of coherent analytic sheaves over X as

K, (X):=F(X)/R(X)



16

Given a proper holomorphic map X 2.Y one gets an homomorphism

F(x) 2L F)

S~ B(S) = TpLe(=)TRIA(S)

q=0

As f, maps R(X)to R(Y) it induces an homomorphism
fi : K, (X) — K, (Y)

The Grothendieck-Riemann-Roch theorem for analytic sheaves is an equality between Chern
characters of coherent analytic sheaves.

This notion is introduced by means of the following

Lemma . Let & be a coherent analytic sheaf aver an n-dimensional algebraic manifold X.
Then there are complex vector bundles Wy ---W,, over X and an exact sequence (called

resolution by vector bundles)
0—-Wy — - —-W,—-8—=10

of analytic sheaves over X .(where W; denotes the sheaf of local holomorphic sections of W;).

Then the Chern character Ch(S) is defined as

Ch(S):= Y (-)" Ch(W;)

=0

Now, as if
0-8=>8-8" =0

is short exact then

Ch(S) = Ch(S") + Ch(S”)

the Chern character is a homomorphism

Ch: K (X)—H*(X,Q)

Theorem (Grothendieck-Riemann-Roch ) Let b € K (X )and X Fyva proper holomorphic
map between algebraic varieties. Then

Ch(f(b)) = f. (Ch(b) - Td(X) - (F(Td(¥)) ")

Here T'd(-) is the total Todd class of the tangent sheaf to - and f. is the so -called Gysin
homomorphism (represented, in the smooth case, by integration along the fibers in De Rham

cohomology).
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The formula above is clarified to a great extent when working: with smooth objects

by means of the Chern-Weil construction, which gives explicit expressions for characteristic
classes in terms of polynomial invariants built out of the curvature of the relevant bundles.
Recall that [MK] given a holomorphic vector bundle £—~X with a hermitean structure
< ++ >g, there is a unique unitary connection V g which is compatible with the holomorphic
structure, in the sense that the (0,1)-component of Vg coincides with Jg.
The Chern- Weil construction associates (in a functorial way) to (£ ,<:,- >g, Vg) a set of
distinguished differential forms which represent in De Rham cohomology the Chern classes
of E (and hence any characteristic class) and are built out of the curvature Rp of Vg.
In particular, the relevant polynomials entering the 5E;con1plex are the Todd genus of the
tangent bundle T'X and the Chern character of E, given by

Ch(E) = tr e LB

Rrx /4w iR
Td(X) = y|det —ZX2T  p orrBrx
(X) \/e sinh Rpx/dr

By means of the splitting principle one can deduce the following formulas:
rk E
z 1 2
Ch(E)= ) ef =tk E+ci(E) + 5 (a(E)’ — 2e2(E)) + -+
Jj=1

dimX
: 11
TdX)= J] —2—-=1+ Sa(TX) + = (a1 (TX) + eo(TX)) + -

1 —e™¥
j=1

Now, let us specialize this construction to the case in which X is a holomorphic family of
Riemann surfaces and £ is the sheaf of sections of a holomorphic vector bundle on X. In this
case fi(£) is the formal difference H® (f~2(s),£) & H' (f~*(s),£). A simple computation
based again on the splitting principle yields immediately

c1 (fi(€)) = e1 (det fi(E))

Notice also that, by their very definitions, H® (f~!(s),&) and H! (f"l(s),é') fit into the
Dolbeault complex as the kernel and cokernel of 9.

0 — H® (f71(s), E) — A" (f71(s), B) 22 A% (§71(s), B) —H* (f7(s), B) — 0

Then, extracting the 2-form part of the Grothendieck-Riemann-Roch formula one gets

c1(detdg) :/ ((fh(E)~Td(X)v(f*(Td(Y)))”) (%)

fibers (4)

This equality, in general, is true at the level of cohomology classes. The real heauty of the
Quillen metric on determinant line bundles can be read off the following proposition[BF]
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Theorem. Equality () holds at the level of differential forms, provided that the Chern
forms appearing there are computed by means of

i)the curvatures of the given metrics on X, Y, and F

ii)the Quillen metric on detdp.

2.3 Algebraic curves

This section is devoted to a short review of the most significant properties of Riemann
surfaces , in order to clarify some of the steps done in chapter 1 and to outline the set up in
which we will work in the last chapters.

Definition (A). A (smooth) Riemann surface is a complex 1-dimensional manifold

Definition (B). A (smooth) Riemann surface is a 2-dimensional real orientable manifold

together with a conformal class of metrics

The equivalence between the two definitions has been proven in chapter 1. We need also
a suitable notion of "possibly singular” Riemann surfaces , which is best given in terms of
algebraic geometrical structures.

Let U be an open set in CP and let f;,-- -, fx be holomorphic functions on U. Let X C U be
 the set of common zeroes of the f;’s. Given an open set V ¢ X (in the induced topology) a
complex valued function g : V—C will be called holomorphic if it is locally the restriction
of some holomorphic function § : U—C. The set @ of holomorphic functions on V is
naturally a ring and the map V~~»0y defines a sheaf Oy, naturally called the structure
sheaf of X .

Definition. The couple (X, Ox) is called a (reduced) complex space patch.

Let Y be a Hausdorff paracompact topological space and let F be a sheaf of rings which
is a subsheaf of the sheaf Cy of continuous functions on Y.
Definition. (Y, Fy) is called a (reduced) complex space iff it is locally isomorphic to reduced
complex space patches. F will be denoted by Oy and called the structure sheaf of Y.
Remark 1. The definitions above show how complex spaces are a generalization of complex
manifolds allowing for singularities of algebraic type.
Remark 2. The notion of complex space will be further generalized, in chapter 3, to the
one of ringed space which is needed in the Kostant - Leites approach to supermanifolds.
Definition. A compact node curve is a compact complex space locally isomorphic to one
of the following complex space patches:
i) the disk (D,Op) where D = {z ¢ C: |z| < 1}
ii) the ‘double cone’ (C', O¢) where C' = {(z,w) € C? | zw = 0, || < 1 and lw| < 1}
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Notice that a node is the mildest kind of singularity one can envisage; fortunately, as will
be discussed in great detail in the sequel, considering only such singularities is enough for
our purposes.

To discuss the most important geometrical features of algebraic curves we will follow
the strategy of defining them in the smooth case and then consider the modifications needed
to give them precise meaning also on singular curves. A word of warning: we will use
interchangeably the expressions 'line bundle” and "invertible sheaf”.

From the differentiable point of view, any Riemann surface C' is isomorphic to a sphere
with a certain number of handles. This number is called the (topological) genus of the curve.
The first homology group H;(C,Z) is a free abelian group generated by 2g elements which

are canonically chosen as in fig.1

fig. 1

Such a choice is called canonical since the intersection matrix of the basis (a;, b;) is the
]
0
bundles on C can be read off the exact sequence

2gx2g symplectic matrix < —?B The Picard group Pic(C') of isomorphism classes of line

exp 2mwi

0= 2—0c — 0O —1

where O is the sheaf of nowhere vanishing holomorphic functions and Z is the sheaf of

Z-valued continuous functions. The associated long exact cohomology sequence reads
. HYC,2)— HY(C,00) — BY(C,05)~H*(C,Z) — H*C,0c) — -+

which can be shrunk to

0 — HYC,00)/H\(C,Z) — HYC,05) “— Ha(C.Z) —0

I
z
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as the Cech cohomology groups of constant sheaves are isomorphic to the singular homology
groups of the topological space and H*(C,O¢) vanishes as O¢ is coherent analytic on a
1-dimensional space. Then Pic(C) = H'(C, OF) is the semidirect product Z x Picy(C) and
Pico(C') is a complex g-dimensional torus which can be geometrically realized in the following
way.

Pick a basis wy, . . ., w, of the space Hg)’l)(C, K¢) of abelian differentials (K¢ is the canonical
bundle), normalized according to 556“ w; = 8;;. Then

f wj = L
b,

1

is a symmetric matrix with positive definite imaginary part, called the period matrix of the
Riemann surface C and, if A denotes the lattice in C9 generated by the columns of the gx2g
matrix (8;;]Q;), then Pico(C) =~ C/A. The latter is customary called the Jacobian variety
of C' and denoted J(C)

Let us now consider the case of node curves. First of all, let us qualify a node curve C'
by (C,p1,..-,p-), the p;’s are the nodes (in a compact curve this number is always finite).
A node curve comes equipped with ”two” smooth curves, called its normalization N¢ and
its (one of its) desingularization C. Desingularizing the curve simply means fattening the
nodes, i.e. replacing each patch z;w; = 0 with zjw; = t;,¢; %= 0. This procedure is clearly
highly non unique and hence not canonical.

On the contrary, the normalization of a node curve is uniquely defined by the request that,
in the normalization process, meeting branches are pulled apart . This is achieved by glueing
Y ~{p1,...,p-} with the disjoint union of 2r disks (See fig. 2).

. T
4/ ’\ //“?\ . pd /‘," \.‘
AT A { \ \\ // !
\ / o -‘ v/
\’\ \ ’l “ ] !,f Il\ ,\ |
SN | ; y /
\\ / AR / kN /), A \\\ \ /'/
\\ \\\ / z\‘-‘:i_ P — b

There is a natural map a : No—C which is holomorphic . Notice that whilst a
desingularization C' of a node curve is connected iff (' is connected. the normalization of C
may very well be non connected even if ' is so. In fact nodes can be subdivided into dividing

and non-dividing ones, according to the connectedness properties of the normalization of C
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at those points. A useful criterion is the following: a node p; is dividing iff it can be obtained
by shrinking a homologically trivial cycle. The Jacobian of a node curve can be described
by means of the following argument [ACGH]|. The normalization procedure yields the exact
sequence

c
sing Spg - O

0— OC_-_—)'Q*ONC — @p;cc
Where C;ng4 is the set of singular points of C' and S;:., is the skyscraper sheaf with stalk C

centered at P;. By exponentiating one gets

1 - Og—a.0y, — H SIE — 1
piecsing

and hence, supposing C' connected

L= H(C,a.0%,)—H(C, [[ SE)—H(C,00)—H"(a.0k,) 0
piEC.ﬁny

As a is finite, the cohomology groups of O¢ and .0}, coincide, so that the latter turns
into
1—(C")Y = (C")" — Pic(C) — Pic(N¢g) — 0

where v is the number of connected components of No and r is the number of nodes in C.

Collapsing it one gets
1 — (C)""" — Pic(C) — Pic(N¢g) — 0

which shows that the Picard group of C is a C*-extension of Pic(N¢). Finally notice that
the dimension of the extension equals the number of non-dividing nodes in Cjing.

In more geometrical terms, the above discussion can be rephrased by saying that giving
a "line bundle” L on C is tantamount to giving its pull-back L on N¢ (this is a true line
bundle as N¢ is smooth) plus descent data, i.e. giving, for any node p of C' an identification
®p f,ql —»I:qz of the fibres over the preimages of the node p. Also, whenever L is trivial, a

choice of trivialization identifies each ¢, with a nonzero complex number.

Definition. A (Cartier) divisor on a smooth curve C is the datum of an open cover {Uy}oer
and, Yo € I a holomorphic function f, such that, if Uy, N Uz # 0 4;’(% is holomorphic and
nowhere vanishing.

Again by the compactness of C, the collection of f, defines a finite set of points counted
with multiplicities, and so one gets the notion of a (Weyl) divisor as an element of the free
abelian group generated by the points of C. It is straightforward to check that a divisor
defines a line bundle. Also the converse is true, i.e.

Proposition. On an algebraic curve every line bundle is the line bundle associated to a
divisor.

In particular every line bundle admits a meromorphic section and hence its first Chern class

can be computed as

cl(L)zfaélogislz
c
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where s is any meromorphic section of L and |- |? is any hermitean metric along the fibres.

Two divisors Dand D' are called linearly equivalent whenever D — D' is the divisor of a
global meromorphic function. The set DivC'/ ~ of divisors on C' modulo linear equivalence
is actually isomorphic to the Picard group of C, and, furthermore, if L = [D] is a line bundle

in the equivalence class of D = }_ n;p; its first Chern class is given by

cl(L) =deg L =deg D = Zni

The cornerstones of the theory of algebraic curves are the Riemann-Roch theorem and
the Serre duality theorem.

The Riemann-Roch theorem computes the Euler characteristics of any invertible sheaf
on a (smooth) algebraic genus g curve C' as

x(L) = dimH*(C,L) = dimH' (C,L)=deg L+1—¢

Serre duality assumes, in one complex dimension, the following simple form:
HC,L7'® K¢) ~ HY(C, L)*

where '’ means the dual vector space and the duality is given (in Dolbeault cohomology),
by integrating the product of a holomorphic (1,0)-form with values in L~! and a non-9-exact
(0,1)— form with values in L.

The Riemann-Roch theorem generalizes straightforwardly to the case of a node curve,
‘ provided one takes as g the so called arithmetic genus p,(C') of C, which can be read off the
exact sheaf sequence associated to the map a : No—C as p,(C) = po(N¢) + r, or, more
explicitly,

v

Pa(C) =) g(No) +1-v+r
i=1

where the N;’s are the connected components of the normalization Ng. The Serre dual-
ity theorem is more subtle, for reasons we will explain in detail farther on, after having
introduced the notion of family of Riemann surfaces and discussed the moduli problem.
The classical results above, together with a Kodaira vanishing theorem give an almost com-
plete solution to the so called Riemann-Roch problem, i.e. to the computation of the di-
mension h°(C, L)of H°(C, L). In fact, one gets "for free” the following results:

deg L < 0= h%(C,L)=0

. 1 and L =0¢
deg L <=0= h%C,L)= {0 otherwise; ‘
g and L= K¢

— —— 0 ! =
deg L=2g-2=h (C,L)~{g_1 otherwise;
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deg L >29-2= h%C,L)=deg L—g+1

For L in the unstable range 0 < deg L < 2¢g — 2 Riemann-Roch gives only the lower bound
RY(C,L) > deg L — g + 1. An upper bound is given by Clifford’s theorem, stating that

1
R°(C,L) < 5 (deg L +1)

with equality reached only if L = O¢, L = K¢ or C is hyperelliptic, i.e. a double covering
of the rational curve P! (See fig. 3).

ho(L)

\\\\\\

line hL)=d+1-g

LIIL111Y

0 g-1 2g9-2

The last topic we mean to cover is the notion of §-characteristics .
Definition. A §-characteristics on a smooth curve C is a line bundle £ s.t. L Q® L = K.
The defining equation makes sense as degK ¢ = 2g — 2 is always even. In particular the
degree of a f-characteristics is ¢ — 1. In terms of divisors the defining relation becomes
2[D] = [K¢], so that the quickest way of computing the number of §-characteristics is the
following. Let us fix a §-characteristics £o. Then for any #-characteristics £ it holds

(/C ® C(—)-l)z — (E)z ® (ﬁo—l)z ~ B’C ® K’gl — OC’

so that §-characteristics are in 1-1 (non canonical) correspondence with points of order two
in the Jacobian J(C'). Then, as J(C') is a g-dimensional torus, the number of such points, i.e.
the number of non-isomorphic §-characteristics is 229. As degl = g—1, £ lies in the unstable
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range, so that one should not expect h%(C, L) to be independent of £. In fact the best one
can do is to divide #-characteristics according to their parity, i.e. to A°(£)mod 2. Actually
there is some merit in doing so, because the parity of a #-characteristics is invariant under
deformations of the curve, and the number of even (resp. odd)§-characteristics is known to
be [M1] 2971(29 4 1) (resp. 2971(29 — 1)).

Being £ a "square root” of the canonical bundle, one naturally thinks of its sections as of
spinor fields on the curve C. Now, in a more classical setting, recall that, on an m-dimensional
real riemannian manifold M a spin structure is defined to be a principal fiber bundle P M
with structure group Spin(n) such that, if P—"+M is the bundle of orthonormal frames on
M, and « is the non trivial double covering Spin(n)f—}SO(n) there exists a commutative
diagram

Spin(n) x p — P
: N
L= l M
4
SO(TL) X P — P

It is known that such a commutative diagram exists iff the obstruction class (the 24

Stiefel-Whitney class) w, € H?(M,Z,) vanishes, and the number of inequivalent diagrams is
the order of H'(M,Z;). Actually, due to the evenness of the first Chern class of the tangent
bundle, every Riemann surface is a spin manifold, and the following theorem holds, relating

§-characteristics to spin-structures [A]

Theorem. The spin structures on a compact complex spin manifold correspond bijectively
to the isomorphism classes of holomorphic line bundles £ with £? ~ K, where K is the

canonical bundle, i.e. the top exterior power of the cotangent bundle.

2.4 The moduli problem

The moduli problem is a central one in algebraic geometry, as it consists in a part of the
classification problem. In fact, roughly speaking, algebraic varieties are classified by some
discrete invariant (such as the genus for curves) and some continuous invariants which, for
historical reasons are called moduli.

Definition. a family of compact complex manifolds is a proper surjective holomorphic map
7 : X — S between two complex analytic manifolds such that ¥s € S the fiber 77 !(s) is a

compact complex manifold.
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Theorem. [MK] A family of compact complex manifolds is differentiably locally trivial, i.e.
locally isomorphic, in the C'*® category, to the product . x 5.

Then, considering a family of Riemann surface s over a connected base S, the genus of
the fibers is constant and, more generally, all discrete topological invariants of the fibers will
not vary over S.

Given a family # : X—— 5 and a map f : §'— 5 one can define the pull back family
as the fibered product f*(X) = X x; S5'. It is a family over S’ and comes equipped with a

commutative diagram

) 5 x
o
S' —— S

This notion leads to define in a natural way a contravariant functor from the category
of complex manifolds and holomorphic maps to the category of sets and maps by sending:

Snnms M y(5)

where M ,(5) is the set of isomorphism classes of smooth algebraic varieties parameterized

by S, with ”topological” invariant g and
f € Hom(8, 8" )rroM(f) = [¢] € Hom(Mg(S"), My(5))

where ¢ is the map defined in the diagram above up to isomorphisms.
Suppose now M, is a representable functor, i.e. there exists a complex manifold M,
such that M ,(S) is isomorphic to the functor S~~~>Hom(S, M)
Definition If M, is representable, then M, is called a fine moduli space for M.
Unfortunately, for the case of algebraic curves, the functor M, is not representable
(here g is the only topological invariant of a connected curve, i.e. its genus) as the following
example shows [Hu].
Let us consider the family defined in C2 x C \ {0} by:

X ={(z,y,t) € c? XC\{0}|y2 — p29+2 _y

Then compactify to P? and define 7 : X —C \ {0} as w(z,y,t) = ¢

It is easy to see that each curve (; is isomorphic to a fixed one, say (', nonetheless X
is not topologically a product (the locally trivializing map (;z:,y,t)w(:ctﬁ,yt%,t) is
homotopically non trivial.) This is incompatible with the representability of the Riemann
functor My, as the classifying map for "constant” families sends the hase into a point of M,

and hence a pull-back family under a constant map should be a product.

The non existence of a fine moduli space for curves of genus g can be circumvented in
at least two ways. The first is to consider the moduli space of curves together with some
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additional structures, which leads, for instance, to the notion of Teichmiiller space, which
will be described later on. The second is to relax the assumption of representability of the
functor M, thus getting the notion of coarse moduli space as follows
Definition. M, is called a coarse moduli space for genus g curves if there is a morphism
of functors

®: My—Hom(-, M)

satisfying

i) if B is a point, ®(B) is an isomorphism

ii) for any other morphism of functors §{ : My,— Hom(:, X,) there is a unique map ¢ :
My,— X, for which the corresponding morphism of functors [p] : M,— X, satisfies

¢ = [o]o®.

In practice, when considering a coarse moduli space one gives up uniqueness of the
classifying map and simply requires its nonuniqueness to be under control.
A coarse moduli space does exist for genus g curves. The failure of the existence of a
fine moduli space can be ascribed to the fact that some curves have automorphisms, and,
moreover, certain ones have more automorphisms than neighbouring others. In fact , if
the Riemann functor were representable, its moduli space would come equipped with a
"universal” family CQLM g from which any other family X2, B could be obtained by

means of a unique diagram like

x I oc,
PR
B — M,

Now, suppose C'—p is a curve with a non trivial automorphism ¥ over a point p. Then
one can get a different diagram from the one above simply by twisting F by v, thus loosing
uniqueness.

So one is prompted, in order to end up with a fine moduli space, to seek for objects
without automorphisms . For instance one can consider the moduli space of triples {C, p,w}
where p € C and w is a non-zero (co)tangent vector [ADKP].

In some sense, the classical Teichmiiller theory can be described as originating from the
following analysis of the automorphisms group of a smooth algebraic curve [ACGH].

The cases of genus 0 and 1 are easily dealt with. For the Riemann sphere P!, Aut(P!)
is PGL(1,C). For g = 1, Aut(C}) is the extension by C itself of a group F of order 2,4, 0r 6
and, actually, there are unique tori for which ord F' = 4 or 6. In the cases g > 2 things are
much sharpened as the following proposition holds
Proposition Let C' be a smooth genus ¢g curve. Then Aut((") is a finite group of order at
most 84(g — 1).

Furthermore Hurwitz’s theorem holds:
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fig 4

Theorem. In the above hypothesis, if ¢ € Aut(C') and ¢ is homotopic to the identity,
then ¢ is the identity.

The above considerations lead naturally to the following
Definition. Let I be a closed oriented 2-dimensional manifold of genus g. A marked
Riemann surface is a pair (C,[f]) where C is a Riemann surface , f : C—TX is a homeo-
morphism and [f] denotes the homotopy class of f.
Two marked Riemann surface (C,[f])and (C',[f']) are called equivalent iff there is a con-
formal map C—2+C" such that [f'oh] = [f].

The family version of this construction can be defined as follows [Hu]. Let 7 : X — 5 be
a family of curves. A Teichmiiller structure of type & over X is the datum of an equivalence
class of diffeomorphisms [¥] : § x T—X commuting with = where two diffeomorphisms
are said to be equivalent if they are homotopic via a fiber map over §. Then, by a fiberwise
argument, if ¥ : § x T— X is a representative of a Teichmiiller structure, then any auto-
morphism of X over S preserving [¥] is the identity. In simpler words two curves related by
a conformal automorphism not homotopic to the identity are to be considered as different in
Teichmiiller theory. Let Dif f*(Z)/Diffi7 = I's the mapping class group of the topological
surface T. Given any family of curves 7 : X — S5 one can consider the following principal

fiber bundle

I's — Tx

Uy ¢

Definition. The Teichmiiller functor of type £, 7, associates to an analytic space S the
set of isomorphism classes of family of curves 7 : X — 5 equipped with a section of I'x

By the previous discussion one expects good properties for the Teichmiiller functor. In
fact it holds [Hul]
Theorem. The Teichmiiller functor 7, is representable by means of a Stein variety of
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dimension 3¢ — 3 isomorphic to an open ball in C*9~%, which is called the Teichmiiller space
T,

A real coordinatization of T, is better achieved by means of the Fenchel-Nielsen coordi-
nates, defined as follows. Consider an hexagon in the hyperbolic plane, which is determined,
up to isometries, by the lengths I;,[3,l3 of alternating sizes (see fig. 4) Considering its
double across the remaining sizes we got a pair of pants, which are building blocks for a
Riemann surface in the sense that a genus g Riemann surface can be obtained by glueing
2g — 2 pair of pants. This works as follows: fix a collection {¥1...73g-3} f disjoint simple
closed curves such that £~ {v;} is the disjoint union of pair of pants . Then T can be com-
pletely reconstructed by attaching these pair of pants along the {7:}'s. The Fenchel Nielsen
coordinates are the free parameters in this construction: they are the geodesic lengths [; of
the v; and the hyperbolic distances 7; between the feet of perpendiculars to 7; dropped from
fixed boundary points [Hal(fig. 5).

The Teichmiiller space T, admits a natural geometric structure called the Weil-Petersson
form. The cotangent space T(*C}(Tg) at [C] is naturally identified with the space of holo-
morphic quadratic differentials on C. Then one defines the Weil-Petersson metric via the
following hermitean form on H°(C, K¢)

< 1,2 >= / P
c

where ) is the line element on C. One has the following results[Wo]
i) The Weil-Petersson metric is Kahler
ii) In Fenchel-Nielsen coordinates its Kahler form is expressed as

wwp = —ZdT,’ A dl;

The study of the geometry of the Teichmiiller space goes a great deal the study of the
geometry of the (coarse) moduli space of curves. In fact, recalling that Ty can be thought



29

of as Conf(Z)/Dif fo(X), while M, is given by Conf(Z)/Diff*(Z), one can use the topo-
logical triviality of T; to get some insight into the topology of M. In fact, intuitively, M,
should be T;/T';, where Iy is the mapping class group of the Riemann surface . In fact one
has the following celebrated results [Ha]

Proposition. If g > 3 the action of T'y over T, is properly discontinuous but not free.
Its fixed points correspond to algebraic curves with non trivial automorphisms group. Cor-
respondingly, the moduli space M, has the structure of a complex space and a complex
V-manifold (or orbifold ). The lower cohomology groups of M, are computed as follows

HY (M, 7)=1
HY(M,,Z)=0
HY(M,,7) =1

A deeper understanding of moduli space and of its complex structures is better achieved
by means of deformation theory, which we are going to outline in the sequel. To begin with,
let X be a smooth algebraic curve.

Definition. A deformation of X, parameterized by a pointed analytic space (Y,yo) is a
proper holomorphic map
p: X—Y

plus a given isomorphism 9 : X — ¢~ 1(0) between X and the central fiber »=1(0).

The notion of deformation thus differs from the one of family by the prescribed identi-
fication of the central fiber with the object to be deformed. A it first order deformation of
- X is a deformation of X parameterized by S = SpecC[e], the spectrum of the dual numbers.
In the sequel we will pursue the Kodaira-Spencer approach to deformation theory, in which
on thinks of the curve C' as being qualified by patching data {Uq, zq, fog}, and thinks of
deforming it by deforming the patching data. Here

{Ua}aer is a finite covering of C

Z 1s a holomorphic coordinate in U,

2o = fap(2p) in Uan Ug

In any triple intersection U, N Ug N U, the cocycle rule holds

fap(fov(24)) = far(2y)

A first order deformation, can then be thought of as being given by glueing products U, x S
by means of "

2o = fap(zp,€) = fap(zp) + € bap(za)

For any fixed ¢ the faﬁ’s must be transition functions for a curve, so that they must satisfy the
cocycle rule. This latter translates into the above condition for the f.;3’s and the following
condition for the byg’s

afaﬁ
by “bag =10
g+ 95 B = 0py
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But, by the chain rule %%9—5% = Bfg so that, putting X,p 1= ba55§; yields

Xap + Xpy = Xay =0

i.e. X,p defines a class
[Xap] € H'(C,To)

which is called the Kodaira-Spencer class of the first order deformation .
The ”sheafified” version of this construction is given as follows. For any first order
deformation ¢ : ¥ — S one gets the following exact sequence of O¢-modules

0 — To—Tx—>¢"Ts — 0
which induces the exact cohomology sequence
c o HO(C, To) £ B(C, ¢ (Ts) 2 HY(C, Te) — -+ -

Then X.s is just 0* ([(,0*5%]) Given two isomorphic deformations ¢ : A—S5 and
o'+ X'— S the commutative diagram

0 — HY%C,Te) — HYC,Tx) 25 HYC,0XTs) - HYC,Ts) — -

I l : l . I

0 — H%C,To) — HC,T,) 25 HOC,¢™(Ts) - HYC,To) — -

insures that [X,gland [X',g] are the same class in ﬁl(C’,TC).
Conversely, taking two cocycles in the same class, the difference between the two infinitesimal
deformations they induce is simply a holomorphic coordinate change, so that the two are

really indistinguishable.

Now, giveﬁ an arbitrary deformation ¢ : ¥—(Y,yp) and a map (S, 30)—£->(Y, Yo) the
pull-back f*(X) is the first order approximation of ¢ : ¥ — (Y, 79) in the direction of the tan-
gent vector corresponding to f - notice that the spectrum of dual numbers embodies the no-
tion of tangent vector to an algebraic space, in the sense that Ty, Y ~ Hom ((S5, s0), (Y, %0))-
Thus we get a homomorphism

ps : Ty (Y)— HY(C,Tc)

called the Kodaira-Spencer homomorphism associated to ¢ : X —(Y, o).
Definition. Let 7 : ¥—(Y,yo) be a deformation of (". X' is said to be complete at yo (or
versal ) at yo if for any other deformation of (',

' Y—(Y', y0)
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there exists a neighbourhood V' 3 y; and a holomorphic map g : V'—Y sending y} to o
such that the restricted family Y[V’ is isomorphic to f*(X) over (V', yg).

Definition. Let 7 : X — (Y, yo) be a versal deformation of C. We say it is universal at yp
if the germ of the classifying map above is unique.

Remark (Uni)versality is a local property, in the sense that if 7 : ¥ — (Y, yo) is (uni)versal

at yo, then it is (uni)versal in a whole neighbourhood of yo.

The réle of the Kodaira-Spencer map is clarified by the following
Theorem. Let 7:X—(Y,yo) be a deformation of C' and suppose that
i)The Kodaira-Spencer map p, is an isomorphism
H)H?*(C,T¢) = {0}
Then 7 : X — (Y, yo) is universal.

A deformation satisfying the above requirements will also be called a Kuranish: defor-
mation.
The theorem above allows one to compute in a very elegant way the dimension of moduli
space of genus g curves. In fact, if g > 2 the tangent sheaf T has negative degree, so the
dimension of H!(C,T¢) is read off the Riemann-Roch theorem as

dimH'(C,T¢) = dimM, = 3g — 3.

Before describing how the this formalism endows the set M, of a complex structure by

(roughly speaking) glueing together bases of universal deformations of nearby curves, we
will discuss in some details the problem of compactifying M.
Needless to say, this issue is of overwhelming relevance as, for instance, most of the known
algebro-geometrical techniques one could hope to use in studying M, work only in the case
of complete varieties. Also, given a family of curves = : ¥ — B having a singular fiber, say
7~1(0), one would like to describe it in terms of a map into a compactification of M, g» Tather
than considering the family of smooth curves 7 : ¥*— (B \ 0) and then "taking the limit”.
As there are several compactifications, we will spend some time in describing them. A first
attempt to conipactifying M, stems from the following construction.

Let C' be a smooth curve and consider a canonical basis {a; ...a,4, by ...by} of the first
homology group Hi(C,Z (see fig. 1) as in §2.3 and the Jacobian torus J(C) = C9/A,
A;; = (6ij|wi;). Besides being a complex torus, J(C') is an algebraic variety and carries an
ample line bundle L such that dimH°(J(C), L) = 1. Summing up
Proposition. J(C) is a principally polarized abelian variety (p.p.a.v.).

Let us now consider the generalized Siegel upper half space, i.e. the set H, of all g x ¢
symmetric matrices with positive definite imaginary part. Given 7 € H, we can consider
the complex torus X, = C9/A,where A, = (I|7)

Considering coordinates z'and 7%/ in C9%nd H,, one defines the Riemann’s theta-
"function” as

0(z,7) = Z exp 27rz'{%t‘p T-p+'p-z}
pEL
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The quasi-periodicity property of the theta-function
t . 1 t t
fz4+n+"m-1,7)= exp27rz{—:2— m-7-m-—"m}d(z,7), m,neZz

insures that it defines a divisor on X, - the so-called ©-divisor. Correspondingly let L, be
the ©-line bundle. One has the following property
Theorem . Any principally polarized abelian variety (X, L) is of the form (X-, L) for
some T € H,.

One declares two principally polarized abelian variety (X, L)and (X', L') to be isomor-
phic iff there is an isomorphism ¢ : X — X' such that ¢*L' = L

Theorem. Given 7,7’ € H, the corresponding abelian varieties (X, L,), (X7, L7) are
isomorphic iff there exists a matrix

A= (f; ‘;) € 5p(29,2)

such that
o a-Tt+ 0

T oyeT+ 46
Consequently, the moduli space of principally polarized abelian variety is given by

Ag = Hg/SP(ZQ,Z)

Now it turns out [Po] that A, is a quasi projective variety of dimension ﬂg}m which admits
- a natural compactification (called the Satake compactification) A;, in which the boundary
BAS has codimension 2.

What matters for us are the following considerations. Let A ¢, the moduli space of pairs
(C,{ay,...,az,b1,...,bs}) of (smooth) curves and symplectic bases for H;(C,Z). Then the
Jacobi map B

J: My —  H4
[(C,{a,b}] ~~~> T= (fbj w,-)

(where the w;’s are a basis in H°(C, K¢) normalized according to (§, w; = §;;) sends

M , into a subvariety [J,of H, called the jacobian locus, and there is a commutative diagram

M, = H,
[
My, — Ag ‘Hg/Sp(ug’Z)

T is called the Torelli map and is injective.

Hence, by identifying My with T'(A,) one gets the Satal\p mmpactiﬁcation of the moduli
space of genus g curves simply by taking ]V[ = T(l\[ ) in 4

Obviously, BM is of codimension 2 in M 3 Th_ls fact has a powerful consequence: a snnple
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application of the classical Hartog’s theorem yields that Af, is quasi-compact, i.e. any
holomorphic function on M, (regular at the boundary) is a constant.

But, by the same reason, (i.e. the impossibility of controlling singularities at the bound-
ary due to the "thinness” of it) the Satake compactification is not a completely satisfactory
one.

A different compactification scheme of M, was proposed by Deligne Mumford and Mayer
in the late seventies, yielding a thicker boundary to M, and a complete understanding of
the moduli space of curves. Roughly speaking the idea goes as follows: one compactifies M,
by adding curves with singularities. The hard task is to decide which singular curve one
has to add, as the following toy example shows [H1]

Consider the genus 1 case. We obviously would like to add to M; a point C. corresponding
to the to the node curve y? = z%(z + 1). Actually, in the family

yz—_-:gz(a:-l-t), teC

all the fibers are isomorphic to C., for ¢ # 0 whilst the curve Cy is the cuspidal curve y? = z°.
Then, in order for the induced map CA—(E-.»H1 to be continuous, the point [Cy] must lie in
the closure of the point [C.]. Take now the family y* = 2% — ¢. Here, again, all curves are
isomorphic to one another except Cp which is again the cuspidal one, and in particular, they
are all isomorphic to the smooth curve €. This shows that the cuspidal curve must lie in
the closure of any point of M, so that such an M; would be non separated!

Mumford’s compactification scheme solves this trouble by choosing a specific set of
singular curves to be plugged into M, as its boundary, the so called stable ones. A word of
warning: even though such curves have nice geometrical properties, what actually dictates
their choice is geometric invariant theory, which is a major tool in Mumford’s construction.

Definition. A stable curve (resp. a semistable one) is a connected reduced node
curve of genus g > 1 such that any of its rational components meets the rest of the curve in
at least three (resp. 2) points.

A satisfactory deformation theory can be settled up for such curves by using a particular
class of Kuranishi families, i.e. the so-called Schiffer variaiions. Let p be a generic point of
C. and consider the following exact sequence

0 — Te—Teo(p)—SF — 0

The coboundary map §, sends H(C, Sf,:) = C—HYC,Te). In terms of Cech cocycles,
considering the acyclic cover {U,V}, where V = '\ p and U is a small disk centered at p
and parameterized by z then a representative of ¢,(1) is

14
Z 0z

Xy =

By Serre duality the map
¢ — PHYC,Tg)

P~ [65)
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is the bicanonical map, so that one gets that Schiffer variations generate H!(C, T¢). Schiffer

variations have the advantage of being easily integrated. Namely one can find a deformation
¥:D—A.={teCllt] <e}

whose Kodaira-Spencer map is 6,. In fact, such a D can be obtained, if A’ is another small
disk of radius €', by glueing

O~ {pe Cs.tlzp) < *;‘} x A, with A’ x A,

t =1t
w=z+§

In general, by choosing 3¢g — 3 distinct general points p; and removing 3¢ — 3 small disks

via the glueing map

around them one gets a family parameterized by 3g — 3-dimensional polydisk, defined by the

tizfi
w=2i+§f

The Kodaira-Spencer map of this 3g — 3-dimensional Schiffer variation is the coboundary

glueing law

map § in the exact sequence

Diresy, 3g—3

L= — (O, To(T3%p:)) " 020,° SE - HY(C, To)— HY(C, To(T393p:)) — -
Now, denoting as usual *(C, L) := dimH*(C, L), one has

R(C,To) = h'(C, To) = h°(C, K&(—-X3°*pi))

T4

where the second equality is just Serre duality, while the first comes from Riemann-Roch -
noticing that deg(T¢( ‘:’g"‘g pi)) = g — 1. Then § will be an isomorphism, and hence the
Schiffer variation above a Kuranishi family if and only if A%(C, K2(32297° p;)) = 0. But this
can be achieved by choosing the points p; according to the following strategy.

Let 3; be a non-zero holomorphic section of K2 and let p1 be such that s;(p;) # 0 so that
RY(C, K*(—p1)) = h°(C, K?) — 1. Then let s, be a non-zero section of K?(~p;) and choose

p2 where s, is not vanishing. Again
KY(C, K*(~p1 — p2)) = R%(C, K?) — 2

Inductively, one can find pi,...,p; such that A°(C, K*(- 3, = 1/p;)) = h(C, K?) — ;.
Obviously this process ends after 3g — 3 steps as, by Riemann-Roch, RY(C,K?) = 3g — 3.
Notice that there is no flaw in this argument, as, at each step we are dealing with line
bundles of degree > g and again Riemann-Roch insures that they have at least one non-zero
holomorphic section.

A similar procedure can be applied to the study of deformations of stable curves [ACGH].
In fact a stable curve C' can be thought of as being qualified by its normalization Ng and
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the identification of the preimages of the nodes p; as py ~ ¢1,...,pr ~ ¢,. Then we start
from a universal deformation of N thus getting >

1=

. m(N;)-parameters, where the N;’s
are the connected components of N and

0 ifN;~P!
m(N;) — 1 1fg(Nl) =1
39(N;) — 3 otherwise.

Taking into account that P! has PGL(2,C) and an elliptic curve a complex torus as auto-
morphisms groups, we see that the total contribution of any component N; is 3g(N;) — 3.
Then we can deform by identifying a point near p; to a point near ¢; getting 27 more pa-
rameters, and r additional parameters occur as a result of smoothing the nodes (these are
the transversal parameters to the boundary.) Summing up we have that the dimension of
the base space T of a universal deformation of C, Y— (T, t) is '

v

dimTzi(3g(Ni)~—3)+3r:3(Zg(N,;) —1/+r+1> -3=39(C)-3

i=1

To complete the discussion, let us sketch how a natural complex structure can be given
to the set YVTQ. Natural here means that it must be induced by the notion of family, in a
sense that we are going to describe.

First of all, notice that every genus g curve C' can be holomorphically embedded in
P59-6 by the means of the tricanonical map. Every automorphisms vy of C' will induce an
automorphisms of H°(C, K®) but, as C is embedded in PH?(C, K?), v is the restriction
- of an automorphisms of PH?(C, K®) so that Aut(C) is a discrete algebraic subgroup of
PGL(5g — 6,C) and hence is finite.

Now let C be a genus g stable curve and suppose

L=

(S,So)

is its universal deformation; as was noticed when dealing with deformation theory, one can
assume that it is a universal deformation for every s € S. Taking v € Aut(C) and replacing
¥ with $oy one gets another universal deformation of C, say C'.

But, via the defining property of universal deformations, there exist unique automorphisms
a and b, respectively of S and C such that

c ¢
|~ |

Ty

(S,50) = (S.s0)

commutes, a,(3g) = 39 and¥oy = b0 ¥



36

If some other element v’ € Aut(C') carries s to s', then 77 !(s) ~ 77!(s) so that the
map from S to M, factors through S/Aut(C), i.e.

S
N
lx
,,/‘
5/G

Then, by means of geometric invariant theory, one can show that [Mu2,DM] S/G has a
natural complex structure under which y is holomorphic that can be transported via n to an
open subset of Hg. Namely, a local continuous function on ]T/fg will be called holomorphic
iff its composition with ¢ is holomorphic , or, in other words, we can give _M~g the unique
complex structure obtained by glueing together bases of universal families of isomorphic
curves.

Final step is to show that the procedure of adjoining to M, stable curves is "exhaustive”
and gives rise to a compact space. This is achieved by means of the stable reduction theorem
which, roughly speaking, asserts that every family of algebraic curves admits a stable limit.
Without entering the details - actually the hard part of the proof is covered by a semi-stable
reduction theorem and uniqueness of the limit requires stability - we can state it in the
following form.

Theorem. Let X be a complex space and XA a proper map such that #—(¢) is a
smooth algebraic curve V¢ # 0.
Then there are an integer n, a family -~ A and a commutative diagram

vomli(0) 2 X\ amY(0)

[1]

m™

A\EO} = AN{0}

where a(t) = ¢" andf[,-1(; is an isomorphism V¢ # 0.

Most of the geometric structures we encountered when dealing with the Teichmiiller
theory carry over to the moduli space. Namely, for some of the computations to be done in
the sequel, we need the following results on the extension of the Weil-Petersson metric to
the boundary of moduli space [Wo]. Recall that, in the Teichmiiller case, this metric was

expressed as

1 o= . -2
<X,)Y >= ;/ ATEX Y X, Y e HY(C,KE)
< Jc
If wy p is the Kahler form associated to the Weil-Petersson metric and wy, is its expression
in Fenchel-Nielsen coordinates, then it holds:

i)wwp and wey define two smooth forms on M,.

ii)ww p extends to a closed current on Hg, while wpy extends to a smooth symplectic form
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on M,.
iil) wew € Hbp(M,).
iv) wk, is a nontrivial class in HF5(M ,).

v) The Weil-Petersson volume of M, is finite
Vi) wpy and wy p define the same Cech cohomology class in H?( f/;—fg, R).

2.5 Mumford’s theorem and applications of the
Grothendieck-Riemann-Roch theorem

Let us now describe divisor theory on I{[—g, following works by Mumford, Harris, Ar-
barello, Cornalba and others. What one wants to end up with, is not only a formal descrip-
tion of Pic(ﬁg) but a classification of line bundles on ]171_3 built by means of geometrically
significant objects. First of all, we have to describe how to extend to singular curves abelian
differentials and other sheaves [See e.g. Ba]. We have already remarked that, on smooth
curves, the abelian differentials play a twofold role
(a) they are holomorphic sections of the cotangent sheaf of
(b) they enter Serre duality theorem.

Actually, this is an accident due to the fact that a curve is a 1-dimensional complex manifold.
More in general, let X be a smooth projective variety, and let K x its canonical sheaf. Then,
- Kx is an object that "allows” to do duality in the sense that

i) HM(X, Kx) ~ Hg’n(X) ~ H"(X,Z)@ C~C

and the isomorphisms above are all natural

ii) Given any vector bundle E-55X a canonical isomorphism is given

H(X,E)ySHY "X, Kx® E™)

Then, given a possibly singular projective variety X one is naturally lead to the following
Definition . A dualizing sheaf wx for X is a coherent sheaf together with an explicit
homomorphism H™*(X,wx) — C, called the trace homomorphism, such that for all coherent
sheaves F on X the pairing

Hom(F,wx)x HY(X,wx)—-H™"(X,wx )—C
is non-degenerate.
The following facts are known

i) such an wy, if existing, is unique.
ii) wx exists and is locally free if X is a projective variety, subjected to the technical condition
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of being locally a complete intersection.

iii) if F is locally free and coherent

=

HY(X,F)—= (H(X,wx ® F"))

iv) if X is smooth, then wx coincides with the canonical sheaf.

Now consider a proper smooth morphism of algebraic varieties 7 : X'— B and the
associated sheaf exact sequence

0— W*Q]B—’*Q}?‘—*QEY/B -0

where Q, /B = QL /7Y is the sheaf of one-forms along the fibers. Taking the maximum

wedge product in the exact sequence above one gets
Q% /p=wx® (r*wp)”

so that
Definition . The relative dualizing sheaf of the family = : ¥ — B is the invertible sheaf

wy/p =wx ® (r*wp)”

The ultimate reason for doing so relies in the following
Proposition . The restriction of wy,p to any fiber F of 7 is the dualizing sheaf wp.

On the other hand, the generalization of the sheaf of (relative) Kahler differentials to
the case of (families with) singular fibres is done by looking at the singular variety X as
embedded in a bigger smooth one V and then considering the restriction to X of Kahler
differentials on V and imposing Leibnitz rule. It turns out [Mu2] that the relation between
the relative dualizing sheaf and the sheaf of relative Kahler differentials is

Q}:/B = Igin, "We/B

where I, , is the ideal sheaf of the singular locus.

In more direct terms, let us consider a family C——D over a disk D such that =~1(0)
is a noded curve and the local equation defining the node is zy =t t € D' C D. Then
the restriction of the relative dualizing sheaf to 'y (which is, by the proposition above, the
dualizing sheaf wg, ) is the sheaf whose local generator is a nonvanishing abelian differential

T d
at smooth points, and — on the branch y = 0 (—y on the branch 2 = 0) near the node
T .

zy = 0. By contrast, in a neighbourhood of the node. the sheaf of Kahler differentials is
generated by dz and dy subjected to the relation ydz + zdy = 0. In particular, the latter

sheaf is not locally free.



39

We are now in a position to discuss Mumford’s theorem and the Picard group of moduli

spaces. First of all we have to introduce two more varieties, namely

— — —0
M, 2 Mg,req 2 Mg

where M .., is the open set of smooth points of M, and M is the set of automorphism-
free curves. We are restricting our discussion to M ,, because when dealing with M, the

nonexistence of the universal curve
C—M,

generates subtleties to be treated with more sophisticated techniques. As we have outlined
in §2.4 the Deligne-Mumford compactification of M, amounts to adding the divisor A of
one-noded genus g curves which can be expressed as

lg/2]

A=>"6

=0

where the C' € §;,7 > 0 iff its normalization N¢ is the disjoint union Ng = Ny U N, with
g(N1) =1 g(N;) =g—iand C € § iffl N has genus g — 1 i.e. if it is obtained from a
genus g smooth surface by pinching a handle.

Let us consider the universal curve C——-«:]\—ZZ the relative dualizing sheaf w, oy and

its powers wg/ﬁo. The Grothendieck-Riemann-Roch theorem for n-canonical relative forms
gives ’
Ch(mwg/m) = . (Chw(:/ﬁ;’ -TdQE - w*(TdQle)“1>

which can be simplified , by means of the following exact sequence

0 — Qc/méﬂé—t*—)ﬂ%f; — 0

which yields

TdQg - (7" TdQ) ™ = TdQ} 7

to

- n 1
Ch(mwc/m) = T {Chwc/m TdQC/'AZ‘;

Now one has that mw™ = T.w? Rim.wm as w” is invertible and so its higher
s e/t © c/at) 2 Ve ar ~ g

q
direct image sheaves vanish. Also, w;‘ e restricts to each fiber C'; of the family to wg so
J i

n 1 n
that, forn > 1 deg,.elwc/ﬁo < 0 and hence R r,wC/M

Oﬂn and hence does not affect m so that one can rewrite the formula above as
q

—— —_— 1 N
ﬁ;—Oandforn_l R mwc/ﬁ;_

1 _ 1 n 1
C h(ﬂ'*wc/'ﬁ‘;) =T C/hwc/i?‘; TdQC/XiJ
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Expanding both sides one gets

C1 (wn —-—0)2
Ch(ruw? —o) =7 | | 1+ ci(w] 02/M“’

¢/, ) T

/M,

1 (Ql/__o) . cl(ﬂé/ﬁ;)z n CZ(Q}:/E,) N
a 2 12

so that, by extracting the right codimension piece one has

(@ ) + 2 5p0)
cl(w*w;’/_ﬁo) = ¢y( det W*wg/_ﬁg) = . 0 -

g

c1(Wg 50 ) (Qé/M) (g 5 i)
- 2 - 2

Let us now forget for a moment the boundary of moduli space 87@4; and work on M,.
There one has that the dualizing sheaf and the sheaf of Kahler differentials coincide, so that,

denoting A, := m.( det wg/Mg) one has

1
c1(An) = 12(611 —6n+ 1)7r*[C1(Wc/M )2]
and, in particular,
1
e1(N) = —=mufer(weynr, )]

12
" so that one arrives at the celebrated Mumford’s formula

c1(An) = (6n% — 6n + 1)er(A)

Taking into account the boundary requires a careful use of the relation between the
sheaf of Kahler differentials and the dualizing sheaf in the form given by the following exact

sequence
®OC s ing

OQQC/M—WJC/H‘; — C/M ®OCan =0

The Whitney product formula of the total Chern class applied to this sequence gives

1+c1(wc/ﬁn):(1+c1(ﬂc o)+ ca(f o) + ) (14 ea(Oc,,) + (O, ) + )

One can deduce what are the first Chern classes of Q! ¢ /37" by means of the following

Lemma . Let X be a smooth variety, ¥ an r- codnnensmnal subvariety of X and F a

coherent sheaf on Y. Then, considering F as a sheaf on .\ it holds

0 1<i<r-1
ci(F) = { ((__)r—l(r - WYirkyF)Y i=r
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Then, as Cyngy is of codimension 2 in C, one gets

Cl(Qflf/J_W-g) = Cl(wcfﬁ‘;)

CQ(Qé/Mg) = [Singc]

0
The Grothendieck-Riemann-Roch formula (on Hg ) thus gives

cl(/\n) =

_ CI(WC/M‘;)Z + [Csing] N (n2 )ﬁ(wc/-ﬁf;)z
- 12 n 2

Now, 7.([Csing]) = A, the locus of singular curves, and the above formula, taking n = 1

ma(e1(wy 50)?) + [A]
Cl()\) = T z

gives

12

so that one obtains the extension of the above Mumford formula as

e1(0n) = ex( detms? ) = () (12600 = [A]) + (1)

The equality between Chern classes can be transplanted to an equality between line
bundles by means of the following remarkable result [AC]
Theorem . For g > 3 the Picard group of the moduli ”space” ffg is freely generated by

the classes
A, b0, o O1g/a

Thus, setting g = A2 ® A~!, Mumford’s theorem can be expressed as

L

A = 1(3) @ A

In the applications we will also need the boundary behaviour of the canonical bundle
Kp0. This can be obtained again from the Grothendieck-Riemann-Roch theorem, by means

of the following argument [HM]

We consider the sheaf F = Q!

¢/ ®wc o Then, 7. F ~ TJ_"‘?j and R'7.F = 0. As observed

/
before

c(K5p0) = e detT ) = Cl(TY:T’) =c (7. F) = ey (mF)
so that Grothendieck-Riemann-Roch gives
er(Fey(QF - ) cl(S'Zé/ﬁ;)Z + cz(flé/ﬁ;)

2 * 12

a(Kzp)=m | —5—
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and taking into account the relations c;(F) = 2¢; (wC/M"’)’ ¢2(F) = [Singc] one gets

Cl(

wC/MO )2 + [SingC]
(K3p) = ma |13 : — 2[Singc]
g 12
and hence
Kﬁg = 13X~ 26

2.6 Some physical applications

The (heuristic) computations reported in chapter 1 lead to the following expression for
the genus g contribution (or g-loop summand) to the Polyakov’s string partition function

det'(Ao - '
Z, = const - / —S2 1 deth Ay dy
w, | I

where dv is the Weil -Petersson volume form and the meaning of the (-function regularization
has been discussed in §2.1.

Let us now consider a sufficiently fine covering {U,} of the moduli space of smooth curves
M,. Then, considering the universal family (pretending it exists) C—— M,, one can find

a local holomorphic frame for T, P i.e. a basis ¢1,...,p, for the space of abelian

differentials on C, = 771(s) dependjng holomorphically on s € U,. Let also t1,...,t34-3

be coordinates in U, and let 9y,...,9¥34_3 be relative quadratic differentials dual to the

coordinate vector fields z-, ..., 572—. Then the integrand for Z, can be rewritten (locally)
1 3g9~-3

as

3g-3 = i —-13 li
(det < @, 05 >)12 [ |1] - det < @, 05 > det < Y4,%p >

Let us denote

Fy =

' -13 ,
det, Ao dety A,
I1) - det < wi, 05 > det < ¥4, yYp >

and us
g _
T, = 1 dt; A t;

(det < pirip; 5]




Then, F, is the product of two Quillen norms, and, precisely,

Fo = 1@ det(pr1,. .., 0I5 - Idet(vhr, -+ 1iso-3)15"
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where 1 @ det(1,...,@4) is a section of £ = detr.O ® detmwc/ﬁ) and det(ty, -, ¥34-3)

2
—0-

is a section of £y = detm.w
c/M,

Quillen’s theorem gives then an equality between Chern forms

1 -
57}—1'8610g Fa = 1361(A) - Cl(/\Z)

But then, by the Mumford formula described in the preceeding section,
1 .=
c1(An) = (6n% — 6n + 1)c1(A) so that —z?iaalog Fo=0
Thus there exists on every open set aa a local holomorphic function f, such that

Fo = |fa'2

Summing up one has the algebro geometrical proof of the so-called Belavin-Khniznik local

holomorphic factorization theorem, asserting that locally the string integrand is the modulus

squared of a holomorphic function. The physical relevance of this fact can be deduced from
the following argument [BK]|. Viewing string theory as a conformal field theory of matter

fields plus ghost fields, the second variation of the effective action 90 log F, can be expressed

as the correlation function of the total energy-momentum tensor 7 = TX + T9" as

0m%&=/¥MTWMMU<ﬂ@ﬂﬁ>

so that requiring conformal invariance (in this picture the decoupling of left and right movers)
is tantamount to requiring the vanishing of 99log F,, i.e. local holomorphic factorization.

Moreover, ‘a holomorphic factorization holds also globally, (at least for ¢ > 3) in the

following sense. Let s be alocal section of A3 ®0397% and define the following operator[C1]:
M.‘7

V OTU A0 — T(la, Q58 °%7°)

s = 5— AL (—)'“;3 (i/2)30—3§ﬁ.

lo}?

where | | here means the 13" power of the norm on A defined by

ldet(py, ..., gl = det(< 1,5 >)

A glance at the integrand of the string partition function shows that, in any coordinate chart

U, it can be expressed as
Vo Fy = Ao = V(ay)



44

dty A Adtsg g

awlpr, ey
In each overlap U, NUg then it will hold

where a, =

Aa = ,LLa,BA,B

where |tap] = 1 as the A,’s are squares of norms. By a classical theorem of complex analysis,
provided the covering {U,} is sufficiently fine, the pog’s are constant and so define a Cech

cocycle
[nap] € H' (Mg, U(1))

which can be considered as a cocycle in the singular homology group H;(M,, U(1)) as Cech
cohomology with values in constant sheaves is isomorphic to the singular homology with
values in the same group. The universal coefficient theorem thus gives

Hy (M, U(1)) ~ Hy(M,, 2) ® U(1)

and Harer’s results on the homology of M, proves that, actually, u,g is a coboundary,
Hap = Va/V3.

Putting things together one gets global holomorphic factorization in the form [CCMR]
Theorem . If g > 3 there a global nowhere vanishing section a € H*(My, A-13® ﬂ‘;’\g;?’)

such that
Zg:/ V(a)
M,

As a last topic we want to discuss the singularities of the integrand near the boundary
BM{;. The integrand A constructed above can be thought of as the modulus squared of a
holomorphic section a of L = A" ® Q%{Ii,_ ® defined everywhere except along the boundary
A=36. '

Recall that the Grothendieck-Riemann-Roch theorem applied to the canonical bundle Q%{ﬂ? 3

yielded Q;_j{?’ ~ A3 @ O(-2A) so that
L~ O(-24)

Being _AZ{; projective, L admits a meromorphic section ¢ with a double pole along A and no

zeroes, so that the quotient f = a/¢ is a holomorphic function on all of Mg. But as Mg is
quasi-compact, a/@ is constant so that the results gotten by means of Selberg trace formula
techniques [GIJR] can be recovered in this algebro-geometrical setting, namely:
Theorem . a is a meromorphic section of \71% @ Q%%TE' with a double pole along A.
v

For a complete understanding of the boundary behaviour of the string integrand the
only piece that is missing is thus the analysis of the norm | ['* on A. Let us work in the
neighbourhood of a general curve (', € A, (i.e. ('p is a curve with one node in p) and let,

as usual, ¢: ..., @, be a local holomorphic frame for W*WC/W“'
My
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If Cp € 6; i > 0 the problem is straightforwardly dealt with. In fact the normalization N, of
C has two components, N; and N, and each differential ¢; restricts to a differential having
at most a simple pole on Ny, h = 1,2. But, by the residue theorem, a holomorphic 1-form
having at most a simple pole has no poles at all, so that

< @i, Pj >:/C<Pi/\¢j

is finite and so |det(¢1,. .., ¢4)|* extends continuously across ;. o d;. It also has no zeroes,
as one can choose the first 7 differentials to give a basis in H°(Ny, K,y and vanishing on
N, (and conversely for the remaining g — ¢ so that the matrix < ¢;,¢; > is block diagonal
and its determinant is non-zero.

The case ', € &y is somehow different. Namely, a convenient basis for H°(C,we, ) can
be chosen as follows
©; is regular on N¢g if 7 > 2;
©1 has two simple poles with opposite residues at the preimages of the node p.
Let us consider what happens along a small disk transverse to dp (i.e. what happens when
»pinching a handle”). The relevant deformation will be C-~D, D := {t € C, |t| < r}, and
the equation defining the node is zy = t. Moreover, let

B:={(z,y) €C, |z| <1, [y| <1}

Then
< P, PR >C, = / w1 N\ Pr = / ©1 A @ + finite terms
C, cyNB
d bd
But, near p, ¢ = i +___§’ a+b=0 and ¢psy =cde+ e dy so that
z

B 5 dz AT
e1 A g1~ |af —7 ~ loglt]
C,NB jtl<|z|<R ||

while

T

de AN Z
/ w1 N @Pp x / TRz which is finite.
C¢nNB |t|<|z|<R

As before the determinant of < ¢p, ¢ >, h,k > 2 is non vanishing as they restrict to a
basis for the abelian differentials on N¢, .

Summing up one has the following boundary behaviour for the integrand of the string

partition function
const [¢t]74 oné;, 1>0
\/ — 1
(a) {const |t|=*log[t|™'® on &

This analysis has a nice physical picture. In fact the power expansion of the integrand
near the boundary is the device for the bookkeeping of what in an operator formalism is
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interpreted as the mass spectrum of the string modes (particles). In particular the mass
formula associates to a fourth-order pole the propagation of a tachyon and to a pole of
order 2 the propagation of a massless particle (the dilaton). Notice that by formula above,
they are both divergent after integration in the case of dividing nodes (d;, i > 0), while, in

12 is integrable, a fact that can be

the nondividing case, a term growing like 1/|¢|?(log |¢|)
interpreted as signalling the propagation of a massless particle around a tadpole, which, in

two dimensions, gives rise mild logarithmic divergences in Feynman amplitudes.

2.7 Moduli of 4-characteristics

In this section we want to describe the moduli space of #-characteristics and their com-
pactification. Given a family of curves C N , @ (relative) #-characteristics is an invertible
sheaf £ over C which is a "square root” of the relative canonical sheaf w¢,s i.e. such that,
Vs e § L? Fr-1(s) = Wr-1(s)- A O-characteristics is called even or odd according to the
parity of dim H°(C, L). There are 2971(29 4 1) even and 297!(29 — 1) odd #-characteristics
, adding up to a total of 229,

Mimicking deformation theory of stable curves, one can define a deformation of a
(smooth) #-characteristics (C, L) to be a relative §-characteristics [H2], i.e. a diagram

L L
N N
c - X
! =
p — S

such that the isomorphism ¢ : C — w~!(sp) induces an isomorphism of L and i*£,. More
generally, one can deform all §-characteristics (C, Ly,...Ln), (m = 229) on C, by giving
229 sheaves Ly,,..., Ly, on X satisfying the above property. In this way we get a 229-fold
covering of the base space § of A'. :

Recalling that #-characteristics on an algebraic smooth curve are in a (non-natural)
one-to-one correspondence to points of order 2 on the Jacobian J(('), a more concrete way
of describing such a covering is to consider the family 7 : 7 — § of Jacobians associated
to the deformation = : X — § of (', whose fibre 77! (s) is precisely the Jacobian of 7 ~1(s).
The choice of (C', L) gives us its deformation L., over X and 229 sections oy, ..., 0, of J
over S gotten by setting o; = L., ® L;ll. Their image is the desired covering of 5. When
dealing with smooth curves , this local covering extends by isomorphisms to the whole M|,

thus realizing the moduli space of §-characteristics over smooth curves S, as a 229-fold of
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M. The problem is that, when considering singular curves besides the smooth ones, trouble
can arise, as the following example shows.

Let us consider a family of elliptic curves parameterized by a small disk A € C as
follows. Set 7 = In(b)/27i, b € A, and consider the lattice A, C C generated by 1 and
7. This acts holomorphycally on A x C by translations on the second factor. The quotient
X = A X, C is a family of tori degenerating to a single-node curve for b = 0. At genus
one all #-characteristics have degree 0 and one of them is isomorphic to the structure sheaf
O, . So the other three naturally corresponds to points of order two on the Jacobian, which
in turn coincides with the torus itself. So, on A \ {0} we get the following sections of
J=X—-A ‘

oy = 0; oy =1/2
T/2+1/2 (mod A,)

o3 = 1/2; oy

where 7 = 7(b) as above.

We can now clearly see three phenomena. First of all, we have monodromy in the
covering, because a rotation around b = 0 exchanges the two sections o3 and 4. Second,
these two sections are 'asymptotic’ for & — 0 (|| — o00), meaning that there is branching in
the covering (recall that the Jacobian of a torus with one node can be compactified getting
again the same torus; being asymptotic here means that the two section above go to the
node in the limit.) Finally, this limit point cannot be interpreted any more as an invertible
sheaf, but corresponds to a more general coherent sheaf.

If we abstract from the peculiarities of genus 1, the picture we get from this example is
general. In particular, the three phenomena mentioned above, i.e. monodromy, branching
. and the appearance of more general sheaves than sheaves of sections of line bundles reproduce
themselves at all genera. For instance, such sheaves occur in the compactification of the
moduli of #-characteristics recently constructed by Deligne [D]. A different way for getting
a compactified moduli space of §-characteristics has been given by Cornalba [C1]. This
involves the addition to the moduli space of smooth curves of a wider class of singular
curves, (namely a certain subclass of semistable ones), but have the desirable feature of
yielding invertible sheaves as "limits of #-characteristics ”. k

In a certain sense, the whole construction stems from the observation that the ap-
pearance of monodromy and of non locally free sheaves are somewhat related. In fact, let
7 : X — A be a family of stable curves with smooth fibres 7 ~1(¢), (¢ € A\ {0}) and assume
for simplicity that Cy itself has a single node. In other words, ¢t € A is a local coordinate
transversal to some component §; of the boundary of the Deligne-Mumford compactified
moduli space Hg. The local equation of X near the node of the central fibre can be written
as zy = t. It follows that, in spite the central fibre is singular, the (2-complex dimensional)
surface A" is smooth. Next, assume a family of #-characteristics £, is given on & \ 771(0),
and ask whether it can be extended to the whole of X'. We can get rid of monodromy, if
present, by double covering the base of &, i.e. by setting t = f(¢q) = ¢* and pulling-back
A to get a deformation YV = f*& over another disk Q. The local equation for the singular
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point now reads zy = ¢?, which clearly shows that Y is singular at the node on the central
fibre. So f*L! cannot be extended as an invertible sheaf. To get such an extension, one first
smooths out ) by blowing up the singular point. The family Z — @ gotten in this way is
the same as ) off the singular point, while this latter has been substituted by an entire line
E (a copy of the Riemann sphere), called the exceptional line. Thus the central fibre is now
a semistable curve Cy. Its normalization has two components, C' and E given respectively
by the normalization of C' and by the exceptional line E. On Cy, E and C' intersect in two
points p;,pz given by the preimages on C' of the node on C. If a,b (a = 1/b) are local
coordinates on F, the blow up is given by

ar = q
{ by =g
which shows the presence of two nodes at ¢ = 0. In spite that C' has been replaced by an
even more singular curve Cp, now Z is smooth and L] can be extended to L, on the whole
of Z; we denote by Ly the sheaf we get in this way on the central fibre.

Clearly enough, such an extension £, is not unique, because by tensoring with any
sheaf of the form O(nE) one gets another extension. The basic fact which matters for us
is that one can judiciously choose the extension £, so that the restriction Loz of L, to E
is isomorphic to O(n) with n either 0 or 1. To see why this is so, assume that £, was
O(s), then L,(nE) restricts to Lo | g(—np; — np;) which is then isomorphic to O(s — 2n).
Therefore, by suitably choosing n the degree of Lo [ can be adjusted to be either 0 or 1.

Let’s now see the relations between £, and f-characteristics . For ¢ # 0, Eg = Wq,
where as usual the subscript ¢ indicates the restriction to the fibre of Z over ¢ € Q. So
degLy, = g — 1 and the same is true for £,. We have thus two cases

Proposition . Let wy be the dualizing sheaf of Cj.

a)if degLolz = 0 (and then degLolo = g — 1) we have that L3 = wy.

b) if degLo gy = 1 (and then degLo !y = g — 2) we have that LI(E) = wo

Proof. We first recall the intersection properties of the divisors C' and E on the surface
Z[Hart]. Since C' + E is homologically equivalent to a generic fibre Z, which does not
intersect either C' or E, we have 0 = E.(C'+ E) = E.C' + E.Eand 0 = C'.(C'+ E) =
C'.C' + C'.E. As by construction C' and F intersect in two points (i.e. C'.E = 2), it
follows that C'.C' = E.E = —2. Notice also that, being Z — @ a family over a polydisk Q,
F(C'+ E) = F for any sheaf F. The tensor product w, ® £;? is trivial off the central fibre
and therefore we must have

wr ® L7? = O(mC' + nE)
for some integers m,n. From the relations above, it is easy to compute the degrees
dor := degO(mC' + nE) o = mC'.C"+nE.C" = —2m + 2n

dg := degO(mC' + nE)l g = mC'.E+nE.E =2m — 2n
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To prove a); notice that degw, = 29 — 2 = degﬂzc, yielding dgv = 0, that is m = n, and
O(m(C' 4 E)) is trivial. As for b) the same reasoning leads to dgv = 2, dp = -2, ie.
n=m+1,and O(m(C'+ E)+ E)=O(E)m

This result generalizes quite nicely what is usually meant by 'plumbing fixture’ in the
physical literature. In fact, sticking to the case of a single separating node, we have the
following situation. The normalization of C' has two components C; of genera g;, (i = 1,2)
with g1 + g» = g and the dualizing sheaf of C restricts to w;(p;), on C;. As these have
odd degree, only b) applies in this case. In particular LZ(E)[o = L*(p1 + p2) restricts
to C; to L%*(p;) which is isomorphic to w;(p;). Hence, giving such a limit #-characteristics
on Cy is tantamount to choosing 6-characteristics on the components C;. We have then
2291 2292 = 229 ipequivalent choices.

A less common picture arises for a single non-separating node, where both cases a) and
b) apply. This is to be expected as the genus of C' is g—1 and the number of §-characteristics
on it is only a quarter of what one would like to have. The correct number is restored on
Co in the following way. If L, |y is trivial, L. |o is one of the 22(9—1) square roots of
wlgi(p1 + p2). Notice that these do not come from §- characteristics on the normalization
of C. An extra factor of two is given by the two different identifications between the stalks
on the points p;’s, yielding in total a half of what we need. The rest comes in the same way
when L, g is O(1).

Remark - The proposition above tells us that we can get a line bundle as a limit of
a family of §-characteristics by simply blowing up the nodes on a family of stable curves.
- Actually this is not always necessary because, when L[ is trivial, one can safely blow
down the exceptional component E, reverting to the previous family of stable curves. These
are precisely the #-characteristics which have already a limit as line bundles. In general,
however, one has to deal with families of semi- stable curves. Luckily enough they enter the
game with extra data, leading to the notion of ’spin-curves’ [C2] as triples (C, L, ¢), where C'
is a semistable curve with disjoint rational components E; (briefly speaking a decent curve),
L is the sheaf of sections of a line bundle of degree g — 1 on C such that Llp, = O(1),
¢ : L* — we is a homomorphism vanishing on all E;’s. These generalize the one-node
case and allow a compactification S, of the moduli space S, of §-characteristics on smooth
curves, much alike the Deligne-Mumford compactification of ordinary moduli spaces.

Without entering too much the details of this compactification scheme, we simply quote
the following results [C2];
1) Eg has a natural structure of a normal projective variety, 8§g = Fg \ Sgis a closed proper
analytic subvariety of ?Q, and therefore S, is an open subvariety.
2) The natural map x : :‘?_g ——>HQ given by forgetting spin structures and reverting to
stable models (i.e. blowing down all exceptional components) is finite.
3) Since the parity of a §-characteristics is invariant under deformations, .,?g is the disjoint
union

Eg = _5'-;- U E;
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of the two closed irreducible subvarieties of even and odd spin curves of genus g.

From the topological point of view, ?j and §; are much alike, the only difference being

the order of the covering
+(

XH") :—5-9 B —————}-Mg
so that, for a closer description of their boundaries one can con51de1' just one of them,
say S . Then, the previous introductory analysis shows that BS consists of the following
dJVISOI‘S (see fig. 6):

i N
A\ f
L~ -
N D reeeeeeeneenes > H = Vo
/T \
\

] \/&
i
\ (, y
Xf: """"""""" >\ i
/ N~
! ~

e

- vy, made of one-node curves with a square root of the canonical bundle (case a of the
Proposition above).

- v}, consisting of classes of semistable curves with one-node irreducible model and with
an invertible free sheaf (corresponding to case b).

- v, 1 > 0, parameterizing classes of semistable curves with stable model consisting of
two components of genus i and g — i and with an L as in case b).

In the sequel, the boundary classes of odd spin moduli spaces, :ST; will be denoted for
the sake of simplicity in the same way although one should actually distinguish between
e.g. v and vy . For instance in the even (odd) case, v; consists of semistable curves with
an L restricting on the two components to both even or odd (one even and one odd) 6-
characteristics. Also, denoting with §; the pull-back to AI £ of the boundary classes of
M, consisting of stable curves with components of genera i and g — i, one has [C2]:

'
b = g +21/0

§i = 21/{
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To grasp these relations, notice that § = ) §; coincides with the image of the nodes of the
'universal curve’ [HM)]. This has precisely one node over vy and two nodes over all the other
boundary components.

As we discussed in §2.5, the major tool in controlling the behaviour of determinants of -
operators in the Polyakov bosonic string was the Grothendieck-Riemann-Roch theorem. We
will now briefly see how this can be applied in the present situation. As usual we will pretend
that there exists the universal curve C over spin moduli spaces. What we are going to say is
actually rigorous if one restricts himself to work on the open and dense subvariety Fg made
of spin curves without automorphisms, which obviously cover the subvariety fig under y.
Let then 7 : C — ?3 be the 'universal’ spin curve of genus g. This comes together with an
invertible sheaf L, fitting the diagram

Lo
N
C

1K
—0
59

which represents the 'universal’ spin structure. On C we have as well the relative
structure sheaf O, and the relative dualizing sheaf w,. Recall that, if we have a family of
relative 9-operators coupled to an invertible sheaf F on C, its determinant detd is a section
of a line bundle det m F on Eg with first Chern class
1

ey(mF) = A+, [%Cl(F).cl(F)] _— [—

e (P)es )|

where ' denotes intersection in homology (or better in the Chow ring), . is the Gysin

homomorphism and we have set
A= ¢y (mwy)
for the Hodge class of 5{;. As in §2.5, one finds that
To(c1(wr).cr1(wr)) =120 = §
where § = ) §; is the boundary class.

In fermionic string theories, one is interested in computing Chern classes of integral
powers of L. Mumford’s formula still applies, yielding the following relation

]- 9 el I
cl(mﬁfrs)) = (652 —6s+ 1)\ — ;(,«” — S)vg — (28" — sy

<

where v' = v{ + > v; is the boundary class corresponding to semistahle spin curves with

exceptional components.



3. ‘Super’-algebraic Geometry

and fermionic string theories

3.1- Two dimensional supergravity
and Super Riemann surfaces

In the last chapter we will consider fermionic string theories, with the aim of testing
how far the algebro-geometrical techniques discussed in the previous chapters can be pushed
on in the analysis of such theories. In this introductory section we want to give a sketchy
account of which are the steps that lead [Pol2, D’H-P] to the notion of super Riemann surface
and to the expression of the superstring partition function as an integral over ”supermoduli
space”.

The starting point is the supersymmetric extension of the Polyakov action for the Bose
string, i.e.

1 . . 1
S = 5 /}: dzg\/ﬁgaﬁaaz -0z + Yiv™ - O + XoY 7/3(8g.’c + 5}{/31#)’90

where g, is the metric tensor on the surface ¥, the z’s describe the embedding of ¥ in
RP, ¢ denotes a collection of two-dimensional spinors (whose precise specification differs
according to the model an the signature of the base space) and x is a spin 3/2 "gravitino”
field.

The action above can be studied also by means of superspace techniques, i.e. by intro-
ducing two ”anticommuting” coordinates 9!, 9? (see §3.2 for precise mathematical definitions
of this kind of procedure) besides the {’s. In analogy with the usual case, one introduces
complex coordinates

z=6 +1i& 0 =0 4

and their conjugates.
The symmetries of the above action amount to the so-called Superdiffeomorphism group
SDiff, to the SuperWeyl group SWeyl and, having to deal with local frames, to the frame
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group (i.e. a local U(1) group). The N = 1 supergravity multiplet consists of the su-
perzweibein E M and a U(1)-superconnection s, from which the covariant superderivative
Dy can be constructed. Then, from these building blocks, one defines curvature and torsion
and [Ho] imposes some constraints in order to get rid of the extra degrees of freedom involved
in locally supersymmetric theories. In this sense the above symmetries can be viewed also
as the local transformations which leave such constraints invariant. One defines then the
flat N = 1 superspace to be given (in real coordinates) by the following superzweibein

El=46

a
m m

Eg=0

Ef= (1)) Er=57

(here greek letters refer to anticommuting coordinates) yielding the following simple
form for the superderivative "

0 0
P=5""%:
The fundamental result by Howe, which can be considered as the supersymmetric general-
ization of the existence theorem of isothermal coordinatization for orientable surfaces, is the
following:

Proposition . Every two dimensional supermanifold is locally superconformally flat.

The expression of the Polyakov supersymmetric action in the superfield formalism is
obtained by pasting the z’s and the ¥’s in a multiplet of scalar superfields X* as

§=1 / d?2d9ddEDX*DX,
871' F
where E is the Berezinian of the superzweibein (see §3.2). In a complete analogy with the
bosonic case then the h-loop vacuum-to-vacuum amplitude for the fermionic string will then
be given by
2, = [IDEIDANDX exp(~S[X¥, By

the integral running on the space of field configurations modulo the action of the symmetry
group G of §.

As should be clear from the discussion above, the ultimate domain of integration will
be the space of all non-equivalent superconformal structures on the topological surface ¥, a
space which will be discussed in greater detail in §3.5. For what the actual reduction of the
integrand to that space is concerned, one can proceed as in the case of the hosonic string
theory, even if some peculiarities of the action S render the steps a little more awkward.

We just sketch the major steps in the construction without entering too much the details,
which can be found, f.i. in [D'H-P], and signalling some topics that will be the objects of
future investigations. The basic idea is to choose local slices of the action of G, and to factor
out its volume, thus getting a Faddeev-Popov determinant. Formally proceeding in this way,
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one can show that (in the critical dimension D=10 in which anomalies are cancelled) the

partition function reduces to
Z= / |det'Tlo(2)| % |det' T, (Z)|dv
f‘

where dv is a superanalogue of the Weil-Petersson metric and [,,, are the so-called superiapla-
cians (see §3.5). Notice that the integration runs over the (yet to be defined) supermoduli
space, and the subscript F means that it involves also odd coordinates.

Passing from this expression to an ordinary integral over moduli space of Riemann sur-
face is a delicate question. In fact, not only this involves e careful analysis of the integration
procedure over supermanifolds, but also, with respect to the bosonic case, has an unpleasant
feature due to the following fact.

Along a slice of the "fermionic” part of the group SDif f x SWeyl, the Polyakov action

reduces to
1 1.
STutee = | 26000505, = G181 Dathy = WX B+ VX Ve

so that in the bosonic matter integration f[D:z:]e“S, the exponent must be ”gaussianized”
in order to yield the desired determinant of the Gp-operator. This can be achieved [D'H-P]
at the price of introducing, in the fermionic integration, an extra piece, in the sense that

-5
det'A
Jioss= (i) oo (i #0vavro)
PN

1 4ht
exp 5 Z ajaijk
k=1
where the a;’s are essentially odd coordinates on supermoduli space and W;; is a matrix of
correlation functions over ¥ of momenta of the scalar fields 2# and their fermionic counter-
parts ¥, This fact is clearly annoying, because, such correlation function will develop an
explicit dependence on the points on which they are evaluated, and so, when discussing the
behaviour of the string integrand on (ordinary) moduli space, one should be very careful in

determining what happens when "moving” such points.

In the next few sections we will try to discuss some features of the issues we have very
informally introduced here, beginning by fixing some definitions and peculiarities of complex

(possibly singular) supermanifolds.



55

3.2- Complex Superanalytic Spaces

There are several geometric structures which are commonly called supermanifolds both
in the physical and in the mathematical literature. In this thesis work we will follow the
Berezin-Kostant-Leites approach to "supergeometry”[Be,L], and this section is devoted to a
collection of the basic definitions and results concerning this framework. The main motiva-
tions for this choice are the following. First, in this picture the ’anticommuting coordinates’
will emerge as local generators of the 'minimal’ extension of the structure sheaf of an ordi-
nary manifold thus relying as close as possible to the framework suggested by the works on
supersymmetry in physics. Second, from a mathematical standpoint, as will be apparent in
the sequel, this category is very close to the one of ordinary complex spaces, thus allowing
the use of powerful techniques of sheaf theory and complex geometry.

Namely, in this scheme, complex superspaces can be seen as topological spaces X to-
gether with a structure sheaf which is a Z,-graded extension of the ordinary structure sheaf
Ox.

Before entering the details of this construction, we feel necessary to recall some prop-
erties of Z,-graded rings and algebras.

Definition. Let A = 4 + A; be a Z,-graded ring . We will denote by ¢ the degree of
- any of its homogeneous elements. Given a pair (a,b) of homogeneous elements of A, their

supercommautator is defined to be
[a,b) =a-b—(-1)*b.a

The definition of supercommutator is then extended to arbitrary elements z,y € A by
linearity. A 7;-graded ring A is called supercommutative (or graded commutative) iff

Va,be A [a,b] =0.
In a complete analogy one can introduce the notion of Z;-graded algebra and of super-

commutative Z;-graded algebra . Notice that in both cases the supercommutator satisfies
the following fundamental identities:

(1)[a,b] = —(~1)*[b,a]

fa, [b,e]] + (=) b, (e a]] + (~1)%H e [a,b]] = 0

Given a Z,-graded ring A, one can define right and left A-modules, which, consistently,
will be Z,-graded abelian groups. What actually happens is that every (say right) A-module
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is a bimodule, whenever left multiplication by a € A is defined taking into account a ”sign
rule”, i.e. if M is a right A-module we will define the left action as

m- adéf(—l)&'ha -m

Tensor products and the usual operations of linear algebra carry over to the graded case
with the only precaution of taking correctly into account the sign rule.

Definition. An additive map f : § — T between two A-modules is called a homomor-
phism whenever it is A-linear and preserves grading.

Definition. Let S be an A-module. We define the A-module ILS by means of the
following prescriptions:

i) ISy = 5y ILS; = So

ii) IIS ~ § qua abelian groups

iii) right multiplication differs by a sign factor:

a-IIs = (-1)°I(a - 3)

Example . The prototypical Z;-graded rings A we will deal with are the following:

(1) The Grassmann algebra A*V of a n-dimensional vector space V'

(2) The ring of "regular” functions on a domain in C™ with values in A*V. This second
ring can be thought of as generated by considering it as the quotient of the polynomial

ring in m + n indeterminates zy, -+, @m; €1, ++, &n by the ideal generated by the following
relations:
TiT; = T ;T4
{ zilo = Eali
Eagﬁ = _gﬁga

An A-module S is said to be free of rank p|q iff it is isomorphic to the A-module APle .=
AP @ (TLA)?. Notice that Ag la AP & (I1A;)? and conversely. The rank of a free A-module
shares (thanks to graded-commutativity) with the dimension of vector spaces the property of
being uniquely defined, in the sense that, two free A-modules S and S’ will be isomorphic iff
they have the same rank. This property enables one to discuss of matrices as representative
of (even) homomorphisms between free A-modules. An (m|n x p|g) matrix with entries in

A will be said to be in standard form if it is in block form
A B
C D

with @iy, deg € Ao and ciq, bgr € A1. The set of matrices in standard form with entries in A
is commonly denoted by
M(m|n,plg; A)
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It is a Z,-graded algebra naturally isomorphic to Hom(API2, A™I") via the usual iso-
morphism given by considering the natural bases in AP!? and A™!". Given an element
X € M(m|n, m|n; A) one defines its Supertrace to be

StrM = TT’AM - TTDM.

Definition. A derivation in A is an additive map X : A— A satisfying the graded
Leibnitz rule:
X(ab) = (Xa)b+ (-1)%% a(XD)

where X is the parity of X qua additive map.
If A is an algebra over a field F, we will say that X is a derivation over F if

Xf =0 VfelF
The set of F-derivations in A are made into a Lie Z;-graded algebra by defining
[X,YV] = Xo¥ — (=1)%¥ yoX.
which naturally has the structure of A-module.

The last definition we want to recall here is the one of Berezinian or Superdeterminant.
Let B € GL(p|q; A) an even automorphisms of AP, Writing B in standard form

B, B,
B =
Bz B,

one defines
BerB = det (By — By B; ! By)/det B,

The meaning of this definition and the reason why it is the right ”super”-generalization of
the notion of determinant is clarified by the following
Proposition . Ber : GL(p|g; A)— GI(1|0; 4¢) is the unique group homomorphism
satisfying
Ber(exp M) = exp(StrM)

Berezin-Kostant-Leites supermanifolds are substantially complex spaces together with
a sheaf of Z,-graded rings , i.e. they are built by pasting together collections of the objects
we have described above.

Definition . (i) A ringed space (X,.Ax) is a topological space X together with a sheaf
of rings Ax over it. X is commonly called the underlying space and .4 x the structure sheaf.
(ii) a map between two ringed spaces (X, Ax) and (Y, Ay)isamap f: X — Y and a sheaf
homomorphism f; : Ay — f.Ax (or equivalently f!: f* Ay — Ayx)
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Definition A2. (i) Let F be a field. An F-ringed space is a ringed space (X, Ax) such
that the restriction Axy, of the structure sheaf to any open set I/’ C X has the structure
of an F-algebra with unity. One also assumes that for all stalks A, of .Ax a morphism of
F-algebras ¢, : A, — F is given. Its kernel is then a maximal two-sided ideal I,

(i1) a map of F-ringed spaces is a map of ringed spaces such that f; is a morphism of sheaves
of F-algebras making the diagram

'AYf(p) f*'AXp

commutative.

As in the case of ordinary manifolds, we define a supermanifold as a space locally
isomorphic to a prototypical one, a "model one”. Such models are called superdomains. As
in this thesis work we are primarily interested in holomorphic graded manifolds from now
on we will stick to that case. Quite obviously, all what we are recalling now is true also for
C* real manifolds, provided one substitutes C with R and ”’holomorphic” with "infinitely
differentiable”.

Definition . A superdomain U of dimension m|n is the ringed space

U := (U,0p ® A*(C™))

where U is a domain in C™, Oy is the ring of holomorphic functions on U and A*(C™) is
- the Grassmann algebra of C™. Notice that the ring A := Oy ® A*(C"), has a natural Z -
grading, and hence inherits a rougher Z, grading. This apparently trivial observation will
be of primary interest in the discussion of splitness and projectedness of supermanifolds.
Remark. An ordinary domain (U, Oy) is thus naturally a superdomain of dimension m|0.
Moreover, considering the subalgebra A generated by nilpotent elements in A and taking
the quotient A/N one gets the natural map

AN — Oy
i.e., (recalling the definition of maps between ringed spaces) an embedding
(U,0v) — (U,0u @ A™(C"))

Morphisms of superdomains can bhe characterized in the following way. Let U =
(U,0u @ A*(C™)) and V = (V, Oy ® A*(CP)) and let 2%, £7 be coordinates in U (this means
that the z’s are coordinates in U and the {’s are a free set of odd generators for A*(C")).
Then, given m (m = dimV’) even sections y* and p odd sections n* of the sheaf Oy @ A*(C™)

such that y'(z,0) lies in V', one defines a morphism of superdomains by means of

.«47 3 b(y,n) D b(y(mﬂg))n(mvf)) € 'A—U—
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 Conversely, any morphism of superdomains has this form.

Now we can give a definition (the constructive one) of a supermanifold as an object
built up by glueing superdomains.
Definition . A complex supermanifold of dimension m|n is a C-ringed space (X, Ax)
satisfying the following conditions

(i) Every point p € X has a neighbourhood U, s.t. there exists an isomorphism of
C-ringed spaces

(f, fy) : (U, Aly) = (W, 0w @ A7(C"))

where (W, Ow ® A*(C™)) is an (m|n) dimensional superdomain. Such an f = (f, fy) will be
called a chart.

({)ifUNV #0and (9,9 : (V,Aly) — (Y, Oy ® A*(C™)) is another chart, then the
composite map (f, fy) o (g,gy)~! is an isomorphism of superdomains wherever defined. Such
maps will be called transition functions.

Proposition .[Be| Suppose we are given a collection of superdomains U, = (Us, Ou, ®
A*(C™)) and, V ordered pair «, of indices an open subspace U, of U, together with
morphisims

‘Szap:‘[ja,@ — ﬁpa

such that they satisfy the cocycle condition

-({—’a‘B o ?5,31 o -Sz'ya = Idﬁaﬂy

Then there exists a unique (up to isomorphisms) complex supermanifold (X, 4x) having
. the ¥,4's as transition functions.

A more formal definition (which we will use in the sequel) which fits also the case of
”singular supermanifolds” (also called superanalytic complex spaces) is the following
Definition . A complex supermanifold is a ringed space (X,.Ax) such that

(i) X is Hausdorff with countable basis

(ii) Ax = A% @ Al is a sheaf of graded commutative C-algebras

(iii) (X,.A4%) is an analytic space

(iv) Ak is a coherent A% - module

(v) if N — Ax is the ideal of nilpotents and A..q = Ax/N, then (X, A,.q) is an
ordinary complex space. '

(vi) the A,eg-module £ = N/N? is locally free and Ax is locally isomorphic to its
Grassmann algebra A*(£).

Moreover, (X, Ax) is said to have dimension m|n if m = dim(X, A,.4) and n = rk 4, , &.

The ringed space (X, Apeq) is called the underlying or reduced complex space and often
denoted X,.4 for the sake of brevity. Notice that, via the usual identification of analytic
locally free sheaves of constant rank on X and (sheaves of local sections of ) vector hundles
on X, roughly speaking a supermanifold is a ringed space whose structure sheaf is locally
isomorphic to the sheaf of sections of a Grassmann algebra of a vector bundle. This inter-
pretation raises a natural question, i.e. how far this local isomorphism can be ”globalized”.
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To be concrete, from the very definition of a supermanifold, one gets for free the following
two sheaf exact sequences[R1]

0 N—>A-AN=0-0 (a)

0= N - A AN =06E -0 (b)

If there is a splitting 0 — O A of (a) the supermanifold is said to be projected and if
(b) splits as 0 — O @ EX A it is said to be split. Notice that p must satisfy

u(f€) = u(f) wE) YfeOandéecOBE.

The terminology deserves a bit of explanation. For what projectedness is concerned, notice
that, having an injective map @ —— .A gives a map (id, i) between the ringed spaces

(id,%) : (X, A) — (X,0)

so that the supermanifold ”projects” down to the underlying manifold.
As for the splitness, suppose (b) splits. Then we can consistently extend p: 09 € — A
to & : A*(€) — A by means of

POF - Ao AEn) = p(f) - &) A - A plén)

which is clearly a Z, -ring isomorphism. Then splitness of a supermanifold means that the
* structure sheaf A is globally isomorphic to the sheaf of section of a Grassmann algebra of a
vector bundle £ :- X.

Remark. Every m|1-dimensional supermanifold is trivially split. In fact in this case, N2 = 0

and hence the sequence (b) collapses to
0-A—-0@E(=A"()—0.

We next want to enter in more details the issues of splitness and projectedness of
supermanifolds. A keen starting point, due to Rothstein [R1], is to try to to characterize
how far a given supermanifold is different from its ”split counterpart”. Namely, given (X, .A)
and (X, A*(€)) with £ =~ A/N we have two supermanifolds which agree, by construction, up
the so-called first infinitesimal neighbourhood, and one wants to set up a machinery telling
how far this isomorphism can be pushed on.

Let Aut A* () denote the sheaf of parity preserving C-linear automorphisms of A™(&)
and A)(E) = X5k AN(E). If g : A*(E) — A*(€) is an automorphism, then it induces
naturally an automorphism § of £. Let then Autt A™ (£) denote the subsheaf of dut A~ (&)
s.t. § = ide. Aut™ A" (€) can be identified with a more tractable object. In fact, let k& be
an even integer and let Derp A™ (&) be the sheaf of derivations in A"(&£) which increase the

degree by k. As above, let Der(*) := Y iczken Derar A (€). The following holds [R1]
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Proposition
exp : Der(®) A* (£) — Autt A (€)

is a bijection.
Now, let us consider an open cover {U}qca such that the sheaf Al is isomorphic to
Oy, ® A*(C™) and also U, trivializes the vector bundle E. Let us denote

Gr(A) = A/N@J\//Nz @ -@ND /AT
and suppose that the supercoordinatization

on t Aly, — A (E)ly,

is the identity when thought as being defined on Gr(A)ly; . Then the cocycle ¢!, o gog 1

defines A up to isomorphisms and hence one gets the following
Proposition [R1,Gr] The isomorphism classes of supermanifolds (X, Ax) with underlying
O-module £ are in a natural 1 — 1 correspondence with the cohomology set

HY (X, Autt A" (£)) ~ HY(X, Der™ A* (€)).

Then a (smooth) supermanifold is characterized by the datum of
(i) a complex manifold X
(ii) a holomorphic vector bundle £ 5 X
(iii) a cohomology class T € H!(X, Autt A* (£)) (orlogT € HY(X, Dert?) A% (£)).

Notice that, being Aut™ A*(£) non-abelian, H'(X, Autt A*(€)) is a pointed set rather than
a group, and its distinguished point labels the isomorphism class of the split supermanifold.
As observed in [Gr], the picture above gives immediately a nice proof of Batchelor’s
theorem which states that, in the category of C'® supermanifold, every object is the wedge
product of a vector bundle. This follows at once by noticing that Der(?) A* (€) is a sheaf of
C*®(X)-modules and hence, being C'*(X) fine, its first cohomology vanishes. Coming back
to the complex analytic case, to sharpen the analysis above, one can express the obstruction
to splitness and projectedness by means of ”a chain of obstructions”.
Proposition . [Gr] For any holomorphic vector bundle E 5 X, Autt A* (£) admits a
decreasing filtration Aut] A* (€) satisfying

(i) Auty A* () = Auty A* (€) ‘

(i) if & is even Aut; A* (€)/Auti , N*(E) = Dero, (Ox, N*(€)) ~ TX @ N¥(E)

(iii) if k& is odd Autf A* (€)/Autf , A (E) = Home (AY(E),A¥(E)) ~ £* @ AF(E)
Then it is clear that the obstruction to splitness is given by cohomology classes 7, €
HY(X, Aut;: A” (5)/Aut;:+l A* (€)) and, in particular, the obstruction to projectedness is
given by the even classes Tqp.

This fact can be easily understood in terms of transition functions. Let {U,} be a
(locally finite) open covering of X and suppose we can express the cocvcle ¢f o 50/53 L hy

means of
{ Lo = faﬁ(mﬁagﬁ)
ga = gaﬁ(wﬁagﬁ)
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Expanding in power series in the odd generators 5;'3’5 one has

ok = fp(®e) + flipis(2p)Eph + -
& = glp;(2p)Eh + 9hpimhtRés + -

Whenever the supermanifold is (isomorphic to) (X, A*(£)), one can find a refinement {V,}
of{Uy} such that the transition functions for the generators are those for a holomorphic
vector bundle, i.e.
{ Tl = 5,3(“%) ‘
Efx = giﬁj(mﬁ)‘fé
which means that the "higher order terms” appearing in the above most general transforma-

tion law are cohomologuous to zero. Notice that, in this context, projectedness is realized

when all the f*

wpij-(Tp)’s are Cech coboundaries.

To give a more concrete meaning to the preceeding discussion we show here that the set
of non-split supermanifolds is non-void by constructing a (very elementary) example [Be].
Let us consider two copies of (C*, O¢c- ® A(C?)) parameterized by (z,&1,&2) and (w,71,72)
and glue them by means of the following cocycle:

— 1 N1:7M2
z = w -{1 w3
£ = — 52

Thus the underlying manifold is the Riemann sphere P! and £ = K @ K is the direct sum
of two copies of the canonical bundle K. The obstruction class reduces to T represented by

the cocycle

1 a . 1/pl p-—1 2( 1 -
F-5;®01An21nH(P,I& QN (K @ K))

Now, under the identification H'(P!, K~! @ A2(K @ K)) ~ H!(P!, K) the obstruction co-
cycle becomes dw/w which is precisely the generator of H!(P!, K) = C.

Finally, as it should be expected, most of the constructions of ordinary differential
geometry carries over the graded-commutative case. For instance, one has a sound notion
of what are to be considered the correct generalizations of the notion of vector bundle.
Obviously, as Berezin-Kostant-Leites supermanifolds are introduced as ringed spaces, vector
bundles are to be generically intended in sheaf-theoretic terms as follows.

Definition . Let (X, Ax) be a supermanifold. We define a rank r|s super vector bundle
over to be an Ay locally free sheaf F over X of rank r|s.

Definition . The tangent sheaf 7X to (X,.Ay) is the sheaf defined by the presheaf
(f_«Dev’(AX)[U

where Der(A;[-) [ is the sheaf of graded derivations of the ring Ay) .
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To be definite, we will choose left derivations, and consequently X I admits a natural
structure of free left A x-module, of rank equal (by definition!) to the dimension of (X, Ax).
Remark 7 X is locally isomorphic to

Ax ® (TX @ IIE™)

where 7X is the tangent sheaf to the underlying manifold and £ = Ax /N is the local
model. This isomorphism is clearly globalized whenever (X, Ax) is split.

In the sequel we will be mainly interested in line bundles over supermanifolds. They
are usually defined as rank 1|0 vector bundles over (X,.Ax), or equivalently, by means of
the following construction.

Let A, denote the ring of invertible even local sections of the structure sheaf .Ax. Then
a line bundle I — X is obtained by glueing products U, x Ay where |J U, is a covering
of X by means of a (equivalence class of) A}, -valued cocycle go3. The usual classification
of line bundles over a manifold carry over the graded commutative case. Namely, the set of
equivalence classes of line bundles over X is in a 1-1 correspondence with the cohomology
"group”

H'(X, AZ,)

and one has at his disposal (the analogue of) the exponential sequence:
0—-7Z—Ax— A, — 1
from which
.- HY(X,Z) —» HY(X,Ax) — HY(X,A,) — HY(X,Z)— ---

More interesting for us is the identification of the group of line bundles over (X, .Ax) and the
group of line bundles on the reduced manifold X as given by [M2]. Namely, Pic(X) ~ Pic(X)

via

E':—’Lred ' [AX]

3.3 Integration theory on supermanifolds

Integration theory over ringed spaces is an intriguing problem. In fact, remarkable
differences exist between integration theory on a reduced ringed space (e.g. an ordinary
manifold) and a more general ringed space, such as a graded manifold. Namely, most of the
peculiarities of integration theory on supermanifolds rely on the properties of the graded

generalization of the determinant functor, the Berezinian.
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Let us first define integration theory on a real C'™® supermanifold of dimension plg.
Generically speaking, an integration theory on a ringed space (X,.4x) consists in the indi-
viduation of a suitable sheaf of Ax-modules , the would-be sheaf of volume forms and the
prescription of a linear functionals [, on its global sections.

Given a (p|q)-dimensional superdomain (U,C®(U) ® A*(R?), with a fixed coordinati-
zation (z;,£,) one has at its disposal Berezin’s integration theory [Be], which stems from
a direct transposition of ordinary integration theory to the "super” case. Namely, just like
volume forms (i.e. C'*°-measures) are obtained on manifolds by applying the determinant
functor to frames in the cotangent sheaf 7M, one takes as a definition of super volume
forms the result of applying the Berezinian functor to a set of free generators for the graded
cotangent sheaf T M. We recall that the compelling motivation for which the Berezinian
must be taken as the determinant is that it is the only group homomorphism well behaving
with respect to traces (see the discussion above).

We recall that the Berezin integral is defined, in this context, in the following way.
The berezinian sheaf is locally (i.e. in any coordinate chart) generated by [dz/d€], more

commonly written as

a

{d;@/dg]zdml/\--./\dmp;g...éa
q

and, writing a section of Ber as f(z,£)- [dz/dE], the berezinian integral picks out the upper
¢-degree part of f and integrates it over the underlying domain U, as the local form of the

generator for the Berezinian sheaf dictates.

Actually, as it was already clear to Berezin himself, this procedure is well defined only
when integrating compactly supported forms, i.e. when integrating over compact superman-
ifolds . The classical counterexample is the following.

Consider the supermanifold ((0,1),C>(0,1) ® A*(R)), with coordinates z,6;,0;. Con-
sidering the coordinate transformation

y=2}+0102
m =0
n = 03

Then, as the berezinian of this transformation law is 1, one gets a contradiction, since

1 a &
dy/dnly= | dy——y =0
/;3[ y/dnly A o

whereas

/[d:c/dG] —/1d:c 0 —8—[7:—}—09} =1
. =), “oe, 08, T T

A simple computation shows that the difference between the integrands can be written as
a total differentials, and so, in some sense, the two differ by a boundary term. Notice that,
when integrating over a non flat manifold, such trouble will arise in each overlap between
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coordinate charts. Nonetheless, whenever the underlying space is compact and without
boundary, the berezinian integration prescription is well defined, as all discrepancies will
add up to zero. In any case, such a prescription has two annoying features.

i) Integration over non-compact supermanifold is not well defined (in this case we do not
have finite subcoverings of the underlying space, so that we can no more add up harmlessly
the "boundary” contributions).

ii) The volume form resulting from integration over odd variables is ill-defined.

The solution to this twofold problem can be obtained by pursuing the following "radical”
idea [R2]. The failure for Berezin integration theory to be a consistent integration theory lies
in the fact that the Berezinian sheaf is too "small” a sheaf to be the good candidate for the
sheaf of super-volume forms. Then, as intuitively, integration over odd ”directions” must
be a derivation, one is naturally lead to consider the sheaf Q% ® 4, D of linear differential
operators on Ax with values in the sheaf of (ordinary) volume forms on X.

The sheaf Q% ® 4, D is a locally free .Ax-module of infinite rank. In local coordinates,
its generic section can be written as

_ 0 8 ..
é—;dmlA...Adwpaeu%fOf

where I is a multiindex with values in N* and p is a Z;-valued multiindex. Notice that o
means composition of operators, i.e., if ¢ is a local super holomorphic function, then

g 0
@(g) = del Ao A décpa—e“'é;‘f(fl’u . g)
n

Iu

The sum above is not free. Nonetheless a free set of generators for Q% ® 4, D is readily

hibited
exhibited as 9

a6,

Now, a section ® of 0% ® 4, D define a linear functional on Ax by

DI(w,B):da:l/\u-/\d:cpa—(Z——---
q

<® f>= /X@(f)

so that it is natural to define the integral for such a & to be

fo=J

Notice that, whenever & = >, Dy(z,8)f! is such that f{ =0 I > 0, the above definition
coincides locally with the one of Berezin integral. In some sense, the sheaf Q% ®ay D is
too "hig” to give a completely satisfactory integration theory on (X,.Ax), but rather one
should seek for a procedure yielding locally the usual fermionic integration theory. Define
the subsheaf (0% ® .4, D)t C Q% ® .4, D by means of

w€ (5 ®ax D)y & f3=0
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Then it is clear that if h is a compactly supported section of Ax, with support contained in
U, then [; w(h) = 0. Globalizing this observation we have the following
Proposition . Let w be a global section of (%% ®44 DP)*. Then [,w is an exact

p-form.
The construction above comes equipped with an exact sequence
0= (% ®ax D)" = O Bux D — 0% ®ax /(W ®ax D)T =0

What is relevant in the whole construction is that Q% ® 4, D/(Q% ® 4, D)™ =~ Ber so that
the sequence above can be rewritten as

0— (0% ®ay D)t — Q5 ®4y D — Ber — 0

Then, a satisfactory integration theory will be gotten once choosing a splitting of this se-
quence, thus regarding Ber as embedded in Q% ® 4, D, and then transforming its sections
properly when changing the coordinates. Namely, any coordinate system endows Ax [y
of a Z-grading, while general coordinate transformations will only preserve the natural Z,-
grading. A coordinate transformation preserving the Z grading will be called a split transfor-
mation. A key observation is that any coordinate change can be written as the composition
of a split one times one generated by a degree increasing even derivation. More explicitly
we have the following [R2]

Proposition . Let (z,0) and (y,7n) two coordinate systems for Ay. Then there is a
unique coordinate system (w, A) and a unique degree increasing even derivation Y such that

i) (z,0)~~>(w, A) is a split transformation

ii) (y,n) = exp(Y')(w, A).

Considering the canonical basis Dy(z, ) of Q% ®4, D, one has that
DI(yyn) - DJ(:E10)‘I’

and, while in the case of split transformations ¥ reduces to the usual transformation law

for differential operators, and, in particular ¥J is the Berezinian transformation law, when

considering non-split transformations D;(y,n) = D;(z,8)exp(—Y). In particular it holds
Proposition . Let

P
exp(V) = o axf S

Then

Di(yn) = 3 Drsle0)Ber (5

and specifically

Do(y,n) = Z Dj(z,©)Ber (8
J



67

Even without entering too deep the details of the computations, one can immediately see
that the appearance of these extra terms in the transformation law for the image of the
berezinian under the splitting of the sequence above are exactly the one needed to cancel
the "anomalous” transformation law for the berezinian, thus yielding a well definite super-
integration prescription.

To grasp how the scheme works, let us come back to the example recalled at the be-
ginning, namely to the problem of integrating F'(y,n;,7;) over the interval (0, 1). The most
general coordinate transformation law (up to split ones) is

y=12a+616,g9(z)
n,-:ei i:1,2.

so that the jacobian is

a(y,e): 1+91;32g’(m) 9291(23) _elg(m)
0(z,0) 0 0 .

and its berezinian is

( G 9)) =1+ 00,9'(2)
_aQ_

We have (y,7) = exp{#16;9(z)%=}(z, ) and hence

Do(y,n) = Do(z,0)(1 + 61659'(z)) + D1(z,8)(1 4 61629'(2))(81029(z))
= Do(z,0)(1 + 010:9'(2)) + D1 (z,8)(01629(2))

. Thus
/Do Y, U)F ?J 77 /Do ¥,n )[fo(?/)+771772f2 /dy fz(y /dfﬂ fz

on the other hand

/[Do(ib, 9)(1 + 0192g'(w)) + DI(QB, 0)((9102g(.’£))][f0($, 01029(23) + 0192f2($ + 9102{](%)] =

- / Do(=,0)0:6:(fog' + fig + f2) + Di(e, 0010 fog =

= [ Dole.00betfog’ + Fig + f2 (o) = [ da fufa)

In more intuitive terms, one can proceed as follows. Fix a local section of the projection
T Q% ®a, D — Ber, say i(|dz/df]), and promote it to be the local representative for
Do(z,8). Then the transformation law for such an object will be the ones for a generic
element of 0% ® 4, D. Notice that the procedure apparently suffers by the non naturality
in the choice of the splitting of the sequence

0 — (0% ®ay D)T 08 @4, D -2 Ber — 0
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but, giving two different splittings 7, and 7,, their difference is in the kernel of the projection
T, so that, being in the image of j, produces a global exact form after integration over the
odd variables.

The situation is a little bit more embarrassing when dealing with complex supermani-
folds . In fact, in this situation, one would like to retain the usual identification of the sheaf
of volume forms as the tensor product of the canonical sheaf times the anticanonical sheaf,
More interesting for us is the fact that issues like holomorphic factorization can be discussed
only when such structures are well settled. To be more specific, the complex counterpart
of the Berezinian sequence should be a sequence built with "half volume forms”, i.e. top
exterior powers of the complex cotangent sheaf. Namely in this case we are interested in the
following sequence

0— (5" ®uy D)T 102" @4, D -2 Ber — 0

where now (Qi—'o ®4ay D)7t is defined by fo = 0 and " Ber” is the holomorphic square root
of the usual berezinian.

Given an exact sequence of sheaves .4 x-modules
0—-&—-G—-F—0
we recall that the sequénce is said to be split iff there exists a .A-homomorphism
t: F—@G such that moi = idgr.

When the sequence above is a sequence of analytic sheaves over a complex (super)manifold
its failure to splitting is measured by a cohomology class, as it turns out of the following
argument.

By tensoring with the dual sheaf F* one deduces the following exact sequence

0 — Hom(F,£) — Hom(F,G)"Hom(F,F) — 0
and hence the associated long cohomology sequence reads
<= H(Hom(F,G)) " HO(Hom(F, F))2 H (Hom(F, £)) — - -

where 4. is the coboundary map. It is immediate to see that the obstruction class to the
splitting of the sequence above is §.(idx) since, if it is non vanishing, the equation

Tol = Zdj: e W,(i) = id}'

cannot be solved. Notice that, as usual, no obstruction to the splitting of the Berezinian
sequence ‘
0— (0% ®ax D)" 105 ®4, D -2 Ber — 0
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is present in the C'*-case because of the existence of partitions of unity for the structure
sheaf Ax

In our case, being Ber arank 0|1 sheaf, Hom(Ber, Ber) = Ax and the long cohomology
sequence looks like

-+ — H°(Hom(Ber, 05" ® 4, D)) —» H'(Ax) — H'(Hom(Ber, (0%’ ® 4, D)*)) — ---
so that the obstruction to the splitting is 6*(1) € H'(Hom(Ber, (2%’ ® 4, D)*)).

As a final remark notice that, whenever the supermanifold is split no such trouble
can arise, as one has at his disposal a split atlas in which the glueing of local sections
of the Berezinian sheaf is well defined also when they are considered as local sections of
Q%O Ray D.

3.4 Super Riemann surfaces

As discussed in §3.1, the analysis of two-dimensional superconformal supergravity lead
to the remarkable observation that real 2-dimensional supermanifolds are locally superconfor-
mally flat, i.e. the superzweibein E M can be put in a definite form and the superderivative

D looks locally like
0 0

P=%"":
By analogy with ordinary complex manifolds theory, one then is naturally lead to the defi-
nition of a Super Riemann surface as a supermanifold locally built with coordinate patches
that preserve in some sense such a structure.
Namely, considering a mere 1|1-dimensional complex manifold, we see that, considering

holomorphic transition functions

the superderivative transforms as [Fr]
D = D] D + [pz - 04| D*

A holomorphic map of the above form will be called a superconformal transformation iff
the transformation law for the superderivative D is homogeneous, i.e. if

bz[pé]za »_«,[m_m}@zzo



Notice that D? = $[D,D| = £ and (D, Z) span the tangent space T .
Accordingly, one is lead to the followmg
Definition . A super-curve is the datum of
a) an algebraic curve C,.q, with structure sheaf O,
b) a sheaf A over C,.q of super-commutative C-algebras (with nilpotent ideal \)
such that
i) AN =0,
ii) the O—module A is locally free of rank 1.

Definition . A Super Riemann surface (also called, especially in the Russian literature
a SUSY-curve) C is a supercurve, together with
c) a locally free rank 0|1 subsheaf D of the tangent sheaf 7'C

0-D—>TC—-TC/D—-0

such that
iii) the commutator (mod D)

[,|p:D®D — TC/D
is an isomorphism, and so D and [D,D]p generate TC.

To make contact with the previous coordinate approach to superconformal field theory
one can argue in the following way. Considering obviously the smooth case, one can identify a
~ local generator for the distribution D |;; with the coordinate expression 8/80y + 04 ® /024
The equivalence between the two definitions is given by the following

Proposition . Any Super Riemann surface admits a canonical atlas [LB-R].

Proof . Let (w, ¢) be a coordinate system. Then, as D is locally free of rank O|1 it
has a generator of the form 5% + h , with h odd. Then [D,D]p looks locally like £ ?775 gz
so that for the commutator to be an 1somorphlsm, 7y ¢ must be invertible. Let us introduce
coordinates (z,n7) with 7 = ¢. Now the local generator for D looks like

0 0 5} 0z 0z 0

= b= g (b
96 " "ow ~ 5y T hoe T 55)5;

so that one has to solve the equation hgz + 6¢ = 7. Expanding both z and h in powers of

¢ as
z=2z0+ ¢z h = hoohy

and equating terms of the same degree in ¢ one obtains the equations

f~1+’l1 s
| hoZin +h1 =1

As hy = g—% is invertible this system has solutions.
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Remark . The steps done in the proof are actually redundant: In fact, noticing that
we have at our disposal only one odd coordinate, things simplify notably, as, for instance, in
the above expressions, z = 29 h = ¢; so that the first equation is identically satisfied, and,
as for the second, one has as a ready-made solution %f—u*l = 7}—0— Nonetheless we have preferred
to give such a redundant proof since it will apply, with only lexical modifications to the case
of families of Super Riemann surfaces .

As a consequence on each intersection U, N Ug we have that both 8/86, + 0, ® 8/8z4 and
0/003+ 05 ® 0/0zp generate D and therefore should be proportional. An easy computation
yields the following clutching functions ‘

Za = fap(2p)

0o = gap(2p) 0

with giﬁ = flps (fap = dfap/dzp), showing that the gop are transition functions for a 6-
characteristics £ on C,.4. Conversely, given a pair (C,eq4, L) We can construct a SUSY-curve
C just setting A = O @ IIL, where II is the parity changing functor, whose effect is to make
sections of £ anticommute.

Summing up we have the
Proposition . There are as many SUSY-curves C on a fixed smooth algebraic curve C.q

as reduced space as 6- characteristics on Ch.q.

Remark. From the discussion above one can grasp another virtue of the compactifica-
tion of moduli space of @-characteristics discussed in §2.7. Namely, having at our disposal
- a sound notion of a #-characteristics on a (mildly) singular algebraic curve as an invertible
sheaf, we can transplant the above definitions and theorems without any modifications to
the case of decent spin curves, thus getting a clear notion of a SUSY-curve having as reduced
space a semistable curve. Notice also that the property of Cornalba’s compactification of
yielding the same number of #-characteristics in the singular case as in the smooth one, fits

naturally into the proposition above.

Before dealing with the problem of moduli of Super Riemann surfaces , we feel necessary
to deep a little bit into the geometry of SUSY-curves and discuss some line bundle theory
on such objects [GN].

In the ordinary case, a complex 1-dimensional manifold comes equipped with the oper-
ators § and § which have the following significant features.

i) O sends the structure sheaf into the canonical sheaf, which can be seen as the holo-
morphic square root of the sheaf vol of volume forms.

ii)by the Dolbeault lemma, 9 fits into a fine resolution of O¢ as

0 — O —C®(C) 20 (C, TEC) — 1

The suitable generalization of these features in the case of SUSY-curves can be deduced
from the following arguments. Firstly, being SUSY-curves split and compact, there is no
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difficulty in outlining the Berezinian sheaf as the holomorphic square root of the sheaf of

volume forms, i.e. .
vol = Ber(f'*C) @ Ber(T"C)=kok

The key observation is that [D] the defining exact sequence for D
0 - D — TC — TC/D — 0

!
Do’

dualizes into
0—D*® —al D 0
and hence one gets, taking Berezinians and noticing that D* is odd
Berﬂé ~ D~
Thus one can define the fundamental operator

§: Ac— Ber(C

by defining locally

6: AX rU —_— BETCFU

f s (f) = (Oe +00,)f - [dz/d0)

where [dz/df] is the local generator for Ber('|. The fact that this procedure is well
defined can be grasped from the following coordinate computation [GN]. Let (z, 8)~~b(w, )
be a superconformal transformation. Then the superderivative s + 68, will transform as
0p 490y = (Dp)~1(Je+00.) and the Berezinian as [dw/dy] = Ber[0(w, ¢)/d(z,8)]-[dz/dd].
But, using the fact that the coordinate change is a superconformal transformation, one finds
that

J.w O.p) _ 1 O‘. dw+ed.p O\ (1 0)| _
Ber(agw 89(’0)-—561' [(—9 1) ( 0 D,gp w 1 -

so that the R.H.S. of the above defining equation for § has the correct glueing properties on

overlaps.

" Furthermore, § can be used to define a resolution of the structure sheaf Ax~. Namely,

thanks to the fact that D is ‘as much as non-integrable as possible’, -

Df=0=D =0iedf=0
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Hence, considering a smooth ‘superfunction’ ¢, it will be holomorphic iff it is in the kernel
of §, so that & fits the exact sequence

0— Ao———>C;°°(C')—6-—>(f°°(C) ® Ber — 0

(Here exactness at the last step is proven by combining the above observation about holo-
morphicity of local sections plus the ordinary Dolbeault lemma).

This fact has a nice consequence. We have seen in §3.2 that the group of super line
bundles on a supermanifold X is (isomorphic to) the first cohomology group H!(X,AZ,)
of cocycles with values in the ring of even invertible super holomorphic functions. Now as
a consequence of the existence of the fine resolution above, the long cohomology sequence
associated to the exponential sequence stops at H2(C,.A¢), thus giving

T HI(C,Z) - Hl(C’?AC') - Hl(CvAz’ev) - Hz(C,Z) —0
and exhibiting the group Pic(C) as the semidirect product

H*(C,7)x HY(C,Aq)/HY(C, 7).

We want to finish this section mentioning how one can geometrically extend the for-
malism of conformal field theory to the super case, i.e. identifying the super-analogue of
‘fields of type p, §’ (tensor products of p-canonical forms with g-anticanonical in the algebro-
- geometrical language).

The hint comes, once again, by noticing that the sheaf playing the réle of the canonical
sheaf here is the dual D*. Then, one will define [Fr,BMFS] superfields of type p, § as sections
of the sheaf D(P9) := DP @ D?. To be more specific, notice that, giving a section of DP9 js
tantamount to giving a coordinate covering U, of C and local sections ¢o of Ag satisfying,
in each overlap U, N Up the patching relation

o = Dab5Dabs 65

Notice, by the way, that g, = DaﬁgDoﬁﬁq are A7, , -valued and satisfy the cocycle condi-
tion, so that they actually define a line bundle over (.

Furthermore, a "scalar” product can de introduced in D(79) by considering local sections
e of D and putting, for X,Y € D)

<X,V >= / dvol XY (e)P+1
JC

where dvol is the canonical volume form associated to D, i.e. dvol = BerD~ - Ber D=. One
can then define, in the spaces D(?:%) and D(P:0) differential operators Ep , Dy together with
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their formal adjoints (with respect to the bilinear form introduced above) 5; y, Dy and,
finally, the superlaplaceans .

Up = _D—Lﬁp : pP0) _, plp0)
0, := DiD, : D(*P) _ D(OP)

3.5 Deformation theory of complex superspaces
and supermoduli spaces

The aim of this section is to give. some definitions of the deformation theory of complex
superspaces, and to show that, the usual technology of the ordinary case (discussed, for the
case of curves, in chapter 2) can be carried over to the graded commutative category.

By a complex analytic superspace we mean, in analogy with ordinary reduced complex
spaces, a ringed space (X, Ax), where Ay is a sheaf of graded commutative C-algebras,
which is locally isomorphic to a complex analytic superspace patch, where the latter is
defined as follows.

Let us consider a superdomain U := (U, Ay) = (U,0u ® A*(C9)), aset {f1, -, fu} of
sections of Ay and the ideal J they define in Ay. The reduction modulo nilpotents defines a
complex analytic space patch V in the sense of §2.3, so that one defines the complex analytic
superspace patch (defined by the f;’s) as the ringed space

V= (V,Au/J)

Let V and W two complex analytic space patches, both subsuperspaces of CPl4, They are
called equivalent at € C? iff there is a neighbourhood U of z such that Ay | yqy—Aw [yaw
are isomorphic.

Definition . A germ of complex superspace at z is an equivalence class of complex
superspaces.

Morphisms between such objects are defined by taking representatives and morphisms

between them and requiring the correspondent equivalence condition.

Definition . Let ($,s) be a germ of complex superspace at s. A deformation (X, 5) of a
complex superspace (X,.Ax) over (5, s) is a commutative diagram
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where 7 : X — § is a flat complex superspace morphism and ¢ is a fixed isomorphism
between X and the central fiber 7 ~1(s).
Remark . Flatness is a technical condition replacing the requirement of smoothness.
A morphism
(%, 8)—(P, 7"
is a pair of complex superspace and germ morphisms X —q’—n)l and S-L5T such that the

following diagram
X — y

is commutative.
Given a deformation of a complex superspace (X, (S,s)) and a germ morphism
f
(T,t)—(S3,s )

- one defines the pullback deformation f*(X) over (T,t) as the fibered product X x; S,
meaning that, as topological spaces,

FH(X) = {(z,t) € X x T|f(t) = n(2)}
and, as for the structure sheaf,
Af-x = .AT®A,‘V/ ((idT X W)*j)

where J is the ideal defining the graph of f.
We denote by Def(X, S) the set of isomorphism classes of deformations of X over S.
The pull-back deformation comes equipped with two morphisms py, ps, mapping onto
the first and second component of each pair (z,t), which make the diagram

e 2 ox
l=
r L s

commutative.
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Recall that the pull-back deformation has the following property: for any deformation
7'+ X' — B' and any morphisms of deformations (T, f) : X' — X there exists a unique
morphism (¥, h) : X' — f*X such that the diagram

commutes.

Given a complex superspace (X, Ax), the pull-back makes Def(X,.):CS — Ens into
a contravariant functor from the category CS of (germs of pointed) complex superspaces to
the category Ens of sets, which assigns to each B € CS the set Def(X, B) of isomorphism
classes of deformations of X over B.

As usual in deformation theory, we say that a deformation X € Def(X, B) is
i) complete, if for any other deformation X' € Def(X, B') there exists a morphism

f:B' - B

such that X' is isomorphic to the pull-back deformation f*X,
ii) universal if such an f is unique or versal if all the morphisms f satisfying condition i)
have the same differential.

The same definitions can be repeated when B is a purely even superspace. In this case
one speaks of even completeness, even versality etc.. Notice that a purely even superspace
is the same thing as a (non reduced) complex space.

Having introduced the moduli functor for complex superspaces, one can argue about
moduli (super)spaces, defined as (see §2.5) spaces M realizing an isomorphism of functors
Defx(-, M) ~ Hom(:, M). The search for a fine moduli space in this category is almost
hopeless. Namely, Z,-graded commutative algebras always admit the canonical involution

which play the réle of non trivial automorphisms in the case of moduli spaces of Riemann
surfaces . Nonetheless, what one is really interested in is the existence of a coarse moduli
space for superspaces of a certain "topological” class. Solving this problem is tantamount

to solving the problem of existence of versal deformations for (X,.Ax). That they exist has
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been recently proven by Vaintrob [V] considering first evenversal deformations and then
considering their extensions to "odd” directions.

What is outstandingly relevant is the extension to the super case of the Kodaira-Spencer
~ formalism, and, namely the definition of the super Kodaira-Spencer map, KS. Mimicking
what happens in standard deformation theory, one first studies infinitesimal deformations.
To this purpose, one introduces the super-commutative ring of super-dual numbers Os =
Clt, ¢]/(t,t¢), where (t,() € Cbt, C[t, (] is the polynomial ring and (t?,¢() is the ideal
generated by ¢% and (. Associated to this ring there is a superspace S = ({*},Os), which
embodies the idea of a super-tangent vector.

Definition . Let (X,.Ax) be a complex superspace. A deformation of (X, Ax) over S will
be called an infinitesimal deformation.

Given a complex superspace (B, bg), the tangent space T}, B at by is isomorphic to the
linear superspace Mor(S,B) = {f : S — B | f(*) = by} of superspace morphisms. Now,
given a deformation X — B of X, we can think of a tangent vector in T3, B as a map
f € Mor(S, B) and the pull-back deformation f*X — S is a first order deformation of C.
The Kodaira-Spencer class of is obtained by considering the exact sheaf sequence

0— f*TX,~—f*TX— f*(DerB) — 0
where T X/ is the relative tangent sheaf. Taking the coboundary map one has
KS;: H'(f*(DerB)= A€ Ty, B — HY(f*TX,)=TX
and then, letting f vary one gets the k3§ homomorphism
KS:T, B — H'(X,TX)

The fundamental theorem of the Kodaira-Spencer theory has the following graded-commu
tative version [V]:

Theorem . A deformation of (X,.Ax) such that K35 is surjective (an isomorphism) is
complete (resp. versal).

Example . The above construction allows one to compute the dimension of the moduli space
for 1|1-dimensional compact supermanifolds (C, . A¢). In fact such objects will be completely
specified by the datum of

i) a smooth algebraic curve C'

ii) an invertible sheaf £ over C'. Their tangent space is then (see §3.2)

TC=(0oIL)® (K oIL™)

and thus
HNTC)~HY (K '@ O)o MH (L™ @ LK)

The dimension can be then computed by means of ordinary algebro-geometrical techniques
(i.e. the Riemann-Roch theorem, provided degl is fit). To make contact with some results
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recently appeared in the literature[GN], let us compute the dimension of the universal de-
formation M space of such objects in the case in which £ is a ¢-characteristics . Then the
equation above gives

dimM = h°(K) + R°(0) | 2R°(KL) = 4g — 3]4g — 4

Turning at this point to Super Riemann surfaces we have to notice that built into their
definition was the existence of a non-integrable 0|1 dimensional distribution D in the tangent
sheaf. Then one is naturally lead to the following
Definition -. A deformation of a SUSY-curve C over a germ of a complex superspace
(B, bo) at bo € B is a quadruple (X, 7, Dy, 1), where
i) #: X — B is a proper flat morphism of complex superspaces,

ii) D is a subsheaf of the relative tangent sheaf T, to X, such that

{)]:DW®D‘H’_-)T1I‘/D7!‘

is an isomorphism
ili) ¢ is an isomorphism between C and the special fibre 71 (by).

By a first order (or infinitesimal) deformation of a SUSY-curve C we mean a deformation
A of C over §. The extra datum of the odd distribution has notable consequences, which
can be summarized in the following apparent paradox: »

Supermoduli space is not the moduli space of Super Riemann surfaces !

The trick off the hook relies in a careful analysis of the meaning of Kodaira-Spencer deforma-
tion theory. In very general terms, the heart of Kodaira-Spencer deformation theory lies in
the individuation of the sheaf of infinitesimal automorphisms S of the "structure” being de-
formed. This fundamental object, together with its subsheaf S ; of "vertical” automorphisms
will fit the Kodaira-Spencer sequence

0—8—85n*TB -0

from which the Kodaira-Spencer map is defined to be the first coboundary map. Now, for
Super Riemann surfaces, one can identify [LB-R] these sheaves as

S:={Y € Derdy =TX

[X,D] C D}
S/ =8N DET/X
which are strictly contained in the sheaves T X .

To classify infinitesimal deformations we prefer to report an explicit computation in
the spirit of the "original” Kodaira-Spencer approach. Namely we regard Super Riemann
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surfaces as built by patching together 1|1-dimensional superdomains by means of super-
conformal transformation, singling out moduli as non-trivial parameters in the transition

functions. Namely, consider a canonical atlas {Usy, 24, 84, } with clutching functions

{Za fap(2p)

i clz;aeﬁ
where, here and in the sequel f/, smeans %‘6— on UyNUg. They obviously satisfy the cocycle
condition fos(fay(2y)) = fay(zy) on Us NUgN U,.
We can cover a first order deformation 7 : X — .S of C glueing the U, x S via the

)
I
I+

identification
za = fap(28) + thap(2p) + (0pgap(28) Fup(2p)

ga = aﬁgﬁ + Cgcr,B

where Fop =/ fl5(1 4 tbap/2), so that the clutching functions are superconformal for any
t,¢. The cocycle condition for these transformation rules reduce to the cocycle condition for

the fup’s as before, plus
bap + fc'zﬁ bay = bay

and
gaﬁea + f;,ﬁ g;@‘ygﬁ = ga‘ygfy

Taking the tensor product by 0/8z,, one sees that the one cochains
W = {bapd/0z0}

véﬁ = {gapba ® 8/024}

are actually cocycles. They define a class in H*(Cheq,w™ )@ TIH (Creg, L) ¢ HY(C,TC),
called the Kodaira- Spencer class of the first order deformation X 3. Here we obviously
assume that C is smooth. Deformation theory of SUSY-curves with nodes requires the
handling of #-characteristics in the singular case (see §2.7).
A similar computation, considering local superconformal reparametrizations with local
odd parameters A,, shows that they leave the cocycle vy invariant and send v; into
d

Dap = Vap + (Aa = }\a)ﬁaa

which is enough for us to conclude
Proposition . The set of equivalence classes of first order deformations of a SUSY-curve

C is a linear complex superspace with dimension 3g — 3|2g — 2.
Proof. It is enough to compute the dimensions of H}(C\.q,w™!) and H'(C,req, L™1) by

means of Riemann-Roch theorem.

We can interpret this result as saying that there are 3g-3 linearly independent variations
of a #-characteristic and that, on the corresponding versal first order deformation, there are
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2g-2 independent variations of the supermanifold structure which keep the property of being
a deformation of a SUSY-curve.

Notice that this coordinate results fits perfectly in the general scheme of Kodajra-
Spencer theory as it was outlined above. N amely, the sheaf S ; of infinitesimal automorphisms
of a super Riemann surface is actually isomorphic to a subsheaf of the tangent sheaf of the
central fibre. In fact, it holds the following

Lemma [LB-R] .S, ~ D?

Proof. Consider canonical relative coordinates, in which D = 3—’5;, + 775%. Then, writing
YeSjasY=al +bD

[D,Y]~D & b= (-1 Da
Then, as D? is the local generator for the tangent space to C..q4,
HYC,S)) = HY(C, Ao ® To)=H'(K )Y@ OHY(C,L® K1
With a slight abuse of language we will set
HY(C,S)) = HY(C,T°C)

Since C is split, Hi(C, 7°C) naturally splits into even and odd subspaces and we can
speak about even and odd Kodaira-Spencer homomorphisms X S, and K Sy, by composing
K 3 with the projections of HY(C,T°C) = HY(Cregyw™t) @ LHY(C,oy, -1 ) onto the first
and second summand. It follows that, if B is a purely even superspace (i.e. an ordinary

complex space, see [V]), KS; = 0 and KSy;TyoB — HI(C,ed,w‘l) is the ordinary Kodaira-
' Spencer map. As we need the datum of a f-characterisitics on C'red, the deformation X — B
has to be be considered as a deformation of a 0-characteristics, whenever B is purely even.
We have therefore the following

Proposition -. Even-versal deformations of a SUSY-curve exist and are in 1-1 corre-
spondence with versal deformations of the underlying ¢-characteristic.

This proposition suggests that the compactified iiderlying space of moduli of SUSY-
curves can be given in terms of isomorphism classes of pairs (Cheq, L), where £ is a spin
structure in the sense of §2.7, by defining the graded structure sheaf to he 4 = D IIL.
Obviously, the odd part of supermoduli space still lacks. In fact, if one should insist in
dealing with purely even objects, and so considers the transition functions of the would-be
universal family to be

Zo = fap(2p,t)
{9a =/ Jap(28,t)05

then (super-)Kodaira—Spencer map fails to be an isomorphism.

A very appealing hint for the complete solution of the problem is given by noticing that,
in physical applications, world-sheet Supersymmetry requires the presence of a gravitino
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field on a given spin curve. This can possibly vanish, giving us back the (special) SUSY-
curves of §3.4. If not, one can fix local superconformal gauges [Ho], which amount to
choosing local complex coordinates, a local holomorphic trivialization of L and to identifying
a chiral piece of the gravitino field with a section x of A%!(Cl.q, L7!), i.e. with a smooth
antiholomorphic one form with values in £~!. Notice that obviously 8y = 0. As is well
known, there is a large ’symmetry group’ which survives the superconformal gauge fixing.
Indeed, Dolbeault’s lemma tells us that x is locally exact and one can set x|y, = Oeq
for some e, € A%%(U,, L7!). Clearly, x can be gauged away by means of a local SUSY-
transformation generated by —e, on U,. The obstruction to gauge away x globally is given
by (the cohomology class defined by) the one-cocycle with values in £~}

€apf = € — €3

This is holomorphic, because y was globally defined and hence geag =xlp, —xf v, = 0.
Notice that the action of supersymmetry has no effect on the €a8, While we have a local
symmetry generated by holomorphic sections 7, of L~acting via Cech coboundaries, i.e. as
€af — €ap T Na — Np. In other words, we can benefit of the isomorphism HEI(C’red, LN =
Hl(Cred,K 1) to represent gravitino fields y (up to supersymmetry) via Cech cocycles €,
(up to coboundaries).

Then, by a (family of) Super Riemann surface(s) one can mean the data of a SUSY-
curve €' = (Creds A*(L)) plus a fixed cohomology class [x] € Hﬂ’l(Cred, L~1). Special susy
curves of §3.4 can be considered simply as being given by [x] = 0. The datum of [x] can be
encoded in an extension of the structure sheaf of C' as follows. Forgetting about parity, we
notice that the extensions F of £ by O,

0-0—-F—-L—->0

are precisely parameterized by Ext!(L£,0) = H'(C\eq, £L7'). In other words, F is the sheaf
of sections of a rank 2 vector bundle locally generated by 6, (, with transition functions

(&)= (5 )= (%)

The supermanifold é[x] = (Crea, N*(F)) is not yet a Super Riemann surface , but
Lemma . There is a unique (up to isomorphism) deformation Ay of the structure sheaf

A*(F) OfC' = (Cred, N*(F)) such that
(Creds Apyg)

is a Super Riemann surface .
Proof . It is enough to find a superconformal coordinate patching

Za = Za(zﬁv 9/37 g)
0. z ]

I

)
]
—_

]
»
s
~—
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which reproduces the transition functions above for F and to z, = fa(z3) mod N?%. If €,
is a representative of [x], then the answer is uniquely given by

za = fap(28) + 05 fap(28)€an(2p)C

O = 1/ fap(28) - (05 + €ap(25)C)

Notice that the family constructed above is parameterized by the odd nilpotent parameter
¢, and can be considered as the simplest example of a family of Super Riemann surfaces
depending non-trivially on odd parameters. v

When considering an arbitrary deformation of a SUSY-curve, things get more involved,
since it is not difficult to prove that requiring that, for any fixed (¢,¢) € UP!? one has
superconformal transition functions

Zao : Za(Zg,Og;t,C)
Ha = Ha(zﬁaeﬁ; tvC)

implies that these assume the form:

Zo = faﬁ(zﬁ; tvC) + gﬁféﬁ(‘z,@; t,(;)fag(Zg; tvC)C
(*)
O = 1/ fap(28:t,C) - (9/3 + €ap(2p; 8, ()¢ + %Gﬁeaﬁ(zﬁ;t,C)CELa(zﬁ;t,C)C)

Notice that no "e€'”-terms entered the family of the above lemma since in that case ¢ was
a single odd parameter and hence its square was vanishing.

A direct "Kodaira-Spencer -like” analysis of the latter transition functions is overwhelmingly
complicated by the fact that an "engeneering” computation of the cocycle conditions shows
a highly non trivial interplay between the higher (-degree terms of f,s and the other param-
eters entering (*). It is then clear that a promising insight into the geometry of supermoduli
space can only be gotten by choosing a very special class of versal deformation. The hint
comes from a careful analysis of the non trivial odd deformation of the lemma above, and
from the observation that, looking at the cocycle condition for (%), one has that the explicit
dependence of the transition functions on the odd parameters can be consistently taken to
be linear as long as one can establish a vanishing condition for the product of two basis
vectors in Rlw.(L71). '

We star next to construct a very convenient class of family of Super Riemann surfaces
[FMRT], which, as will be clear in the sequel, deserve the name of Super Schiffer variations,
and have the remarkable property of being linearly dependent on modular parameters (see
also [Bers]). First we give a concrete example of how one can construct the SUSY-curve

(CredyAjy) of the previous lemma.
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Example . Let (Creq, Ax(L)) be a SUSY-curve over a point. Given a generic point p € Cheq,
we consider the cohomology sequence

0— HYC,L™") = H(C, L7 (p)) = C— HYC,L™") — HY(C, L™ (p)) = 0
associated to the sheaf short exact sequence
0— L™ — L7Hp) = L7 (p)/L7H =0
As L71(p)/L7! is the skyscraper sheaf with group C at p, Sp, it follows that
H(C, L™ p)/L7Y) =C.

Since deg L7!(p) =1~ g + 1 = 2 — g is negative for ¢ > 3, H°(C,£L'(p)) = {0} and then
the map ,‘
0— CLEYNC, L7 = -

is injective. (The same is true for even f-characteristics at genus 2. Odd ones deserve a
special treatment as £~'(p) can be O and in that case H%(C, L~!(p)) = C.)

This means that (up to multiplicative constants) there is a unique element of H!(C, L™1),
given the image of 1 € C under the map §,. Now, if U C C,q4 is a small neighbourhood of
pand V = C,cq \ {p}, the cocycle representing 6,(1) w.r.t. the covering {U, V'} is precisely
given by

-0®5;

where 6 is a local generator of £L~! ;. We get in this way a particular infinitesimal defor-

1,8

mation, which can be easily integrated by glueing a 1|1 super disk with coordinates (z' , ')
with the 1|1 superdisk with coordinates (z ,#)with the transition functions

2=+ &
{¢=e+g
with ¢? = 0 It follows that
15} 1 o}

KSi(=)=|-0® —
A7
as it should.
Clearly, the SUSY-curve given by these transition functions represents (g4, Apyj) for some
[x]-To show that each (C'yc4, A[y]) can be gotten in this way, we let p move around the central
fiber, getting a map

Ctred —_‘ PHl(C'reda Lvl)
given by

1 5}

P"—’[;'9®E]p
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up to multiplicative constants. It is enough now to prove that the map is full, i.e. it is
not contained in any hyperplane in PH(C,.q4, L™!). If this was not so, there would be an
element ¢ € PH?(C,eq, L?) of the dual projective space such that

(,6(p)) = 0 for all p € Creq

Here (:,-) is Serre duality, i.e.

(0,8(p)) = Respp(2) @ = 05" = (p)

and therefore ¢ = 0, an absurdum.
Summing up, given [x] € H'(C,eq, L) there exist 2¢g — 2 points p, € Creq s.t.

2g-2

M) = Y 8 (X)) -0
-~

We can now iterate (2g — 2)-times the glueing procedure described above by glueing other
superdisks with coordinates (z,, ,8'u) with the old ones (centered in p,) with coordinates
(z, ,0u) by the transition functions

R ThA 7

A

"

Em
%:%+%
This yields
— 0 1 d
KSi(z=)=]—'0,8 —
SI((?CM) {Zu ’“®<9zu]

and, by the argument above, KS 1 is an isomorphism.

To get a versal deformation of the SUSY-curve C' one can then proceed as follows. Fix
a set of {(3g — 3) + (29 — 2)} points p;, p, on C,eq4. and consider the open covering

(o = (€ {pp}) U{D U {D,})

where D; (resp. D,) is a small disk centered at p; (resp. p,)with D;ND; = 0if ¢ # j
and so on. Then composing an ordinary Schiffer variation based on the points p; with the
odd-versal deformation described above one gets a deformation

é _ D3g—3]2g—2

with basis a 3g—3|2¢g —2 super polydisk whose Super Kodaira-Spencer map is an isomorphism
C3g——3l2g-—2_";H1(C,é/)_
What is really relevant for us is the fact that a bais for the odd modular parameters is here

o
realized as the set of cocycles €, having support in D, = D, N Ua, so that

€o,u-€op =0if p#v



85

As a final remark we would like to add some comments on the issue of the splitness (or
non splitness) of supermoduli space. At present, only very preliminary results are available.
Namely, one has the two following propositions.

Proposition 1. Supermoduli space splits in genus g = 1.
Proof. On families of elliptic curves one either has no holomorphic 3/2-differentials (in the
case of even §-characteristics ) or, when £, ~ Oc¢,, only one, so that splitness is insured by

dimensional reasons.

Proposition 2. Supermoduli space (for smooth curves) splits in genus g = 2.

Proof. Here, no matter which is the parity of the #-characteristics , we have that the local
model for supermoduli 5'9 is the rank two sheaf £ = R'w.(L£~!) over the moduli space of
genus 2 spin curves S;. Then (see §3.2) its obstruction to splitness is measured by a single
class 7, € H!(S,75; ® A?(€)). Here we can argue as follows. The natural map

Sy My

obtained by forgetting spin structures is finite. But, because of the existence of a pecu-
liar relation between the canonical sheaf Kg, and the Deligne-Mumford boundary classes
6p and &y, it can be proven [M3] that, actually, M, is an affine variety and hence is Stein.
As being a Stein space is a property which is preserved in both senses under finite maps,
then also S is Stein and so, as 7.5, ® AZ(£) is coherent analytic 7, vanishes.

As it is clear from the proofs above, the two results above, being essentially based on
. dimensional properties, cannot be generalized as they stand to the higher genus case. More
specifically, the question of splitness of supermoduli space deserves a careful analysis of the
procedure by which one glues together its local building blocks, i.e. the bases of versal
deformations. This is not a harmless question, as it has been clearly pointed out in [LB-R)].
In fact, although it is not so difficult to produce a very general versal deformation for a
SUSY-curve, once a certain set of parameters - i.e. essentially, a basis for H*(C,£7!) - is
fixed, its form is going to depend in a highly non trivial way on this choice, so that, when
discussing the glueing procedure, such ”ambiguities” must be taken into account. Work is
in progress in the study of the glueing properties of SuperSchif fer deformations involving
the geometrical properties of local sections of the n**-fold symmetric product of the (local)
universal ¢-characteristics , in order to give at least a more tractable form to the splitting
cocycle for supermoduli space.
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3.6 Conclusions and overlook

As a conclusion, we want to spend some words in a discussion on the perspectives of
the approach to Superstring theory which has been pursued in this thesis work. As a mat-
ter of fact, due to the still incomplete understanding of both the structure of the ultimate
integration domain (i.e. supermoduli space) and the reduction procedure of the superstring
amplitude from a Feynman integral over the space of field configurations to an ”ordinary”
integral over supermoduli space, there are still some subtle points that deserve special at-
tention. Nonetheless, we feel appropriate to give a taste of some possible applications of the
machinery we described up to now, possibly skipping those slippery questions, i.e. assuming
that everything works in the right way.

The superstring partition function, after Wess-Zumino gauge fixing and ”fermionic in-
tegration” over the odd supermoduli is given by [VV,AMS]

2= [ dulm') A dutm) LGRIR(m) (1)
P

- where the "half string measure” L(R) is associated to the left (right) mover sector of the
fermionic closed string. For the type II model, one has that £ = . Let us concentrate only
on a chiral part, say the right moving sector of (1).

As sketched in §3.1, in the case of a target flat space time R'?, the half measure reads

detd_, deta(g%) -1
det(i[y7) <det<uAtuB>) ’

(deta(01)° - Wharar - (51 - S2g-2)a (2)

[dpRa](ms) = dp(m:)

and
5.4,0: :/(XATQF))Q
C

TEiF) = WY - 9. X" + (ghost contributions) (3)

where TLF) is the world-sheet supercurrent, x4 are the gravitino zero-modes and Wjy,; is

defined through
det( — Ao ) -5

fC VadetIm(§)

Wiatae A Wﬁlat - ( (4)

In Eq.(2), ¥* (resp. v#) are a basis for the holomorphic j = 2 (7 = %) differentials
on the curve C'. The finite dimensional determinants det(v|17) and det(v4|v?) essentially
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represent the ”volume of the zero-modes [D’H-P]” of the reparametrization and SUSY ghosts
and the suffix a denotes the choice of a spin structure.

Finally, 1512<SA)ZA—fimed is the correlator of the so-called changing picture operator
Sa(z4) defined in Eq. (3).

The usual procedure in the so-called "picture changing formalism” [VV] is to show that,
in the overlapping of two different patches in moduli space, a superconformal transformation
of the gravitino field x4 — X4 + O¢ modifies the local expression of the integrand by an
amount of the form ), 0; N i, Here the N%s are defined in each overlap and are generically
singular when the overlaps are "near” the boundary of 5,. In our context supersymmetry
transformations on the gravitino may give rise to non-split supercoordinate transformations
(m; — f(m;)+o0(¢?)) on supermoduli space, and, as we discussed in §3.3, the appearance of
total derivative terms is essentially due to a too naive Berezin integration prescription which
is inconsistent on a non-compact supermanifold. Note that the fact that we obtain a nice
compactification of S, does not avoid this problem, since we do not know a prior: anything
about the regularity of the integrand along the boundary 0S4, and, generically speaking,
physical considerations require it to be divergent there. Let us stress that [AMS] those
boundary terms are extremely dangerous, as they deprive [MM] any explicit computation
of n-point correlation functions of global physical meaning. In particular, even if one is so
clever in finding convenient parametrizations showing e.g. the local vanishing of the measure
for the string partition function [GIS], the presence of ambiguities of the form §; N* can spoil
the result.

On the contrary, the careful handling of the transformation law for the ”Berezin form”
as given by Rothstein [R2] gets rid of total derivative ambiguities [MT]. Then, provided
that integration on supermoduli space is done a la Rothstein, the local expression for the
integrand in Z will be of the form (1), no matter how one chooses the gravitino slice [MT,D H-
P]. Now, as we saw in §3.3, the lacking of naturality in the splitting of Rothstein’s sequence

0— (2P°@ D))" - QP ® D 3 Ber — 0

can give a contribution looking locally like 8;¢¢, where now, ¢ is a global holomorphic form.
Namely, this term arises as the difference between two different choices of the splitting,

iy(Ber) — iy(Ber) = diq’
However, we can express it as a true total derivative,
8;¢' = (8; +0;)g=d g

and hence, by the Stokes theorem for analytic varieties [GH], its total contribution is van-
ishing and so we do not get any ambiguities in the computation of, say, the cosmological

constant.

Having at our disposal a nice compactification of the moduli space of #-characteristics

together with a sound divisor calculus on it [C2], we next want to use it to get some insight
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into the structure of string amplitudes, and namely to specialize the discussion to the zero-

point function.
Let us consider, as a toy example, the case of genus 1. Here, incidentally, when restricting

to the case of even #-characteristics , we do not have to bother with the problem of Fermi
integration, as supermoduli space is purely even and coincides with S;". Then the fermionic
part of the 1-loop superstring partition function is given by

(det 51/2 )4

We recall that in Cornalba’s compactification scheme, 51+ is a triple covering of My, and the

preimages under the natural projection
[y vH

of the compactification divisor §y C ‘Mg are three points {R, NSy, NS;} where, following

the notations of §2.7
R = 140

E=NSiUNS; =y,
Notice that, being our spin modular parameter the square of the usual modular parameter,

one has

p1(60) = Ao = 2E + 2R

Considering the "universal” §-characteristics

[y

A

EH—(QCQH—— o

«Q

by means of the Grothendieck-Riemann-Roch theorem one can compute the Mumford
class as ‘

1
A= Ef*(UJ/w/) + 6

and the #-class as

1 1
a(fil) = A= Sf(LL) - SE

so that, taking into account the fundamental relation 12\ = §; which stems from the trivi-
ality of the relative dualizing sheaf in genus 1 one gets that [FMRT] (det 51/2)4 has divisor

2 1
dey(fiL) = AN —2f(L.L) ~2E =4\ = E = R - -F

3

which is in perfect agreement with the results found in the literature [SW] by means of

explicit computations.



89

Such computations can also be used to give a very appealing hint to a new proof of
the vanishing of the cosmological constant at high genera. To this purpose, we compute
the divisor associated to the section R defined in Eq. (2). We want to stress that we are
still working on spin moduli space :S‘—g, i.e. we are not giving any prescription for a higher
genus analogue of GSO-projection, and, consequently, we do not have to be bothered by
such delicate question.

R gets contributions both from products of determinants,

D = (det 01/2)° - (det 8_15)" - (det §_,) - (det §p)~°
and from the Pfaffian term
Pf= <51(Z1) : S?g—Z(ZZg—2)>c(

Again by Grothendieck-Riemann-Roch gymnastics one can show that the Chern class of D
adds up to give
ci(D)=—vp —3-v

where we recall once again vy is the boundary component of 8.5 g Which projects to the usual
Mumford - Deligne’s 8o in 9 M, ”without the addition of exceptional P!’s and v’ is the rest.

Let us now study the asymptotics of the Pfaffian factor Pf. The leading contribution
is the (g — 1)-fold product of terms like

(UH(21)8%(23)) 02, 0., (XH(21) XY (22) ~ S(z1,22)0-,0., In E(z, z7)

- where §(z,w) and E(z,w) are, respectively, the Szegé kernel and the prime form. One has
that [Fay]

S(z1,22) ~ 1/ E(21,29) ~ Vit = q

0:,0:,)In E(z,, z3) ~ const

Now, the product D - Pf defines a divisor (D - Pf) in ?Q. The previous computations give
(D-Pfy=-vog=3-v' +(g—1)-v' = ~vy + (g — &)

so that, when g > b the degree of L = (D - Pf) is negative and hence its only holomorphic
section is the vanishing one. Then, under the assumption of holomorphicity of D - Pf (on
spin moduli space), one gets an algebro-geometrical direct proof of the vanishing of the
cosmological constant.

The border case ¢ = b5 is also easily dealt with. Here degl = 0 so that L ~ qu.
Then, D - Pf is a global holomorphic function and so is a constant. A convenient point for
evaluating it is 5 € 77!(4;) where one can use factorization plus the proven vanishing of the
cosmological constant at genus 1 to get its vanishing also for g = 5.

We stress that this result matches nicely both with the result of [GIS] hased on explicit
computations at genus 2 and with those of [MP], which rely on generalized Riemann identities
holding for g < 4.
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The above discussions shows that the "super-algebraic” geometrical approach to the
Superstring theory, besides being mathematically sound-based, is computationally quite
promising. Still, as we have repeatedly remarked, some problems remain open and deserve
further study. In addition to the ones (like splitness of supermoduli space) that have been
extensively discussed in the previous chapters, we would like to list the following ones

a) The extension of the above formalism to the case of the heterotic string, where left-
right asymmetry must be taken into account from the very beginning and the definition of

"Superdeterminants” is not so clear.

b) The correct generalization of the high-genus analogue of the G.S O-projection, which is
needed to get a physically reasonable fully supersymmetric particle spectrum.

c) The characterization of N = 2 Super Riemann surface in this formalism, in relation
both with compactification schemes'a la Calabi-Yau and, more generically, with N = 2

superconformal field theories.
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