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I. Introduction

One of most ambitious aims of theoretical physics today is to understand the
origin of the universe; the classical spacetime together with its matter content.
Any attempt to understand the origin of spacetime with its indefinite Lorentzian
metric must start from something more fundamental than the concept of space-
time itself. In classical general relativity and therefore in classical cosmology
spacetime is a fundamental concept; therefore one can not ask questions about
the origin of spacetime in the context of classical cosmology. Moreover a se-
ries of theorems by Hawking and Penrose show that any classical cosmological
model, with a reasonable matter content must start with a big bang singular-
ity. At this singularity, both spacetime curvature and matter energy density
become infinite. This is a disaster to physics, since all the laws of physics will
breakdown at the singularity [1,2]. Singularity theorems can be reinterpreted
such that they imply that at very early time in the evolution of the universe
the curvature of spacetime was so large (in Planck units) that quantum grav-
itational effects were very important and classical cosmology breakdown. As
the consistent and complete theory of quantum gravity is yet to be found; main
while, one can tackle certain special cases with the formalism already existed.
Quantum cosmology, the subject of this thesis, is a special case of quantum
gravity, where one is preliminary interested in the quantum dynamics of cer-
tain cosmological models for the universe. In quantum cosmology, the quantum
state of the universe is represented by a wave functional, which is a functional
of the geometry of three-space and the matter configurations on it, therefore,
spacetime is not a fundamental concept, and the more fundamental variables
are the geometry of three-space and the matter configurations on it. This makes
quantum cosmology a suitable theory for addressing questions about the ori-
gin of spacetime as a fundamental concept in classical cosmology. Any answer
for a question about the origin of the universe can not avoid addressing the

issue of the initial state of the universe. Fortunately the initial state or the



boundary condition of the universe plays a central role in quantum cosmology.
Hawking has recently proposed a boundary conditions for the universe [3]. The
idea was further studied in the famous paper by Hartle and Hawking [4]. They
have found that Hawking boundary conditions could lead to a universe that
was similar to our universe. In this thesis the universe is assumed to be in the
”No boundary” state proposed by Hawking. Further explanation of Hawking
boundary condition is given in section II.3.

Chapter.II in general, will deal with formalism of classical and quantum
cosmology. The canonical formulation of classical cosmology is recapitulated
in section.Il.1. The next two sections deals with the formalism of quantum
cosmology. In section II.2, both the canonical and path integral formulations
of quantum cosmology are discussed, while in section I1.3, Hawking boundary
conditions are introduced. These boundary conditions are most easily spelled in
terms of path integral over Euclidean histories of the universe. A universe in the
quantum state singled out by Hawking boundary conditions is called Hawking
universe, while the quantum state it self is called Hartle-Hawking wave function
of the universe, since this wave function was first calculated in the joined paper
of Hartle and Hawking [4]. The central idea of the thesis is whether H-universe
in the classical limit resemble our own universe in its known part of history.
This question is studied in chapters III, IV. In chapter III, a minisuperspace
model is introduced, it is Friedman universe which contains a massive scalar
field as a matter source. The general properties of this model are discussed
in section IIL.1. In section IIL.2, the interpretation of the semiclassical wave
function of the universe corresponding to the above model is discussed. It is
found that the wave function in some regins in the superspace is oscillatory in
behaviour. Only in this regins the concept of Lorentzian time is meaningful, this
implies that the origin of Lorentzian 4-geometry of spacetime is the oscillatory
behaviour of the wave function which may be considered as more fundamental
fact.

The other question addressed here about the origin of the the matter content
of the universe is discussed in section IIL.3, this question was first addressed in
context of inflationary models [5,6,7]. In inflationary models, spacetime is usu-

ally taken to be classical, governed by Einstein equations, while matter source is



taken to be quantum fields. The idea of inflation 5,6], is that at an early stage
in the evolution of the universe, its expansion was dominated by the by the vac-
uum energy of the matter fields, which acts as a cosmological constant, causing
the universe to enter a de Sitter stage of exponential expansion. According to
inflationary models all matter content of the present universe was created at
the end of inflation from the vacuum energy of matter fields [8]. Thus, inflation
gives a definite answer to the above question but at the expense of assuming
initial state of the universe for which, at least inflation occurs with sufficiently
long period. Furthermore, in order for inflation to be able to cure all the dis-
eases of classical cosmology, several strong constraints has to be satisfied by the
parameters of both cosmology and particle physics [9]. Thus, in the absence of
proper understanding of the initial state of of the universe, one can not claim
that inflation occurs naturally. For one can conceive a, large class of universes
for which the above constraints were not satisfied, and inflation dose not take
place or was not long enough to solve all the problems of classical cosmology,
like (horizon,flatness .etc). In quantum cosmology one has a precise descrip-
tion of a boundary conditions for the universe, which lead to an initial state of
the universe, in which inflation occurs naturally, at least in certain reasonable

models of the universe, such as, the model of chapter III.

The last question addressed in this thesis is a bout the origin of large scale
structures in the universe, such as, galaxies, and superclusters, this question is
discussed in chapter IV. This question was also first addressed in the context of
inflation [7,15]. According to inflation, the present structures have their seeds
in the ground state quantum fluctuations of matter field which derive inflation,
they were sufficiently amplified by inflation so that they lead to a density per-
turbations which can have both the correct amplitude and spectrum to evolve
into the structures that we see now provided certain conditions were satisfied.
In many inflationary models this leads to strong conditions on the parameters
of the particle theory involved in the model, such as, the the self interaction
coupling constant of the scalar field which often used to derive inflation has
to be far smaller than its typical values in a realistic particle physics theory
[9]. Moreover, one can conceive an initial state of the universe for which the

quantum fluctuations in the matter field did not start in their ground state and



they give rise to a density perturbations with the wrong amplitude or the wrong
spectrum to explain both the observed structures [20], and the isotropy of mi-
crowaves background radiation. Again quantum cosmology provides us with
more comprehensive understanding of the initial state of the universe, because
it seems that the inhomogeneous and anisotropic modes always started out in
their ground state in Hawking universe. The reason for this, is that, Hawking
boundary conditions constraint these modes to be very small when the size
of the universe was very small [10]. Clearly the origin of structure has to do
with the evolution of the inhomogeneous modes, for if the early universe was
strictly homogeneous then it is not possible for it to develop the structures that
we see now, because if the history of the universe contains one homogeneous
and isotropic three-space section (cuachy hypersurface) then, by Einstien’s field
equations, every space section in the history of the universe is homogeneous and
isotropic. This means that it is not possible to address the question about the
origin of structure in the context of the minisuperspace model of chapter III.
Therefore in chapter IV, following reference [10] the model of chapter III is gen-
eralized so that the superspace contains in addition to the homogeneous and
isotropic modes of the minisuperspace model of chapter III , infinite number
of inhomogeneous and anisotropic modes. This extension is done in section
IV.1. The wave functions for this modes are found in section IV.2, in the limit
when the homogeneous modes become semiclassical, that is, when the concept
of Lorentzian time becomes meaningful, these wave functions obey time depen-
dent Schrédinger equations [10,20]. The most important result of section IV.2
is that, the inhomogeneous and anisotropic modes started out in their ground
states, this result agree with that of reference [10]. The relevance of the result
of section IV.1 to the origin of structures in the universe is discussed in sec-
tion IV.3. In chapter V we comment on the validity of the ideas of the thesis,
because the models discussed here were in some sense restrictive, other possi-
ble generalizations are discussed very briefly. We also comment briefly on the

validity of using Einstien’s theory of gravity as a basis for quantum cosmology.



II. Formalism of Classical and Quantum cosmology

II.1- Canonical Formulation of Classical Cos-
mology.

II.2- The Quantum Dynamics of the Universe.

I1.3- Hawking Boundary Conditions of the Uni-
verse.



II.1 Canonical Formulation of Classical Cosmology.

A classical cosmological model, is a model for the evolution of the universe,
in which spacetime is represented by a 4-manifold M, with a metric Guv, Which
is governed by Einstien equations, and a matter source, usually classical fields,
governed by a classical field equations, according to their spin. Clearly the con-
cept of spacetime plays a fundamental role in classical cosmology. The canonical
formulation of classical cosmology begins with the recognition that spacetime
is the trajectory or history of three-space. thus, the dynamical quantity is the
geometry of three- space, represented by a metric hi; [11]. Similarly the dy-
namical quantity of matter field (assumed to be scalar field here ®(z)), is the
configuration of the field ¢ (X) on th space-like hypersurface S of constant time.
In order to study the classical dynamics of the universe in the Hamiltonian form
, one has to define more precisely the canonically conjugate variables for the dy-
namics of the universe. This is also very crucial for obtaining the corresponding

quantum dynamics.

The starting point is to foliate spacetime 4-manifold (M,g) into a one-
parameter family of 3-spacelike hypersurfaces S. The parameter which label
the surfaces, can be taken as a time coordinate. If one introduces another three
coordinates, X*, to label the points of S; then the geometry of three-spaces S

can be represented by a metric h;; on S.

The metric of spacetime takes the following (3+1) form [11]:
dS? = —(N* — N;N*)dt® + 2N;d X dt + hi;dX*dX7, 1l

where N is the lapse function, measuring the proper time separation between
successive surfaces of constant coordinate time t, IV; is the shift vector which
generates a coordinate on all successive surfaces from a coordinate that was
given on an initial surface S. This means that the functions N and N; are not

dynamical variables; in fact they can be chosen quite arbitrary. This arbitrary-
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ness reflects the invariance under general coordinate transformations which will
be seen to lead to constraints of the classical dynamics. These constraints will
play a fundamental role at the quantum level. The action for matter field is that
of a massive minimally coupled scalar field, (this is the matter field relevant to

subsequent discussions):

1 -
In = —E/M[a“@a“@ +m? ey gd's .1 |-2
The action for gravity is :

Ig - lﬁirG[./M[R—ZA]\/“—gd‘iQ?—f'z/aMK\/};diix] ' 'ﬂ_lg

where :

g is the determinant of the spacetime metric (¢ = N \/E)
h is the determinant of the three-space metric hy;.
A is a cosmological constant.
K is the trace of the second fundamental form K;;.
The surface term was added by Gibbons and Hawking to insure that I, leads
to Einstein’s equations under variations of the metric g,, which vanish on the
boundary , but whose normal derivatives do not vanish there [12]. The classical

cosmological action [the action of the universe] is :

I=I,+1, L ZZ./.{//

The next step is to break I into its (3+1) from, as we did for the metric Guv

1= [+ L)dXde - - 77 ). 8

Using the inverse of spacetime metric g*¥ :
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The matter lagrangian becomes :

Lm = —3NVh[g"8,83,0 + m?d?|
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Similarly one could write L, in its (3 + 1) form :
771y

L,= 16" N[GMEK;i K + Vh(Rs — 24)]

where m,, is Planck mass (m, = G~% in units h = ¢ = 1), K;; is the second

fundamental form of the surface S.

Ky = Eé/x'/[pzﬁdf + 2/‘/(““)}

where (|) denotes covariant differentiation with respect the 3- metric A

ij, Fs is

the curvature scalar of the three- metric hij,

T Ly kL
”“ A[A‘k/w +A1Ak—zlf: J -y

Gijm is the De Witt metric of the superspace, the space of all three-metric
that can be put on a 3-surfce S . Now, one can obtain the momentum conjugate

to the dynamical variables (i, hi;)
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The Hamiltonian of the universe is:

A . 3
= Y('”LJ he, *\'"’%@"Lﬂ”Lm) dx
. Y
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Clearly it is linear in both N and Nj;, thus it can be written as:

Y[I\/Ho + N, Wldx . T3

where:
~k ~m
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Here Gy is the inverse of the superspace metric :

Gu«-a“[}‘ hoet hee hie = he hee )77 15

In obtaining H* we have discarded a surface term arising from changing N (¢/5)I1%
into N;IT¥’|7, this is justified only if the the three-surface S has no boundary,
this will be the case in all subsequent discussions. Thus, the canonical vari-
ables are identified, they are : (h;;,,11,I1,). Now it is more clear that the
dynamics of the ~miverse;» 41,1771, is the dynamics of of the geometry
of the three-space, and the matter configuration on it. Thus, any history of the
three-space and matter configuration on it, represents a possible classical cos-
mological model for the evolution of the universe. In order to be able to choose

a unique history to represent the actual history of our universe one needs:
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In order to be able to choose a unique history to represent the actual history
of our universe one needs:

e Dynamical equations.

e Initial conditions.

The dynamical equations in our case are the space-space part of Einstein’s equa-

tions and the classical field equation for the scalar field, they can be obtained
from the Hamiltonian I1.1.13 :

L]

he. = % H , _‘ﬁ“:ﬂg_ﬁ_ - TI
v -—;—.—Tﬁ‘; 2 L) %h‘::’

) — st 5 7.7@ — —sH T T
v = T 0

By varying the Hamiltonian with respect to N and N; one gets respectively the

Hamiltonian and the momentum constraints of the dynamical system:

H — o ' . Tl )
= e T

These constraints are conserved by the classical dynamical evolution, they are

satisfied at all times, once they are satisfied at a given time.

The initial conditions amount to specifying the canonical variables(hi;, ©, I1Y,11,),
on an initial three-surface such that they satisfies the above constraints.
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The Quantum Dynamics of the Universe

In the Schrédinger picture, the quantum state of the universe is represented
by a wave functional W(h;, ), it is a functional over the extended superspace,
the later is the space of all possible three-metrics h;; and matter field con-
figurations ¢ that can be put on a three-surface S. (from now on it is called
just superspace). In order to obtain the quantum dynamics from the classi-
cal canonical dynamics, one promotes the classical canonical variables into a
quantum operators. Thus in Schrédinger picture the momentum conjugate to
a dynamical variable is represented by a functional derivative with respect to

this variable, it acts on the wave functional.

'/nq; — "l.i R /A AR R

. b

T —_= - g%:;_; T

Thus, substituting this into the classical Hamiltonian will promote it into a
functional differential operator. In order to be a physical quantum state for
the universe, the wave functional, must describe a quantum dynamics which
is consistent with the constraints. This is only possible if the wave functional
is annihilated by the quantum Hamiltonian. Therefore in order to implement
the classical constraints at the quantum level one is lead to require that the
quantum state of the universe should satisfy the following set of functional

differential equations [4, 13, 14, 15]:

o~ .

¢ h.wb i § hi)=0 ..]
HI(@ e ) leoho=0 - Taq

-

A(CQ hi -9 ’!;,(L,\ %(CPJL\L_{)T-’:O -T7]-1-3
oy - ,

Ho PN T T Sy

These equations turn out to be highly non trivial requirements, in fact

equation II.2.3 turns out to determine the whole quantum dynamics of the

universe. Equation II.2.2 is a set of momentum constraints. They imply that
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W is is a functional of the geometry of the the three-surface S; but not the
particular coordinates in which this geometry is given, therefore this equation
has no dynamical content. The non trivial equation II.2.3, is the Wheeler-
De Witt equation [13], it governs the evolution of the wave functional of the
universe in the superspace. If one looks at this equation as a time dependent
Schrédinger equation, then it implies that the wave functional of the universe is
not explicit function of time. While as an eigen value equation, it implies that
the total energy of the universe is zero. This is reasonable for a spatially closed
universe without boundary, like Hawking universe, because for such a universe

all strictly conserved quantum numbers should vanish.

In writting down Wheeler-De Witt equation explicitly, there exist a non-
trivial problem of factor ordering; essentially because in the classical Hamil-
tonian Hy, the kinetic term for the gravitational field contains Giju, the later
depends on h;;, this leads to ambiguity in ordering Gijr with the functional
derivatives corresponding to the IT"s.This issue was discussed by Hawking and
Page [17]. A part from chapter IV, H-P factor ordering is used in the rest of
the thesis. With this ordering Wheeler-De Witt equation takes the following
explicit form:

(hs py=0 - 21
[ '“‘qu 2.2 ?—24 L]L{/ j

a——

5\'\:9 St

where,

\
{

3
7' L\ (}Q ’ZA)+ \’\ Q\'\ gﬂ LN mcq} 125
\/Uf\\, @) = :6 Tl W

Thus, the factor ordering is chosen so that the kinetic term in the Hamiltonian
operator Hy, is a covariant laplacian in the superspace metric [17]. Since the su-
perspace metric can be made hyperbolic by a suitable choice of gauge (choice of
independent dynamical variables by solving the momentum constraints). This
choice will also makes W-D equation hyperbolic with respect to the superspace
metric, with h'/2 playing the role of time [14]. So the quantum dynamics of the
universe, in the Schrédinger representation, can be thought of as the evolution

of the wave functional in the superspace in the direction of A1/ 2 the evolution is
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governed by W-D equation. Any solution of W-D equation represents a possible

quantum state of the universe.

So far the quantum dynamics of the universe is presented in the Schrédinger
picture, an other very useful representation is, in terms of Feynman idea of sum
over histories. This representation is also used in many occasions in the text.
In this formulation the basic object is the quantum amplitude to go from one
three-surface S;, with a three-metric h}j and matter configuration p*(X) to an
other three-surface Sy, with a three- metric h}; and matter configuration p?(X )
Fig.1.This amplitude is given by path integral over all Lorentzian 4-metrics
guvand matter configurations ®(z) on 4-manifold M, bounded by S; and S,
that can induce, the three-metric h}; and the matter configuration !(X) on S;

~and, the three-metric h%; and the matter configuration ©?(X) on S,, [12].
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Explicitly, the amplitude may be written as :
<th ’ C‘ﬂz/AiJ ; C{7’> —
JargQieT e (Fig, ) <2t

Clearly, time dose not appears explicitly in the above amplitude, actually this is
not true if M is not compact, for example if Sz, S, were asymptotically flat, then
their time positions in M will be invariant, and both the wave functional and
the quantum amplitude would depend explicitly on time. The wave functional

can be recovered from the quantum amplitude in the following way:

z i 2 7, ! \ ,‘ a’ \ . IZ-Z-:}-
lf//hﬁ’f?z) ;/V/(AL )C(J) (}'\;J- 147“’165 '@7 C’IC}“..;} ):@]

where the integral is over all the three-metrics and matter configuration that

can be put on ;. Alternatively one may write the wave functional as :

(T(8,8)) - ard
L}/(“JJ"CP)//‘C/G/[Z»]JFM exp

here C is the class of Lorentzian 4-metrics g,, and matter configurations on
a 4-manifold M, that are allowed in the functional integral. Clearly specify-

ing C would lead through II.2.8 to a unique wave functional. In this sense,
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specifying C is equivalent to specifying an initial wave functional U(hi;,p') in
equation II.2.6. Moreover, equation I1.2.8 shows clearly that in quantum cos-
mology the geometry of spacetime is not an a observable, indeed one has to sum
over all possible geometries of spacetime to get the quantum state. Therefore,
spacetime is not a fundamental object in quantum cosmology. This brings the
question addressed in the introduction , of how and when spacetime becomes a

fundamental object, this question is discussed in the next chapter.

The wave function I1.2.8, can be shown, at least formally, to satisfy W-D
equation, so it represents a possible quantum state of the universe [14,15]. This
can be done by varying I1.2.8, with respect to the lapse function N. on the left
hand side the effect is to push the boundary of M, on which k;; and ¢ have the
values specified by the argument of the wave functional, forward or backward
in time. Since the wave functional is not an explicit function of time (at least
for a closed universe ), the left hand side give zero. While the right hand side
gives: L (9, .9)

st w2 = =i gd[@,“,}c{m’]% e
v St c »

ot
Y

(T(9, .
gatf%ijECPJHca W _pw ... med

C
Similarly the momentum constraint can be derived by varying with respect to

N;. In this case the left hand side will vanish because, a variation with respect

to NV; will only change the coordinates in which h;j, ¢ are given.

An other representation of ¥ is in terms of path integral over Euclidean
histories [12, 14, 15].

*’Iﬁ(aw,cp) _
Yilhg,e) = UQM]JWJ ¢ R s A
‘

where I is the Euclidean action of the history (g, (X, T), ®(X, T) obtained from
I by taking the lapse function to be negative imaginary, N — —iN
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Interestingly enough the wave functional 11.2.10 obeys the same W-D equa-
tion [15], and so it is automatically ( without analytic continuation back to
Lorentzian time) a possible quantum state for the universe. Here the Euclidean
path integral is used in all the text, since in this case the integrand is formally
exponentially damped, (a part from the integral over the conformal fluctuations
which need a special choice of the contour in the complex conformal functional
space so that also this integral converges [12, 15]), this make the functional
integral, at least formally, convergent [12]. This is to be contrasted with the

Lorentzian functional integral which oscillates but dose not converge.
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IES”HaWking Boundary Conditions for the Universe.

W-D equation is a functional differential equation, therefore it has infinite
number of solutions. The question is which of these solutions represents the
actual quantum state of the universe, this quastion can only be answered if one
has a theory or a proposal for the boundary conditions of the universe. Hawking
[3] has proposed that the boundary conditions of the universe is that it has ”
no boundary ”. The implications of these boundary conditions are studied in
detail by Hartle and Hawking in [4]. They have calculated the wave function
of the universe for certain quantum cosmological models. Further studies of
this boundary conditions have shown that the wave function singled out by
Hawking boundary conditions describes a universe similar to ours [4,14 ,15,
20]. As in classical dynamics, the most convenient way to incorporate the initial
conditions is in terms of an action principle. Here too the most convenient way
to spell Hawking boundary conditions is in terms of path integral, moreover
since the idea involved summing over compact 4-metrics, it was not possible
to give the boundary conditions in terms of Lorentzian path integral. The
reason is that any compact Lorentzian metric must be singular, no body no
how to put boundary conditions on the spacetime singularities [1]. On the
other hand a compact Euclidean 4-manifold is not necessarily singular [1], a
clear example is the 4-sphere, the north and the south poles of a four sphere is
as regular as any other point of this sphere. With this in mind the boundary
conditions is reduced to specification of the class C of Euclidean histories in
equation II.2.10 Hawking boundary conditions a mount to taking the class c
to be the class of all compact Euclidean positive definite 4-metrics and regular
matter configurations on a 4-manifold M, whose only boundary is a compact
three- surface S, the 4-metrics and the matter configurations in C must induce
the argument of the wave functional ¥(h;;, ) on S [3,4]. Clearly, the three-
surface S must also be compact without any boundary in order to be a section
of compact 4-manifold without boundary, this the origin of the statement that
the boundary conditions of the universe is that it has "no boundary” [1]. This

choice of boundary conditions would give a unique solution to W-D equation,

18



if definite choice of the measure of the functional integral is made. It turns
out that the ambiguity in the choice of measure in the functional integral is
a reflection of the problem of the factor ordering of W-D equation [21, 22].
Here we shall assume that the measure of the functional integral was chosen so
that 11.2.10 satisfies W.D with the factor ordering of discussed in section II.2.
A universe in the unique quantum state singled out by the above boundary
conditions is called here Hawking universe. Although other kinds boundary
conditions have been suggested [18,19]; Hawking boundary conditions are the
most comprehensive, therefore it is studied in more details in literature [4,
14, 15, 16, 17, 20, 21]. Here too, we shall be discussing Hawking boundary
conditions. Clearly, Hawking boundary condition is just a proposal it can not
be derived from any thing else [1], the only way to prove or falsify it is by
comparing Hawking universe with the universe in which we live. As our universe
is very big in size now 10%°C Planck lengths, we are fairly sure that it is to a
very high accuracy a classical object, indeed it is the most classical object one
can conceive. Thus one should study the semiclassical approximation of H-H
wave function of the universe, in order to see whether Hawking universe in its
later stages of evolution (when it becomes large) becomes similar to our own
universe in its recent known history. It turns out that H-H wave function in
the semiclassical limit dose not describe only one classical universe, rather it
describe a family of classical universes to see this, in the semiclassical limit (and

when Psi oscillates rapidly) H-H wave function can be written as:

é/g(l‘”’“@ - IT-3.)

by o) = Kol L)

where C is a slowly varying function, given by path integral over quadratic
quantum fluctuations around the classical histories defined by the Hamilton

principle function S(hi;, ), the latter obey Hamilton-Jacobi equation.
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where V' (h;;, ) is given by equation I1.2.5 Now Hawking boundary conditions,
chooses a unique solution to I1.3.2, through I11.3.1, this solution define a family

of classical histories of the universe given by:

T\H —_ ,_S/S,H:ﬁ 507 = S Su—n—
S »\ ¢ — " 1IT-33
i,

°q

Thus, if the superspace has n dimensions, then the solution of II.3.3 has n
arbitrary constants, while the general solution of the classical field equations
would have (2n-1) arbitrary constants [20,24]. This clearly shows that Hawking
boundary conditions for the universe, gives initial conditions for the classical
field equations. This fact is due to the requirement of compactness and regu-

larity, which must be satisfied by the classical Euclidean histories.
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ITI-Origin of Classical Spacetime and Matter
from Minisuperspace Model.

ITI.1-Minisuperspace Model, Hawking Massive
Scalar Field.

III.2-Interpretation of the Wave Function and
Origin of the Lorentzian Geometry of spacetime.

IIL.3-Inflation from Quantum Cosmology and
Origin of Matter Content of the Universe.
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IIL.1-Minisuperspace Model, Hawking Massive
Scalar Field.

It is well known that the gravitational field, or the geometry of the three-
space has two dynamical degrees of freedom per point of three-space. Similarly
the matter source (in our case massive scalar field) has one degree of freedom
per point of three-space. Thus, the superspace has got infinite dimensions. this
means that the general W-D equation of section I1.2 is a differential equation
over a space of infinite dimensions.It is very difficult if not impossible to solve
such an equation in its most general form [14]. In order to proceed further,
it has been suggested by many authors [4,13], that in the case of quantum
cosmology one can use a minisuperspace approximation of the superspace for
which all but finite number of the gravitational and matter degrees of freedom
are frozen. Then one solves the resulting W-D equation on the minisuperspace,
has finite number of dimensions. In order this approximation to be a reasonable
one, the degrees of freedom which play important role in the dynamics of the
universe must be identified, the minisuperspace, should consist of such a degrees
of freedom. Classically one can use the cosmological principle, which says that
the three-space sections of spacetime must be homogeneous and isotropic spaces,
the principle is supported by large scale observations, such as the isotropy of
the microwaves background radiations on scales (L > 50M ps). This means that
at least classically, the large scale dynamics of the universe can be described by
Robertson-Walker model, and the most important degrees of freedom, are the
homogeneous and isotropic ones. The matter source also has to be homogeneous
in order to be consistent with the homogeneity of the three-space. This together
with the fact that we are interested solely in closed universes (because of the
boundary conditions) define a minisuperspace model which is a good candidate
for the description of the quantum dynamics of the universe. In this model
spacetime is described by a closed Friedman metric [14]:

Le-lt) : J ST
ds“= S”L[»N}t)dtlzk 2 -o\X-o\XJ--- e

where o is a constant of dimension of length (it is of the order of Planck length),
(o2 = 37r3n2 ), e2) = a(t) the scale factor of the universe, (i5 is the metric on
P

unit three-sphere.

As in chapter II the matter source is assumed to be a massive scalar field
®, it is further restricted by homogeneity requirement to be function of time
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only. The action for & can be obtained from II1.1.7 by substituting II1.1.1
and integrating the spatial dependence in equation IL1.5 (it amount simply to
multiplying by the volume of unit three-sphere (27r?).

_ ol : (AP Y 77 R
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where m is measured in units of o™, ®? is measured in units of —L -

7ri5z- Similarly,
the action of the gravitational field is obtained from I1.1.8 by substituting the
values of K;;,R;3 for the metric I11.1.1 :
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and integrating the spatial dependence in equation I1.1.5, the result is :
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here A’ is measured in units of ﬁ;, it is zero for the minisuperspace introduced
above, but it is kept here just t

o show its analogy with the vacuum energy term
m2®? in the matter action, thi

s fact is relevant for the subsequent discussions.
Thus the action for the model s :

szfuwa]At

~2e~ —
KN C 1 Tl e Lo Jdt.‘.w.}.g
St W[ ) e )

This model is called Hawking massive scalar field model, it was first introduced

by Hawking in [14]. The classical equations of motion can be obtained by
varying with respect to o and @ :

. ® ___aa.
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The superspace for the model has two degrees of freedom (a, (p})‘nhe momen-
tum conjugate to these degrees of freedom are:

o = M = - N éd‘ d:. e =t m'.,-g‘a.
= o i |
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The Hamiltonian function for the model is
— 3 el 7 (4 6 - 2 HDL:J =7 1.
=g NMe [W?—Wa.'ﬂ*cmi‘?/& /AL

The Hamiltonian constraint is :
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Hj define the inverse of the superspace metric, while the metric itself is :

JSIAL: é”"[c)c’%,c{ij U R N |

The quantum dynamics in the Schrédinger picture obtained by promoting (
I, ,II, )into a differential operators, and requiring the resulting Hamiltonian
constraint to annihilate the quantum state of the universe, clearly in this case
the quantum state becomes a wave function rather than a wave functional. This
together with the factor ordering picked by III.1.11 specify the W-D equation
completely :
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Clearly, W-D equation has the form of the hyperbolic Klein-Gordan equation
;with a space-time dependent mass. It is hyperbolic with respect to the super-
space metric III.1.11. The solution of II1.1.12 which obey Hawking boundary
conditions can be written as :

ol — | dIvIdre Tt ) .
U-la,0) = [ dl=]d[d]) e . -:m/.[ 13

where [ is the Euclidean action :
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here, T is the Euclidean time (d7° = —¢Ndt), C is the class of configurations
specified by Hawking boundary conditions H.b.c . In the case of the above
particular model, it is the class of Euclidean 4-metrics that have the following
functional form :

(T [&
4" = rL[Nz(T) T 277 ﬂg}
and the regular homogeneous matter configurations on a compact 4-manifold
M , that induce the argument of ¥ on the unique boundary of M, in our case
II1.1.15 restrict this boundary to be a three-sphere S®. In practice it is very
difficult to evaluate the functional integral II1.1.13 exactly, since the Euclidean
action is not quadratic in &. The usual way to calculate H-H wave function is
either to evaluate the path integral using saddle point approximation [4,14,15
], or to evaluate the wave function from III.1.13 near ¢* = 0 and to use the
result as boundary conditions to integrate W-D equation I11.1.12. In this sense
H.b.c on the path integral provide a boundary condition for W-D equation on
the superspace [14,15,20,21]. We shall be using the second option, in this case
in order to estimate the H-H wave function for small e*, one can estimate the
Euclidean action along a history («(T"), ®(T)), the history must satisfies H.b.c

the 4-geometry has to be compact this implies :

T=o ¢ =0 5 d&€ o ... T
T

the regularity of the matter configurations implies:
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(notice that l‘cpojz oo would lead to a singularity of the 4-geometry at T =
0) With the above conditions, one can find the Euclidean action for any history
connecting the points (T = 0,e* = 0,0 = ) , (T, e, ), for e* very small :

-~ —3 3 ,
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&= 0 Q

The Euclidean action of equation II1.1.14 becomes :
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If one substitutes I11.1.16 and II1.1.17, the action can be expressed in terms of
the end points of the history :

zau T T Yo
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This lead to the approx1mate H-H wave function at very small three-geometries

[21] :

H,/(a.,cp) = ﬁ7410+g[2€ 4 ‘u:} S

In the above evaluation we have neglected a possible contribution from a history
of the form of Fig.1.b which also connect the same end points, it turns out that
Fig.1.a dose indeed give dominant contribution , but the history of Fig.1.b
could be complex, (has complex action) and therefore it will add oscillatory
component to the wave function [21], this would change drastically the answer
to the question of whether Q.C remove the singularities of classical cosmology,
fortunately it dose not change the boundary conditions obtained from I11.1.21.

In order to use III.1.21 as a boundary condition for W-D equation, it is
useful to use an other variables, which display more clearly the casual structure
of W-D equation Fig.2 [14]: These variables are :

= . . =
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Figure .1: Euclidean histories that contribute
3-geometries Y :

Figure .2: causal structure of minisuperspace

With this variables W-D equation takes the form :

[ z
L%~ 3 +\/(x/y)J Yixy) =0 -qp 123

where,

3 - 7 -] -
vy = (rx ) im tanh 1) = et T

Now the physical region of interest (e* > 0) is mapped by IIT.1.22 into the region
Y > [X} The the point e = 0 is mapped into the forward null lines ¥ =]X]
thus in the variables(X,Y),equation II1.1.21 gives the wave function on and
closed to the forward null lines (Y =/X]).This is sufficient initial value data for
integrating II1.1.23 in the whole physical region YV Z/X] In integrating I11.1.23
one distinguishes two regions ; the first region is V < 0 and as equation I11.1.21
indicates, the wave function is an exponential in behaviour in this region; while

in the second region where, V > 0, the wave function is oscillatory in behaviour
[ 21, 16].

In the second region an approximate form of the wave function which satisfy
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Figure .3: general behaviours of the wave function

H.b.c. may be obtained, it is valid for V > 0 and|p/>> 1 [21]
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Which has the asymptotic form :
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Figure .1: all the Euclidean histories must originate from zero three-geometry
at T=0

II1.2 Interpretation of the Wave Function and
the Origin Lorentzian Spacetime.

In section II.2, it was noticed that the 4-geometry of spacetime is not an ob-
servable in Q.C, indeed one has to sum over all possible geometries of spacetime,
in order to get the quantum state. This means that the 4-geometry of spacetime
dose not play a fundamental role at the quantum level. Yet in classical gen-
eral relativity, and therefore in classical cosmology the 4-geometry of spacetime
plays the most fundamental role in the description of the universe. Since Q.C
is expected to be more fundamental than classical cosmology, it must have a
limit in which one recover classical cosmology, and the Lorentzian 4-geometry of
spacetime becomes fundamental in the description of the universe. It turns out
that in the semiclassical limit of Q.C, one recover the Lorentzian 4-geometry of
spacetime, but only in certain regions of the superspace [15,16].

Similar ideas about the origin of the universe were discussed in th context
of inflationary models [8]. In the model discussed by Velinken, the universe
was created from "nothing” in a quantum tunneling event. The tunneling took
place from a region in the configuration space where Lorentzian spacetime is
not defined to a region where it becomes Lorentzian de Sitter spacetime. In
Q.C one could also say that Hawking universe originates from ”nothing”, but
in different sense than that of Velinken. In the latter case, "nothing” means
every 4-geometry allowed in the path integral must be compact, and has only
one boundary specified by the argument of the wave function. This means
that every Euclidean history in the sum must originate from "nothing” at zero
Euclidean time Fig.1.

If one wants to extract more useful informations from the wave function ob-

tained in the last section one has to chose definite interpretation of the H-H wave
function of the universe. The interpretation of the full wave function is difficult
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at least for two reasons. The first is that we live in one classical universe now,
while the statistical interpretation of quantum mechanics require the existence
of ensample of identical systems. The second reason is that the wave func-
tion is often not normalizable, that is, its square integral ov>r the superspcze
diverges. The above difficulties makes any standard probabilistic interpreta-
tion of Q.C pathological. Even though some progress has been achieved in the
interpretation of the wave function of the universe, for example Hartle has re-
cently proposed that in the spirit of relative state interpretations of quantum
mechanics, due to Everett and Wheeler, one should interpret a peak in the
wave function of the universe as a definite prediction of Q.C [23, 24] . Here
we are more interested in the interpretations of the semiclassical wave function
since the questions addressed in the introduction concerns the semiclassical be-
haviour of the wave function of the H-I modes. Furthermore the wave function
of last section III.1.25, I11.1.26 just takes the semiclassical form II.3.1 , so they
are valid approximation only in this limit. In the semiclassical case, Hawking
has suggested that one can use the square of the trace second fundamental form
K? to interpret the wave function of the universe [14 ,15 ].

From equation II.1.11 one has :
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For the metric I11.1.1 :
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Now Hawking suggestion is :

Case a- E‘;—‘l > o ; the wave function describes a family of classical his-

tories with Lorentzian spacetime geometry. These histories describe a static,
expanding or contracting universe according to whether 5‘2 is zero, negative or
positive. The Lorentzian histories corresponding to the wave function of last

section will be studied in more details in the next section.

case b- ¥ < 0; the wave function describes a family of Euclidean histories
of the umverse ; or in this region of the superspace the concept of spacetime
with Lorentzian 4-geometry cease to exist.

30



The above interpretation is reasonable because, in the first case the observ-
able K is real and classically the 4-geometry is Lorentzian when the rate of
expansion is real, furthermore, the universe is expanding or contracting accord-
ing to whether the trace of the second fundamental form is negative or positive.
In the second case the observable K is imaginary, according to equation III.1.3,
this is possible only if either N or t is imaginary, in both cases the metric II1.1.1
becomes Euclidean.

Now it is important to note that the wave function calculated from the
Euclidean functional integral II1.1.21, I11.1.25 automatically describes a real
quantum state of the universe without the need for analytic continuation. As
was noted in the last section this wave function has two different kinds of
general behaviour, in the region close to the null lines Y :] X/ the wave function
is exponential in behaviour leading to negative KTQ‘P, in this region the geometry
of spacetime is Euclidean. On the other hand in the region of validity of equation
II1.1.25 or I11.1.26 the wave function oscillate leading to positive values of —I%—‘g,
in this region the geometry of spacetime is Lorentzian. Numerical calculation
confirms the above behaviours, and shows that in general the wave function
oscillates in the region V' > 0 [16]. Only in this region the concept Lorentzian

spacetime exist.

Although the above interpretation was very successful in providing a deeper
understanding of the origin Lorentzian metric of spacetime. the second piece
of the interpretation can not be claimed equally successful , for according to
this interpretation, in the region V' < 0 the 4-geometry of spacetime is Eu-
clidean. The problem is that in ordinary quantum mechanics in all tunneling
processes similar thing happens, in latter case there are regions in the config-
uration space of the tunneling particle where the kinetic energy operator has
negative expectation values, yet one dose not speak of spacetime becoming Eu-
clidean in that region of the configuration space. Rather one usually interpret
this region as classically forbidden. Now I think that the situation in Q.C is
very similar to that of particle tunneling. What happens in the region where
the expansion rate is imaginary is very similar to what happens in the region
where the particle momentum is imaginary. In the case of tunneling there are
no classical trajectories that pass through the forbidden region. By analogy one
can says that in the region where the wave function is exponential in behaviour
Lorentzian spacetime (the trajectory of the three-space) dose not exist.
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Inflation from Quantum Cosmology and the
Origin of Matter Content of the Universe.

According to the discussion of section II.3, in the semiclassical limit the
wave function of the universe I11.1.26 must have the general form:

[ SCesep) e

leng) = Rel ((s,0) €
here C is a slowly varying function, it is given as a path integral over quadratic
quantum fluctuations o, §® a way from the classical histories defined by Hamil-
ton principle function S. Furthermore, |C|? represents a conserved probability
measure over the set of classical histories [24]. S is a rapidly varying phase
satisfying Hamilton-Jacobi equation, this equation can be obtained from the
classical Hamiltonian constraint :

ra
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Of the many solutions of equation II1.3.2, H.b.c single out the function S corre-
sponding to the wave function III.1.26, as this wave function takes exactly the
form III.3.1.
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where the negative sign corresponds to expanding phase according to the dis-
cussion of last section.

This action function corresponds to one classical trajectory in the phase
space of the system, or to a two parameters family of classical trajectories
in the minisuperspace,they are the solutions of the two first order differential
equations [24] :
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Clearly H.b.c provides initial conditions for classical equations of motion , be-
cause the general solution of equation III.1.7, together with the Hamiltonian
constraint involves three arbitrary constants. Equation II1.3.3 can be further
simplified by substituting the action function I11.3.2 and choosing a coordinate
time such that N =1 :

O Zmiwl > Jel = "gm .. @m 35
In the region of validity of equation II1.1.26 ( V > 0)®| >> 1), the rate of
expansion ¢ is much larger than the rate of change ®-, for some time T, & stay
almost constant. As it was noticed in section III.1, when ® constant the term
m?2®? in the action act as a cosmological constant causing the universe to expand
exponentially (inflating). For wide range of the parameters m,®o, T is long
enough to solve the problems of horizon, flatness, large scale homogeneity and
primordial magnetic monopoles. Clearly, the problem of cosmological constant
can not be solved in the frame work of the model of section III.1, because
Hawking boundary conditions dose not say any thing about the initial and final
value of ®, and therefore the initial and final value of the vacuum energy m?*®2.
This leads one to speculate that the problem of cosmological constant (why
the cosmological constant now is many orders of magnitude smaller than the
typical values of the vacuum energy, say during inflation) can not be solved in
the frame work of Hawking boundary conditions.

Clearly, when @ changes appreciably, say when it reach the value|®|= 1 the
wave function I11.1.25, is not a good approximation, the time when this take
place may be estimated from I11.3.4 :

T = 3y (1@ —]) B 1T 24

At this time the rate of change of ® is no more small compared to the expansion
rate and equations II1.3.4 is no more a valid approximation. Fortunately, by
this time the universe is very large in Planck units and the classical equations
IT1.1.7 are valid, when the choice of coordinate N = 1 is made these equations

take the form of :
— 2N
v v 7 . 2.
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So far the matter field is assumed to be coupled only to gravity, in a realistic
particle physics theory, there are many kinds of matter fields which are self
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interacting, or interact with each other. In order to take into account the
interaction of the other fields with @, one can add by hand a term proportional
to ® [9]. this will modify the equation of motion for the & :

N o ' T 58 — :

d +32P - P+ mP =0 - 77 -39
here I'"1 is the life time of the scalar particles. When (I'"! << &%, the solution
of equation III.3.7 is

CP‘:CPo e_gpff\t CoS (mt +5) T -39

This means that the & field starts oscillating when it cross zero. Quantum
mechanically, these oscillations represent a coherent quantum state of the ho-
mogeneous mode of the scalar field. During the above oscillations the vacuum
energy of the scalar field is being converted into all sort of particles that were
coupled to the scaler particle through the I' term. Furthermore, during this time
the universe expands as a matter dominated Friedman universe,(a = t¥/3, The
reason for this is that the average pressure over a cycle < 1 / 262 — 1 / 2m2<§2
vanishes, and the curvature term in III 3?&,}7&7&5 washed by inflation.

If the interaction between matter fields was sufficiently strong, the matter
content of the universe will soon reach thermal equilibrium at a temperature of
about :

—_— . 390-m I . -/
,Hﬁgmﬁj L mih
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where n;,, ny are the effective number of degrees of freedom of bosonic and
fermionic fields respectively [9].

Clearly, in Q.C the universe started cold, all the energy content is in the
vacuum form (m?®?), the total a mount of matter energy increased tremen-
dously during inflation, this was on the expense of the negative gravitational
potential energy [1]. At the end of inflation almost all the vacuum energy was
used to creat the matter content of the universe.This took place during the
oscillation of the scalar field, these oscillations can be understood as a decay of
the scalar field into all sort of particles to which it was coupled, the decay life
time is (I'"!). The created particles reach thermal equilibrium at temperature
Ty, and the universe proceeds along the lines of closed Friedman model of a
hot Big Bang.
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IV-Quantum Origin of Large Scale Structures
in the Universe

IV.1-Infinite Dimensional Extension Of the Min-
isuperspace.

IV.2- The Wave Function of the Inhomogeneous
and Inisotropic Modes.

IV.3- Quantum Origin of Structures.
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IV.1 Infinite Dimensional Extension of the
Minisuperspace Model

In the last chapter we were interested in a minisuperspace approximation of
the full superspace. All the inhomogeneous (IH) and anisotropic (ANS) degrees
of freedom of gravitational and matter fields were frozen. The question of how
reasonable is this approximation can not be answered in the context of the previous
model. Specifically the question of quantum stability of the minisuperspace model
has to be answered. It is well known that according to the uncertainty principle
it is not possible, quantum mechanically, to put any dynamical variable together
with its conjugate momentum to zero. This means that the IH,ANS gravitational
and matter modes can be small but can not be exactly zero. Now the question of
stability can be rephrased as, do these modes remain small for some time during
which the homogeneous and isotropic modes (H,IS) played dominant role in the
quantum dynamics of the universe. This question was answered by Halliwell and
Hawking in [10]. Fortunately the answer was yes, before the H ,IS modes become
classical and during inflation the IH and ANS perturbations with short wavelengths
remain small in quantum sense, i.e they remain in their ground state. This makes
the dynamics of the universe, during the time when the IH, ANS modes were small,
is correctly represented by the minisuperspace model of last chapter. Furthermore,
this IH, ANS modes will be seen in section IV.3 to account for the origin of structure
that we see in the universe.

Following Halliwell and Hawking [10], the minisuperspace model of last chapter
is extended to the full infinite dimensional superspace by retaining the IH, ANS
degrees of freedom. however, as they did, those modes are treated as a perturbations
around the minisuperspace model discussed in chapter IIL. In this way one is probing
a small region of infinite dimensions of the superspace around the minisuperspace
. In the perturbed form of the Friedman model with the massive scalar field of the
last chapter the metric of spacetime takes the general form II.1.1 with :
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Where 6N, 6N;, 6h;; are small IH or ANS perturbations. Similarly the the
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perturbed scalar field becomes :
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Where 6 ® is inhomogeneous perturbation of the scalar field ®. Since the background
H and IS modes still represent Friedman universe, with 3-spheres spatial sections
on which the metric is 02e?*{);;; one can expand the above perturbations in terms

of harmonics on three-sphere S3: n L o . e .n
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Where Qn(X); ,,(X ) are scalar harmonics on S°,

SctandS? are even and odd vector harmonics on S*
n k3 3
G¢andG? are even and odd tensor harmonics on S3.

The properties of these harmonics can be found in [20], as an example we have
collected the important properties of scalar harmonics in an appendix. Clearly the
superspace has the following degrees of fr‘éedom

(

a(t), o(t), an(t), ba(t), ca(t), dn(t), (Iwhere n stands for n,l,m, e, o indices. So the
superspace has countably infinite number of degrees of freedom; this is due to the
fact that the background three-space is compact, it is S®. So far the perturbations
are not restricted to be small, but in practice it is not possible to treat §h,6N,6N;
non-perturbatively, since the lagrangians in I1.1.7, II.1.8 depend on these pertur-
bations in a complicated manner. This leads Halliwell and Hawking to expand the
action II.1.5 for the lagranglans 11.1.7, IL.1.8 in the perturbations oh;;j,6N,6N;, 60,
keeping terms up to second order in these perturbations, the result is that one
can do all the integrals in I1.1.5 using the properties of harmonics (essentially the
orthonormality of these harmonics). The resulting action may be written as:
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here Iy is the action for the minisuperspace model I11.1.5 without the A' term. While
I, can be further decomposed into:

fnc/‘c/f[/__;—i—}fm} o -‘ .- Iy |-lo

hereL} comes from the nth order term in the expansion of II.1.8 up to second order
in 6h;;,6N,6N; and then substituting IV.1.5, IV.1.6, IV.1.7. While L* comes from
expanding IL.1.7 up to the second order in éh;;,6N,6N;,6®, and substituting the
expansion of these quantities in terms of harmonics. Clearly, in order to obtain

IV.1.10 the spatial integrals over a three-sphere are done using the orthonormality
of the harmonics.

With the lagrangians L,, L,, L, one could proceed along the lines of section IL.1,
finding the momentum conjugate to each of the degrees of freedom. Then one can
find the Hamiltonian of the system it takes the following form [20] :

H'-—‘ /\/o[HgO'Sf" éH:‘z + C(. jnH[n‘ ]—1-
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The sul?scripts 0,1,2 on H|, H_ denote the orders of the quantities in the perturba-
tions, and S, V denote the scalar and vector parts of the shift of the shift parts of the
Hamiltonian. Clearly their will be a Hamiltonian constraint for each ¢,,, apart from
the one corresponding to Ny. Moreover their will be scalar momentum constraint
for each k,, and a vector momentum constraint for each 7,,. At the classical level the
scalar momentum constraints imply that not all the scalar modes (a,,b,, f,) are
independent. In fact only one of the sets (a,), (b.)(fs), can be independent. The
vector momentum constraints imply that the vector modes ¢,, are purely gauge
variables. On the other hand, all tensor modes are truly dynamical modes classi-
cally, they represent a gravitational waves, with wave lengths that depend on the
order of the mode.

.= 1Vl
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IV. 2 The Wave Function of the Inhomogeneous
and Anisotropic Modes

The quantum dynamics of the perturbations is most easily obtained in Schrédinger
picture, in this picture the universe is described by a wave function, ¥ which is a
function of all the modes, ¥ (e, ©, @n, by, €n, dn, f). The dynamical equation is ob-
tained by promoting the momentum conjugate to each of the superspace variables
into a differential operator with respect to that variable :
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and substituting the resulting operators into the classical Hamiltonian IV.1.11,
the resulting Hamiltonian is required to annihilate the quantum state of the universe

Q\’\/(*/C?jan)bnsC“)an )Qn) — O R R AV YA

Now, the sets (Np), (9n), (kn), (Jn), are independent Lagrange multipliers, since
both the lapse and the shift functions can be arbitrary chosen. Therefore equation
IV.2.1 can be further decomposed into a set of momentum constraints, for each k,
and 7, :

Shn
Ay =-»

iy = o

and a set of W-D equations for each g, and for Nj :
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where H)g is just the Hamiltonian of the minisuperspace model of section III. 1, Hp,
can be further decomposed into :

e I

. An ~ VAN "
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n " ‘

where the superscripts S, V, T denote quantities that contains scalar vector and
tensor modes respectively.

Here, we shall be interested only in the scalar modes though, the treatment of
the tensor modes is very similar [10, 20]. The vector modes ¢,s are not interesting
because they are pure gauge, they can be given any value by gauge transformations
parameterized by 7,.

The quantum Hamiltonian of the scalar modes has the following explicit form
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Since the total Hamiltonian constraint of equation IV.2.4b is a sum of contributions
from scalar, vector, and tensor modes, and each contribution is a sum over the order
of the modes, the wave function of the universe decouple into product over the kinds
of the modes and over the orders of the modes, however, each of the perturbations
mode continues to be coupled with the background H and IS modes, This leads to
the following form of the wave function :
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In the limit when the H and IS modes becomes semiclassical, the wave function
for these modes takes the form of equation II1.3.1, here S(a,p) defines a family
Lorentzian classical histories of the universe. The parameter along these histories
is the Lorentzian cosmological time, it is defined in terms of S as :

T3y (252 25 9
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As it was discussed in section IIL.2 only in this limit the Lorentzian time becomes
defined. The important point is that in this limit it can be shown that each of the
perturbation wave functions obey a time dependent Schrédinger [10, 20], this can
be done substituting the wave function IV.2.7 into the W-D equation 1V.2.4b, and
taking into account that W, has the semiclassical form II1.3.1, with S obeying the
Hamilton-Jacobi equation I11.3.2 .

As an example, the time dependent Schrédinger equations for the scalar modes
take the form of :

A n
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E

here ¥ H is the Hamiltonian of the scalar modes equation IV.2.6, with the momentum
operators corresponding to the homogeneous modes changed into their classical form

‘a;;j&) 2 SR - Pag(ﬂ‘?@)
o
This equation can be further simplified if one solve the momentum constraints,
IV.2.3a, IV.2.4a for the derivatives with respect to b, f, in terms of the derivative
with respect to a,, (the scalar modes dynamical variables are chosen to be the
set (a,). The time dependent Schrédinger equations for the modes a,,, for large n

becomes [20] :
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where Y is an abbreVIatlon for the expression :
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and ¥§ is equal to ¥™ up to un important phase.

The solution of this equation can be written as a Euclidean path integral :

I_ (., Qn) ... . \W- 2-13
SU M (.00 3T) = f dras) €

where In is the Euclidean actlon for the mode a,, it can be calculated from the
Hamiltonian of these modes defined by equation IV.2.11 :
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It is important to note that although a, are conformal modes, the action I, is
positive,(the second term between brackets is always smaller than the first, except
near the time of maximum radius of the background solution [20] ), this is due to
the fact that the momentum constraints were already solved and the action contains
only truly dynamical variables, furthermore this verifies the claim made in section
II.2 that W-D equation can always be made hyperbolic by solving the momentum
constraint.

Having wrote the wave function for the scalar modes as Euclidean path integral,
one can now use Hawking boundary conditions to single out one quantum state
for each mode. It turns out that Hawking boundary conditions constraint all the
perturbation modes to be zero at zero Euclidean time of the background modes
(T = 0 ). This means that the class C which define the H-H wave function for
the scalar mode @, contains only the histories a,(T") that were zero at the zero
Euclidean time.

S.‘-—{’jn&%{/@/ar\ JT) = @JW}G&D‘/”@ ;CP,, )O).:D> . \VZ'JB

On the other hand equation IV.2.1% for the wave function of a mode a, can be
solved in the limit when the background modes are slowly varying functions of time
relative to the time scale set by the frequency 0 tha’c mode :
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In this situation the right hand side of equation IV.2.11 can be considered as time in-
dependent, the time dependence of the wave function is just a phase, when this phase
is factored out the resulting equation becomes the time independent Schrédinger
equation for a harmonic oscillator with a time dependent frequency v (T).

N
205
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Clearly the above approximation is valid for modes with large v,, it is called
the adiabatic approximation. When the left hand side of equation IV.2.17 is slowly
varying functions of time the solution can be found, in fact it is just the quantum
states of a harmonic oscillator with frequency v,,.

The general solution of the time dependent equation may be written as :

S\YI/":_—- Zﬁ’“ 6" ] Dt U (o0, 0. v2lf

here U is the mth quantum state of the mode n, it is just mth quantum state of
harmonic oscillator with a frequency v,

This means that the path integral solution IV.2.12 can be expanded in terms
the stationary states IV.2.18 :

m —-_(M'l'%_)L’;';;T m Y
St?'a/n(“ic?xanbﬂ = Z Xn(owp) € U, ---ivzm

where in the right hand side the time is Wick rotated to imaginary Euclidean values.
As a part of renormalization, the ground state energies must be subtracted from the
energy of each of the quantum states of the mode a,, this dose not remove all the
divergences of the corresponding field theory but at least it makes the contribution
of the IH,ANS modes the total matter energy small, and consistent with treating
these modes as a perturbations.

In equation equation IV.2.19 one can again take the adiabatic limit, this amount
to taking the limit (v, — oco). In this limit it is clear that the first term gives
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the dominant contribution to the sum on the right hand side. This leads to the
most important result of this section that, H-II wave function for modes with very
large v, is a ground state. In fact this result is quite general, for example all the
above steps can be repeated for the tensor modes and would clearly lead to the
same result if the frequency of these modes is an increasing function as the time
T decreases, which is indeed the case, all the frequences diverges exponentially as
Euclidean time approaches zero. In all the steps we have only used the adiabatic
approximation, which means that the frequency of the mode is much larger than
the rate of change in the background variables («(T), ®(T)). In chapter III it was
found that H.b.c lead to inflation in the semiclassical limit of the wave function
of H and IS modes. Since we are interested here in precisely the same limit, the
time scale for the background variables is set by (H™! = &71), where H™! is the
size of event horizon of the de Sitter universe during inflation.This means that the
adiabatic approximation (H << v,(T)) hold for any mode as far as the wave length
of the mode dose not exceed the size of the horizon during inflation. This leads to
the interpretation of the above result as, all the perturbations modes stated out in
their ground state, they continue in their ground state, up to a time during inflation
when their frequency was red shifted by the expansion of the background universe
up to H. Or in terms of the wave lengths of the modes, one can say that all the
modes started out in their ground state and continue in this state up to a time when
their wavelengths became larger than the size of the horizon of the background de
Sitter spacetime.

This result completely agrees with that of Halliwell and Hawking [10], the deriva-
tion of our result is based on more general arguments and can be applied to all the
other modes. Often in literature similar arguments is used to define the ground
state wave function of a quantum mechanical system using Euclidean path integral
[15], their in order to pick the ground state wave function in expression like the right
hand side of IV.2.19, one usually take the limit as the Euclidean time approaches
infinity. In our case we have taken the limit as the energy or the frequency rather
than the Euclidean time to approach infinity.

The above result answer the question addressed in the previous section about the
quantum mechanical stability of the minisuperspace model, the answer is positive
because the modes started small (in their ground states) and continues to be small,
at least up to the time when their wavelength leave the horizon during inflation.
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Quantum Origin of Structures.

The results of last section have lead to a picture of Hawking universe that was
very smooth and symmetric when it was very small, yet it contains very small
inhomogeneities that can be the seeds for the large scale structures that we see
now in our universe like, the galaxies, clusters and superclusters. The outstanding
question about the origin of these structures seems to have its answer in the fact
that the early universe can not be absolutely homogeneous and isotropic, rather
it must contains a small density fluctuations that can evolve to give rise to the
structures that we see now [10]. This can not be considered as a satisfactory answer
to the above question, because these density perturbations have to be assumed as
initial conditions in the early universe.

Inflation makes an other step forward by identifying the seeds for the density
fluctuation with the ground state quantum fluctuation of the matter field during
inflation [7,15]. The latter gets sufficiently amplified by inflation so that they give
rise to a density perturbations that can have the correct amplitude and spectrum
to give rise to the structures in our universe, and to be consistent with the large
scale isotropy of the microwaves background radiations.

This is still not completely satisfactory, since one would like to understand why
the the quantum fluctuations have to be in their ground state during inflation.

Clearly if the universe really obey Hawking boundary conditions, then one can
understand why the quantum fluctuations has to start out in their ground state.
The reason is that H.b.c constraint the class C which define the quantum states of
the modes. They constraint it to contain Euclidean histories of these modes that
that were small near the origin of the Euclidean time.

In order to actually prove that the IH, ANS modes in H-H wave functions can
give rise to the structures that we see now, one has to study the latter evolution of
these modes. In fact it is the scalar modes that give rise to the density perturbations
which lead to formation the large scale structures. The later evolution of all the IH,
INS modes is governed by a time dependent Schrédinger equations, with the time
being the cosmological time defined by semiclassical background modes. In partic-
ular the scalar modes evolve according to equation IV.2.11, the initial condition for
this equation is the ground state wave function of the corresponding mode.

The evolution of these modes was studied in [10, 20|, they have found that this
evolution could lead to the correct amplitude of density perturbations provided
the mass of the scalar field is about (10'*GeV). Clearly just as in the case of
inflation the perturbations will have the correct spectrum (Zeldovich spectrum)
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because they originates from a causal microphysical processes (inside the horizon)
in a time translation invariant universe, de Sitter spacetime 7]
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V.Comments and Discussion.

Summerizing what is done so far, one can say that in chapter III, it was found
that the Lorentzian spacetime is a valid concept only in certain regions of the min-
isuperspace, essentially the region where the wave function is oscillatory in behavior.
In the same region the wave function describes a. family of classical Lorentzian uni-
verses, each has an initial period of inflation, at the end of inflation the vacuum
energy of the matter field was converted into all sort of matter that we see now in
our universe. Almost all this energy was borrowed from the negative gravitational

energy during inflation [1].

In chapter IV, it was found that all the IH, ANS modes started out in their
ground states, since these modes are believed to be responsible for the formation of
the large scale structures in the universe, one can say that the large scale structures
have their origin in the ground state quantum fluctuations which must be their by

the uncertainty principle [1].

This justifies the title of the thesis ”Quantum Origin of Hawking Universe”,
when this universe was small, it was described by a wave function, it contains no
matter, the notion of Lorentzian spacetime was not their , the seeds for all the
structures were also very small. This lead to the picture of Hawking universe that
was very very smooth when it was very small, and it gradually loses its smoothness
and order, through the growth of the IH, ANS modes. Hawking has argued that this
can explain the thermodynamical arrow of time in our universe, entropy increase

because it was initially small [1].

The above successes of Hawking boundary condition, leads one to believe that
this boundary condition must have some truth in it, in fact this these boundary
conditions may turn out to be a piece of the fundamental theory of gravity. In
order to prove or falsify these boundary condition more work has to be done, The
boundary conditions must be challenged with other more quantitative observations
in our universe, so that one may say that Hawking universe is not only qualitatively
similar to our universe but it is also similar in its details. On the theoretical side,
the models studied in the text are in many ways a restrictive models. The matter

field was always restricted to be a massive scalar field, although such a field appears
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quite naturally in unification theories, its existence lacks any experimental evidence,
so far all the discovered elementary particles are fermions. A second theoretical
restriction is the fact that in all the models discussed Einstein’s action was used as
the fundamental action for gravity, that is, it was used as a basis to obtain quantum
gravity. In the current theories for quantum gravity like (superstring theory), it
seems that the law energy limit of these theories gives in addition to Einstein’s
action, a terms which is quadratic in the curvature tensor. Thus, one could argue
that if superstring theory gives the correct theory of Q.G, then it is not possible
to use Einestein action as a basis for obtaining the quantum theory of gravity.
However the models studied here, were used only in situations were any curvature
square term is much smaller than Einstein action. This is because the regions in
the superspace were the background wave function oscillates the three-geometry
is large and the curvature of the universe is small in Planck units. Therefore the
corrections added by this terms might affect drastically the behaviours of the wave

function in the Euclidean region but not in the Lorentzian region.

The above leads to many ways for a generalization of the models studied here
for one can study models with different matter content [15,20], or in which one add
curvature square terms to Einstein action [25] . It is an open problem whether
H.b.c also in the context of these models can lead to a universe similar to our own

universe.
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Appendix

Scalar harmonics on three-sphere

In this appendix we have collected the important properties of the scalar
harmonics on three-sphere all these properties can be found in reference [20],
the vector and the tensor harmonics satisfy similar properties [20]. The metric

on S% can be written as :

[4
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In what follows X stands for the three coordinates of a point on a three- sphere,

(]) stands for covariant differentiation with respect to {1;; .

The scalar spherical harmonics Qp, (X) are scalar eigenfunctions of the

Laplacian operator on S3, they satisfy the eigenvalue equation:
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The most general solution of .2, for a given n is a sum of solutions :
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here A}}, are a set of arbitrary constants. The Q. can be expressed in terms

of the harmonics on two-sphere S? as :
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where Y},, are the harmonics on two-sphere, and II}' are the Fock harmonics.
The spherical harmonics @, make a complete orthogonal set for the expansion

of any scalar field on the three-sphere.

Using the scalar harmonics Q1Y one can construct a vector harmonics P* in

the following way :

A R

It can be shown that these vector harmonics satisfy :

P K=o, B o

In the same way one can construct tensor harmonics from the Q’s
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The P;; are traceless, from the equation satisfied by the Q’s, these harmonics

must satisfy :

P-“ . _ Z-/ ( n’[___bl) ]:::‘ (8)
Ly 3

B = et T
il = - =3 1y

by
L ey
]QL:}. e 7./3 (nl"q) Q

If one denotes the mtegratlon measure on S° by dp :
M = JX(MUZMJL"?W\)( g4naJ)C35Cg¢ (.9)

50



Then, the Q},,, satisfy the orthonormality condition :
\ '
h no S ne % (.10)
1 _ \ |
o @, Do, dag mm

The orthonormality condition for the Q’s leads to the following normalization
of the P’s :
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All the spatial integrals needed to obtain the action IV.1.9, as integral over
time can be done using the orthonormality of the scalar vector and tensor

harmonics.
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