ISAS - INTERNATIONAL SCHOOL
FOR ADVANCED STUDIES

ark Matter Halos:

Properties

Thesis submitted for the degree of
“Magister Philosophiae”

Astrophysics Sector

Supervisor:
Candidate:

Prof. D.W. SCIAMA
Magda ARNABOLDI Professor

M. CAPACCIOLI

Academic Year 1989/90
‘ TRIESTE







Contents

1 A General Review of Dark Matter

1.1 Imtroduction. . ... ... . . .. i
1.2 DM in the Solar Neighborhood — [1 kpcscale] . . . .. . ... ...
1.3 Rotation Curve and Escape Speed . . . ... ... ... ... ...
1.4 Dynamics of Population IT Tracers . . . . ... ... ... ... ..
1.5 Magellanic Stream — [100kpe] . . . . . . . . ... ...
1.6 Dark Matter in Galaxies — [60kpc] . . . . . ... ... ... .. ..
16,1 TidalRadii .. ... ................ [
1.6.2 X-Ray Halos of Elliptical Galaxies . .. ... .. ... ...
1.7 Dark Matter in Systems of Galaxies — [1 Mpc]. . . . ... ... ..
1.7.1 Binary Galaxies . .. ... ... ... ... .
1.7.2 Groupsof Galaxies . . . . . . .. . .. .. .. ... ...
1.8 Clusters of Galaxies = [1.5h™ Mpc] . . .. ... .. ... .. ...
1.9 DMin Cosmology . . .. . . .. . . ...
1.10 Gravitational Lenses . . . . . .. .. ... ... ... ... ...,
1.11 Primordial Nucleosynthesis . . . . ... .. .. .. ... ......
1.12 Age of the Universe . ... . ... .. ... ... ... .....
113 Is Qo =17 . o o o e e e
1.14 Dark Matterin Baryons . . . . . .. ... . . ... ... ... ..
1.15 Plan of This Work . . . . . . . . .. ... .. .. . ... .. ...
2 DM: Evidence from Galaxy Kinematics
2.1 Imtroduction. . . ... .. .. .. .. ..
2.2 DM: Evidence from Optical Rotation Curves . . ... .. ... ..
2.2.1 Comparative Integrated Properties of the Spiral Family . .
2.2.2 Properties of Optical Rotation Curves . . . .. .. .. ...
2.2.3 Local Density ... ... ... .. .. ...
2.2.4 Integral Mass Distributions . . . .. .. ... ... ... ..
2.2.5 Masses and Mass to Luminosity Ratios . . .. .. ... ..
226 Conclusion . .. .. ... ... ... e
2.3 DM: Evidence from HI Rotation Curves . . . .. ... ... ....

WO 0 00~ =1 O U WK



CONTENTS

2.3.1 Predictions from Light Distribution ... ... . ... ... 28

2.3.2 HI Rotation Curves . .. .. ... .. ... ... ...... 29
2.3.3 Rotation Curve Models . ... ... ... ... ....... 30
2.3.4 Maximum Disk Method . . ... .. ... ... ....... 32
235 Valueof M/LfortheDisk . . ... .......... L., 35
2.3.6 Conclusions: Disk-Halo Conspiracy . ... ... ... ... 36
2.4 DM: Evidence from the Shape of Rotation Curves . ... .. ... 37
241 ObservedProfiles. . . ... ... . . ... ... 37
2.4.2 IsThere DM? . . . . . . . . . . @ . i it i i i, 39
2.5 DM: Disk Stability . . ... ... .. ... ... .o .. 42
2.5.1 Global Behaviour of Cold Disk Galaxies . . ... ... ... 42
2.5.2 Numerical Work on Disk Stability . ... ... ... .. 43
2.5.3 Stable Systems . . ... ... ... ... .. .. 44
No Dark Matter: Alternatives 47
3.1 Classical Framework . . . .. .. .. .. .. . ... 47
3.1.1 HI Rotation Curve: NGC 3198 . ... ... ... ...... 48
3.2 Non Newtonian Alternatives . . . . . . . . . ... . ... . ..... 50
3.2.1 Modification of Newtonian Gravity . . ... ... ...... 50
3.2.2 Modified Newtonian Dynamics . .. ... ... .. ... .. 52
3.2.3 MOND Predictions . . . . . . v v v v v v v v i 53
3.2.4 Observational Evidence . . . ... ... .. ... ...... 58
3.2.5- Non-conventional Test . . . . . .. .. ... ... ...... 60
3.2.6 Conclusions . . . . . . v . i i e e e e 65
Dark Matter: Properties 69
4.1 Imtroduction. . . . . . . . . . . . . . 69
4.1.1 Minimal Dark-to-Luminous Mass Ratio . . ... ... ... 70
4.1.2 Constant Dark-to-Luminous Mass Ratio . . . . .. ... .. 70
4.1.3 DM Independent of Luminosity . . . . ... ... ...... 72
4.1.4 DM Function of Luminosity . . . . . .. ... ... ..... 73
4.1.5 DM Functionof Colour . .. .. ... ... ... ...... 75
The Shape of the DM halos 79
5.1 DH: Spherical or Flattened . . ... .. .. ... ... ....... 79
5.2 Observational Data . . . . . . .. .. .. .. ... ..., 80
5.2.1 Collected Data for A0136-0801 . . . ... ... ....... 80
5.2.2 Collected Data for NGC 4650A . . . ... .. ... ..... 82
5.2.3 Collected Data for ESO 415-G26 . . . . . ... ... .... 84
5.3 Rotation Velocities and Error Analysis . . . . . .. ... ...... 86
5.4 Polar Ring Rotation Curves and DM Halos. . . . ... ....... 89

5.4.1 Shapeofthe DMhalo . ... ... .............. 90



CONTENTS

5.4.2 Constraints Given by the Observational Data.. . . . . . ..
5.5 Resultsand Discussion . . . . .. .. ... ... ... ... ... ..
5.5.1 Limits on Halo Flattening . ... ... ...........
5.5.2 Effects of the Massive Polar Ring . . . . .. ... ... ...
5.6 Conclusions . . . . . . . . . L e

A Logarithmic derivative

B Halo-to-Disk Mass Ratio

94
95
95
96
97

99

101






Chapter 1

A General Review of Dark
Matter

1.1 Introduction

The term “dark matter” (DM) is currently used to denote any form of matter
whose existence is inferred solely from its gravitational effects. The very first evi-
dence of DM was likely provided by the Swiss astronomer Fritz Zwicky in 1933. His
estimate rested on a pioneering application of the Virial Theorem to the galaxies
of the Coma Cluster. Zwicky interpreted the 700 km s™! dispersion of the galaxies
with respect to their mean velocity as a measure of their kinetic energy per unit
mass and, by a crude estimate of the cluster radius, he was able to estimate the to-
tal mass of the cluster. Then he computed the cluster mass-to-light ratio (M/L)y
using the mass measured in this way and the luminosity integrated over the clus-
ter galaxies, and compared the result with the (M/L); ratio as measured from the
rotation curves of nearby spirals. In this way he discovered that (M/L). exceeded
(M/L); by a factor of at least 400: this finding corresponds to the presently well
established fact that M/L grows with the scale of the system. Zwicky concluded
that virtually all the cluster mass was in the form of some invisible component
that was undetectable except through its gravitational force: i.e. it was “missed”
by conventional astronomical observations. This important mass component of
the Universe was then called “missing mass”, but the term has eventually been
abandoned because of its misleading meaning.

Investigations of DM originate from a manifold of observational and theoretical
motivations, and make use of a great variety of methodologies; and quite different
results are obtained in relation to the scale of the systems under study. In this
introduction we will shortly review the various approaches and summarize the
main results.
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1.2 DM in the Solar Neighborhood — [1 kpc scale]

In our galaxy the surface density in known components (main sequence and giant
stars, stellar remnants, gas, and dust) at the distance of the Sun is 50 My pc~2
(Bahcall and Soneira 1980), and the surface brightness in the visual band is 15 L
pc~? (de Vaucouleurs and Pence 1978). Almost all of the light comes from objects
at z < 700 pc from the midplane, thus M/L(Ro,|z| < 700 pc) = 3.3, where M
and L are in solar units My and Lg, and R, is the distance from the galactic
center of the Local Standard of Rest (see Allen 1973, Kerr and Lynden-Bell 1986).
This is the best available estimate of the minimum mass-to-light ratio in a typical
Population I system.

The measurement of the actual M/L in the solar neighborhood is based on
the following model. The collisionless Boltzmann equation for a highly flattened
system yields: _

190(vV}2) 0®

v 8z 0Oz (1.3)
where f is the distribution function, v = [ fd®V the mass density, V.2 = 1/v [ fvid*v
the mean squared velocity. Since in this case the Poisson equation can be approx-
imated by:

5*®
e =4nGp (1.2)
then, from equations 1.1 and 1.2,
2 [108(Vzv)
B Bl W SV} Y 1.3
0z l:l/ 0z ] mGp (1.3)

If one can measure the number density v as function of height z and the mean
squared vertical velocity V2 of any population of stars in the solar neighborhood,
equation 1.3 may be used to calculate the local mass density p. Oort (1932, 1965)
concluded that po = p(Ro,z = 0) = 0.15 Mg pc™® and Z(700pc) = 90 Mgpc~2,
where ¥ is the surface density. Bahcall (1984) arrived at the total local mass
density of po = (0.18 & 0.03) Mgpc™. The V-band luminosity near the Sun is
~ 0.067 Lopc™®, thus the M/L ratio in the solar neighborhood is M/L, = 2.7.
Since different stellar populations have different thicknesses and since they evolve,
a more fundamental quantity is M/L averaged over a column through the disk
(the average can only be carried out to z = 700 pc since the density distribution
cannot yet be determined beyond this level). The total surface brightness is I 22
15 Lopc™?, and it is almost all contained within 700 pc of the plane. Using
Bahcall’s surface density %(700) = 75 Mg pc™?, it follows: M/L(700 pc) = 5. In a
column through the plane the observed M/L ratio exceeds the M/L,;, by ~ 50%.

Note that the nature of this kind of DM is not necessarily exotic because it
can be accounted for by known galactic ingredients.
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1.3 Rotation Curve and Escape Speed
in the Solar Neighborhood — [10kpc]

The shape of the rotation curve outside the solar radius R, strongly suggests
that the Galaxy contains a great deal of DM. Unfortunately, however, due to the
absence of suitable tracers, it is difficult to determine the rotation curve at galac-
tocentric distances exceeding ~ 2R,. In other words, rotation curve observations
cannot constrain the distribution of DM at much larger distances. A more powerful
constraint to the extension of the Dark Halo (DH) is that the escape velocity from
the solar neighborhood must exceed the maximum velocity observed among local
stars. The presence of local stars with velocities exceeding 500 km s~! (Carney
and Latham 1987) implies that the Galaxy must extend to at least R = 41 kpc and
have a total mass of at least M = 4.6-10'* M (Binney and Tremaine 1987). Based
on a total luminosity Ly = 1.4 - 10°Ly the derived M/Ly ratio is M/Ly > 30:
almost 10 times the minimum value derived for the solar neighborhood.

Does the DM at large radii form a distinct population from the DM that was
found in the solar neighborhood? The answer depends on the scale height of
the DM in the solar neighborhood. If there is a single component of DM, with
vertical distribution of the form p(z) o« exp(—|z|/20), which accounts for the Oort
discrepancy, for the shape of the rotation curve, and for the dynamics of high
velocity stars, the scale height should be zp = 1.1 kpc. If the scale height of the
local DM is smaller than this, then there must be at least two DM components:
a disk, which contributes to the QOort limit, but not to the rotation curve, and a
shallower spheroidal component which helps to produce a flat rotation curve while
giving a negligible contribution to the Oort limit. In the following the component
of DM that is needed to flatten the rotation curve and to bind the high velocity
stars, will be referred to as Dark Halo.

1.4 Dynamics of Population II Tracers:
Dynamics of Stars, Globular Clusters and
Satellite Galaxies — [50 kpc]

These families of objects have large random velocities. We must use statistical
methods to compare the predictions of a given model of galactic potential with the
distribution of observed radial velocities. Because globular clusters and satellite
galaxies are found out to distances >> Ry, they can be used to constrain the force
field at distances where the rotation curve cannot be directly measured. Using
Lynden-Bell’s et al. (1983) method, a total mass M = 3.8-10' My, is determined
with an uncertainty of ~ 40%. The corresponding M /Ly is 27. This value confirms
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the large mass indicated by the high velocity stars and suggests that the dark halo
extends to R ~ 34 kpc.

In conclusion, Population II tracers appear to confirm that the galaxy contains
substantial amounts of DM and show that the halo extends to about R = 30 kpc.

1.5 Magellanic Stream — [100 kpc]

The Magellanic Stream is a long tail of neutral hydrogen that stretches across
the sky in a great circle, starting from the Magellanic Clouds. It is believed to
consist of debris torn off the Clouds by tidal forces during a previous close passage
near the Galaxy. Dynamical models of the stream (Murai and Fujimoto 1980, Lin
and Lynden-Bell 1982) show that it is very difficult to fit the data if the galactic
potential is that of a point mass (as seen from the stream): a much better fit is
obtained with an extended mass distribution. The principal reason is that the
material at the end of the stream, some 100° from the clouds is falling toward the
Galaxy at high speed (V, = 220 km s™!). If there were no massive halo, this large
infall velocity could arise only if the material at the end had fallen deep into the
Galaxy potential well to a galactic distance < 15 kpc. At this distance parallax
effects due to the 8.5 kpc offset of the Sun from the galactic center would destroy
the great circle shape of the stream. The stronger force field due to the halo
permits the same large velocities to be reached at large galactocentric distances.
The stream extends from a galactocentric distance of ~ 50 kpc out to > 100 kpc;
this suggests that the outer radius of the DH is at least R = 100 kpc and possibly
much more. If so then more than 90% of the mass of the Galaxy consists of DM,
and M/L exceeds 80.

1.6 Dark Matter in Galaxies — [50 kpc]

Rotation curves provide the most direct method of measuring the mass distribution
inside a galaxy. In several spiral galaxies (but usually not in E and S0s) radial
velocity curves can be measured optically using the emission lines from HII regions
(stellar absorption lines are much more problematic), or at radio wavelengths using
the 21 cm emission line of neutral hydrogen; the latter is generally detectable at
greater galactocentric distances. The early optical measurements in the 1950’s
and 1960’s, limited to the inner parts of galaxies, were well consistent with the
current understanding of spiral galaxies as flat disks. In fact, the rotation curve
of an exponential disk can be divided into three radial regimes according to its
behaviour: i) an inner region where the velocity V(R) increases linearly with
the distance from the center R, i) a region where V reaches a maximum and
then begins to decline (at the so called turn over radius) , and iii) a Keplerian
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regime corresponding to where the potential of the disk resembles a point mass
potential so that the rotation speed falls as R~'/2. The 21 cm observations of the
1970’s showed that the flat portions of rotation curves extended further than an
exponential disk model predicted, and there was no sign of a Keplerian fall off.

By now there are over 70 spiral galaxies with reliable rotation curves out to
large radii (Faber and Gallagher 1979, Rubin et al. 1980, 1982, 1985; cf. the
catalogue of Corradi 1989 Dissertation, Univ. of Padova). In almost all of these
galaxies the rotation curve is flat or slowly rising out to the last measured point.
Very few galaxies show falling rotation curves, and those that do either 7) fall
less rapidly than Keplerian, or #i) have nearby companions that may perturb the
velocity field, or 7i7) have large spheroids that may increase the rotation curve near
the center. So far there is no well-established example of a Keplerian region in
any galaxy rotation curve, even when they extend to radii large enough to contain
essentially all of the galaxy’s light. Consequently there is no spiral galaxy with a
well determined total mass. The simplest interpretation of these facts is that, as
to our own galaxy, external spirals possess massive DHs extending to radii larger
than the optical disk, a conclusion first stated by Freeman in 1970.

A deeper analysis of the mass distribution in spiral galaxies will be developed
in the following chapters of this thesis.

1.6.1 Tidal Radii

The galactic mass distribution can be determined from the tidal radii of distant
globular clusters and dwarf elliptical galaxies (Barnes and White 1984); but this
is a rather uncertain method.

1.6.2 X-Ray Halos of Elliptical Galaxies

Many luminous elliptical galaxies contain up to 10*® M of hot X-ray emitting mass
out to radii of order 50 kpc (Forman et al. 1985). The gas is probably produced
by normal stellar mass loss. The X-rays are continuum photons emitted by the
gas at temperature T= 107K as it cools through the Bremsstrahlung process. In
a spherically symmetric galaxy hydrostatic equilibrium implies:

dp M(R)p

= = _@ 1.4

dR R? (14)
where p is the pressure and M(R) is the mass internal to radius R. Using ideal
gas laws, this rewrites as:

M(R) =

KBT(R){ dinp dlnT] (1.5)

Gump | dinR  dinR
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where g is the mean molecular weight and mp is the proton mass. If we can
measure the temperature profile T(R) and the density profile p(R) we can use
equation 1.5 to find the mass distribution M(R). Highly resolved maps of the
X-ray surface brightness for about a dozen galaxies were provided by the Einstein
satellite, but spectroscopically resolved temperature measurements are usually not
available. The best data are for the giant elliptical galaxy M87. In this galaxy
M(R) rises roughly linearly with radius out to more than 300 kpc with M (< 300
kpc) = 3.10" Mg (Fabricant and Gorestein 1983, Stewart et al. 1984). The M/L
ratio is 750, far larger than the minimum M/L for Population II system (M/L=6).
Apparently over 99% of the mass of M87 is composed of DM.

1.7 Dark Matter in Systems of Galaxies — [1
Mpc]

The nearest giant spiral galaxy is the Sb galaxy M31 at a distance of about 700
kpc. Our galaxy, M31, and their companions form a relatively isolated system
known as the Local Group. The center of mass of M31 is approaching the center
of mass of the Galaxy at Vg = —119 km s™!. A natural explanation for this high
relative velocity is that the relative Hubble expansion of M31 and the Milky Way
has been stopped and reversed by their mutual gravitational attraction. Kahn and
Woltjer (1959) pointed out that this hypothesis leads directly to an estimate of the
total mass of the Local Group, which is between 5.5 - 10'* My and 3.2 - 10?2 M.
Since the luminosity of the Galaxy in the V-band is 1.4-10!° Ly, and M31 is about
twice as luminous, the corresponding M/L for the Local Group is between 76 and

130.

1.7.1 Binary Galaxies

The orbital periods of binary galaxies are so long that we cannot even hope to
measure their relative proper motions. Consequently any investigation of binary
galaxies must be based on statistical studies of the relative line-of-sight velocities
in a large sample of galaxy pairs. Models of binaries with galaxies approximated
by point masses predict a correlation between the line-of-sight velocity difference
and the projected separation: the corresponding search has been carried out by
White et al. (1983), but no such correlation has been found. The simplest in-
terpretation of this result is that galaxies have DH that extend well beyond their
optical boundaries.
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1.7.2 Groups of Galaxies

Groups of galaxies are collections of three or more galaxies whose separations
are much smaller than the typical intergalactic separations. The high density of
galaxies in groups suggests that they are gravitationally bound, so that an analysis
of the positions and velocities of the group members can yield an estimate of the
mass and M/L of the group. Huchra and Geller (1982) determined M/L for their
groups using the virial theorem. They found a median value in the V band of 260,
but with a wide spread. The M/L in groups is much larger than the values seen
in the luminous parts of galaxies.

1.8 Clusters of Galaxies — [1.5 h~! Mpc]

Rich clusters of galaxies are considered to be among the best available sites for
studying the nature and the distribution of DM. A cluster contains many more
galaxies than a typical group. In some nearby clusters several hundred systemic
velocities have been measured, thereby almost eliminating the statistical uncer-
tainties that plague measurements of galaxy groups. As was the case at Zwicky’s
time, the best available data are for the Coma Cluster. The Kent and Gunn (1982)
analysis yields a M/LZ 360 h where h is the relative Hubble constant, measured
in units of 100 km s™* Mpc~!. A similar analysis of the Perseus cluster yields
M/L= 600h. These values are some 30 to 50 times larger than the minimum M /L
ratios for the stellar population in elliptical cores.

A fundamental question is whether the DM in clusters is the same as the DM
in the halos of galaxies. According to Binney (1987) it seems conceivable that the
nature of the DM in groups and clusters is the same as in the DH’s of individual
galaxies. The DH that would normally form the halo of a galaxy has been stripped
off by tidal interactions with the other galaxies into the cluster and now forms a
diffuse background that comprises most of the mass of the cluster.

1.9 DM in Cosmology

Virgocentric flow: the nearest large cluster of galaxies is the Virgo cluster, which is
receding from the Local Group at ~ 10% km s~!. The gravitational accelerations of
this mass concentration should perturb the velocity field of galaxies around Virgo,
including the Local Group, away from a pure Hubble flow. Our recession velocity
from Virgo should be smaller than Hy Ry, where Ry is the distance to the Virgo
cluster and Hj is the asymptotic Hubble constant as determined from the velocity
field well beyond Virgo. By measuring this difference it is possible to estimate
the total mass and the M/L associated with the Virgo cluster. Different models
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(Davis and Huchra 1982, Yahil et al. 1980, Aaronson et al. 1982, Davis and
Peebles 1983) suggest 2o = 0.25 + 0.15, where 2o = po/p. is known as the density
parameter, pg is the mean matter density of the universe at the present time and
pe = 3Hy/87wG = 1.88 - 1072°h? g cm™® is the critical density: it corresponds to a
M/L of 400 h. The Virgo distance represents the largest scale on which we have
a direct dynamical measurement of ). The measurements confirm that large
quantities of DM are present on this scale, but that there is not enough matter
(either luminous or dark) on this scale to close the Universe (the upper limit to
1o is substantially less than unity).

1.10 Gravitational Lenses

Galaxies act as gravitational lenses; occasionally, two or more images of a single
distant object such as a quasar may become visible. By now there are a half
dozen or so probable lenses, with up to 4 images produced by a single lens and
image separations of up to 7 arcsec (Turner 1987). Typically two relatively bright
quasar images will be seen on opposite sides of the lensing galaxy with a third
faint one of the quasar lying near the center of the galaxy. The observed cases
have separations of 2” to 7”; simple models predict surprisingly large masses for
the lensing galaxies in order to obtain these separations. Moreover gravitational
lenses seem to offer the exciting possibility of detecting mass concentrations that
are completely dark. Moreover the complexities of the mass distributions of the
lenses, cosmological effects, and poorly known quasar properties imply that simple
models often yield misleading or ambiguous results. The only firm conclusion so
far is that models in which the mass density in the lens is everywhere proportional
to the luminosity density do not fit the data.

The evidence which we discuss below is of a completely different nature and
involves the universe as a whole.

1.11 Primordial Nucleosynthesis

According to the standard Big Bang theory, the primordial deuteriun abundance
provides a measure of the baryon density in the early universe. The present deu-
terium abundance can be measured from nuclear spectra in Jupiter’s atmosphere,
from ultraviolet line strengths in the interstellar medium, and from lunar samples,
and yields ng/n, = (1 —2)-107°, where n, is the number density of deuterons and
n, that of protons. This should be regarded as a lower limit on the primordial
density, since some deuterium may have already been burned in stellar interiors.
Combining this result with data on He® and Li’, one has that the present mass den-
sity in baryonsis pg = (2—9)-107% g cm~® with Qp = pg/p. = (0.011—-0.048) h~2
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(Yang et al. 1984), where 25 is the fraction of the critical density supplied by
baryons alone. Since 0.5 <h< 1, than 0.011 < Qg < 0.19. This is roughly consis-
tent with the measurements of Qg from the Virgocentric flow and from the M/L
of groups and clusters of galaxies. Essentially all the mass in structures up to the
size of the Virgo supercluster may be in baryons.

1.12 Age of the Universe

A lower limit to the age of the Universe is given by the age of the oldest stars.
Globular clusters yield ages of (15 — 18) - 10° yr (Harris et al. 1983, VandenBerg
1983). Radioactive decay measurements yield similar values but with a larger
spread (7 — 20) - 10° yr (Hainebach and Schramm 1977). The age predicted by
Friedman models for the Universe can be written as ¢, = 9.78 - 10° h=1f(Qo) yr
where f(£2) =1 for Qo = 0 and 2/3 for Q¢ = 1. Thus, if Qy = 1 and the stellar
evolution chronometer gives an accurate estimate of the age of the Universe, we

must have h< 0.44. If we accept that 0.5 < h < 1, we can rule out models with
Q=1.

1.13 Is Q=17

This thesis is supported by i) the Copernican argument and by ii) inflation. The
Copernican or coincidence argument is based on the Copernican Principle: men
do not occupy a special place or time in the Universe. If (¢) in any Friedman
model is plotted on a logarithmic time scale, then it is almost always nearly 1,
nearly 0 or very large. There is no obvious reason why the process of evolution of
intelligent life should bring us to the point where we ask these questions during
the relatively short time when (), is neither near zero, near unity, nor very large,
and we know that O, is is neither near zero nor very large. Hence it must be near
unity.

Then why do the dynamical measurements yield 23 < 1?7 One possible ex-
planation is that galaxy formation is biased; galaxies preferentially form in high
density spikes of otherwise normal density regions, then the excess of luminous
matter around Virgo would not reflect an equivalent excess of mass.

How can the nucleosynthesis arguments giving 2o < 0.2 be consistent with
{3 = 17 It may be that most of the mass in the Universe is some species of non
baryonic particles that have not yet been detected.

As we have seen, the M/L ratio grows linearly with the dimension of the system
under study, and we can guess that the quantity of DM is increasing with distance.
The application of a plain Occam’s razor argument leads us to conclude that
there is only one type of DM, which accounts for the Qort mass discrepancy, for
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the flat rotation curves of spirals, and for cosmological demands. But, since the
methodologies used to determine these mass excesses are different, it is conceivable
that there are different kinds of DM at different scales. The DM required by the
Oort discrepancy can be easily accounted for by normal galactic ingredients, while
DM in galactic halos and at larger scales can be constituted by the exotic particles
predicted by GUT and Supersymmetry.

1.14 Dark Matter in Baryons

Even in the solar neighborhood roughly half of the mass is dark, and this DM
component was almost certainly collisional at some time in the past since the
present disklike configuration requires a dissipation mechanism to form . What
are the candidates for baryonic DM?

a) Low luminosity stars and stellar remnants — Brown dwarf stars with masses
too low to burn hydrogen (< 0.08 M), but they are difficult to detect. Stellar
remnants such as white dwarfs, neutron stars or black holes: the principal obser-
vational constraint is that the density of such remnants cannot exceed Qg = 0.03
or else their integrated light output would contribute too much to the background
radiation density (Carr et al. 1984). Stellar remnants could supply all the DM in
the solar neighborhood but not all the DM in cluster of galaxies or in the Virgo
supercluster. At the present time there is no known way to detect the required
population of either brown dwarfs or massive remnants directly.

b) Small solid body objects — Comets, asteroids or dust grains are unlikely sources
of the DM because they are mainly composed of elements such as Silicon, Carbon,
and Oxygen, which are always much less abundant than Hydrogen and Helium.
One might argue that the Hydrogen is hidden in the form of solid snowballs, but
these would evaporate (Hegyi and Olive 1983).

c¢) Neutral and ionized gas — Most of the mass in any primordial gas must be in
the form of hydrogen. Many elliptical galaxies contain hot gas that is detectable
in the X-ray band, but the mass in this gas is too small to account for DM. An
alternative hypothesis is that the gas is neutral and resides in an extended disk
contribution. However radio observations at 21 cm show that the mass of neutral
hydrogen gas in the outer parts of galaxies is far too small to provide the mass
required for flat rotation curves. It is also possible to place stringent limits on
the density of intergalactic hydrogen gas. Gunn and Peterson (1965) searched for
neutral intergalactic gas by looking for attenuation of quasar radiation due to the
absorption by the Lyman-« transition of Hydrogen at A = 1215A. This test yields
the remarkably strong limit Qg; < 4-107 h™!, where Qg7 is the fraction of the
critical density of neutral hydrogen (Peebles 1971, Field 1972).

d) Massive black holes — One interesting possibility is that an early epoch of star
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formation, that possibly occurred before galaxy formation, produced stars of very
high mass that by now have collapsed into black holes (Carr et al. 1984). If the
stars are sufficiently massive, greater than a few hundred solar masses, then they
collapse directly to a black hole, without expelling mass in an explosion as less
massive stars do. Strong limits can be set on the number density of exploding stars
by requiring that they do not pollute the interstellar or intergalactic medium with
too many heavy elements. The maximum allowed density in black hole remnants
of stars with M < M. is only Q¢ < 107* (Carr et al. 1984), while for M > M, the

observational constraints are much less severe.

But if the inflationary scenario is correct and our understanding of primordial
nucleosynthesis is correct too, then at least 80% of the matter in the universe can-
not be composed of baryons. A large “zoo” of exotic particles has been proposed
as candidates for this dark mass including massive neutrinos (Sciama 1982c, d),
gravitinos, axions, monopoles, and photinos (Sciama 1982a, b, 1984, 1988). Al-
though exotic particles are regarded by many cosmologists as the most attractive
candidates for DM in galactic halos and at larger scales, they cannot provide the
DM in the galactic disk since they are not dissipative.

1.15 Plan of This Work

This master thesis is not intended to provide a global view on the DM problem?,
but rather to focus on those aspects related to the phenomenological aspects and
properties of the potential wells where galaxies were formed. Within this limited
framework we will analyse the evidence for the existence of DM, its properties,
and what is known about the shape of the galaxian DHs.

Chapter 2 presents the data from which one can infer the existence of DM in
galaxies. In particular we will analyse the different methods to infer the mass
distribution from optical rotation curves on one hand and HI rotation curve on
the other hand. The procedures proposed by Rubin et al. (1980, 1982, 1985), Kent
(1986, 1987, 1989) van Albada et al. (1985), Sancisi and van Albada (1987) and
by Persic and Salucci (1988) are reviewed and compared.

In Chapter 3 we will explore if it is possible to explain observational data in the
framework of the classical Newtonian theory of gravity, or whether modifications
of the gravitational force are required. The theories of Sanders (1984, 1986b),
and of Kuhn and Kruglyak (1987) are reviewed, particular emphasis is given to
the theory formulated by Milgrom (1983). These alternatives are compared with

1Several contributions on different aspects of this problem are available in the literature. The
reader is referred to the recent reviews by van Albada and Sancisi (1986) and Trimble (1987)
as well as the articles in IAU Symp. 117 (Knapp and Kormendy 1986) for an overview of the
subject, the review of Blumenthal (1987) on DM and galaxy formation, and the review of Sanders
on non-Newtonian alternatives for the Gravitational law.
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astronomical data and an original way of testing Milgrom’s theory is proposed
(Arnaboldi 1990).

In Chapter 4 we will review different estimates of the parameters for the DM
distribution in galaxies; the constraints set by the theory of spiral structure to the
M/L ratios proposed by Athanassoula, Bosma and Papaioannou (1987) and the
mass decomposition method given by Persic and Salucci (1990a) are reviewed in
detail.

In Chapter 5 a method for determining the shape of DM halos is presented. The
study of polar ring? dynamics gives the opportunity of determining the spatial mass
distribution. The different procedures and the predictions on the halo flattenings,
proposed by Schweizer, Whitmore, and Rubin (1983), Whitmore, McElroy and
Schweizer (1987), and by Sackett and Sparke (1989) are discussed and compared.

2For a general review on polar rings see Athanassoula and Bosma (1985)



Chapter 2

Dark Matter: Evidence from
Galaxy Kinematics

2.1 Introduction

One of the strongest pieces of evidence for DM on galactic scales is the flatness
of the rotation curves of field spirals. The implications of this flat trend on the
density distribution are effectively illustrated by the following simple model. Let
us assume that (1) the luminous matter in the equatorial plane of a disk galaxy is
in circular orbits, and that (2) centrifugal equilibrium holds; the relation between
the mass internal to radius R and the velocity V(R) is

M(R) = f(R)GV*(R)R

where f(R) is a function of the spatial mass—distribution.
If the mass distribution is spherical, the function f(R) is a constant, and

M(R) = 2.3265-10°V*(R)R M, (2.1)

if Visin km s}, R is in kpc. Therefore, in the outer parts of disk galaxies where
the rotation curves are identically flat, the model integral mass increases linearly
with radius; in fact

GM(R) _ V?
R R = M(R) «< R.
V = const.

Said in other words, the mass in every shell of thickness dR is constant

" dM(R)

~ V2
dR ’
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and the density decreases as R™2

2
p(R)océM—ocV

i <R p(R) < R7%.

In a disk-dominated galaxy the luminosity falls off exponentially, i.e. more rapidly
than R~%. In regions where the curves are not flat but the velocity has value V at
R,V 4+dV at R+ dR one has

d
dM = 2.3265 - 10° [Vz +2VR (é)} dR Mg (2.2)

2 vy dV
p= 1.85.107° [Y— +2 (—) -——] Mgpc™®

R? R/ dR
2 Vy [(dV
- 1.25- 10—27 {%2' + 2 (—R') (a—ﬁ)} gcm_?"

HI rotation curves extend out to several optical radii, and their flatness requires an-
other mass component in addition to the exponential (luminous) disk (see Fig. 2.1).
Optical rotation curves are much less extended and, even when they are flat at the
outer end, this trend does not necessarily require any dark component. But, if the
kinematics in the inner (optical) regions is not dominated by a dark component,
the rotation curve should correlate with the morphology and the optical proper-
ties of spiral galaxies. On the other hand, if DM dominates the potential wells
of galaxies at all radii, this should result in a lack of correlation between optical
rotation curves and morphology of spirals.

2.2 Evidence for Dark Matter from optical rotation curves
of field spiral galaxies

In order to elucidate the relation between mass distribution and morphology of
spirals, Rubin, Thonnard, Ford, and Burstein (1980, 1982, 1985; hereafter RTFB)
analysed the systematic properties of the optical rotation curves of 60 field spiral
galaxies against luminosity, optical size, and Hubble type. These authors tried to
determine if the mass distribution is uniquely linked to galaxy type, and derived
masses and densities as functions of radius and luminosity. The characteristics of
the RTFB sample are summarized in Tab. 2.1. For each Hubble type, the galaxies
contained in the RTFB sample cover a range of luminosity as large as possible.
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Figure 2.1: HI rotation curves for a number of spiral galaxies. Distances are based

on Hy = 75 km s~ Mpc™. The optical radius, R;s, and the number of disk
scale-lengths, h,at the last measured point are indicated.

TABLE 2.1
Sample ranges

Sa Sb Sc
Ext. 66% 76% 83%
Lum. range 0.081 —2.1 0.13—-2.2 0.04 -5
Radius 8 —51 5 — 52 4 —122
Mass 5—92 4 — 385 1-200

Table 2.1: the 1** row refers to the extension of the optical rotation curves with

respect to Rys, the luminosities are in units of 10!' L, radii are in kpc, and masses
are in units of 10°Mg.
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2.2.1 Comparative Integrated Properties of the Spiral Fam-
ily
RTFB found that the rotational velocities of objects with the same luminosity class

are higher in Sa’s than in Sb’s or Sc’s. They derived the following dependence of
Vinae on Hubble type:

o Sa — Vg, from 367 km s (Mp = —22.8) to 163 km s~! (Mp = —19.3)
® Sb — Ve from 330 km s™! (Mp = —22.87) to 144 km s~ (Mp = —19.55)
e Sc — Vg from 304 km s~ (Mp = —23.70) to 99 km s™! (Mp = —18.59)

The mean value V., of the maximum velocity is different for each Hubble type
(299 km s for Sa, 222 for Sb, and 175 for Sc), but the intervals within which
it varies overlap. For example, a Vi, of = 250 km s™! can identify either a
high-luminosity Sc, or an Sb of intermediate luminosity, or a low luminosity Sa.

From the analysis of the optical rotation curves of their 60 galaxies, Rubin
et al. derived indications that galaxies of very different optical luminosities and
morphologies might have rotation curves with very similar forms. All that sug-
gests that the detailed optical morphology has little to do with the overall mass
distribution.

In addition RFTB found that galaxies of very different bulge-to-disk ratios
may have rotation curves with very similar central gradients, a fact implying that
(dV/dR)core is not determined just by the degree of central concentration of light
in these galaxies.

2.2.2 Properties of Optical Rotation Curves

The outer ends of optical rotation curves show no Keplerian decline. They are
either flat or still rising untill the last observed point. They also show some
degree of correlation with luminosity: galaxies of low luminosity generally have
low central velocity gradients and low maximum rotational velocities, Vaz, in
contrast to galaxies of high luminosity which have high central velocity gradients
and high values of V,;.. RFTB do not find any high luminosity galaxy whose
rotation curve rises very gradually with R; they also note that it is rare to observe
a rotation curve of a low luminosity spiral which is flat over most of the radial
range, (see Fig. 2.2).

RFTB described these correlations in a quantitative way introducing what they
called the mass scale-length and using the following procedure. They derived the
integral mass function M(R) from the rotation curve through equation 2.1. Then,
fixing a reference mass M,, (say 10'® My), for each sample galaxy they obtained
the relative radius R, called mass scale-length, such that M(R,,) = M,,. In this
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Figure 2.2: Plot of a representative sequence of observed curves (the data are
respectively from Rubin et al.(1985) for NGC 3223, NGC 4321, NGC 1035, and
NGC 4605; van Albada et al.(1985) for NGC 3198; Carignan, Sancisi, and van
Albada (1988) for U 2259). Both the amplitude and slope of the circular velocity
field show a marked progression with luminosity.
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way they found that the same mass reached by a low luminosity galaxy near the
edge of its small optical disk is reached in less than 1% of the size of the large
optical disk of a high luminosity galaxy. In other words, the small disk of a low
luminosity spiral galaxy contains a single mass scale-length R,., while the large
disk of a high luminosity galaxy contains many tens of mass scale lengths. When
RTFB plotted V against £ = R/R,,, the rotation curves for big galaxies turned out
to be scaled—up versions of those for the smaller galaxies. This implies an inverse
correlation of the characteristic mass scale-length with luminosity and mass.

For the Hubble type Sc, RTFB obtained R,.(maz) = 4.4 kpc for the low
luminosity galaxies and R,,(min) = 1.5 kpc for the high luminosity ones. Since
R,, & Rys (where Rys is the radius of the 25 B mag arcsec™? isophote) for a low
luminosity galaxy, and R,,/Ras = 0.01 for a high luminous one, the masses within
an isophotal radius vary by a factor of 100, while the mass scale-lengths differ
only by a factor of = 3. This implies the following relation between the velocity
amplitudes

thigh _ GMm Rmaz o~ 3
View  Bmin GMn —

which is observed.

The rotation curves vary systematically with luminosity within a Hubble type,
but their forms are generally similar for the Sa, Sb and Sc types, regardless of
morphology, see Fig. 2.3. Taking into account that the bulge-to-disk ratios for
the galaxies in the sample range from 4.0 to 0.1, the similar shape of the rotation
curves does not reflect any of the marked structural differences which lead to
the different morphological classifications. Moreover, the apparent similarity and
relative simplicity in the forms of rotation curves of the Sa, Sb, and Sc galaxies
are surprising, since the Sa have been chosen to be bulge-dominated.

This similarity among rotation curves of galaxies belonging to different Hubble
types and with different bulge-to-disk ratios, provides evidence to the belief that
the optical luminosity does not map the distribution of matter within the optical
galaxy.

2.2.3 Local Density

In regions where the rotation curves are flat, one has

2
and this tells us that p is falling as R~%. Using the rotation curve for two Sc
galaxies, one of high and one of low luminosity, RTFB (1982) obtained the following
radial behavior for the density p = R™'"*!. Thus if we assume a constant M/L
ratio, in regions where p is falling as R™% or even slower [i.e. velocity constant
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Figure 2.3: Rotation curves of Rubin et al. sample plotted as functions of isophotal
radius, Rys, from (top) Sa galaxies of successive luminosities, (middle) Sb galaxies,

and (bottom) Sc galaxies.
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or rising] the ratio of dynamical-to-luminous mass increases with increasing radial
distance. Locally the ratio of the dynamical mass to the blue luminosity increases
by a factor of 10 over the outer 90% of the optical disk.

Rubin, Thonnard, Ford and Burstein (1982) analysed the implications that the
progression of the shape of the rotation curves with luminosity would have on
local density. Since

(Rm)high = %(-Rm)low

and at the same value for V? = V2, we get

Vz VZ VZ
Phigh = T = T = 90— = 9.

Recalling that R,, is a radius which encompasses a fixed given mass, galaxies with
small radial scale length (higher luminosity Sc) will have higher density at all radii.

Since an Sb galaxy will have a higher rotational velocity by 0.1 dex (26%) re-
spect to an Sc galaxy (RFTB 1982) of the same size, i.e. with the same luminosity,
the Sb will have a mass density higher by V%, or 0.2dex (58%), as one can easily
deduce from eq. 2.3. It follows from the rotation curve amplitude that an Sb has
higher density at every nuclear distance than an Sc of equivalent luminosity; the

same could be said for an Sa with respect to an Sb (RFTB 1985). So the Hubble

sequence from Sa to Sc is a sequence of decreasing local density.

2.2.4 Integral Mass Distributions

Both the similarity in the form of rotation curves among galaxies of very different
optical morphologies and the difference in the form of rotation curves among galax-
ies of similar optical morphologies, have prompted Rubin and Burstein (1985) to
ask what could be learned about the overall mass distributions from the overall
rotation curves.

Mass distributions for the 60 galaxies were derived using eq. 2.1 and the observed
rotation velocity curves. The rotation curve for each galaxy was plotted in a
(log V,log R) graph and values were interpolated at intervals of 0.1 in log R and
converted to integral mass distribution. The mass scale length was calculated
by making use of the entire mass distribution: this means that mass curves in a
llog M(R),log R] plot are globally displaced in both coordinates in order to pro-
duce minimum scatter.

Rubin and Burstein identify three different types of integral mass distributions in
the log M,log R plane. Both the ordinate and the abscissa in this plane are scaled

quantities:

e z axis is the radius in units of R,,, mass scale length,
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e y axis is the mass in units of M,,, the fiducial mass.

The integral mass distribution of many Sb and even the Sa galaxies have the same
form as the Sc’s.

o Type I mass distribution contains 11 Sc, 5 Sb, 4 Sa;
o Type II mass distribution contains 2 Sc, 4 Sb, 5 Sa;
e Type III mass distribution contains 1 Sc, 5 Sb, 4 Sa.

All types show a significant curvature over the observed (scaled) range radii. Rubin
and Burstein noticed that there was no correlation between the mass distribution
types and the bulge to disk ratio or morphology (see Fig. 2.4). They reported the
example of NGC 3198 belonging to the Type II mass distribution: although NGC
3198 is virtually a bulgeless Sc galaxy with a rotation curve known to a distance
almost 3 times its optical diameter, its integral mass distribution matches that of
other galaxies: NGC 6314, UGC 10205, two Sa’s whose bulge-to-disc ratios are
among the highest in the sample. They observe that:

e Mass types are basically a progression in the form of the rise of the rotation
curve relative to the radius at which V(R) becomes nearly flat. Faster rising
rotation curves have less curvature in the [log M,log R] plot. Galaxies of
Type I mass distribution, which includes many Sc galaxies, have rotation
curves rising faster than galaxies with Type III mass distributions (which
include large bulged galaxies).

e Integral mass Type III is identical to the mass distribution which would be
derived for a massless disc in coplanar rotation within an isothermal mass
sphere.

2.2.5 DMasses and Mass to Luminosity Ratios
Considering all the Sa, Sb and the Sc galaxies, RTFB find that the ratio of mass

interior to R,s to the total blue luminosity is nearly constant within a Hubble
type, l.e. it is independent of luminosity:

M(Bas) _ o406 Sa
B

M(Fas) _ 45+04 Sb
B

M{(Ras) =26+0.2 Se

Lp
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Figure 2.4: Integrated mass M(R) = V?R/G as a function of radius R for mass
types I and III. Mass type II is intermediate. Each galaxy has separately been
scaled by a mass scale M,, and a radius R,, (as explained in the text). The line
M o« Ris the mass distribution for a flat rotation curve. The inset shows schematic
rotation curve types corresponding to the mass types.
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These differences in the average mass-to-blue-luminosity-ratios among different
Hubble types are significant and can be derived in a more fundamental way. It is
well known (de Vaucouleurs 1959) that there exists a close relationship between
isophotal radius and luminosity of spiral galaxies (Lp o< Rys) which is essentially
independent of the Hubble type. The reported results are the necessary conse-
quences of the lack of dependence of the luminosity-radius relation on Hubble
type and of the dependence of the mean value of V,,,. on Hubble type. If we write

M(Rzs)  M(Rys) Ly

V2 Rys) = =
(Fzs) Ras Ly Ras

one obtains at fixed luminosity for the Sb’s and Sc’s

(]\/I(R25))
VZ(Ras)g _ Ly )g _44 _
V2(Rys)s. (M(st)) 2.6

At fixed luminosity, the mass-to-blue-luminosity-ratio of Sb’s should be a factor
of 0.2 dex= 1.6 higher than that of the Sc’s as observed. At equal luminosity, the
rotational velocity for an Sb galaxy will be higher than that for an Sc by the square
root of the ratio of their mass to blue luminosity ratios, /1.7 = 1.3, as observed.

What Fraction of the Mass is not in the Disk?
The approximately constant dynamically determined M/L values [6 : 4 : 2] com-
pared with those predicted from stellar models [3 : 2 : 1] suggested that Mpyn/MLum
is of order 2, independent of Hubble types and luminosities. RFTB suggested that
the visible material in spiral galaxies contributes of order half of all mass within
the optically defined isophotal radius.

2.2.6 Conclusion

Rubin and Burstein (1985) derived that:

o the mass distribution in spiral galaxies is a combination of luminous and non
luminous material at all radii in the galaxy,

o the relative size of the bulge in spiral galaxies is not of importance in deter-
mining the integral mass distribution form,

o the form of mass distribution in spiral galaxies is determined by a process
that is independent of absolute sizes and mass densities of the galaxies,
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e a comparison of measured M /L values with those predicted from model stel-
lar populations (Larson and Tinsley, 1978) gives evidence that the ratio of
dark-to-luminous matter is not a function of either Hubble class or luminos-
ity, and that M.t/ My, = 2 interior to Rys.

The very regular integral mass distribution of a spiral galaxy is determined by
factors which are apparently independent of its well known global properties.

2.3 Evidence for Dark Matter from
HI Rotation Curves

2.3.1 What are the characteristics of the rotation velocity
curve predicted by the light distribution

A typical spiral galaxy consists of two distinct photometric components: a thin
disk and a rather concentrated bulge. The bulge can be approximated by a de Vau-
couleurs’ (1959) R'/* law and the surface luminosity density of the disk decreases
with radius following an exponential law

.
D

where Rp is the disk scale length. The surface brightness distributions of about
half of the galaxies surveyed so far can indeed be accounted for by the sum of two
such components (Freeman 1970, Boroson 1981, Simien and de Vaucouleurs 1986,
van der Kruit 1987).

As a general property, colours show no substantial gradient across the disk
(Griersmith, 1980); this strongly suggests a constant stellar mass-to-light ratio for
each optical component of a spiral galaxy. If we assume constant M/L ratios for
bulge and disk, it is possible to compute the total mass distribution under these
geometrical assumptions and, using the Newtonian law of gravity, the circular
velocity curve can be derived. The predicted rotation curve for a spheroid shows a
steep rise for small R, peaks at 0.3 R, and then declines (de Vaucouleurs 1959). The
curve for the thin disk peaks at 2.2 disk scale lengths and then tends asymptotically
to the Keplerian decline. In the interval between these two characteristic radii,
the shape of the rotation curve depends on the ratio of the spheroid to the disk
mass, and beyond them, at about 3 Rp, the rotation curve will start declining.
Optical rotation curves extend up to a few disk scale lengths (typically 1.5 < Rp <
3.5), and even in the most favorable case the rotation curve of an exponential disk
has decreased by only 8% relative to its maximum value. In other words, with
optical data alone it is not easy anyway to see the Keplerian decline of the rotation
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curve. A combined model with bulge and disk can produce a circular velocity that
is nearly flat out to 3Rp.

A flat rotation curve in itself does not imply the presence of a hidden component:
to establish the existence of dark halos it is necessary to measure the circular ve-
locity well beyond the turnover radius of the disk. The HI rotation curves, after
an initial rise, are all approximately flat out to the last measured point, (Bosma
1981; van Albada et al. 1985, van Albada and Sancisi 1986; Sancisi and van Albada
1987; Begeman 1986) at 5 or more scale lengths of the exponential distribution of
light in the disk.

If the gravitational field results from the distribution of luminous matter, mapped
by the light, the curves should begin their decline beyond about 2.5 disk scale
lengths. If a discrepancy is found between the shape of the observed and the pre-
dicted rotation curves, this is attributed to the presence of dark matter (DM). The
amount and the distribution of DM can be derived by calculating rotation curves
from the distribution of light and by comparing them with the observed ones. Any
excess in the observed rotation curve provides a measure of the contribution of a
dark component.

2.3.2 HI Rotation Curves

Kent (1987) has analysed the luminosity profiles and the rotation curves of 16
galaxies. All objects have HI rotation curves, and a few have also optical rota-
tion curves. These are especially valuable because HI observations seldom have
adequate spatial resolution to map the inner parts of a galaxy.

Van Albada et al. (1985) have studied NGC 3198 and NGC 2403. These two
galaxies were chosen because of their large and relatively unperturbed hydrogen
disks seen at inclinations of about 50° to 80°. They are both Sc galaxies, NGC
3198 is at 9.2 Mpc, NGC 2403 at 3.2 Mpc. NGC 3198 has a regular velocity
field which agrees with that for a disk in differential rotation; the HI distribution
extends to at least 2.7 Ry5=1.9 Holmberg radius, which corresponds to 11 scale
lengths of the disk. The HI rotation curve for NGC 2403 extends to 2.3 Rys or
9.5 Rp.

One problem with interpreting HI rotation curves (and rotation curve data in
general) is that it is not always clear whether they represent true circular motions
in galaxies'. Another problem connected with the HI rotation curve is the presence
of warps at the edges of the hydrogen distribution; in this case we have not coplanar
motion and in principle centrifugal equilibrium does not hold.

!Centrifugal equilibrium is usually assumed (Rubin et al.1982), otherwise corrections for asym-
metric drift should be computed (Binney and Tremaine 1987)
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2.3.3 Rotation Curve Models

The mass distribution in a spiral galaxy is modeled as the sum of three discrete
components: the bulge, the disk, and the halo. Then the circular velocity V, in a
galaxy at a radius R, is given by

. 0%

V(R) = Rz ® = @uiok + Poutge + Phato (2.4)
where @4, Pruge, and ‘f’haz; are the gravitational potentials generated by the
disk, bulge, and halo matter distributions respectively.

The bulge and the disk mass distributions are given by their luminosity dis-

tributions apart from unknown mass-to-light ratios M/L which are assumed to be
constant within each component. The modelling is done by parametrizing each
component with some empirical density law having scale parameters, determined
by fitting the laws to the observed light profile of the galaxy (Kent 1986, 1987,
1988, van Albada et al.1985, van Albada and Sancisi 1986, Sancisi and van Albada
1987).
The halo mass distribution can be either parametrized or it is derived from the
observed rotation curves. For sake of simplicity, usually bulge and halo are sup-
posed to be spherically symmetric and the disk to be infinitely thin. These density
laws are listed in the following.

Disk
One can use Toomre models for disks (Toomre 1962) and their rotation curves.
The Poisson equation in cylindrical coordinates takes the form
19 0% 0%
—_———— R —_— = 6 2-
R@RR(?R + 552 drGp = 4rGE(R)6(2) (2.5)
where X(R) is the surface density profile, and §(z) is Dirac’s delta function. Ap-
plying the Fourier Bessel Transformation to the above equation, it becomes

0% o
p =2 /0 a%(a)H(a, R)da (2.6)
where
H(a,R) = [ tJo(at)Jy(Rt)dt = ﬁﬁ[x(k) - TE_(—'ZL] k=2 (R<a)
SE(k)
7R (1 — k?) (a <B)

H(a, R) is a Green’s Function, and K(k) and E(k) are complete elliptic integrals
of the 1** and 2" kind respectively (Toomre 1963).
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Bulge

For a spherically symmetric distribution, one has simply
0% G’M (R)
OR R?

where M(R) is the mass interior to radius R. The profile decomposition yields the
bulge profile as a projected density ¥, so two integrations are required to derive

MIER) 1 poe dx
p(s) = —;/; (22 — szﬁ

2.7)
M(R) = /0 * smsp(s)ds.

With some manipulation (Kent 1986), these integrals can be combined to yield

r

M(R) = /or 2rzX(z)dz + /:x [4 sin™* <;> — 4r(z? - 7’2)—%} zX(z)dz

Halo

The form of the halo density profile is not well constrained a priori other than by
the fact that it produces an asymptotically flat rotation curve. It has been mod-
elled with an isothermal sphere (Carignan and Freeman, 1985) or with a suitable
family of density distributions that have this property. One of these density laws

1s
Po

a

(2.8)

where po and a are adjustable parameters. This has been used by van Albada
and Sancisi (1986) in their model of NGC 3198 and NGC 2403. The same density
profile with v = 2 has been used by Kent (1986, 1987). In this case eq. 2.8 can be

rewritten as

0.2

- 27G(R? + a?)
This profile produces a rotation curve

VX(R) = 207 {1 - (%) tan™? <E>] (2.10)

a

P (2.9)

with asymptotic velocity of v/2¢ (see Fig. 2.5).

Model Fitting
A model rotation curve is computed from observed bulge and disk profiles and the
assumed halo profile. The condition for centrifugal equilibrium gives

V2=Vi+VE+ Vi (2.11)
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Figure 2.5: Schematic rotation curve of massless test particles in an isothermal
sphere.

There are 4 free parameters: the bulge and the disk M/L ratios, and the scale
parameters o and a for the halo. These parameters can be determined by a least
square fit to the observed rotation curve profile (the fit is actually made to V}?).
The dependence of V, on a is non linear so an iterative fit needs to be done (Kent
1986). It is necessary to constrain the disk or halo parameters in some way.

2.3.4 Maximum Disk Method

It is assumed that the stellar component dominates the mass distribution in the
inner part of a galaxy (Kalnajs, 1983). The M/L ratio of the disk (and the bulge)
are set to the maximum value consistent with the matching of the inner part of
the rotation curve. The procedure consists in ignoring the halo component and
in solving for bulge and disk M/L ratios in a region inside the radius at which
the rotational velocity due to the disk component alone reaches a maximum. Any
excess in the rotational velocity at large radii is then attributed to a dark halo
component (see Fig. 2.6).

In this case, no a priori assumptions are made on the M /L ratios for the bulge and
disk components.

Kent (1987) shows that in no case does the maximum-disk solution alone produce
a good fit to an entire rotation curve: a halo component is always required. This
need for dark matter contrasts with the case where optical rotation curves alone
are used; this happens because the HI rotation curves extend much further out
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Figure 2.6: Light profiles and rotation curves for two galaxies ((a) NGC 2403 and
(b) NGC 3198) with extended, symmetrical HI disks. Upper panels: luminosity
profile from Wevers (1984). Lower panels: observed rotation curves and rotation
curve calculated from the light profile and the distribution of HI, including a
correction for helium (solid lines). The contribution of the stars to the calculated
rotation curve contains the M/L ratio as an arbitrary scale factor. Maximization
of the disk mass (stars only), while matching the observed rotation curve, gives

M/Lg = 1.9 for NGC 2403 and 4.0 for NGC 3198.
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Figure 2.7: Fits of exponential disk and halo to the observed rotation curve (dots)
for NGC 3198. Disk models with maximum mass (upper left) and also with masses
0.75, 0.50, and 0.25 times the maximum mass are shown.

than the optical curves, and they appear to be able to sample at galactocentric
radii where the halo mass dominates.

Unfortunately even with the leverage provided by extended HI rotation curves, the
various parameters are still highly coupled in the least squares solution. The reason
is that the chosen parametric form for the halo density law produces a rotation
curve that by itself makes a reasonable fit to the observed rotation curves.

Van Albada et al. (1985) and van Albada and Sancisi (1986) made models for
NGC 3198 and NGC 2403 galaxies. These models showed that a good fit to the
rotation curve is obtained by choosing the maximum disk and a halo, but it was
not possible to calculate a lower limit for the M /L ratio of the disk. Equally good
fits could be obtained for any assumed disk mass less than the maximum value
(see Fig. 2.7). Their first model for NGC 3198 consists of a disk with the largest
possible mass and of a halo. The upper limit for V,,,-(disk) was 150 km s™! but
this choice would require a halo with hollow core which is implausible.

A reduction of V,,,-(disk) to 140 km s~! is sufficient to allow a halo with a density
that decreases monotonically with galactocentric distance . The parameters that
van Albada et al. deduced for the halo are not unique-the halo exponent 4 and
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the scale length a are derived in a correlated fashion
19<y <29 T<a<12

while p(R = 0) is determined with less uncertainty. Defining the core radius of
the halo mass distribution by p(R.) = 2~%p(R = 0) we have

~

R.=(27-1)a

The fitting made by Van Albada et al. gave a subjective 95% confidence interval
for R,

9.6 < R.<15.4

(R. in kpc). This is an upper limit for R.: for smaller disk masses R, decreases.
The main difference between the resulting halos is the core radius: it decreases
from R. = 12 kpc for the maximum disk mass to 1.7 kpc when the dark halo
dominates, whereas for the exponent they obtained v = 2 for all models.

2.3.5 Value of M/L for the Disk

Is the amount of visible matter negligible with respect to the amount of DM? Or
is the maximum-disk model more reasonable?

The available data cannot discriminate between disk models with either low or
high M/L but there are arguments which suggest that the true M/L ratio of the
disk is close to the maximum value:

e measurements of mass and luminosity density in the solar neighborhood yield
M/Ly = 3.1+£0.6 My/Lgy (Bahcall 1984). This value is of the same order
as the M /L values of the maximum disk case for NGC 2403 (M/L=2.61) and
NGC 3198 (M/L=5.73),

e shapes of the rising parts of rotation curves agree with those expected for
a disk (or bulge+disk) with scale length as given by the light distribution
(measured photometrically),

e the close relationship between the luminosity of spiral galaxies and the max-
imum circular velocity implied by the Tully-Fisher relation indicates that
after all it is the amount of visible matter that determines the maximum
rotational velocity in a galaxy. If this were not the case, the amount of DM
inside say 2.5 disk scale lengths should be related in a unique way to the
amount of visible matter,

e the presence of two armed spiral structure. Well developed two armed spi-
ral structure appears possible only if the disk mass is at least 70% of the
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maximum disk mass (van Albada et al. 1985). If this is lowered to 50%
of the maximum disk mass, the growth of the two-armed spiral structure is
definitely inhibited and only multiple armed features develop.

2.3.6 Conclusions: Disk—Halo Conspiracy

We have seen above that the rotation curves of spirals are remarkably flat and
featureless. It is clear that, if the disk mass exceeds 70% of the maximum disk
mass, the flat behaviour of the observed rotation curve between 3 Rp and the last
measured point is due to a falling rotation curve for the disc and a rising one for
the halo. It seems implausible that two supposedly independent components of a
galaxy, a flat disk and a more or less spherical halo, could produce such a result as
a rule. If stellar matter dominates in the inner part of a galaxy and DM outside,
then the peak rotation velocity due to the luminous component must be about the
same as that due to the halo in order that they combine to produce the observed
flat curve. This implies that the luminous matter also controls the approximately
constant value of the circular velocity in the outer regions.

This apparent coincidence is referred to as the disk halo conspiracy. A way around
the disc-halo conspiracy while keeping the luminous matter dominant in the inner
regions, would be to relax the initial assumption of constant M /L for the disk. The
mass-to-light could be approximately constant in the inner regions and increase
gradually in the outer parts with a functional form M/L(r) similar for all galaxies.
An inspection of the various rotation curve fits given by Kent shows that the
individual components display a considerable variety of shapes and that there is
no single relation between the disk and halo contributions. We can characterize
the conspiracy by comparing the peak velocity from the maximum disk solution
with the asymptotic (or last measured) rotation velocity. In less luminous objects
the peak disk velocity is smaller than the asymptotic velocity: by 30% in extreme
cases. Since the true M/L ratio of the disk is likely to be lower than its maximum
disk value, this short fall is likely to be even larger. Other galaxies show the
opposite behaviour: in NGC 4736 the peak of the bulge+disk velocity is larger
than the asymptotic halo velocity by 30% or more. Kent finds that whereas the
ratio between the peak disk velocity and the halo velocity is not universal, there
is a reasonably good correlation of this ratio with the galaxy luminosity.
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2.4 Evidence for Dark Matter from Optical Rotation Curves

2.4.1 Opbserved Profiles of Optical Rotation Curves of Field
Spiral Galaxies

As we have already said the luminosity profiles of most spiral galaxies are de-
composed into two main components (Freeman 1970, van der Kruit 1987): a very
concentrated bulge and a thin disc, whose surface luminosity density decreases
with radius as

R

I(R) = Iyexp (_7-?:;;> , (2.12)

Io being the central surface luminosity density and Rp the exponential disk scale-
length. The bulge is usually less luminous and smaller than the disk and its
contribution to the equilibrium is usually negligible at R > 2Rp. From eq. 2.12
the surface brightness at radius R is

p(R) = po + 1.0865— (2.13)
Rp
the peak brightness po having a small scatter among spirals (Freeman 1970, van
der Kruit 1987): po = 21.7 £ 0.4mag arcsec™? which implies Rys/Rp = 3.0 4= 0.4,
where R,s is the radius at which pg = 25.
As colours show no substantial gradient across disks, this strongly suggests a
constant stellar mass-to-light ratio in each galaxy. This implies

d® dé
— o — =V2 (R 2.14
R (dR) lum (dR) disk d"’k( ) ( )

where ®,,,, is the gravitational potential due to all luminous matter, and Vi (R)
is the circular velocity of the exponential thin disk model (Freeman 1970),

M
Vi = G F(R). (2.15)

Here Mp is the disc mass, z = R/Rp, and F(z) = (1/2)z*(loKo — I K1); I, and
K, are modified Bessel functions of order n evaluated at z/2.

As a very general property, virtually all extended optical rotation curves show a
constant gradient in the region R; = (0.1 — 0.2)Rys < R < Hys. The observed
rotation velocities V,, collected from the literature by Persic and Salucci (1990)
and whose main characteristics are summarized in Tab. 2.2,
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TABLE 2.2

Observational Data

Ident. MB Ropt %5 Vobs

NGC 488 —22.52 33.3 385 0.20
NGC 753  —22.60 20.8 222 0.05
NGC 1035 —19.69 7.4 140 0.41
NGC 1085 —22.55 32.0 310 0.01
NGC 1300 —21.47 20.8 200 0.00
NGC 1325  —20.87 18.2 212 0.46
NGC 1417 -22.28 25.6 329 0.21
NGC 1421 -20.80 26.6 200 0.42
NGC 1620 -—21.90 28.5 260 0.36
NGC 2336  —22.50 50.6 251 0.03
NGC 2708 —20.60 13.8 293 0.52
NGC 2715 —21.29 28.5 158 0.39
NGC 2742  —20.54 12.2 192 0.39
NGC 2815 —22.00 294 284 0.07
NGC 2997 —-21.19 21.1 160 0.00
NGC 2998 —22.00 26.6 229 0.14
NGC 3054 —21.63 17.3 264 0.22
NGC 3198 —20.60 13.8 162 0.16
NGC 3200 —22.87 47.4 287 0.13
NGC 3145 —22.58 35.8 275 0.08
NGC 3223 —22.64 37.1 255 0.02
NGC 3672 —21.75 19.8 189 0.06
NGC 3963  —22.37 23.7 178 0.02
NGC 3992 -21.70 28.2 273 0.10
NGC 4062 —19.50 13.1 168 0.52
NGC 4254 -—21.51 14.1 210 0.27
NGC 4321 —21.53 22.1 223 0.22
NGC 4565  —23.20 42.2 254 0.00
NGC 4605 —18.59 3.2 119 0.66
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are interpolated in this region with the simple linear function

wm:%+mﬁé> (2.16)

which reproduces the observed circular velocity at a high level of confidence.
Therefore, in the range Ry < R < Rjs we can assume a simple straight line
to represent the circular velocity.

2.4.2 1Is There DM?

In order to understand at which radius in each galaxy the discrepancy between
visible and dynamical mass begins we need a local mass indicator which avoids
the problem of translating disk luminosity into disk mass. Let us introduce the
logarithmic gradient of the rotation velocity curve defined as

R dV(R)
" V(R) dR

For the rotational velocity generated by an exponential disk distribution of mass,
it takes the form (Persic and Salucci 1988)

I()Ko -+ 0.5$(I1K0 - I()Kl)
IyKo— 1 K,

and the value of the logarithmic derivative for the observed velocity curves is given

by

Vdisk = (2.17)

o
_ 25
VObs - R (2.18)

Vo+Vi—
o+ 1}225

The aim is to compare the logarithmic gradients of the circular velocities predicted
by the exponential thin disc model with the observed ones.

Obviously if the disk matter were the only component contributing to the dynam-
ics, we would find

\/ obs = V disk (219)

over the whole range of the disk. In each and every galaxy of the sample of
Persic and Salucci a dramatic discrepancy is found between these two quantities
(see Fig. 2.8). In regions where Vai,x > o, this discrepancy can neither be
eliminated nor even reduced by introducing possible contributions from a bulge
and/or stellar halo.

Bulge: it appears as a point mass to the outer regions. Its contribution to the
velocity field is

Mp

Vi=G—, (2.20)
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Observational Data: Continued

Ident. Mz Ropt Vas Vobs

NGC 4682 —20.85 15.4 184 0.22
NGC 4800 —20.00 4.2 175 0.15
NGC 5033 —21.30 38.4 212 0.13
NGC 5055 —21.55 18.9 200 0.00
NGC 5290 —21.51 17.6 230 0.09
NGC 5371 —22.60 32.6 240 0.04
NGC 5383 —22.50 19.2 207 —0.06
NGC 5426 —21.24 20.2 157 0.00
NGC 5673 —20.50 11.2 138 0.22
NGC 5905 —21.84 52.8 242 0.14
NGC 5908 —22.00 29.8 352 0.04
NGC 7083  —22.40 38.4 223 0.04
NGC 7171 —21.25 23.7 227 0.13
NGC 7331 —22.40 33.9 226 0.06
NGC 7531 —22.14 12.2 180 0.00
NGC 7537 —21.23 37.1 137 0.00
NGC 7591 —21.21 37.1 195 0.00
NGC 7606 —22.54 37.1 242 —-0.12
NGC 7631 —21.17 37.1 205 0.24
NGC 7664  —21.60 37.1 183 0.00
NGC 7723 —21.57 37.1 209 0.00
UGC 467 —20.55 37.1 155 0.20
UGC 807 —21.80 37.1 211 0.00
UGC 2259 —17.50 37.1 93 0.50
UGC 4375 —20.02 37.1 200 0.15
UGC 11810 —21.10 37.1 187 0.14
UGC 12470  —20.05 37.1 160 0.61
UGC 12810 —22.40 37.1 234 0.09
WR 66 —20.77 37.1 170 0.09

Table 2.2: Column (1): name of the galaxy. Column (2): absolute blue magni-
tude. Column (8): optical radius in kpc, defined as R,p; = 3.2Rp. Column (4):
rotational velocity (in km s7!) at the R,s isophotal radius. Column (5): logarith-
mic derivative of the rotation curve at R,,. This quantity is computed from the
parameters of a linear fit V(R) = V5 + Vi(R/R3s), to the observed rotation curve
such that Vobs = %(R/st)/(‘fo + V&(R/st))
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N 4035

Figure 2.8: 7 4;,x(dashed line) and v/, (solid line) plotted as functions of galacto-
centric radii (in kpc) for NGC 1035, for the other galaxies in the sample we have
the same behaviour.
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and the contribution to the logarithmic gradient amounts to

1

Vbulge = _5- (221)
If the total velocity field were given by the sum of the bulge and disk components,

the total velocity gradient would be even steeper

Viot < Y disk

Therefore, the bulge contribution enhances the observed discrepancy, instead of
reducing it.

Stellar halo: the stellar halo or “corona”? has a radial density dependence p o< R73.
The derived rotation curve has the following radius dependence

log R :
2.22
Varns o (252 (222)

and its logarithmic gradient, evaluated at R,52 3.2Rp is negative

1(logR)™ —1

: = (2.23)

VCoro»na x
Also in this case, the rotation curve derived using the stellar halo in addition
to the disk mass component will be in disagreement with the observed one. Its
logarithmic gradient, evaluated at 3.2Rp, will show even larger discrepancies than
those derived in the case of a pure disk matter distribution.

In the outer regions of the optical disk, the only way to solve the discrepancy
between the luminous and dynamical velocity curves is by allowing the presence of
a dark matter component having dV}2, /dR > 0 (Persic and Salucci 1988). This
implies that its density radial dependence should be p «« R~ with |y| < 2. In
regions where /g4i,x > VVobs the situation is more open and a bulge and or a stellar
halo could be introduced to eliminate it.

2.5 Dark Matter and Disk Stability

2.5.1 Global Behaviour of Cold Disk Galaxies

From the investigation carried out by Kalnajs (1972) on disk stability there are
theoretical arguments to believe that highly flattened disks supported mainly by

rotation are subject to large-scale bar-like instabilities. Yet many galaxies exist

*We use this term not to generate confusion between stellar and dark halos
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where most of the light originates from an apparently flat rotating disk, and where
the random stellar motions appear to be small compared to the systematic circular
motions: i.e. they are apparently cold. Our own galaxy is such a system: in a
column through the solar neighborhood the RMS random velocity of the late type
dwarfs that dominate the stellar mass contribution is about 60 km s~!compared
to a rotation speed of about 220 km s™'; it does not seem to suffer from any large-
scale, large-amplitude, short-time-scale instability. So is a “cold” rotating disk of
stars truly unstable? If so, how can we account for the apparent stability of our
galaxy? Futhermore, what (if any) critical value of the random component of the
total kinetic energy is needed to prevent these instabilities and what could be done
to add stability to a flat system whose disk would be, by itself, unstable?

2.5.2 Numerical Work on Disk Stability

A variety of N-body simulations of galactic disks have been carried out since 1970.
One of the earliest was carried out by Hohl (1971). In his simulations the initial
surface density and potential of the 100,000 stars were those of a Kalnajs disk

[ R? 1
T(R) = Zoy/1 — — ®(R) = 59?,32, (2.24)

where Qy = ./%ﬂ'zG’Eo/a. Hohl chose the initial distribution function of the stars
to be the Schwarzschild one; and the radial velocity dispersion og(R) was chosen
so that Q(R) =1 at all radii, where Q is the parameter that satisfies the Toomre
stability criterion (Toomre 1964, 1974). This distribution function is not the exact
solution of the collisionless Boltzmann equation [the Kalnajs solution is exact, but
it is a singular solution] but it closely resembles the velocity distribution in the
solar neighborhood. To obtain the equilibrium, Hohl ran the program for several
orbital times while constraining the gravitational field to remain radial. After 8
orbital times, with the disk now in equilibrium, Hohl removed the constraint that
the gravitational field should remain radial. The resulting evolution is dramatically
different: in less than two orbital times, the disk evolves into a bar-like structure.
At later times the model settles into a nearly axisymmetric disk with large random
velocities. Hohl’s results are consistent with the analytic studies of the normal
modes of the Kalnajs disk. The crucial difference between the stable disk and the
earlier unstable one is the velocity dispersion: disks with large velocity dispersion
(hot disks) are not subject to bar instabilities, while cold disks are unstable.

Ostriker and Peebles (1973, hereafter OP) investigated the importance of the bar
instability in differentially rotating disks. They studied a direct 300-body simu-
lation of a truncated Mestel disk with @ = 1. An N-body system in equilibrium
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satisfies the virial theorem in the form

1 1
T+50=cW (2.25)
where T is the kinetic energy of rotation, 1/2 II is the kinetic energy in random
motions and W is the potential energy. If we divide everything by |W|, we get
1 1 1
1 + 5'& P 2 0 S t S 2
and the relative magnitudes of t and u represent the relative importance of “ro-
tation” and “pressure” for maintaining equilibrium. Using this normalization it is
straightforward to see that II/T = ¢t~! — 2. OP noticed that their N-body models
were stable if £ < ¢..;; = 0.14 £ 0.02 and that this limit was similar to the stability
criterion for bar-like modes in Kalnajs disks, t < $Q%/0Q2 = 0.1286. ¢ = 0.14
implies that II/T" > 7.14 — 2 = 5.14.
The behaviour of their simulations of a cold disk (u/t < 1 — ¢ = 0.50) was the
following: during the first rotation time period the system of particles goes from
a symmetric disk to a highly non axisymmetric bar-like structure, which tends to
dissolve and approach rough axial symmetry again. After one orbital period, t is
roughly comparable to what was indicated as the critical value in analytic studies
of fluid models. When t has fallen to the range 0.1-0.2 further changes are slower,
and the system appears to be approaching a stationary state.
OP were the first to point out the grave consequences of the bar instability for
the Galaxy and other disk galaxies. For our Galaxy, if the values of the random
and rotational velocity listed above are roughly constant across the disk, then
II/T = 0.15, which is much less than the value of 5.1 needed for stability according
to their criterion.
N-body simulations of a wide range of disk models have subsequently been carried
out (Sellwood 1981, Zang and Hohl 1978, Efstathiou et al. 1982), and these have
been supplemented by linear normal mode calculations (Zang 1976, Kalnajs 1978).
They confirm that if most of the kinetic energy of a disk is in rotational rather than
random motion, then the disk is usually strongly unstable to large scale bar-like
modes.

(2.26)

2.5.3 Ways to Construct Stable Systems

The first way is the one followed in the course of the evolution of many of the
N-body models: the disk heats up until t is approximately 0.14. This state, a
kot flat disk appears to be a quite satisfactory stable equilibrium, but it does not
correspond to the observed stellar motions in the apparently flat spiral galaxy.

The second way could be the following: the system might evolve into an equilib-
rium rotating bar which is cold (streaming motions dominate over random motions
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but the bar is stable against further deformation). This is not a satisfactory model
for an ordinary non-barred spiral galaxy.

The third way may be to add another hot component, which stabilizes the total
system. Adding a hot disk component reduces to the first alternative and would
require an unseen disk component with large mass and largely radial orbits. OP
introduced in their N-body simulation a halo, a spherically symmetrical component
which did not rotate. They simulated the evolution of the disk by adding halos
with increasing masses. The sequence of bar-instabilities and heating of the disk
was reproduced in a less pronounced way. A halo mass of 1 to 2.5 times the disk
mass appears to be required to reduce the initial value of t to the stable range
t = 0.14. If we write the virial theorem for this system (cold disk with a hot,
non-rotating halo) we get

1 1
Taisr + EHhalo = §VVtot (2.27)

where we have neglected I ;. (cold disk), and 1/2W,,; = 1/2(Waisk + Whato). In
this system the OP criterion for stability, ¢ 2 0.14, can be satisfied without heating
up the disk.

The requirement of the dark halo coming from the stability criterion seems rather
compelling. The dark halo introduced in the mass modeling, using photometry
and rotation curves (van Albada et al. 1985, Kent 1986), seems to sustain only the
outer parts of galaxies as pointed out by Kalnajs (IAU Symp. 1987). He outlined
that in order to prevent bar like instabilities bulges are better than the dark halos
derived according to the maximum disk hypothesis (i.e. halos with a hollow core).






Chapter 3

No Dark Matter: Alternatives

3.1 Classical Framework: Optical and HI Rotation Curves
of Field Spiral Galaxies

The flat feature of optical rotation curves was considered in the early 1980’s as
strong proof of the existence of a DM component, but as early as 1983 Kalnajs
showed that the rotation curves of 4 galaxies which are flat or rising can be ex-
plained entirely in terms of a constant M/L ratio for the disk.

Moreover, the evidence for DM obtained by Rubin and her collaborators, based
on the absence of correlation between optical rotation curves and morphology or
Hubble type, has been weakened by Kent (1986, 1988). He has computed the
mass models for spiral galaxies in Rubin’s et al.. sample (1985) deriving the
matter distribution from his photometric data. The free parameters in the mass
densities are constrained using the rotation curves given by Rubin et al.. (1980,
1982, 1985), and the maximum disk hypothesis. Kent obtains different results for
the Sb and Sc types on one hand and for the Sa type on the other. For the Sb
and Sc subsample he derives that:

e the maximum disc solution provides good fits over the entire velocity profiles
for many objects. In other objects the maximum disk solutions fall short only

for the last few observed velocity points. The M/L ratios for the maximum
disk solution range from 0.79 to 7.78 for the disk, and from 1.47 to 19.5 for
the bulge.

e Few measured rotation curves extended much beyond the peak in the pre-
dicted disk portion of the rotation curve. Hence the curves are never in the
region of a true Keplerian drop off in velocity.

e Ten objects are best fit with no halo at all.

47
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o The flat nature of the measured curves is due to the form of the bulge +
disk profile.

o In most galaxies the observed shape of the inner rotation curve is well
matched by the maximum disk solution and for at least half of all galax-
ies the match extends over the entire observed rotation curve.

On the basis of the rotation curve fits, the Sa galaxies in the sample break up
into two classes: for half of them the contribution of the bulge and disk stellar
components are sufficient to reproduce the entire observed rotation curve with
reasonable M/L ratios. For the remaining ones the rotation curves rise too slowly
for any reasonable M/L ratios: the fits to the rotation curves demand that the
bulge is essentially massless. These galaxies have significant and often dominant
bulge component and a slowly rising rotation curve requires that the total M/L
ratio increases rapidly with radius.

For most of the Sb and Sc galaxies and for several Sa’s the optical rotation

curves do not always place strong constraints on the amount of DM in galaxies.
The rotation curve that one computes from the luminosity profile assuming a
constant M/L ratio provides a good match to the observed curve out to a radius
where the predicted curve turns over (most of the optical rotation curves do not
extend much past this peak). Kent finds that the light distribution correlates well
with mass distribution in so far as the shape of the inferred rotation curve agrees
well with the observed rotation curve. Several have rotation curves that can be
reproduced by assuming a constant M/L ratio for the luminosity distribution and
no halo.
About half of the Sa galaxies have slowly rising rotation curves that are incon-
sistent with both the light distribution and the bulge dynamics. The most likely
explanation for this fact is that the rotation curves in the bulge-dominated regions
are not measuring the true circular velocity. In those parts the dynamics is more
similar to that in elliptical galaxies and the radius at which the rotation curve
becomes reliable is not easily determined. Kent concludes that the similarity be-
tween the integral distribution of matter in different Hubble types found by RTBF
(1985) and Burstein and Rubin (1985) loses its significance, and should not be
considered as proof of the dominance of DM inside the optical radius.

3.1.1 HI Rotation Curve: NGC 3198

Since Kent (1986, 1988) has weakened the evidence provided by the optical rotation
curves of Rubin et al. (1980, 1982, 1985) for the existence of DM halos, much more
confidence has been given to the radio observations of Bosma (1978) and Begeman
(1986): particularly those of NGC 3198.
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Let us pose the following question: are the measurements of HI around the Sc
galaxy NGC 3198 incompatible with all its mass being contained in a standard
stellar population?

The hypothesis to be tested can be examined either (1) by using photometry to
predict kinematics, or (2) by using kinematics to predict photometry. The latter
is to be preferred because at large radii the photometry of galaxies like NGC 3198
is a good deal less certain than the kinematical measurements. For NGC 3198
all the light distribution is contained in a flat disk. The surface density X(R) at
radius R in the disk that generates a given run of circular speed V.(R) is given by:

1
G

E(R) = oz [ H(R,R)AVA(R) (3.1)

where
R'K(R'/R) if R' < R;
R-'K(R/R') if R’ > R,

and K is the complete elliptic integral of the 1* kind (Binney 1986). Unfortunately
this formula does not lead readily to the interpretation of the observational data
because the logarithmic singularity of K(k) at k = 1 causes Z(R) to depend very
strongly on the ill determined gradient of V2 near R. Binney (1986) has developed
an iterative procedure to overcome this problem, obtaining a surface mass density
that reproduces the observed velocity field. Then he compared this surface mass
density with the surface brightness obtained by Wevers’s (1984). These two curves
plotted as functions of radius are nearly parallel to each other: this seems to imply
that a surface density proportional to the surface brightness can account for the
flat HI curve of NGC 3198.

Binney scales the surface density in order to superimpose the two curves and finds
a discrepancy between the theoretical surface brightness that has been taken pro-
portional to the computed surface density and Wevers’ profile that rises to 8% of
the sky surface brightness at 8 kpc, falling to about 4%at the last photometric
point, at about R = 23 kpc far from the center (see Fig. 3.1). Begeman’s 21 cm
observations (1986) indicate that NGC 3198 possesses much more mass beyond
2.5 Rp than Wevers’ observations would indicate. But Binney has shown that this
conclusion would be nullified by an 8% uncertainty in Wevers’ light background.
One must examine carefully the possibility that Wevers’ sky level suffers from
systematic errors: all discussion of DM rests on these and similar photometric
data. The conventional techniques for determining the light background assumes
that galaxies emit no light at radii comparable to those at which they are cur-
rently suspected of possessing mass, this assumption may seriously compromise
the background level derived for smaller radii. Current photometric techniques
may be simply incapable of detecting the extended light distributions that are
predicted by the hypothesis M/L = const.

A, R) - |
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Figure 3.1: Comparison of Wevers’ (1984) surface brightness measurements
(squares) with the surface brightness predicted by the rotation curve of NGC
3198. The dashed line shows Wevers’ estimate of sky brightness.

3.2 Non Newtonian Alternatives

3.2.1 Modification of Newtonian Gravity

The introduction of Dark Matter (DM) as the dynamical component governing
the outer regions of rotation curves is needed if we assume that (1) the Newtonian
formulation of dynamics and (2) gravity hold. The validity of both assumptions
has been tested for distances of the order of the separations of the stellar com-
ponents in binary systems. A similar test of validity of Newtonian Gravity (NG)
over galactic distances is impossible, so in principle we must consider it as an as-
sumption which could turn out to be incorrect. In other words, the flatness of the
rotation curves of spirals might be a consequence of deviations from Newtonian
laws, and DM would then not be needed.

A straightforward modification of NG is achieved by acting on the distance de-
pendence in the gravitational force:

mM R
A

where f(R) is a dimensionless function satisfying f(0) = 1 and df/dR > 0. The
basic prediction of such a formula is an increase in the mass discrepancy with
distance from the center of the system.

In order to account for the flatness of rotation curves in the outer regions of
spirals without introducing any DM component or any rapid increase of the mass-
to-light ratio M/L (so that dM/dR = 0 for R > Ry), f(R) must already deviate
from unity on the scale of galaxies. Since reliably measured extended rotation

F(m,M,R) = -G

(3.2)
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curves of spirals become flat at large radii, from centrifugal equilibrium:

v GM(R)
‘1‘2‘ = f(R) | Rz (3.3)
and we have
GM
{ v? = f(R)—R—“ _ M(R)i@ = const
v2 = const R

If we suppose that the relation between the mass interior to a distance R from the
center and the corresponding luminosity M(R) = (M/L)L(R) with M/L = const,
and that the total luminosity tends to a finite limit, also M(R) will tend to a limit
for large R. This behaviour of M(R) leads to the following asymptotic dependence
of f(R) on R:

f(R) < R.

This implies that the force law must be more like 1/R than 1/R? on galactic
scales. Sanders (1984, 1986b) and Kuhn and Kruglyak (1987) have suggested
a modification to Newtonian gravity for distances greater than a characteristic
radius, which is equal for all galaxies.

Sanders has investigated a gravitation law containing a repulsive Yukawa compo-
nent characterized by a coupling constant a and a scale length Ry. For a point
mass M the potential is:

®(R) = G;}M [1 + aexp <—§>] (3.4)

0

where G, is the gravitational constant measured at infinity and is related to the
local value Go by Go = G(1+ ). Using the galaxy NGC 3198 for calibration, the
parameters a and Ry are fixed at: o = —0.92 £ 0.01, Ry = (36 £ 4)(Ho/50)kpc to
give a good fit to the rotation curve, using only the visible matter distribution. The
extra component added by Sanders is indeed repulsive: such a modified gravity
law is referred to as finite-length—scale anti-gravity (FLAG). Sanders applied this
FLAG potential to five other spiral galaxies ranging in size from 5 kpc to 40 kpc
and produced flat rotation curves from an exponential thin disk surface density
distribution with reasonable mass-to-light values.

A different non-Newtonian effective potential has been proposed by Kuhn and
Kruglyak (1987). According to their phenomenological suggestion a correction
term o« 1/R is claimed to be present in the Newtonian force law in order to
reproduce the observed rotation curves. Such a correction is thought to be due to
spatial variation of the gravitational constant. This correction is then explained as
the first term of a power law expansion which approximates this spatial variation
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on galactic length scales. The modified force between two point masses m; and
m, takes the form:

119 _}E) -1
R (1 H

where 5 kpc < A < 10 kpc in order to produce a flat rotation curve for the
calibration galaxy NGC 3198 (Kuhn and Kruglyak 1987).

The 1/R behaviour of the effective force (which implies f(R) o R) leads to a
relation between the total mass of the galaxy and the velocity whichis M = V?, but
this relation disagrees with the observed Tully-Fisher relation between luminosity
and velocity (in the hypothesis of fixed M/L ratio). So, the modification of the
distance dependence in the Newtonian law of gravity is inadequate to explain the
mass discrepancy.

In principle, there is another class of candidate theories involving velocity depen-
dent terms in the form

GM

R2
If f(V,R) increases for increasing values of V, and R as is natural to require, the
disagreement with the Tully-Fisher relation worsens.

F(R) =G (3.5)

F(R) = — o (V, B) . (3.6)

3.2.2 Modified Newtonian Dynamics (MOND)
at Small Accelerations: Microdynamic Regime

Milgrom, in a remarkable series of papers (1983 a, b, c), first pointed out that any
deviation from Newton’s laws in large astronomical systems has to appear below
a critical acceleration in order to be consistent with observational facts: notably
the flat trend of the rotation curves of spiral galaxies and the I o V* Tully-Fisher
law. His proposal may be framed as a modification of either Newtonian dynamics
or Newtonian gravity. As a modification of dynamics, the law of inertia which
describes the relationship between the acceleration a of a test particle and an
arbitrary force field f is written

pl(a/ag)a="f *(3.7)

where ag is a new fundamental constant of acceleration with a value comparable
to the acceleration in outer parts of galaxies (=2 107%cm sec ~?), and g is some
function of a/ae which is not specified but must have an asymptotic behaviour of
the form:

pe)= 1, z>1

plz) = =, z <1
This modified law of inertia implies that the linear momentum of an isolated
system is not conserved (Felten 1984) which seems unphysical.

(3.8)
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Considered as a modification of Newtonian gravity, the true gravitational field g,
is related to the Newtonian one gy as

p(g/a0) g = gn (3.9)

and the law of inertia is retained. With respect to galaxy rotation curves the two
formulations are equivalent. The latter formulation implies

P GM
ag - R2
in the limit
GM
i3} Lay or a<ag.
In the latter case the asymptotic velocity of a test particle is:
2 M
'a— x G—2 1
a: | Vﬁ = Vo (GMao)i. (3.10)
a‘ = E .

The constant acceleration ag represents the transition from the Newtonian to non-
Newtonian regime, and the coincidence:

Qg = HOC (311)
where Hy is the Hubble constant and ¢ is the velocity of light, seems significant
and perhaps Machian. Its value is determined to be about

HO -2

ap = 21078 cm s

50km st Mpc~?

with Hp is in km s™* Mpc™t.

3.2.3 MOND Predictions

Predictions which are incompatible with DM

Can all the predictions of MOND be mimicked with hidden matter, maintaining
Newtonian Dynamics?

Negative Dark Matter: If a density p(r) gives rise to an acceleration field g(r)
according to MOND, the only way we could make the measured acceleration in
this field consistent with ND is by assuming that the actual density distribution
is: :

p*=—(4nG)'Vg (3.12)
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If ND is not applicable, the determined density p*, through eq. 3.12 is not the true
density p(r) which gives rise to the measured g(r). We will define pp = p*(r)—p(r).
In MOND, the true density p(r) is related to the measured test particle acceleration
field g(r) by:

p=—-(4rG)'VIu(1)g] end g=-V3

If we take ,u,(fo—)g = gn, then gy is the Newtonian acceleration produced by p, so:
p= —(4rG) Vg - u(E) + 8- Vp(L)]]

= P(E) + (4rG) (L) ag g - Vg (3.13)

pp(r) = p(r)[; — 1]+ (47G) " Le, - Vg

where L = dlgpu(z)/dlgz, = = g/ao, and e, is the unit vector in the direction of
g.

L varies between 0 (very high acceleration) and 1 in the opposite limit as we assume
that p(Z) is increasing and convex. The first term is never negative (u < 1), the
second is negative if |g| decreases in the direction of g. The total pp of a finite
system as measured in a large sphere surrounding the system is positive, and
diverges with increasing radius of a sphere. For such a system, at large distances
g < R (and p = 0 at large R); thus from eq. 3.13, pp &x B2 as expected (since
pp is to produce a flat asymptotic curve).

We must note that a point mass cannot produce such an effect in any reasonable
alternative to the dark matter hypothesis because the acceleration must decrease
with distance more slowly than R~%, giving a contribution to the “DM density” =
d(R?gr)/dR; thus in a “linear” theory negative DM cannot appear for any mass
distribution.

Breakdown of the Strong Equivalence Principle (SEP): MOND does not satisfy the
SEP even in the non relativistic regime. For instance, a self gravitating many-—
particle-system (gas cloud) with isotropic pressure (or velocity dispersion) in an
external field g.,; such that g;, < gt < ao, will not be spherical (as in the
Newtonian case) even if g..; = const.

It will be an ellipsoid of revolution with its long axis along ge,:.

Predictions concerning galaxies

The rotation curve of a galaxy deduced from the observed mass=light distribution
using MOND should match with the observed rotation curve, thus

1. the velocity of a test body in a circular orbit around an isolated galaxy
should become independent of the radius of the orbit at large radii,
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2. the asymptotic circular velocity V., should depend only on the total
mass M of the galaxy via V! = qyGM,

3. for high rotational velocity galaxies (such that V2/h > a¢, h being
the galaxy scale length) the local M/L value (as deduced from New-
ton’s laws) should be constant at small radii, and then start to increase
around the radius where V?/r = q,.

MOND models have been made for the following galaxies : NGC 3198, NGC
247, and NGC 300 using eq. 3.9 and pure exponential disks. In this case eq. 3.9
becomes ",

pl(afag)a =G (-—ﬁ?
where Rp is the exponential disk scale-length as usual, I,,K, are the modified
Bessel functions evaluated at 2(R/Rp), and Mp is the total disk-mass.
If we define the following variables s = R/Rp, v(s) = V(s)/Vw, £ = V2 /agRp =
VGMp /aoRp, eq. 3.9 can be rewritten in dimensionless form, so that the reduced
rotation velocity reads:
s STHF(s)

O T (s
where F(s) = 2(R/Rp)(IoKo — I, K1). MOND predicts a family of velocity curves
which depend on the parameter ¢ and are nearly independent of the particular

form of p. Milgrom (1983b) used

) —;:(IOKO _ LK) (3.14)

(3.15)

pz) = s

because this satisfies the limits in eq. 3.8. The predicted rotation curves are shown
in Fig. 3.2. In these models we have only one parameter for each galaxy: the value

of M/L.

(3.16)

Surface densities
The constant acceleration ao defines a quantity with the dimension of a mass
surface density Yo = aoG™'. When a galaxy has an average surface density (Z) >
Yo, its dynamics will be Newtonian out to large radii, compared to the half mass
radius. There will be a range of radii with a Keplerian decline of the rotational
velocity before the latter reaches the asymptotic value v,,. When (Z) > Tothe
rotaton curve should exhibit an appreciable hump.
When (X) < 3, velocities rise slowly, peak at a few scale lengths, and then
decrease by a few percent to their asymptotic values. If galaxies are not observed
to have considerably humped rotation curves they should all have () < Z,.
Very low surface density (LSD) galaxies are particularly good test cases be-
cause: a) if the average surface density is very small (Z) < Ty = oG, the
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Figure 3.2: Velocity curves predicted by MOND for different values of the param-
eter £.
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accelerations are much smaller than ag, and hence we predict large departures
from Newtonian behaviour, b) they are bulgeless (fewer parameters involved) so
there is only the thin exponential disk component, c¢) g < ao for these systems
everywhere, so we do not require the exact form of ,u(;%) and it is a good ap-
proximation to use u(z) = z, and d) all the uncertainties involved in comparing
calculated and measured rotation curves (galaxy distances, inclination, extinction,
M/L, ay, etc) lump into a single multiplicative factor.

Oort discrepancy

Predictions can be made concerning the dynamics of the motions perpendicular to
the plane of a thin planar galactic disk. Bahcall (1984) has claimed that near the
Sun, the dynamically determined mass is larger than that accounted for by the
known components. For the MOND model of our Galaxy further approximations
are used:

e the acceleration perpendicular to the plane is small compared with the radial
acceleration,

e the density in the disk is large compared with the galactic density averaged
within the galactic radius R, p > M/4n R®.

Under these assumptions we find that the dynamics is Newtonian but with an ef-
fective gravitational constant: Gy = p(Vi2/Roao), when the above approximation

are valid:

1. the distribution of DM is the same as that of the visible mass,

2. the Oort discrepancy factor (which for MOND is [u(V{#/ Roao)]™!) is the
same as that for the total galactic mass discrepancy within the orbit of
the Sun,

3. the same factor appears in the dynamics of very wide binaries in the
solar neighborhood.

Elliptical Galaxies

For ellipticals, one needs to make an assumption about the stellar distribution
function, leaving free the parameters which specify it. Then it should be asked
how such models look if they obey MOND instead of Poisson’s equation, and to
what extent they resemble the astronomical systems they purport to represent
Assuming MOND, the main traits of self-gravitating many-particle-spherical-
systems with radius-independent radial and tangential velocity dispersion are !:

!Independent of the values of the parameters which determine their exact structure: velocity
dispersion, ratio of radial to tangential dispersion
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all such spheres have a finite mass; their density distributions tend to a power
law asymptotically: p(R) - R™%, a <3,

® X is an upper limit on the average surface density that such isothermal
spheres can have,

e M, of a sphere is approximately proportional to the 4** power of the phase
space dispersion o,:

M

(CLQG)-l S ;-—Z S Z(GOG)‘]'.

Or simply one tries to map the test particle acceleration field in elliptical
galaxies and see if it agrees with that calculated from the observed light
distribution.

o In ellipticals with test-particle gas-discs, the rotation curve of the disc will
be the one MOND dictates for the observed light distribution.

e Dwarf ellipticals or spheroidals with (£) < ¥, will contain large quantities
of DM when treated with ND.

¢ The observed temperature and density distributions in X-ray emitting en-
velopes of ellipticals will be those given by MOND.

3.2.4 Observational Evidence

HI rotation curves

Several HI rotation curves have been fitted by Kent (1987) using Milgrom’s mod-
ified Newtonian dynamics. He found that the use of MOND has a few interesting
properties, in particular:

e for a galaxy with high mass density, the computed rotation curve will be the
normal newtonian curve out to some transition radius R;, where V2/R % ao;

e the shape of the curve is determined by the shape of the mass distribution
and the amplitude by the M /L ratio;

o for a galaxy with a low mass density the rotation curve has a different shape,
but again is determined only by the mass distribution.

If Vn(R) is the former (high density galaxy) and Var(R) is the latter curve (for a
low density galaxy), then to within a constant they are related by:

Var o« (VER)
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Kent has found a curious feature of MOND for disc galaxies. Although the dynam-
ical laws were invented to produce flat rotation curves at large radii, the computed
curves still decline slightly. The quantity VZR/G which equals the disc mass M as
R — o0, actually exceeds M for radii greater than about 2.8 scale lengths, reaching
a maximum of 1.21M at about 4 scale lengths. So in the low density limit, the
MOND rotation curve will have a peak value of 1.05 V, at this radius. This fea-
ture is independent of the shape of the function u(z), and is simply a consequence
of rotation curves produced by disc mass distributions. Kent has used MOND to
compute rotation curves for 16 galaxies (with optical and HI rotation curves) with
stellar M /L ratios and ao taken as free parameters. Since aq is inversely propor-
tional to the distance assigned to a galaxy, some scatter is expected in the deduced
values of ao (the relative distance scale used in Kent’s sample is not uniform).
Milgrom suggested a rough value of 2-1073cm 52 for ao. Out of the 16 galaxies of
Kent’s sample, only 7 gave a useful estimate of ag. For galaxies in the low density
limit a value of ag = 1-107® was used. One galaxy from this sample, NGC 2403,
is also best fitted by a model in the low density limit, but it requires a value of
ap > 3-10"8%cm s~2.

Kent’s fits with MOND were good, although not as good as with dark halo models:
this is not surprising because MOND models have less free parameters which
should be identical for all galaxies. A potential problem for MOND could be
in reproducing the slope of the outer rotation curve, because it predicts a very
slightly falling trend in the low density limits, and in higher density galaxies the
drop should be even larger. But: |

1. the observed rotation curves in those regions are slightly in error because
the HI distribution is always warped there,

2. there is additional light, hence mass at large radii, which is just too
faint for current photometry to pick up,

3. there might be a variation of the mass-to-light ratio with radius.

So, MOND seems to work nearly as well as DM models in fitting the observed rota-
tion curves with one degree of freedom less. However, ao shows an uncomfortably
large variation among galaxies.

Optical rotation curves

One observable quantity describing the profile of rotation curves in the outer disk
regions of spiral galaxies is the logarithmic velocity gradient, d log V/d log R,
evaluated at R,,: = 3.2Rp 2.

2We adopt here Ropt = 3.2Rp. Such a definition makes R,y statistically equivalent to Ras, the
25 mag arcsec™? isophotal radius (van der Kruit 1987).
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For the sample of galaxies collected from the literature by Persic and Salucci
(1990 a,b) which spans a range in blue absolute magnitude —17.5 > Mp > —23.2,
in circular velocity 120 < ¥V < 385 (in km s™'), and in disk radius 3 < Rop < 55
(in kpc), they find that

_o12< (Ll < 0.70.
dlog ) ,_

By contrast, a value d log V/d log R = —0.15 is expected from the distribution of
light in the hypothesis that light traces mass and that Newtonian gravity holds.
The velocity gradient is strongly correlated with luminosity, according to

dlog V
= (0. . . 0.03 3.17
dlog B (—0.30 £ 0.04)log L + (0.35 £ ) (3.17)
with a correlation coefficient » = —0.70, or
dlog V
= (—0.60 £ 0.12)1 1.04 £0.15 3.18
with a correlation coefficient r = —0.69 see Fig. 3.3 . The correlation between

logarithmic velocity gradient and luminosity (or galaxy radius) is a central prop-
erty of spiral galaxies (Rubin et al. 1985; Persic and Salucci 1990c), and implies
that galaxies with steeper rotation curves tend to have lower values of circular
velocity and also tend to be smaller and fainter too. In the framework of non-
Newtonian theories, the above correlation should be natural consequence of the
modified dynamics and/or gravitation.

3.2.5 A Non-Conventional Test for Non-Newtonian Theo-
ries

A test of FLAG
According to Sanders (1984) we have:

M
Vasrrac = G [L+ a1 + ) exp(—2)] (3.19)
where Mp is the disk mass and z = Ry5/ Ry and the logarithmic gradient is then:

(dlog V) _ —0.5-0.5a(1 + z + z?) exp(—=z)
dlog R 25.FLAG N 14 a(l+z)exp(—=z)
In eq. 3.19 the mass has been supposed to be spherically distributed: in particular

the sign of the logarithmic gradient of circular velocity and its qualitative be-
haviour along the luminosity sequence, remains unaffected by this approximation.

(3.20)
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Figure 3.3: The observed velocity gradients as function of of absolute blue lumi-

nosity for the rotation curves of the galaxies in Tab. 2.2. A strong correlation is
clearly visible. ‘

Dubal, Persic and Salucci (1990) have tested the FLAG scenario by investigating
whether eq. 3.20 agrees with the observational properties, eq. 3.17 and eq. 3.18.
They calculated the value of the logarithmic derivative predicted by FLAG for the
sample of galaxies given by Persic and Salucci (1990 a), obtaining the following
correlation

dlogV
= (0. .03)log Rys — (0.55 £ 0.02 3.21

with a correlation coefficient » = 0.85. This is the relation that the sample of
galaxies would have if we modified the gravity law, by means of the FLAG theory,
in order to account for the rotation curve of NGC 3198. This relation clearly
disagrees with the observed one: galaxies show a dependence on Rjs which is
converse to that predicted by eq. 3.18 (see Fig. 3.4).

A test for Kuhn and Kruglyak’s (KK) theory
Using the KK force law, eq. 3.5, the circular velocity at R,s and its logarithmic
gradient are given by:

1
Mp\ # A\
— = 14 — 3.22
Vas <G A) ( +R25) (3.22)



62 CHAPTER 3. NO DARK MATTER: ALTERNATIVES

T T T i T T T T T T
R l l _
6 — —
®
- R =
. e ~
o
- e . -—
4 — °° s ® d .
& L ¢ B
o | ° ° |
e .

g L. ° L] N

Qo L]
5 2 ° ° . _—

~ L

= -
9 - -
L ~ -
S o0 —
-2 —

N

log Rgs '

Figure 3.4: (d log V/d log R),5 as a function of Rys for the sample of Persic and
Salucci (1988). The theoretical relationships predicted by the KK and FLAG
theories are shown. The broken lines indicate the 3¢ limit.

dlog V 1A A,
= ———(14+=—)"". 3.23
(dlogR) 2R25( +R25) ( )

We see that eq. 3.23 predicts that small galaxies (=2 A, V & 100 km s™!) have
negative logarithmic gradients, which is in sharp contrast with observations (see
Tab.1). For Persic and Salucci’s sample KK’s theory predicts the following corre-
lation:

dlog VKK
—=——1 =(0. . 1 — (0. 0.006 3.24
( dlog B )25 (0.175 £ 0.003) log Rys — (0.335 & 0.006) (3.24)
with a correlation coefficient 7 = 0.97. Again the slope predicted by this theory is
irreconciliable with the observations (see Fig. 3.4).

A Test for MOND.
From eq. 3.15, and using p = z/+/1 + 22 (Milgrom 1983b), the MOND rotation

curve is:
it
4

(3.25)
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and the ensuing logarithmic velocity gradient is (Arnaboldi 1990):

dlog V 1 1 1 d log F

=1+ |1+ =2 —" . (3.26

(dlog R)m“ ) " ( dlogs) (3:26)
1+ (55)

EZF 5=3.2

By inserting the numerical values s = 3.2, F = 1.11, and d log F/d log s = 0.45,
eq. 3.26 transforms into

dlog V 11 155 1
_1 . 27
(d Tog R),_;” 1+ 1+ (3.27)

2 2 Ly (2048

1.11¢2) )
For each galaxy in our sample we calculate the value of £ according to its definition
[with the assumption Vo = V(R;s) 3, consistent with Milgrom 1983b], and from
eq. 3.27 we derive the value of d log V/d log R predicted by MOND. The results

are reported in Tab. 3.1. As shown in Fig. 3.5 there is no correlation between the

predicted MOND values of d log V/d log R and luminosity, i.e.,

j Ei ; = (0.006 = 0.009) log Lz + (0.08 % 0.007), (3.28)
with a correlation coefficient » = 0.09. In Fig. 3.6 we plot the differences be-
tween observed and predicted velocity gradients vs luminosity: the disagreement
between the predictions of MOND and the data increase for decreasing luminosi-
ties, where steeper rotation curves are observed. Indeed, the steepest predicted
velocity gradient (for £ < 1) is

(d log V)maw _ ldlog F

= 0.11. 3.29
4 dlog s 0.1 (3:29)

d log s MOND

So, MOND appears to be unable to reproduce the data (at least in the limit
p(z) = z and p = z/+/1+ z2) for 29 out of 58 galaxies of Persic and Salucci’s
sample.

So far we have computed ¢ according to its definition, ¢ = V2 /(aoRp), where ao
is supposed to be independent of luminosity or radius. Can this latter hypothesis

3Most galaxies in our sample have d log V/d log R > 0, so the assumption Vo = V(Ras)
leads to an underestimate of { for those galaxies. This however will only act to strengthen our
conclusions. ‘
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TABLE 3.1
Theoretical Predictions

Ident. Eobs V theor Ident. Eobe V theor

NGC 488 2.313 0.485 NGC 4682  1.145 8.536
NGC 753 1.23 8.115 NGC 4800 3.795 —12.564
NGC 1035  1.377 7.320 NGC 5033  0.608 10.508
NGC 1085  1.56 6.213 NGC 5055  1.100 8.747
NGC 1300 0.999 9.190 NGC 5290 1.561 6.206
NGC 1325 1.284 7.833 NGC 5371 0.918 9.515
NGC 1417  2.196 1.478 NGC 5383  1.159 8.468
NGC 1421 0.781 10.003 NGC 5426  0.635 10.438
NGC 1620 1.233 8.100 NGC 5673  0.883 9.647
NGC 2336  0.647 10.405 NGC 5905  0.576 10.588
NGC 2708 3.233 —7.824 NGC 5908  2.160 1.777
NGC 2715 0.455 10.850 NGC 7083  0.672 10.336
NGC 2742 1.570 6.149 NGC 7171 1.130 8.607
NGC 2815  1.438 6.965 NGC 7331  0.782 10.000
NGC 2997 0.630 10.451 NGC 7531  1.380 7.302
NGC 2998 1.024 9.084 NGC 7537  0.827 9.848
NGC 3054  2.095 2.309 NGC 7591  0.964 9.334
NGC 3198  0.988 9.236 NGC 7606  1.114 8.541
NGC 3200 0.902 9.576 NGC 7631 1.220 8.166
NGC 3145 1.098 8.756 NGC 7664  1.553 6.258
NGC 3223 0.910 9.546 NGC 7723 1474 6.749
NGC 3672  0.938 9.437 UGC 467 0.833 9.827
NGC 3963  0.695 10.270 UuGC 807 0.623 10.469
NGC 3992  1.373 7.342 UGC 2259  0.883 9.648
NGC 4062 1.120 8.654 UGC 4375 1.961 3.372
NGC 4254 1.627 5.776 UGC 11810  0.644 10.413
NGC 4321 1.169 8.420 UGC 12470  1.187 8.331
NGC 4565 0.794 9.961 UGC 12810  0.795 9.957
NGC 4605  2.298 0.613 WR 66 0.586 10.563

Table 3.1: Column (1): name of the galaxy. Column (2): observed value of £ given
by ¢ = V% /(Rpae) with ag = 2-107% cm s72. Column (§): predicted values of 7
(in units of 1072).



3.2. NON NEWTONIAN ALTERNATIVES 65

'_ T i T T T T T T T T , T T T T l ] T T i
s ]
4 — =
i i
= - i
2 ]

™~ A

i 4, 4 ‘:‘ ‘i ‘F ‘:;AAAA: ‘:Af & ) 40
. -
0 b— A & L SN ]
‘;J I ! ! l ! F 1 L 1 ! ' i L 1 1 I i3 { i { l =
9.5 10 10.5 11 115

Log Lg (in solar units)

Figure 3.5: The MOND-predicted velocity gradients as a function of luminosity.
No correlation is visible. (Luminosities are in solar units.)

be relaxed? In order to check possible variations of ¢ (or equivalently ag) with
luminosity, we now compute ¢ from purely observational quantities, i.e. from the
shapes of rotation curves. By inverting eq. 3.27 we get

s\/0.45 —4 (M)

dlog s

¢ = . - (3.30)
VIT[ -2 (GRe)]" [L-oas+2 (5283

The results are listed in Tab. 3.2. From eq. 3.30 we notice that there are no
real solutions for { when d log V/d log s > 1/4(d log F/d log s) = 0.11. For the
remaining 29 real solutions there is no correlation between ¢ (or equivalently ao)
and luminosity or radius (see Fig. 3.7). This strengthens our previous conclusion
that under no circumstances can MOND reproduce the steep rotation curves of

low-luminosity galaxies.

3.2.6 Conclusions

The approximate constancy of rotation curves is only one of many observational
properties of the dynamics of spiral galaxies. As Rubin et al. (1985) pointed
out, one key observational fact is the correlation between the shapes of (optical)
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Figure 3.6: Differences between observed and MOND-predicted velocity gradients
as a function of luminosity (in solar units). A strong correlation is apparent:
discrepancies are bigger for lower-luminosity galaxies.
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TABLE 3.2

Theoretical Predictions

Ident. ftheor Y obs Ident. ftheor Vobs
NGC 488 — 0.20 NGC 4682 — 0.22
NGC 753 1.741 0.05 NGC 4800 — 0.15
NGC 1035 — 0.41 NGC 5033 - 0.13
NGC 1085  2.252 0.01 NGC 5055 2.369 0.00
NGC 1300 2.369 0.00 NGC 5290 1.043 0.09
NGC 1325 - 0.46 NGC 5371 1.878 0.04
NGC 1417 - 0.21 NGC 5383 3.031 —0.06
NGC 1421 — 0.42 NGC 5426 2.369 0.00
NGC 1620 - 0.36 NGC 5673 — 0.22
NGC 2336  2.009 0.03 NGC 5905 - 0.14
NGC 2708 - 0.52 NGC 5908 1.878 0.04
NGC 2715 — 0.39 NGC 7083 1.878 0.04
NGC 2742 — 0.39 NGC 7171 — 0.13
NGC 2815 1.432 0.07 NGC 7331 1.593  0.06
NGC 2997 2.369 0.00 NGC 7531 2.369 ~ 0.00
NGC 2998 — 0.14 NGC 7537 2.369 0.00
NGC 3054 — 0.22 NGC 7591 2.369 0.00
NGC 3198 - 0.16 NGC 7606 3.723 —0.12
NGC 3200 — 0.13 NGC 7631 - 0.24
NGC 3145 1.252 0.08 NGC 7664 2.369 0.00
NGC 3223 2.132 0.02 NGC 7723 2.369 0.00
NGC 3672 1.593 0.06 UGC 467 — 0.20
NGU 3362 2.132 0.02 UGC 807 2.369 0.00
NGC 3992 0.782 0.10 UGC 2259 — 0.51
NGC 4062 — 0.52 UGC 4375 — 0.15
NGC 4254 — 0.27 UGC 11810 — 0.14
NGC 4321 — 0.22 UGC 12470 — 0.61
NGC 4565 2.369 0.00 UGC 12810 1.043 0.09
NGC 4605 — 0.66 WR 66 1.043 0.09

67

Table 3.2: Column (1): name of the galaxy. Column (2): predicted value of {
using \/ops. Column (3): observed value of /.
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Figure 3.7: The values of ag derived from the observed velocity gradients as a
function of luminosity. No correlation is visible. ‘

rotation curves and luminosity. In a non-orthodox scenario involving modifications
of Newtonian gravity, this property must arise naturally. We have reviewed (1) the
introduction of a Yukawa-type potential (Sanders, 1986b), (2) the introduction of a
logarithmic term in the potential (Kuhn and Kruglyak, 1987), and (3) Milgrom’s
(1983a,b,c) Modified Newtonian Dynamics (MOND). We have found that the
derived force law is insufficient to account for the observational evidence that low-
luminosity, optically small galaxies have steep rotation curves. Our analysis leads
us to conclude that all these proposed modifications of Newtonian gravity, at least
in their present formulation, fail to reproduce the data.

The present result suggests that a deeper understanding of the observed dy-
namical properties of galaxies is needed before alternatives to Newtonian gravity
are attempted.



Chapter 4

Dark Matter in Spiral (GGalaxies:
Properties

4.1 Introduction

In the previous Chapters we have discussed the possibility that some peculiar fea-
tures of the rotation curves of galaxies may be considered as proof of the existence
of unseen matter. The dark matter turns out to be arranged differently from the
disk shaped luminous matter, being possibly in spherical halos.

However there are still quite discrepant views on the amount of dark matter in
the disk regions of spirals, and whether this component shows any systematics
with the other properties of galaxies such as luminosity, colour, and morphology.
Different assumptions and mass decomposition techniques have led to different
conclusions, whereby the abundance of DM deduced from optical rotation curves
is claimed to be any of:

1. minimal, the disk dynamics in the inner regions being supported only
by luminous matter (Kalnajs 1983, van Albada et al. 1985, Kent 1986),

2. virtually constant in all spiral galaxies (Bahcall and Casertano, 1985),

3. independent of luminosity (Carignan and Freeman 1985, Rubin et al.
1985, van Albada and Sancisi 1986, Sancisi and Van Albada 1987, Bege-
man 1988),

4. a specific function of luminosity (Salucci 1986, Persic and Salucci 1988,
19902 and 1990b, Salucci and Frenk 1989),

5. a function of colour (Tinsley 1981, Athanassoula et al. 1987).

The analysis of the relative abundances of dark and luminous matter is related
to galaxy formation theories. In Faber’s “dissipation picture” (Faber 1982) the

69
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fraction of non luminous matter within the radius of ordinary matter is expected
to be greater in late-type spirals that in early-types. This should arise from lower
condensation of late-type galaxies within their surrounding halos. Faber argued
that this could be seen in the data. While the situation is unclear for very early-
type galaxies, she found a mean ratio of non-luminous to luminous matter of
1.7 (1.2 — 2.1) for Sc and 2.2 (1.8 — 2.6) for Irr I (for models with an assumed H,
mass of 0.3Mpyr).

4.1.1 Minimal Dark-to-Luminous Mass Ratio

We have already introduced the mass models and the debate relative to the point
i). The Maximum-disk hypothesis has been adopted: this implies that luminous
matter dominates the gravitational field and DM is eventually introduced to sus-
tain the rotation curves in the outer regions. A DM halo is always needed in order
to account for the HI kinematical data.

It should be pointed out that two different solutions can be found in the literature
under the name “maximum-disk”:

1. solutions with the disk really at maximum such as shown in Kalnajs
(1983) and Kent (1986) so that any halo present beyond the last well
fitted point of the rotation curve would have a hollow core;

2. solutions where, if a halo is present (because we have HI data together
with optical rotation curves), the disk M/L is slightly diminished in
order to assume a non hollow core for the halo. van Albada et al. (1985)

made such a choice for NGC 3198 which resulted in a M/Lp 15% lowe;
than the maximum possible value.

We should also mention that the analysis of Kent’s sample done by Athanassoula,
Bosma and Papaioannau (1987) has shown that all the models with really maxi-
mum disks are unstable against m=1 perturbations, (bar-instability). They have
obtained models for Kent’s galaxies which are stable against m=1 perturbations
by introducing a halo without a hollow core. The "no m=1" constraint requires
reduction of the M/L of the disk compared to the really maximum disk case and
a non-hollow core for the halo leads in general to models which are stable against
m=1 perturbations.

4.1.2 Constant Dark-to-Luminous Mass Ratio

Bahcall and Casertano (1985) have collected from the literature detailed mass
models for eight spirals. The parameters of the mass distributions are summarized
in Tab. 4.1.2. The sample covers a fairly wide range in galaxy types (from Sb to
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TABLE 4.1.2
Parameters of the mass
distribution of some spiral galazies

Ident. MD MH MH/MD PD PH pH/pD
1010M@ 1010M® M@pc_3 M@pc"s
MW 6.6 9.5 1.4 0.0103  0.0047 0.46
N 891 9.1 9.0 0.99 0.0042  0.0004 0.10
N 3198 3.1 3.1 1.0 0.0055  0.0014 0.26
N 4565 13.0 14.6 1.1 0.0034  0.0009 0.28
N 5907 8.8 13.6 1.5 0.0102  0.0015 0.15
N 247 1.20 1.08 0.90 0.0067  0.0025 0.38

N 300 0.63 0.54 0.84 0.0080  0.0026 0.33
N 3109 0.16 0.15 0.93 0.0041  0.0016 0.38

SBm) and external scale properties (mass, velocity, scalelength}#s\}). Despite these
differences the ratio My,,/Mp of the halo to disk mass inside the outer optical
radius seems to be always close to unity (the outer radius R, has been defined
as the radius at which the surface brightness drops to 26.6 B-mag arcsec™?). They
derived the halo mass inside R,,; directly from the mass models and the disk
masses from the published rotation curves.

They claimed that it was possible to summarize the relatively well determined
parameters that characterize the internal properties of the mass in their sample
with the following three equations:

Mhalo
— ] 4.1
i (4.1)
Phalo ~ .3 (4.2)
PD
Phalo = 0.0015Mgpc2 (4.3)

The mass models in the Bahcall and Casertano sample have been derived by dif-
ferent authors using a variety of methods. For NGC 3198 (van Albada et al.1985),
and NGC 247, 300, 3109 (Carignan and Freeman 1985) the maximum-disk hy-
pothesis has been used. For the Milky Way, the disk mass has been normalized
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TABLE 4.1
Parameters and Results of the Mass Models

Object MB MD MH/MD Rc a Po
101° M, kpc kms™! Mgpe™3

N 7793 —18.31 0.60

N 247 -18.01 1.20 0.85 22.5 100 0.0033
N 300 -18.01 0.52 0.70 12.0 60 0.0042
N 3109 -—-16.84 0.16 1.52 10.5 40 0.0024

Table 4.1: R,, sigma, and pg are respectively the core radius, the one-dimensional
velocity dispersion and the central density of the isothermal DH model. The
central density can be derived from the previous parameters: py = 90%/4rGRZ.

(Bahcall, Schmidt, and Soneira, 1982) to the value in the solar neighborhood. For
NGC 891 and NGC 4565, Bahcall (1983) and Casertano (1983b) have used a stan-
dard mass to light ratio for the disk mass.

They noticed that, given the variety of methods it is surprising to obtain eq. 4.1

valid to 30%.

4.1.3 Dark-to-Luminous Mass Ratio Independent of Lu-
minosity and Morphological Types.

We have already discussed the Rubin et al. (1985) analysis of optical rotation
curves. To sum up, they have obtained that the shapes of rotation curves are not
correlated either with morphological types nor with luminosity. They concluded
that DM should dominate the potential wells of galaxies at all radii.

Carignan and Freeman (1985) have calculated the mass models for NGC 7793,
247, 300, and 3109. A one component disk model succeeds in fitting the observed
rotation curve of NGC 7793, which extends only out to 0.75 Rzs while an additional
dark component is needed to explain the observed rotation curves of the other three
galaxies which extend to (1.5 — 3.0) Rzs. The parameters and the results of the
mass models are given in Tab. 4.1.

With respect to their mass models Carignan and Freeman have obtained that
galaxies around —Mp = (17—18) have a mean halo-to-disk mass ratio of 1.0 (0.7 —
1.5) (at Rzs) which is comparable to the ratio of 1.2 (0.8 — 1.6) found for the Sc’s
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with —23 < Mp < —19. Based on these data, the ratio of non-luminous to
luminous matter does not seem to vary with galaxy luminosity or morphological
types.

4.1.4 Dark-to-Luminous Mass Ratio a Function of Lumi-
nosity

In a series of papers Persic and Salucci (1988, 1990 a, 1991) have analysed the
integral properties of spirals using a non standard mass decomposition technique
starting from the rotation curves. They model a spiral galaxy as a stellar disk
embedded in a spherical halo, assuming

1. an infinitely thin stellar disk of surface density
o(R) = oo exp(—R/Rp);

2. in each galaxy the disk mass-to-light ratio is constant with radius, and

3. in the region of interest between 2.3 and 3.2 scale lengths, the bulge and
the HI disk give negligible contributions to the circular velocity V(R).

Moreover they assume a spherical halo and no a priori profile for it.
Writing the condition of centrifugal equilibrium, they have:

V*(R) = VZ(R) + VE(R) (4.4)

where Vp(R) and Vi (R) are the disk and halo contributions to the circular velocity.
Taking the first derivative

dV(R) dVD(R) dVH(R)

V(R) =Vp(R)———= + V, w(R)————= (4.5)
from which
dlog Vy(R) 3 dlog V(R)
2 52 dlog R dlog R
VolR) = Vi) | FiogvV{R) diog V() (4.6)
dlog R dlog R

The halo and disk masses integrated up to a radius R are given respectively by:

Mp(R) = G ' V3(R)R (4.8)
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where f = %(R/RD ¥ (IoKo+I1 K1) accounts for the disk’s departure from spherical
symmetry. For an exponential thin disk we have:

dlog Vp(R) _ IyKy+ 0.5 (—ﬁ%) (L Ko — Lo Ky)
leg R o (I()Ko - I]_Kl)

The disk-to-total mass ratio is given by:

dlogVy dlogV

Mp(R)  Mp(R) dlogR __ dlogR

M, T M - R\ {dlegV _ dlogVp dlogVy _ dlogV
tot( ) #t+Mp f Rp) \dlogE — dlogh ) T dlogR — diogR

(4.9)

If we compute the mass ratio at R = 3.2Rp = R, the disk-to-total mass ratio
at the optical radius can be written as:

Mp \2: SiV4
M Vg +0.117 +0.30

where 7 = dlog V(R)/dlog R|g,,., and v = dlog Vi(R)/dlog R|z,,.- Eq. 4.10
is a function of the observed slope of the rotation curve and of the unknown slope
of the halo velocity field, which is related to the DM mass distribution as:

(4.10)

Vx is not directly observable in individual objects but in the case of a sample of
galaxies we can estimate its sample-averaged value arguing that for such a value
the correlation between luminosity and disk mass has the smallest scatter. Salucci
and Persic postulate the existence of the relationship:

log Lg = b+ alog Mp (4.11)

where Lg is observed and Mp is given by:

M = GV (Rop)—2LE—V__p 412
where 7, Ropt and V(R,p,t) are all observable quantities.
The parameters a, b, and Vg have been obtained by searching in the sample
(Tab. 2.2) for a relationship of the form 4.11 and minimizing the corresponding

x* =Y (log Ly — b — alog Mp(vx))®

1

with respect to a, b, and yg. Persic and Salucci find g = 0.76 £ 0.10, a =
0.7440.04, and b = 2.7 £ 0.2. This method carries a statistical uncertainty which
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is estimated to be a few percent for Mp/M,,; = 0.7 and < 30% for Mp /M, = 0.2.
To within these uncertainties, the disk-to-total mass ratio at Rope 1s then given by:

Mp = 0.76— vy
M,,: 0.11%7 +1.06

(4.13)

The first important result is that spirals show a large range of values in disk to
total mass ratic: this reflecis the intrinsic variety in the shapes of galactic rotation
curves.

By means of the above mass decomposition technique there should be a simple
linear correspondence, virtually independent of details of the disk structure, be-
tween the fractional amount of DM at the disk edge and the slope of the rotation
curve: the steeper the curve, the larger is the DM mass fraction. Quantitatively,
galaxies with 7 = —0.1 have Mp/M,,, = 0.8 while galaxies with 7 = 0.6 have
Mp /My = 0.1. Persic and Salucci have derived also the abundance of DM to
luminosity relation. The high luminosity spirals have considerably more mass in
luminous form than resides in the dark component. In the low luminosity regime
the situation is reversed and the amount of DM exceeds the mass in stars by a
factor of up to ten.

They have found the following scaling laws:

MD LB 0.4 o
~0.5 ( ) 4.14)
Mtot LB* ( )
and o
Mp LB ) :
— =1.0( — 4.15
MH (LB* ( )
where Lp, corresponds to Mg, = —21.5, the knee of the luminosity function of

galaxies (Felten 1985).

4.1.5 Dark-to-Luminous Mass Ratio Proportional to the
Colour

Studies of the M/L ratio as a function of morphological type (Tinsley 1981, Vader
1983) support the hypothesis that bluer spiral galaxies have relatively more mas-
sive halos. In particular, Tinsley (1981) analyzed integrated M/L ratios within the
Holmberg radius and suggested that the increasing discrepancy between observed
and predicted M/L ratios for the bluer galaxies is due to an increase in the ratio
of halo to luminous mass.

Athanassoula, Bosma and Papaioannau (1987) have made an analysis of the ro-
tation curve of a sample of spiral galaxies for which both photometric and kine-
matical data were available in the literature. They have combined photometric
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and kinematical data to construct models using a disk with constant M/L and
spherical halo, and have applied spiral structure theory to restrict the range of the
allowable disk masses.

In principle these masses range from the “maximum disk” solution chosen with
M/L as high as possible without exceeding the observed velocities, and the “min-
imum disk” solution, for which M/L is zero and all the mass is attributed to the
halo. The evidence of the spiral structure constrains the maximum value to that
which prevents the development of m=1 instabilities, and the minimum value as
that at which m=2 structures are inhibited. Decreasing the disk contribution to
the rotation curve reduces the scale length of the allowed instabilities: thus the
amount of halo will establish which spirals are permissible. A direct upper limit
to the halo mass and a lower limit to the disk mass can be set for galaxies with
global spiral structures.

For the disk, they first choose the largest M /L ratio that gives a disk rotation curve
compatible with the observed rotational data. In the case that a halo is present,
they require it to have a non-hollow core, and than calculate the maximum possi-
ble amplification according to the local theory for one, two, and sometimes more
arms. If the allowed m=1 amplification is large, they lower the M/Lp if necessary.
The amplification drops sharply as the M/L is decreased, so the range of M/Lp
over which the transition from significant to no amplification occurs is relatively
small. Once the M/L is adopted they calculate the corresponding halo compo-
nent, first deriving the halo velocities and then using three different approaches to
parametrize the halo:

1. they use the numerical value of the halo velocities to calculate the halo
mass within R,s and two concentration indices M H(0.5Rz5)/M H(Ras)
a.nd MH(033R25)/MH(R25),

2. an isothermal sphere model is fitted to the halo velocities, and core
radius R., central density py, dispersion o and halo mass within Ras
are calculated;

3. a power law is fitted to the halo densities.

The means and dispersions of some parameters concerning the relative mass and
the shapes of the halos are give in Tab. 4.1.5. For the maximum-disk solution
most of their galaxies have a halo-to-disk mass ratio less than 1.5. Athanassoula
et al. found that the max-disk solution, modified by the requirement that no m=1
amplification is allowed, is compatible with models of galactic evolution. They
have also checked Tinsley’s idea of an increase in the ratio of halo-to-luminous
mass going from redder to bluer spirals: they plot the ratio Mrai/Mium and the
trend as suggested by Tinsley is present at a significant level, see Fig.4.1. It seems
that Dark Halos are more important in the inner parts of bluer galaxies than in
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TABLE 4.1.5

Means of halo parameters

Solutions Number Mgx/Mp R, o log po

max 25 0.82 20 98  0.68
no m=1 28 0.89 19 97 0.71
no m=2 28 2.5 9.7 96 1.3

min 28 3.8 114 2.2

the inner parts of redder galaxies. They have also found that there is a relation
between halo velocity dispersion and absolute magnitude, a trend indicating that
disk and halo densities are related and an indication that in earlier type spirals
the halo is more centrally concentrated than in late type spirals.

A sketchy explanation of the trends (discussed so far) can be sought in a picture
of galaxy formation where the halo material existed first and baryonic material
formed galaxies by falling into pre-existing potential wells in the DM distribution.
As is shown by the N-body simulations of Blumenthal et al. (1986), this process
will severely influence the run of the density in the halo and therefore its rotation
curve such that the present halo is much more concentrated than the initial one.
For a given initial halo, the more massive or the more centrally concentrated is
the disk, the more centrally condensed the final halo should be. The correlation
between the central density of the halo and that of the disk reflects the fact that
these two components are responding gravitationally to each other.
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Figure 4.1: Ratio of halo-to-luminous mass (out to Rys) for the no m=1 solutions,
as function of (B-V) colour. Galaxies of type Sa-Sb are shown as squares, galaxies

of type Sbc and later as diamonds.



Chapter 5

The Shape of Dark Matter Halo

5.1 Are DM halos spherical or flattened?

As pointed out in the previous discussion, the existence and distribution of DM in
the universe is one of the central problems of contemporary astronomy. On galactic
scales the existence of significant amounts of DM is indicated by observations
of the rotation curves in the disks of spiral galaxies. However, this technique
does not distinguish between a disk-shaped and a spheroidal distribution of the
Dark Matter. The discovery of SO galaxies with polar rings provides a method of
determining the shape of the gravitational potential.

These systems consist of a central galaxy encircled by a bright annulus whose
apparent major axis nearly coincides with the apparent minor axis of the central
galaxy. The ratio of the outer and inner radii of the annulus can be as great
as 3. The annulus seems to be reasonably flat. In all cases spectroscopic and
photometric observations have revealed that the central galaxy is a nearly edge-on
S0 galaxy and that the bright annulus consists of gas and young stars.

Since the annuli or rings of these galaxies extend well beyond the visible parts
of the underlying galaxies, they provided excellent probes of halos. As the ring
consists of material in near-polar orbits around the disk, these orbits offer the
rare opportunity to investigate the disk galaxy’s gravitational field orthogonal to
the symmetry plane and up to heights corresponding to three times the isophotal
radius of the disk. The short term “spindle” is used as a conventional name for
the main luminous body, without implying any specific spatial shape.

79
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5.2 Observational Data

5.2.1 Collected Data for A0136-0801

This is a 16.5 spindle galaxy with a ring of gas, dust, and young stars; its redshift
distance is 112 Mpc (recession velocity of 5576 km s~ !relative to the Local Group,
Ho = 50 km s™! Mpc~!. The spindle is a normal SO disk seen nearly edge on
as shown by its photometric profile and fast rotation (Schweizer, Whitmore, and
Rubin, 1983).

Spindle-The spectrum of the spindle resembles that of an old stellar population.
All the lines indicate a substantial velocity gradient of the stars along the major
axis of the spindle, but not along the minor axis. The spindle seems to consist of a
central bulge and a thin disk seen nearly edge on, embedded in a flattened spheroid.
The apparent axial ratio of the main body of A0136-0801 is b/a = 0.48 = 0.02 for
5” < a < 7”.

The surface photometry profile suggests the presence of two major components in
the light distribution:

e a spheroid within 4” from the center which causes the central brightness
peak, and

e a truncated exponential disk, which causes the nearly straight section of the

light profile.

The integrated blue magnitude of the spheroid is B = 18.3 £ 0.4 (assuming that
the spheroid has spherical symmetry and integrating the light in the excess of
the model disk). The integrated magnitude of the disk and spheroid combined
(=spindle) is B = 17.1 + 0.6, the absolute blue magnitude is Mp = —18.1 £ 0.6
(Schweizer, Whitmore, and Rubin, 1983).

In order to establish that the spindle is a rotating disk the stellar dispersion o has
to be measured because the ratio V,,;/o must be significantly greater than 1.0 for
the spindle to be a rotationally supported disk rather than a pressure supported
spheroid. In the case of A0136-0801 the absorption lines are very narrow and
only the central value of the velocity dispersion is measured: ¢ = 67+ 7 km s™.
The critical ratio V,ot/0 = 2.2 £ 0.3 exceeds significantly any ratio expected for a
rotating oblate (2 1.0) or prolate (& 0.6) spheroid. The spindle is a rotationally
supported spheroid.

Ring-This is a flat structure extending from R = 10”(5 kpc) out to at least R =
32”(17 kpc), the faint outer parts appear warped relative to the brighter inner
parts. The ring contains gas, dust and young stars: gas emits the spectroscopically
detected lines, the dust causes absorption across the spindle and the young stars
give the ring its knotty appearance and blue colour. The ring passes in front of
the spindle northwest of the nucleus and behind the spindle south-east, as judged
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Figure 5.1: The four panels show, counterclockwise: (a) a blue photograph; (b)
the profile of B surface brightness (in mag arcsec™2) along the major axis of the
spindle; (c) rotational velocities v, (in km s ) along the same axis; and (d)
rotational velocities v,,; along the major axis of the polar ring. The scale of the
photograph and the distance scales on the three graphs are identical. The long
arrow in panel (a) points north and the short arrow east. The solid line in panel
(d) represents schematically the corrected rotational velocities Viote in the main
disk of the galaxy; the approximate match, at R = 10, of these velocities with
those in the polar ring suggests that the dark halo of the

that flat.

galaxy is more spherical
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by the presence and absence of absorption. The angle between the apparent major
axis of the spindle and of the inner ring is v = 86.3° £ 0.8°.

Altough no proper photometry has been done, an estimate of the blue surface
brightness in the ring is given:

up = 25.1mag arcsec™? R = 30” = 16.3kpc

pp = 23.8mag arc sec”? R =12” = 6.5kpc
The HI content of the ring: neutral hydrogen is evident in the radio maps, although
it is not resolved (van Gorkom, Schechter, and Kristian, 1987). The HI is closely
aligned with the major axis of the outer ring but is unresolved in the minor axis
direction. The total hydrogen mass obtained by integrating the global profile over
velocity is 8.3-103Mg. The observed HI appears to coincide closely with the image
of the ring: this implies that, however the system forms, the ring has time to settle
into an equilibrium configuration and to form stars throughout its extent.

5.2.2 Collected Data for NGC 4650A

NGC 4650A (see Fig. 5.2) is at a distance of 53.3 Mpc (according to a recession
velocity of 2667 km s™! relative to the Local Group and Hy = 50 km s~ Mpc™).

Photometry-The luminosity profile along the major axis of NGC 4650A shows
a well defined bulge component in the central part and an exponential profile
in the intermediate region (Whitmore, McElroy, and Schweizer, 1987). A bulge
decomposition indicates a moderately faint bulge (Mp = —17.3 & 0.5); the bulge-
to-disk ratio is only 0.14, a figure typical of an Sc galaxy. The absolute magnitude
of the ring is Mp = —18.2 & 0.5 and the relative fractions of light in the bulge,
disk, and ring are 10%, 68%, and 22% respectively.

The ellipticity of the SO component is 0.58 at B = 21.5 mag arcsec™ . A fairly
blue colour for the system has been measured, expecially for the ring. Whitmore,
McElroy, and Schweizer find a total (B — V) = 0.60, a (B — V) = 0.81 for the
inner component, and a (B — V) = —0.09 for the outer filament of the ring.
Emissions characteristic of the HII regions are detected, indicating the presence of
star formation in the ring.

Spectroscopy-The emission line rotation curve of the polar ring is similar to the
rotation curve of any normal spiral galaxy, although it is measured vertically to
the SO disk. It extends out to 2.4 Rgs(radius of the 25" B isophote), much further
than one can normally measure in a spiral galaxy using optical emission lines. The
rotation curve shows no sign of a Keplerian fall off; it is slightly rising even at the
most distant point.

The rotation curve of the SO component extends to = 0.9Ry5 (= 22’ = 5.7 kpc) and
flattens in the outer regions. The central velocity dispersion is o9 = 77 & 5km s™*
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Figure 5.2: The spatial scale for the panels is approximately the same as the
central photograph. The luminosity profiles of the polar ring and the SO component
are shown in the left and bottom panels respectively; their respective rotational
velocities are shown in the right and upper panels. The right panel also has the
rotational velocities for the SO component superposed (open circles).
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and the mean velocity dispersion is oar = 70 4 4km s™'. The ratio V /o for the SO
component of NGC 4650A is 0.96 & 0.12.

The spectrum of the SO component is a much more early-type one (with respect
to the ring one), including a strong Balmer absorption and H,.

HI map-Neutral hydrogen is clearly evident in the radio maps (van Gorkom,
Schechter and Kristian, 1987). There is a minimum in the HI distribution near
the center of the system; this is taken as an indication that the HI truly forms
a ring or an annulus and not just a disk. The HI in NGC 4650A twists on the
plane of the sky following and then extending beyond the twist observed in the
optical ring. The HI first twists toward the pole of the SO then twists away from
it. The HI map is asymmetric, indicating that the hydrogen distribution is far
from uniform.

The velocity field map is roughly symmetric about a velocity of 2895km s~! with
the line of symmetry significantly displaced to the north of the optical position.
The mean of the extreme velocities in the position velocity diagram is 2910 km Ch
but its corresponding contour is displaced in the radio map yet further to the north.
The HI extends 100” to the south and 144” to the north; since the optical ring
extends roughly to 45", the star formation would seem to be confined to the inner
parts of the HI distribution.

5.2.3 Collected Data for ESO 415-G26

ESO 415-G26 is at 89.5 Mpc (distance derived from its recession velocity of 4474
km s~! relative to the Local Group and Ho = 50 km s~ Mpc™). Unlike A0136-
0801 and NGC 46504, the outer ring of ESO 415-G26 is very faint, see Fig. 5.3.

Photometry-The luminosity profile along the major axis of the S0 shows a central
prominent bulge; a decomposition of both the major and the minor axis profiles
yvields a bulge absolute magnitude Mp = —19.0 0.4 and a bulge-to-disk ratio
B/D=0.5 (Whitmore, McElroy, and Schweizer, 1987). In the region from 10” to
40” (4.3 to 17.2 Mpc) the luminosity follows an exponential profile. The relative
fractions of light in the bulge, disk, and ring are 34%, 65%, and 1%. The apparent
ellipticity of the SO component is 0.66 at B = 22.5 mag arcsec”2. The material in
the SO component is quite red: (B — V) = 0.90 £ 0.08.

The bright part of the ring appears very narrow (= 2.0” & 1.0”) and is faint near
the end point, unlike most other polar rings. A prominent loop is seen on the
north side = 43” from the nucleus and shells are seen in the northeast at & 63”
and = 88” and possibly in the west-side at 22 52”. The major axis of the faintest
material is 53° & 10° which differs by 36° from the major axis of the SO component.
This makes ESO 415-G26 one of the few shell galaxies which have not an elliptical
galaxy as central component.
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profiles of the polar ring and the SO component are shown in the left and bottom
panels respectively; their respective rotational velocities are shown in the right
and upper panels. The right panel also has the rotational velocities for the S0
component superposed (open circles).
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The ring is considerably bluer [(B — V) = 0.65 4 0.08] than the S0 disk [(B—-V) =
1.02 £ 0.03 in the cental 2”.6].

Spectroscopy-The rotation curve of this object extends nearly as far as that of
NGC 4650A. The maximum rotational velocity is 193 km s™* within 32”.6 (14.3
kpc). The rotation curve of the SO component of ESO 415-G26 extends to =
0.8R,s. The central velocity dispersion is oo = 127 & 3 km s}, considerably
higher than for NGC 4650A or A0136-0801. This is consistent with a brighter-
bulge (Mp = —19.0): the relation for bulges of spiral galaxies would predict
oo = 123 km s~!. The mean velocity dispersion is o3 = 102 & 5km s, and the
ratio V/o = 1.14 + 0.08 km s~*.

HI map-ESO 415-G26 is different from the polar rings described above because it
has a narrow ring which is smaller than its associated SO’s and is very much less
luminous (van Gorkom, Schechter and Kristian, 1987).

The HI distribution is rounder than the optical ring extending at least a factor of
2 beyond it and exhibiting a butterfly like shape. The velocity structure of the
system is asymmetric: the mean of the extreme velocities gives V,y, = 4585 km s7%,
however the mean velocity of the gas at the center of the galaxy is 4620 km s™*
The total Hydrogen mass is 1.8 - 10° M. The HI distribution is asymmetric with
column densities roughly twice as high in the east as in the west and with the
central peak offset to the east of the optical center. All the observational data are
summarized in Fig. 5.2.3.

5.3 Rotation Velocities of Spindle and Ring and Error
Analysis

Rotation velocities are calculated from the heliocentric velocities V3, = cz through

the relation:
CZ — CZyy,

sini (1 + zg)

where cz,y, is the conventional systemic velocity, i is the inclination of the plane
of rotation to the plane of sky, and (1 + z) is the correction for the relativistic
Doppler effect. Some corrections have to be applied to the measured velocities
to convert them to circular velocities in the plane of sky: different authors have
applied different corrections. Since their conclusions on the flatness of dark halos
are different, we shall report the different procedures.

Two of the corrections to be applied to the measured velocities are stra.lghtforward

Vrot -

1. the 1/(1 + z) correction for the relativistic effect;

2. the (1/sint) correction for the inclination of the SO disk to the plane
of the sky.
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DATA FOR THE PROGRAM GALAXIES
Parameter NGC 4650A ESO 415-G26 A0136-0801

General properties:

Heliocentric velocity (km s ™ ) ... 2904 + 4 4560 + 13 5528 + 4
- Velocity relative to Local Group® (kms ™) ......oooooeiiinin, 2667 4474 5576

Distance (H, = 50) (Mpc) 533 89.5 1115

Apparent B mag 1427 + 04 14.60 + 0.2 16.6 + 0.8

Absolute B mag® —19.86 + 0.4 —20.16 + 0.2 —186+08

Total B—=V .o 0.60° -0.91

Scale (kpc arcsec™) ...l RS 0.259 0.434 0.541

Mass-to-light ratio in B for inner region
Mass-to-light ratio in B within last observed point
Effective radius .............. s
Same (Kpe) ..ounenniiii L
Comparison radius .........................
Same (Kpe) .ovnvniniiii L P

Viing/ Vaiske +oooveeeenn D
Flattening of gravitational potential ¢/a

S0 Component:
Radii at B = 25 magarcsec™ 2 (rys X Rys) wovvnneernnneneee e,
SAME (KPC) +envnnii e

Major axis position angle:
Inner

Same (KPC) «uvouveiii i
Scale length for disk .................. e
Same (KPC) .ovinii i
@I p)GINR) i
Central velocity dispersion a,° (km s~ !)
ViOg oL
Ellipticity

I/sin i

Lineof sight ....................................
Asymmetrical drift
Total correction ..........oooiiiiiiiii L

Polar ring component:

Radius ...
Same {kre?
Imner ...
Same (kpc)
OULET o\
Same (kpc)
Major axis position angle:
Iomer oo
OULET ottt e
Inclination ...l

Absolute B magnitude
B =V

Velocity corrections:
L/SIN 6 oo

Corrected rotational velocity at comparison radius Ving (km s™!
Maximum rotational velocity ¥, (kms™") ...,

0.7 + 0.2 within 14"
4.5 + 0.9 within 60"
19"

49

147

3.6

0.89 + 0.18

0.86 + 0.21

1073¢ x 2475
27 x 6.3

61°+ 1°
60° + 1°

—-17.3+05
—19.4 +0.2
0.81°

77+5

0.96 +0.12
0.58 at B=21.5
68° + 4°

1.079 + 0.03
0.991

110 £ 0.11
1.067 + 0.05
1.255 £ 0.12
88 + 9 at 147

5478
14.2

161° + 1°
157° + 1°
85° + 5°
—18.2 4+ 0.5
—0.09°

1.004

0.991

1.10 £+ 0.10%
1.094

78 £+ 3 at 14"
122 + 6 at 60”

6.3 + 1.3 within 18"
9.3 + 1.8 within 3279
18~

78

18"

7.8

1.04 + 0.14

1.05 +0.17

1975 x 304
8.5 x 132

77+ 1°
17° + 1°
53° 4+ 5°

—190+04

—19.7 + 04

1.02 + 0.03 within 279

0.90 + 0.08 in halo
0.52

205

L1

7:61

3.30

2.37

127+ 3

1.14 + 0.08

0.66 at B = 22.5
74° + 4°

1.040 + 0.02
0.985

LIS +0.11
1.067 + 0.07
1.257 £ 0.13
178 + 11 at 18"

1975
8.5

93° + 1°

68° +2°
~155+ 1.0
0.65 + 0,08

1.079 £+ 0.02
0.985

1.0 + 0.0

1.063

186 + 2 at 18"
193 + 4 at 3279

14 + 8 within 1573
25 + 14 within 31”3
65

35

b

43

098 +0.17
0.98 + 020

678 x 1272
3.7 x 6.6

138° + 1°

—169 + 04
—176 £ 0.6

205

077

0.4

2730

1.24

3.48

67 +7

207 +0.34
0.45at B=25
38+ §°

1.179 + 0.06
0.982

1.05 +£0.11
1.011 £ 0.01
1.229 +£ 0.13
148 + 19 at 8"

79°i2°...
—176 + 0.6

1.019

0.982

1.0+ 00

1.001

145 + 9 at 8"
168 + 10 at 3173

* Calculated using ¥ g = V + 300sin I cos b.

" * Ay = 0.00 used for ESO 415-626 and A0136-0801, A, = 0.49 used for NGC 4650A (Burstein and Heiles 1985).
¢ From Sérsic and Agiicro 1972, using absorption and reddening corrections from Burstein and Heiles 1982,

¢ Minor axis based on major axis and cllipticity.

* Average of inner three measurements (478) in both major and minor axis when possible.

From Laustsen and West 1980.
® Typical correction factor for various models of a warped ring.
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Schweizer, Whitmore and Rubin (1983, hereafter SWR) have corrected the data
of the equatorial rotation curve for the line-of-sight integration through the pre-
sumably transparent SO disk. They calculate these corrections for the measured
velocities of A0136-0801 by assuming that the disk is seen edge-on and by solving
the integral equation for the true rotational circular velocity Ve . numerically.
The weighting factor for V... in the integral along the line of sight was the in-
tensity of the exponential light distribution determined by the photometry. Their
computed correction factors are: Vo o/Vior = 1.75,1.25, and 1.10 at r = 3”,6”
and 9”, to quote a few.

Whitmore, McElroy and Schweizer (1987, hereafter WMS) have measured the ro-
tational velocities for NGC 4650A and ESO 415-G26, and have made corrections
for (1) the line-of-sight integration and (2) for pressure support in the SO disk.
(1)-In order to determine the shape of the halos they use only the velocity measure-
ments in the outer regions of the SO: in those regions they calculate a maximum
correction factor of 1.3. They recalculate this correction also for the A0136-0801
data of SWR obtaining the following correction factors at the comparison radius
0.61 £ 0.04Ry5: 1.10 for NGC 46504, 1.15 for ESO 415 G26, and 1.05 for A0136-
0801.

(2)-The rotational velocity of stars Vi obtained after applying the previous three
corrections is not the same as the circular velocity V... that a perfectly cold disk
would have: yet it is the latter that one should use to determine the shapes of
halos. The difference between these two velocities is given by the asymmetric drift:

(5.1)

, -
VI_VE, = ok ok (1 + Olog oy 6logp) B RBVRVZ

JlogR  OlogR 0z

where o4 and oy are the azimuthal and radial components of the velocity dispersion
at radius R in the disk, and p(R) is the spatial number density of stars. WMS
have adopted the following approximate form for the asymmetric drift:

, Ologp

2 _yro o
V. - desk TR alog R

cire

(5.2)

This approximate equation is used to explain the asymmetrical drift of stars in
the solar neighborhood. The term 0log p/8log R can be estimated by photometry.
The values of o, at the comparison radii are unknown. They use

o.(R) = 5,(0) exp (*%) (5.3)

where o, (R) is the z component of the stellar velocity dispersion at radius R, 0(0)
is the central velocity dispersion of the disk and h is the exponential scale length
of the disk. With the assumption or(R) = 0,(R) it is possible to estimate the
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asymmetric drift corrections Viire/Viise. At the comparison radius they are: 1.067
(NGC 46504), 1.067 (ESO 415-G26), 1.011 (A0136-0801).

Sackeit and Sparke (1989, hereafter SS) have made a mass model for the polar
ring galaxy NGC 4650A using the data of WMS, the unpublished polar rotation
curve of Nicholson (1989) and the neutral hydrogen contour map and ring velocity
field of van Gorkom, Schechter and Kristian (1987). Their corrections for 1) the
line-of-sight integration and 2) asymmetric drift are different from those of WMS.
1)-WMS assume a constant 10% correction for the line-of-sight integration effects
independent of radius. The SS analysis indicates that these integration effects
drop very rapidly as a function of radius so that at the comparison radius of 14”
used by WMS they are less than 1%.

2)-SS have used the following equation to derive the asymmetrical drift:

ol 2R
V- Vin =i | % -1+ 2 (5.4

They obtained eq. 5.4 from eq. 5.1 by assuming that the last term is zero and that
o? (and thus o} since their ratio is constant (van der Kruit and Freeman, 1986))
is proportional to p. The radial velocity dispersion of the disk then obeys:

A(R) = ch(0)exp (- )

and they assume ¢}/0 = 1/2. The asymmetric drift corrections derived by SS
using these equations are much larger than those of WMS. At 14” WMS used
a multiplicative factor of 1.067 to account for the asymmetric drift corrections,
whereas SS estimate that it is about 1.5 at this radius and that it rises even more
closer to the center of the disk.

5.4 Polar Ring Rotation Curves and DM Halos.

Rings appear to rotate in a way similar to disks of spiral galaxies, although rings
are extended nearly perpendicular to SO disks. This gives us the chance to probe
the gravitational potential of disk galaxies out to large distances, and in directions
nearly perpendicular to the plane. The rotation curves of polar rings have been
measured out to 60” = 2.4R,5 for NGC 46504, 32”.9 = 1.1R,s for ESO 415-G26,
and 31”.3 = 2.6 Ry5 for A0136-0801. The distances reached by these measurements
are much greater relative to R,5 than the distances out to which one can normally
measure the rotation curves in spiral galaxies using optical emission lines, and are
comparable to the most extended HI rotation curves. The rotation velocities do
not show any sign of falling iu a Keplerian fashion: there must be halos of DM in
these systems which extend to the limiting radius or out to & 2.5R,5 for two of

the three SO disks.
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5.4.1 Shape of the DM halo

SMR have pointed out that the ratio between the circular velocity in the ring and
that in the disk could be related to the flatness of the equipotential surfaces of
the galaxy’s gravitational field. If they are nearly spherical, the circular velocity
measured at a height z above the poles of the embedded SO disk will be nearly
equal to that measured at the corresponding radius R = z within the plane of the
SO disk. If the halo is strongly flattened toward the same plane as the embedded
S0 disk, then velocities measured above the poles will be lower than velocities at
corresponding distances within the plane.

SMR estimated this effect analytically using a Kuzmin disk, for which the surface
mass density falls off as (R? + a?)~%/2; a is the scale length. Closed polar orbits
around a Kuzmin disk are ellipses with major axis coinciding with the disk axis
and foci at z = —a and z = +a. A test particle in such an orbit crosses the disk
axis at right angles with a velocity:

Voot(2) = [GMdi.qk ( 2 l)]% | (5.5)

z+a z

A test particle on a circular orbit within the disk has a velocity:

M is Rz %
v = | M| (5.6)
(R + )t
For a given distance z > a, the ratio of polar to equatorial velocities is:
Viaiz) [z —a(e? +a2)i]” (5.7)
Vi(z) |z+a <° '

At z/a =1.5,2.5,3.5,4.5, the velocity ratio is: 0.59,0.73,0.79,0.83. This suggests
that over a wide range of distances from the center, polar velocities ought to be
20%-40% lower than the circular velocity in the disk. The SWR data for A0136-
0801 show that the polar and disk velocities match well around R = 10” where the
two sets of velocities overlap. SWR estimate that any possible mismatch is less
than 10%-15% of the velocities themselves. A rough estimate of the halo shape
may be obtained from polar orbits in the scale free potential given by Monet,
Richstone, and Schechter for a non-flat mass distribution. Keeping the velocity
mismatch smaller than 10%-15% (Vpu(z)/V.(z) > 0.85-0.90), the halo must have
equipotential surfaces with: 4/a > 0.88-0.92.

From their analysis SWR concluded that the massive halo of A0136-0801 cannot
be highly flattened and is more nearly spherical.
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WMS computed velocities and axial ratios of closed polar orbits in the scale free
gravitational potential of Monet, Richstone and Schechter of the form

(5.8)

2(R,0) = V2, log (£1+_L_ﬂ) |

Ry 1+e

where V. is the circular velocity in the plane of the disk and following Monet et
al.(1981)
" Mp+ Mg

is the fraction of the total mass which is in the disk. This analytic form represents
the potential of a cold, flat disk embedded in a non-rotating isothermal halo with
an isotropic velocity dispersion. The equipotentials are therefore ellipses with an
eccentricity e and with axial ratio

[

1
a 1l+e

(5.9)

WMS derived the value of b/a for different values of e, obtaining the following
linear relation:

b Vo
~=—0215+ 1.212-{;—‘. (5.10)

The flattening of the equipotential surfaces of the polar ring NGC 4650, ESO 415-
G26, A0136-0801 can be estimated from the values of Veing/ Vaisk-

After applying the corrections illustrated above to the measured data, WMS find
the following ratios between the rotation velocities in the polar rings and the
circular velocities in the SO disk:

Veing _ 089+ 0.18 Ffor NGC46504
Viisk

Veino _ 104+ 0.14 for ESO415 — G26
Viisr

Veing _ 0,984 0.17 for A0136 — 0801
Viisk

The derived flattenings of the equipotential surfaces are:

0.86 £0.21 for NGC46504

1.05 £0.17 for ESO415 — G26

0.98 +0.21 for A0136 — 0801

Il

Qo |oa o
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From their analysis, WMS concluded that, at radii of & 0.6 R,5, the equipotentials
of all three systems are nearly spherical. Since the distribution of luminous matter
is highly flattened, a nearly spherical dark halo must be the dominant massive
component within this radius. We dare to say that these conclusions about the
shape of the potential are valid only for = 0.6R;s5, where polar-ring and disk
velocities can be compared. It might be that at smaller radii the equipotentials

tend to be flatter because of the increased influence of the flat and truncated mass
distributions of the S0 disk.

Sackett and Sparke (1989) re-analysed the dynamics of NGC 4650A using a phys-
ically realistic potential that includes the effects of the bulge, disk, halo and of the
ring itself and compared their model to the entire extent of both rotation curves.
Their model consists of:

1) a spherically symmetric Plummer bulge with luminosity and scale radius dic-
tated by photometry. Its density is given by:

3Mp R? -

corresponding to a bulge potential:

GMp
R+ R}

where Mp is the total mass and Rp is its core radius.
2)A thick exponential disk with luminosity and scale length also given by photom-
etry. Its density distribution is given by:

Op = — (5.12)

pp = poexp (_%‘i) exp (—‘—3-) (5.13)

where h is the exponential scale length and zo is the exponential scale height; it
is assumed zo = h/4. The gravitational potential that satisfies Poisson’s equation
for this density is:

1z]
o Jo(kR)[kzoe o — e V]

® S / dk .
p(R,z) GMp | [+ B2k — 1]

(5.14)

This reduces to that for a thin exponential disk in the limit z; — 0.

3) An axially symmetric flattened DH constrained to give an asymptotically flat
rotation curve. SS parametrize the shape of the dark halo in terms of the halo
isodensity surfaces rather than the gravitational equipotential surfaces: the latter
are more spherical at a given radius than the former. This procedure allows one
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to separate the non-sphericity of the gravitational potential due to the halo from
that supplied by the disk. The isodensity surfaces are assumed to be flattened
axially-symmetric spheroidal shells of constant axial ratio q, with a radial den-
sity distribution that yields asymptotically flat rotation curves for orbits in the
symmetry plane of the halo and in the polar plane. Its density is given by:

pu(R,z) = po - 5.15
pa(2) 1+ (Ry (B2 + %)) .( )

where po is the central density and rg the core radius. When g — 1 this density
tends to that of a pseudo-isothermal sphere. The gravitational potential generated

by this density distribution is:
2 2
1+ all (_._R____ + 22)

R% \e?z?+1
e?zx? +1

1/
®y(R,2) = 27er0qR,2,/ qd:clog (5.16)
A ;

where e is the eccentricity of the halo, e = v/T— ¢?. The asymptotic velocity in
the symmetry plane of the halo is: ‘

V2 = dxGpoR4VI = & (arcsm e) . (5.17) -

e

4) A thin two component annulus with a surface density chosen to reflect the
approximate stellar and HI mass distributions of the polar ring. Each annulus is
centered on and precisely polar to the central galaxy and is modelled with the
difference of two Toomre disks (precisely, of two n=2 Toomre disks). The surface
density is:

3a*M

s

5(R) = (

where M is the mass of the Toomre disk and a is the characteristic scale length.
The derived potential is:

) (a® + R?)75/2 (5.18)

(a(a+ [2l) + B + (a + 2]}’
(B +(a+ )PP

®(R,z) = —GM (5.19)

in the natural cylindrical coordinate system of the ring plane.

Each'annulus is described by 4 parameters; choosing the total mass of the annulus
and requiring that its density vanishes at the center reduces the number of the
free parameters to 2. These parameters have been chosen to provide reasonable
estimates of the stellar and HI mass distribution in the polar ring.
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The mass-to-light ratios of bulge and disk are assumed to remain constant
with radius (that is equivalent to assuming that the light distribution of these two
components is a reasonable reflection of the corresponding mass distribution). The
free parameters of the model are: M/L ratio of the disk, M/L ratio of the bulge,
core radius, asymptotic circular rotation velocity and flattening of the dark halo,
and mass of the polar ring.

The four components described above are added to give the total gravitational
potential of the model. The orbits that do not lie in the equatorial symmetry
plane of the total potential must be determined iteratively, and when a massive
ring is added to the total potential, the closed orbits in the plane of the galactic
disk are not circular.

5.4.2 Constraints Given by the Observational Data.

The best fit to the luminosity profile of NGC 4650A for a thin exponential disk
plus Plummer bulge indicates a scale length of 1”.08 for the bulge and 4”.89 for the
disk, with corresponding luminosities of 0.43 - 10°Lg and 2.78 - 10° L respectively
(SS assumed Hy = 75 km s™! Mpc™1).

Three model parameters are associated with both the stellar and the HI annuli

that form the two component polar ring model: 1) the total mass of the annulus
and 2) the characteristic scale lengths of the two Toomre n=2 disks. These param-
eters are relatively easy to define for the neutral hydrogen component of the polar
ring model. The integrated HI mass measured by GSK is 4.6 - 10° M. Correction
for the cosmic abundance of helium (M(He)=0.4M(H), Spitzer 1978) brings the
total mass in the ring to at least 6.4 - 10° M. The narrowness of the HI contours
together with the nearly edge on aspect of the optical ring suggest that the HI
may be becoming optically thick in the 21cm line resulting in an underestimate
of the total HI. The total mass of 6.4 - 10° M should be considered a strict lower
limit on the HI.
The scale length parameters of 20” and 90” for the HI annulus were chosen by
comparing neutral hydrogen observations to the predicted HI profile of a model
annulus which had been warped, inclined to the sky, and smoothed with a 20”
beam.

For the stellar annulus the proper choice of model parameters is not so obvious
since the M/L of the stellar component is unknown for the polar ring. Its light
distribution is dominated by the very bright blue HII regions. SS chose a stellar
annulus with a surface density profile which is much sharper than that of the HI
but which peaks at the same position and integrates to the same total mass.
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5.5 Results and Discussion

The derived halo flattening may be shown to be only weakly dependent on as-
sumptions about the disk mass by considering two extreme cases: a minimal halo
miodel (corresponding to the maximum disk hypothesis of van Albada et al. 1985.)
and a maximum halo model where the rotation curves are assumed to reflect closed
orbits in a gravitational potential provided only by the halo itself. In the minimal
halo model much of the potential flattening is provided by the stellar disk: the halo
will be rounder than in the minimal halo models. The DH flattening intermediate
between those given by these two model choices. A massive ring partially counters
the flattening of the gravitational potential and allows halos that are even flatter
than those of the max. halo models.

5SS begin by considering models with no DH and increase the mass-to-light ratios of
the luminous components (bulge and disk only) to the maximum values consistent
with the observed rotation: the upper limit for the M/L is imposed both by the
polar and the equatorial rotation curves.

No combination of mass-to-light ratio was found that could simultaneously fit the
inner and the outer regions of both rotation curves. SS conclude that another
mass component is necessary to provide the rotation speeds observed in the outer
regions of the rotation curves. ‘

Models that give the same M/L to bulge and disk do not produce good fits to the
inner regions of the rotation curves. A reasonable fit was obtained using a model
with a disk M/L=2.5 and a bulge M/L=0.5. In the minimal halo models these
values set the maximum mass of the central spindle at about 7 - 10°Mg. The SS
estimate of M/L=2.5 for the disk is to be compared with the value M/L = 1.0
derived by WMS for the whole galaxy inside 14”. The discrepancy is due to the
difference in the methods employed to estimate the mass of the disk: SS’s method
relies on fitting the inner regions of both the polar and equatorial rotation curve. -
WMS estimate the mass of the galaxies from velocities at radius R = 14”, the
furthest point at which rotational velocities are available from both sides of the
disk.

Since the velocity enters as the square, the reliability of the rotation velocity at
the chosen R is critical; at R = 14” the rotation speeds are anomalously low.

5.5.1 Limits on Halo Flattening

As we have already noticed, luminous matter in the disk and bulge cannot account
for the high rotation speeds observed at large radii in the polar ring of NGC
4650A. Assuming that the required gravitational force is supplied by a DM halo
of the form described previously; SS’s procedure can place constraints on the free
parameters of the halo: the core radius Ry of the halo, the asymptotic speed Vg
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of the flat equatorial curve produced by the halo at large radii, and the axial ratio
q of the halo density profile. Since the polar curve is the better of the two, the
halo parameters were varied by SS until the best polar fit was obtained.
Maximum Halo Models-Among them, halo flattenings in the range E4 to E5 pro-
vide the best fit to the data: a spherical halo gives an extremely poor fit.
Minimal Halo Models-A disk and a bulge component were added. Since the disk
is supplying some of the flattening of the gravitational potential, the best fit now
corresponds to an E3 or E4 halo, although the entire range EO to E6 is allowed
by the data. Even for the E0 minimal halo model the gravitational potential is
flattened along the plane of the central spindle. Even if the halo mass distribution
is spherical inward of 5”, the equipotential surfaces remain noticeably flattened at
a few scale lengths. :

5.5.2 Effects of the Massive Polar Ring

The average slope of the polar emission-line rotation-curve between 20” and 45” is
steeper than that in either the minimal or the maximum halo model. The “wiggle”
of the polar emission line data, together with the apparent slight drop in the HI
rotation speed reported by GSK at large radii (= 90”) suggests that the ring mass
is influencing the shape of the polar rotation curve. The upper limit of M/L =2.5
for the central disk of NGC 4650A yields an upper limit on the total spindle mass
of 2 7.10° My, scarcely more than the lower limit on the ring mass of 6.4 -10° Mg
measured by neutral hydrogen.

To test the hypothesis that the ring mass plays an important role, SS add the ring
contribution to the total potential. The ring is assumed to have a total mass equal
to twice that inferred from the neutral hydrogen measurements, shared equally
between the stellar and HI annuli.

It turns out that the massive ring is an important dynamical element: it ensures
a superior fit to the polar rotation curve while acting to decrease the equatorial
rotation speeds in the regions for which data are available.

The class of models which determines the extreme upper limit of the allowed halo
flattening is the maximum halo model (i.e. no disk or bulge) with a massive ring.
In this class of models the best fit is provided by an E6 to E7 flattened halo, and
a spherical halo is strictly ruled out. The addition of disk and bulge improves
the overall fits over a wide range of halo flattenings with the best results given by
flattenings in the range E6-E7. A spherical halo gives a poor fit in these minimal
halo models with massive disk and ring. The effect of the ring is not only to give
a better fit to the polar rotation curve, but also to allow somewhat larger values
of the halo flattening.

Could the ring be supplying all of the rotational support at large radii? Is it pos-
sible that no DM is required at all? In this case the derived equatorial rotation
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curve is marginally acceptable and the wiggle in the polar rotation curve is repro-
duced. The most notable departure from the DM models is the drop in rotation
speed at large distance but this does not occur until about 75”. At 120” the polar
rotation speed is still consistent with that indicated by the observation of GSK.
The solution derived in this way is not unique.

5.6 Conclusions

The peculiar orientation of rings with respect to their central disk allows us to
determine the three-dimensional distribution of matter. Moreover an evolutionary
picture of the polar ring should explain why it appears non-randomly inclined: too
many polar rings are too nearly polar. This peculiarity seems to be related to their
formation history: probably it includes a ”second event”, an accretion of gas and
other material from a former companion. The accreted material should be settled
in to a disk and form stars (as is observed). Possible explanations for the peculiar
orientation of the rings could be: 1) secondary disks of accreted material may
form at all radii, but may last longer near the poles where differential precession is
weaker; ' or 2) some alignment mechanism may exist that makes secondary disks
migrate towards the poles; this could occur if SO disks or their associated halos
were triaxial.

If massive halos dominate the potential and are nearly spherical, then secondary
gas disks ought to occur at random tilts: this is clearly not the case, hence massive
halos are either not dominant, or not spherical; or both. If the gravitational
potential of a polar ring galaxy were exactly spherical at every radius, it would be
difficult to understand why polar rings are found to be nearly orthogonal to the
inner S0 disk since any angle would be stable.

The principal result of the work of SS is that the DH of the polar ring NGC 4650A
is probably not spherical. Models with massless rings admit the range E0 to E6
for the flattening of the halo isodensity contours with an E3 or E4 halo providing
the best fit. The introduction of a massive ring improves the overall fit to the
polar rotation curve: a spherical halo then gives a very bad fit to the disk rotation
curve. The preferred range of halo flattening includes E8, with the best result
given by a halo flattening of E6-E7.

The mass of the polar ring of NGC 4650A has many dynamical consequences: it
produces the characteristic wiggle in the polar rotation curve and depresses the
equatorial rotation curve within the optical radius. Sparke (1986) has shown that
a massive polar ring can remain stable to differential precession if it warps towards
the pole on the outside. The polar ring of NGC 4650A does precisely that, and
dynamical modeling shows that warping may be due to self gravity. If flattened

la near polar disk would be favoured by statistical selection
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halos are common, they could be responsible for maintaining the warp commonly
seen in the outer HI disks of spirals.

According to the model proposed by Sackett and Sparke, if the measured polar
and equatorial rotation curves of NGC 4560A are dominated by the dark matter
halo, then it is indeed not spherical. If polar ring galaxies generally have flattened
halos, this would explain why the rings are so often nearly polar.



Appendix A

Logarithmic Derivative

The circular velocity of the exponential thin-disk model (see Chapter 1, Sec 1.3)
is: '
Mpl/ R\’

Vik(R) = Gfp"i (EE> (IoKo — I K1) (A1)

where I,,, K, are modified Bessel functions evaluated at 1/2(R/Rp). Using the

new variable:

1R
_1R 2
=, (42)
it is straightforward to see that
dlogV(R) _RdV _zdV dlogV(z) (A.3)
dlogR  VdR Vdz  dlogz )
and the velocity becomes
MD 1/2 1/2
D
Using these properties of Bessel functions
el (z) = zlpi(z) +nl(z)
ell(z) = zl1(z) — nl,(z) (A.5)
zK)(z) = —zK, 1(z) —nK,(z) ’
2K (z) = nK,(z) — cK,s1(z)
where (’) means d /d z, it follows
1/2
¥ = V2 (G¥2)" (IKo — LK)V
1+ 2(IoKo — LK) V(I Ko+ eloK) — z[{ K, — z[LK!)] = (A.6)

IOK(] - :E(I1Ko - I()Kl)

- Mp\1/? _ 1/2
V2 (GR2) " (Ko~ L Ky) (IoKo — LK)

Rp
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and

R
dlog V(R) _ IoKo—2(liKo— LK1) _ LK, — 0.5-]-%;([11(0 _ LKy)
d 10g R (IOKD - IlKl) (IOKO _ I]_Kl)

(A7)



Appendix B

Determination of the
Halo-to-Disk Mass Ratio Using
the Logarithmic Derivative of the
Velocity

As we have seen in Chapter 3, Sec 3.1.4, from centrifugal equilibrium
V*(R) = VA(R) + Vi(r), (B.1)

where V5(R), and V3(R) are the contributions to the total velocity at R from the

mass in the disk and halo respectively. Taking the first derivative of eq. B.1 we

have

dV(R)
dR

Dividing eq. B.1 by eq. B.2 and multlplymg by R, it follows

vR) L) gy dV(E) V(R) + Va(R)S Z%R) . (B.2)

RdV R dv 1%
B.3
VdR VD—}—VH[VDdR VHdR} (B-3)
V2 dlogV_dlogVD _ vy dlogVH_—dlogV ' (B.4)
DldlogR  dlogR dlogR dlogR

It is easy to derive eq. 4.6 from the last equality. Using eq. 4.7 and eq. 4.8 the
disk-to-halo mass ratio is immediately derived

-1

Mp(R) = G~ {.12. (}%)3 (IoKo — IlKl)] VIR (B.5)
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[d logVg dlog V}

1/R dlogR dlogR

dlogR - d log R
Therefore,

dlog Vg dlogV
Mp(R) Mp(R) dlogR  dlogR

3 1
_ -1 - (" . 2
e [2 (RD> (LKo LKl)] RVH[dlogV dlogVD}.

dlogV

M,:(R)  Mg(R)+ Mp(R) f< R > (dlogV dlog VD> dlog Vg
dlog R dlogR

Rp/ \dlogR dlogR

(B.6)
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