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- INTRODUCTIO N--e



a) Alkali halide compounds and their solid solutions

The alkali halides are the simplest and most typical ionic solids. Their
structural properties (kind of coordination, lattice constant, heat of formation,
bulk modulus) have been largely investigated both experimentally and theoreti-
cally. Some informations on the electronic distribution have been deduced from
X-ray diffraction 1)2) and also from nuclear spin resonance measurements 3)+4).
These data indicate that the ions in the crystal are spherical to a high degree,
the interstitial charge density is low, and there is a non—negligible shrinkage of
the electron density around the anion, if compared with the free ion state.

It has been known for a long time the possibility for the alkali halides to
form solid solutions ®). Two substancies are said to form a ”solid solution” or a
"mixed crystal” if the system obtained upon alloying is characterized by a single
phase and a single "average” lattice parameter, as measured by X-ray technique.
This means that the solid solution has still translational symmetry ”on average”
in the sense that using X-ray technique many unit cells are simultaneously
sampled. The phase diagrams and the thermodynamic parameters of mixed
alkali halides have been extensively investigated. Detailed studies ®) show that
two alkali halides AC and BC form a solid solution A;_,BxC at all compositions
z at standard temperature, provided the relative difference —‘}1—“ between their
lattice parameters is less than 6% (this is for instance the case of KCI-KBr);
if £2 is about between 6% and 13% (i.e. KCI-NaCl, KBr-NaBr, ...) the
possibility of mixing increases with temperature and is complete at about 550°C:
finally some alkali halides with very different lattice parameters (i.e. KCI-KI)
do not form a continuous solid solution at temperature less than the melting
point. In general the formation of those solid solutions is characterized by a
positive heat of mixing 7)—9).

An enormous amount of empirical solubility data and very recently infor-
mations on the atomic-scale crystallographic structure of alkali halide solid so-
lutions have been collected. X-ray data !°)11) show that in most of alkali halide
solid solutions the average lattice parameter follows the Vegard law 12):13) je.
it varies linearly with composition between the values of the two pure com-
pounds. Accurate EXAFS data '*)716) show that, although a single average
lattice parameter can be assigned to alkali halide solid solutions, the anion—
cation bond lengths do not average to a single bond but instead remain close,

throughout the composition range, to their respective values in the pure binary
compounds.

On the theoretical side, much work has been done to explain the structural,
cohesive '7) and electronic properties 18)=23) of the pure alkali halides. Most
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of the theoretical investigations on the structural and cohesive properties are
 based on the model proposed by Born and Mayer 7). In a very simplified
picture, a pure alkali halide is described as composed by an equal number of
positive and negative ions forming close-packed structures of alternate charges.
The electrostatic interactions bétween the ions give rise to a net binding, and
short—range repulsive interactions prevent the structure to collapse; the lattice
energy of the crystal is written as a sum of energy terms arising from two-body
central interactions between the point—like ions. The parameters required by
the models are fitted to available experimental data or deduced from the results
of ab initio theoretical studies.

The existing models have successfully explained the cohesive properties of
pure alkali halides in standard conditions of temperature and pressure, whereas
the theoretical investigations on the alkali halide solid solutions is still lack-
ing in spite of the availability of experimental data. The classical theory of
ionic crystals has been applied to the problem of isolated impurities 24)~28) In
this case it gives results in good agreement with experimental data, although
strongly dependent on the particular choice of the model pair potential. The
validity of the Born—Mayer model for solid solutions over the whole composi-
tion range 29)32) has still to be confirmed. Significant experimental data and
existing theoretical models for both pure compounds and their solid solutions
are reviewed in Chapter 2.

b) Plan of the present work

The structural, cohesive and electronic properties of the alkali halide solid
solutions constitute an interesting and still open problem.

The purpose of this work is to explain both the validity of the Vegard law
—and eventual deviations from it— and the bimodal distribution of the nearest
neighbour distances; we try also to reproduce the experimental data about the
heats of mixing. To this purpose we simulate the alloy with a periodically
repeated supercell allowing internal distortions and evaluate the energy within
the Born-Mayer model generalized to include ionic polarization. The techniques
used and the results obtained are presented in Chapter 3.

As it will be clear in the description of the Born-Mayer model for pure
alkali halides, the electrostatic energy arising from the charge—charge interaction
between the ions (the Madelung term) is largely the most important one in the
description of the cohesive energy of the crystal. The equilibrium configuration
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of the crystal is however determined by a delicate balance of this attractive

energy with smaller energy correction terms, vghose__qg@.gg_knowle@gg_i_g not . . .

important for an approximate evaluation of the cohesive energy but is essential
as far as the calculation of the structural parameters is concerned.

A more accurate estimate of these terms than the one given by the Born-
Mayer model could play an essential role in our study of the atomic-scale struc-
ture of the alkali halide solid solutions; a refinement of the model in this sense
could also be useful in studying those phenomena such as pressure-induced
phase transitions involving structural changes, where the Born-Mayer model
fails 33).

One of the small energy correction terms is certainly the Coulomb energy
arising from deviations of the actual electron distribution from the simplified
distribution assumed in the evaluation of the Madelung energy. We devote
our interest, for a moment, to the pure alkali halides, since first of all a more
accurate study of their electronic charge density —beéyond both the point—
charge picture and the free-ion approximation— is required. Something in
this sense has already been done, both within the framework of self-consistent
calculations 18)~29) and within the Hartree—Fock approach to ionic crystals as
proposed by Lowdin 34) ; the results, in agreement with experiment, indicate a
shrinkage of the electronic charge around the anion.

In Chapter 4 we shall study —although avoiding heavy self-consistent
calculations— the charge density of pure alkali halides beyond the free—ion
approximation. Our aim is to understand in detail how the ion is modified
in the crystal with respect to the free state, which is the physical origin of
this modification, and how relevant is the effect of such a modification on the
charge density and on the cohesive energy. To this purpose we shall resort to
a tight-binding approach based on ionic Hartree-Fock orbitals, similar to the
one proposed by Lowdin %*) and recently applied by Gygi 21). Finally, we shall
discuss the advantages of a different scheme in which the ”in-crystal” ionic
charges are obtained by a cluster approach taking into account the crystal sym-
metry properties. Preliminary calculations along these lines are also presented.
The methods used can be applied in general to any alkali halide compound; in
particular the application to NaCl is presented here.




Chapter 2
EXPERIMENTAL DATA AND
EXISTING THEORETICAL MODELS

Summary

Experimental data and existing theoretical works are presented in this
chapter both for the pure alkali halide compounds and their alloys. In a very
simplified picture, the alkali halides are described as an assembly of negative
and positive ions, bearing net charges of integer amount. Experimental data
and recent self-consistent calculations indicate a shrinkage of the charge density
around the anion, in contrast with the widely used rigid—ion scheme.

The crystallographic structure of the alkali halide pseudobinary solid so-
Iutions has also been experimentally investigated. X-ray data show that the
average lattice parameter varies linearly with composition between the values
for the constituent pure compounds, whereas recent EXAFS data indicate a
bimodal distribution for the nearest neighbour distances, also varying with
composition. Model calculations based on the pioneering work of Born and
Mayer have successfully explained the cohesive and structural properties of the
pure compounds at standard conditions of temperature and pressure, but the
theoretical investigation of the same properties of their solid solutions is still
lacking.




2.1
STRUCTURE AND COHESION.. ... =
OF PURE ALKALI HALIDE COMPOUNDS

a) Structure and charge distribution from experimental data

Crystal structures

The typical structures of alkali halides are the rocksalt and the cesium
chloride structures, which are both cubic and characterized by one lattice pa-
rameter a; with reference to the cubic axes the first one is composed of two
FCC sublattices — one for each species of ions — shifted by a(—zl-, :21—, :21—) relative
to one another, whereas the latter is composed of two SC lattices with the same
shift. In Fig. 1 we show the cubic cell (a), the elementary FCC cell (b), and the
correspondent Wigner-Seitz cell (c) for the NaCl structure, which is the most

common for alkali halides.

)
.
S~ o 1

~

]

i
\Nl,/
a) b c)

Fig.1: Cubic cell (a), elementary FCC cell (b), and Wigner—Seitz cell (¢} for NaCl struc-

ture.

One can recognize that each ion is surrounded by the same number of
ions of the other species, belonging to other sublattice — 6 in rocksalt and
8 in CsCl —: we use the symbol NN (nearest neighbours in the crystal) to
distinguish them from the nearest neighbour ions of the same species and in the
same sublattice, indicated with nn (nearest neighbours in the sublattice).
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Analogous symbols will be used to indicate the second neighbours in the
crystal (NNN) and in the sublattice (nnn)

Charge distribution

Experimental maps of the charge density 1)23) are usually obtained by
means of Fourier synthesis of X-ray structure factors. The experimental map
for NaCl reported in Fig. 2 shows that the ions are spherical to a high degree,
they do not overlap very much and the interstitial charge density is low. The
simplified picture of an ionic crystal as an assembly of rigid ions is thus not
very far from reality, and the point-charge Madelung approximation for a first
evaluation of the electrostatic energy is justified.

Recently accurate experimental data on the structure factors have been
collected for NaF 2} from X-ray reflection measurements. It is evident a com-
pressional effect of the crystalline field on the wave function: more precisely it
is clear that the anion contracts, whereas it cannot be decided from the data
available whether the cation is contracted or expanded.

\

)

Fig.2: Experimental charge density contours in a (001) plane. The contour levels are in
a logarithmic scale; the lowest corresponds to a density of .007 electrons/Aa and adjacent

contours differ by a factor of \/2 (from Ref. 23).
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b) Cohesion in the Born-Mayer model

Lattice energy

The cohesive energy of an alkali halide is defined as the internal energy of
the crystal, relative to the sum of the energies of free ions at infinite distance and
at zero temperature. The cohesive energy is the sum of the lattice energy Fr,
i.e. the internal energy of the solid with the ions at rest in the correspondent
equilibrium positions, and of the internal energy due to ionic vibrations around
the equilibrium lattice sites. If the crystal is considered in conditions of zero
temperature and pressure — as it is done in the present work — the cohesive
energy coincides with the lattice energy, apart from a negligible contribution of
the zero—point kinetic energy.

Born-Mayer model

The Born-Mayer model, which has successfully explained the cohesive
properties of pure alkali halides 17), describes the lattice energy as a sum of
two—body central interactions.

The most relevant contribution to the lattice energy is provided by the
two—body electrostatic interactions between ionic charges. In a multipole ex-
pansion of the ionic charge one recognizes that the cubic lattice symmetry forces
several multipole moments to be zero. The dominant part of the electrostatic
energy is thus the one due to interactions between point-like ionic charges e,
also known as Madelung energy; it is written per couple of ions as

1 r(£)e?
Ecou .= 2.1.1
! ZNP;ZJ' Tij ( )

where Z:J runs over all the ions in the crystal except ¢ = j, and N, is the
number of ion pairs considered. Since all these two—body interactions scale
with the lattice parameter, eq. 2.1.1 can be rewritten in the form:

2
g€

Eoput. = — (2.1.2)

a

where o, is a positive adimensional constant (the Madelung constant), de-
pending only on the structure and on the characteristic length used (lattice
parameter or nearest neighbour distance, usually); several methods can be used
‘to evaluate it, in particular we remind the Ewald method 7).

In addition to the net binding provided by the Madelung energy, the terms
arising from the syncronization of the electronic motions in the ions contributes
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to the cohesion of the crystal. This Van der Waals interaction decays rapidly
with distance (the dipole-dipole term goes as r~6); it is essential in the cohesion
of the solid rare gas, for instance, but it contributes very little in the case of
alkali halides and can be neglected in an approximate description.

The attractive forces in the crystal are balanced by the repulsive forces,
very relevant at small distances, opposing the interpenetration of the ions. In
the Born model the repulsive term collects several small energy terms, some
of them attractive and some repulsive, which could be investigated by detailed
quantum mechanical calculations. There are electrostatic correction terms to
the Madelung energy due to the deviations of the true charge density distri-
bution in the crystal from the simplified point—charge picture assumed; self-
interaction energy of each ion and its change from the free—ion state to the
condensed phase; exchange effects. The repulsive contribution to the cohesive
energy at equilibrium is typically about 10% of the total cohesive energy. Em-
pirical models are generally employed to represent these short-range repulsive
forces: in the Born—-Mayer model they are described by a unique function of
the interionic distance, involving ”strength” and ”hardness” parameters to be
determined from crystal data. The repulsive energy per ion pair in the Born—
Mayer model is written as:

Eyep. = B exp(—%) (2.1.3)

a form which applies when one considers explicitly only the Born repulsion of
the first shell of neighbours in the crystal. Taking into account explicitly the
N NN repulsion, one can write:

=L

1
Erep. = Mby_e 7 + EMl(b-H' +b__)e 7 (2.14)

where M and M’ are the number of NN and of NNN, and r' is the NNN dis-
tance. The determination of the parameters is usually done by fitting the ana-
lytic expression of the lattice energy to the experimental equilibrium interatomic
distance and bulk modulus. Cohesive energy is satisfactorily reproduced.

The simplest form of the Born-Mayer model will be used for calculations
in the present work, i.e. :

age? a
E(ag) = — 2% —_— 1.
(a) ” + Bexp( 2p) (2.1.5)

if expressed as -a function of the lattice parameter a = 2rg of the unit cell. Fig.
3 shows the total lattice energy, the Madelung and the repulsive terms.
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Fig.8: Madelung energy, repulsive energy, and total lattice energy in the Born—Mayer model

as a function of the interionic distance.

c) Charge density in the free—ion approximation

The free ion

The simplest approximation to the crystal charge density beyond the
point-charge picture is to start from the knowledge of the free-ions, and consider
just the sum over the lattice sites of the ionic charge densities , supposed to be
froozen:

po(r) = Z Z pulr — R, —d,) (2.1.6)

where R, runs over the Bravais lattice, ¢ indicates the kind of ion and d,, its
position in the unit cell. The two linear graphs along (100) and (110) directions
in Fig. 4 show a core charge very localized on the lattice sites. In Fig. 5,6 are
shown the plots of the total and valence charge density of the crystal in the
free—ion approximation in the planes [001] and [011].

The charge density p,, for each ion is calculated from the occupied ionic
orbitals p,,, :

pulr) = 3 Lo )2 (2.1.7)

Voce.
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It is convenient to use the Hartree—Fock approach for the free ion since
local density. calculations do not describe it well 3%). Let us consider for in-
stance a single electron outside the closed—shell core as in the alkali metals. In
the Hartree-Fock scheme there is a perfect cancellation between self-interaction
contributions contained in both the electrostatic and the exchange terms. The
Hartree-Fock equations as well as physical understanding suggest that the large
distance behaviour of the total potential felt by the walence electron should be
—é? /7 ; in local density calculations the electrostatic potential refers to a neu-
tral charge distribution and decays exponentially with distance, and the same
behaviour, although smoother, is shown by the local exchange and correlation
potential; the resulting total potential at large distances has a magnitude less
than e¢?/r, and some ad hoc corrections are needed to reproduce cor-

rectly the state of the valence electron .

3198.

3198.
\ (110) [
& [
3196. | ! ¢ 4319
=
A |
~— /P
™ N —
~ — : -
> | :
=2 !
z i
= 4. L - -] ]
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s cl cl
5
2
(3} 2 L i
0. | 1 1 1
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a8
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g [
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Fig.4: Core electron density in the free-ion approximation along (100) and (110) directions.
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Extended rigid—ion approach

An approximate method to investigate the forces between closed-shell sys-
tems stich as alkaline and halogen ions or inert-gas atoms has been developed
by Gordon and Kim 3®). In this method all the energy terms are estimated from
_ the electron charge density: the Coulomb interactions between ions, electrons
and ions, and among electrons, as well as the remaining contributions to the
interaction energy (i.e. electronic kinetic energy, exchange and correlation ef-
fects) which are evaluated approximating locally the electron density with that
one of a uniform free-electron gas. The crystal electron density itself is approx-
imated simply by the sum of the free-ion densities obtained in the Hartree-Fock
approximation, as already proposed in the previous paragraph.

We stress that within this scheme one calculates all the interactions start-
ing from overlapping but still spherical rigid charge densities: any modification
of the ionic charge due to the overlap with the neighbouring ions is excluded
from the beginning.

d) Beyond the free-ion approximation

A complete treatment of the electron-electron interactions has been done
in tight-binding theory 37), and also self-consistent calculations for the struc-
tural properties of alkali halides have been performed 19)-21)  Beyond the free—
ion approximation, a more accurate electron charge density has been obtained
within the framework of these self-consistent calculations. For NaCl, for in-
stance, the results indicate an essentially spherical charge distribution around
the -ions, which are not rigid but isotropically deformable, as assumed in
the breathing shell model 38)39), In particular these investigations indicate
—in agreement with experiment— a non-negligible shrinkage of the electronic
charge density around the anions, the effect being stronger as the interatomic
distance becomes smaller. This effect can only be explained when overlaps
are taken into account, therefore it cannot within the rigid—ion model or more
refined versions of it.
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The lattice Parameter

The average lattice bParameter a of a soljd solution is usually varying with
* the composition T according to a law of the form:

a™(z) = za? + (I—1z)q? (2.2.1)

The crystallographic structure of pseudobinary solid  solutions
A;_.B,Cof alkali halides has first been investigated with the X-ray diffraction
technique ),
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X-ray data show that in general the average lattice parameter varies linearly

. with_composition. between the values-for the- AC and BC end compounds , i.e.
the Vegard law is followed. However there are some non-negligible deviations
from it: some accurate measurements indicate positive deviations from Vegard
law and hence a closer agreement with Retgers law, as it is shown for instance in
Fig. 7 for KBr; _, I, 10) and in Fig. 8 for KCl;_,Bry 11) | The largest deviations
from the Vegard law occur in solid solutions of aikali halides characterized by
very different lattice parameters. When this condition is verified, the sign of

the deviation from the Vegard law can also change as a function of composition

(S—shape).

Experimental evidencies for lattice distorsions

Accurate EXAFS data 14)-19)  are available for K;_.Rb,Br,
RbBri_xIx, and KCl;_,Bry. They show the existence — at each composition
— of two distinct anion—cation nearest neighbour distances r[A — B}, r[B — C],
differ one from the other and also from the average distance deduced from
the lattice parameter value, as it has been already observed in the past for
semiconducting alloys 40)-42) The two nearest neighbour distances are inter-
mediate between those of the pure compounds and the average Vegard value.
In K;_xRb,Br, for instance, the nearest neighbour distances r[K — Br| and
r[Rb — Br] vary linearly with composition and their total variation is about 40%
of the difference between nearest neighbour distances in the pure compounds,

i.e. the variation is more pronounced than that observed in semiconducting
alloys.

3.46 T ] T

3.70

3.42

3.38 3.60

3.34
3.50
3.30
i ] A 3.40 | | |
0 0.25 0.50 0.75 1.0 0 0.25 0.50 0.7% 1.0
KBr RbBr RbBr Kbl

Fig.®: Anion—cation NN distances in K;_xRbxBr and RbBr; _xIx as a function of compo-
sition Z. The points indicate the experimental EXAFS data; the solid line shows the average

anion—cation distance resulting by a linear interpolation of the NN distances in the pure end

compounds (from Ref. 14).
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Fig.10: Nearest neighbour K-Cl distances in KCly_xBry obtained from EXAFS measure-
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Heats of formation

The heat of formation AH; (or heat of mixing) of a solid solution is defined as
the difference of the internal energies of the solid solution and of the separate—
phase mixture of the two components:

AHf = UA;-,B,C — [ZUBC + (1 — IIZ)UAcl (2.2.2)

If the system is not at zero temperature, the internal energy contains aiso the
thermal energy, but in AH; only deviations of the thermal energy of the solid
solution from a weighted average of the two end compounds enter accordind to
eq. (2.2.2). It is thus clear that —since also the zero point kinetic energy is
a negligible quantity— one can replace for all practical purposes the internal
energy by the lattice energy.

The experimental data 7)~°) indicate positive heats of formation, suggesting
that the alkali halide solid solutions are unstable. In a very crude estimate, the
deviations of the lattice energy of the solid solutions from a linearly interpolated
dependence of the two compounds behaves as z(1 —z), reaching their maximum
for intermediate values of the composition z.

b) Theoretical investigations

Models without distortions

The alkali halide solid solutions have already received some attention in theoret-
ical investigations in the past, at least for a determination of average structural
parameters and for thermodynamic properties such as, for instance, the heat of
formation.

Tobolski ©) assumes the validity of the Vegard law to evaluate the heat of
formation of the alkali halide solid solutions, obtaining only a partial agreement
with the experimental data 7)~9). Wallace 8) uses a more refined Born-Mayer
model to evaluate the lattice energy; he calculates the lattice parameter by

17



minimizing the lattice energy, and with the value obtained evaluates the heat

.of mixing.. The agreement with experimental data is satisfactory-for the-lattice --

parameter, but not for the heats of mixing. In a recent theoretical analysis
of the structural phase transitions in mixed alkali halide crystals Shanker et
al. 39) perform their calculations within the framework of the VCA using an
interionic potential containing an adjustable multiplicative factor for the Van
der Waals interactions and the exponential form for the repulsive potential,
with parameters determined by fitting the experimental values of the lattice
energies of pure end compounds in standard observed structures.

Krishamurty and Murti 32) formulate a scheme to calculate the thermodynamic
properties of concentrated alkali halide solid solutions including the change
in volume upon alloying and the vibrational contribution. They model the
alloy with a regular lattice of ”pseudoions” interacting with an average ion—ion
potential suitably constructed from the end member interionic potentials. The
model is applied to K;_,Na,Cl: the results are not very satisfactory, since the
relative difference with the experimental data is about 17% for intermediate
compositions.

Cox et Sangster 31) calculate the volumes of formation (1; for substitutional
impurities in alkali halides from the pressure dependence of their energy of
formation:

1 JF
Qf = ~§kTa <-—a—gf*> (2.2.3) }
a=ayp

They then estimate deviations from the Vegard law over the complete compo-
sition range by fitting to the end points £ = 0,1 cubic polinomials and their
derivatives, given by the calculated {1 ; they find for Na;_,K«Cl, NaCl,_,Bry,
and K;_,Rb,Cl small positive deviations both from Vegard and Retgers law, in
good agreement with experimental X-ray data. We must notice however that
they perform all their calculations with a fixed set of parameters of the model
potential, and in this way, for instance, isothermal compressibilities cannot be
well reproduced.

Models for the lattice internal distorsions

Some models have been proposed to explain the internal lattice distorsions
around substitutional defects both in case of impurity and of solid solution as
prooved by the EXAFS experimental analysis. The local structure of metal-
lic 43} and semiconducting 42)44)~46) pseudobinary alloys has been the subject
of several theoretical investigations. These studies however do not apply to
ionic solid solutions which are substantially different both in lattice structure
and in type of binding.
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For ionic materials, only the case of infinite dilution, i.e. the isolated impurity

4)~28)  Harrison et al..2) propese - -

limit, has received some.attention in the past 2
a very simple central force model for generic pseudobinary alloys, describing the
crystal only through NN harmonic interactions. The validity of the model is
however very limited, since it applies only in the case of extreme diluition and
allows radial displacements of the ions surrounding the impurity; it predicts the
bond length between the impurity atom and its nearest neighbours: the relative
deviations of the bond lengths of the solute depend only on the geometrical
crystal structure and are 50% in the case of pseudobinary alloys with rocksalt
structure.

Hardy 2% has also proposed a method to calculate the ionic displacements
around an impurity and has applied it to the case of Kt : NaCl . He describes
the crystal as containing a large regular superlattice of defects: changes in
volume and some short— and long-range internal distorsions are allowed in each
supercell. With only NN repulsions included and without any polarization
effect the model predicts a contraction of the K—Cl bond length with respect to
the pure KCl: the reduction is about 55% of the difference between r[Na—Cl|
and r[K—Cl] in the pure compounds; the inclusion of polarizability modifies the
result predicting a variation of about 48%.

Fukay 2°) has used two different models (isotropic approximation and the su-
perlattice approximation suggested by Hartree) to calculate the lattice distor-
sions around impurity monovalent ions. The superlattice approach allows also
‘anisotropic distorsions, but the isotropic approximation gives results closer to
the experimental data.

Dick and Das 27) are also interested in the problem of the lattice relaxation
around impurities. Their model allows the ions surrounding the impurity to
relax along radial directions and to polarize, while all other ions are fixed and
do not polarize. The minimization of the lattice energy gives the values of the
distorsions and of the electronic dipoles; the results strongly depend on the
values being used for ionic polarizabilities and on the parameters of the Van
der Waals interactions, whose estimate is very difficult.

Hess 28) investigates the effects of an impurity ion in alkali halide crystals,
using a deformation—dipole model with single-ion parameter; when applied to
KCIL:Lit, the model gives results in qualitative agreement with experiment.
All these models agree in predicting relevant relaxations of the lattice around
a substitutional defect. The only theoretical result that can be compared with
the recent and accurate EXAFS data is the one given by Fukay 2°) for r[K — Br]
in KCI1 : Br™: he predicts a radial relaxation of about .0654 of Kt NN to Br™,
whereas EXAFS data indicate a displacement of .08 A4, i.e. a reduction of the
bond length with respect to the pure compound of about 50% of the difference
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between the two lattice parameters.

It is evident that several theoretical investigations have been.done-up to now - .- -~

for the isolated impurity problem; on the other side, other works treating the
solid solution over the whole range of composition have been concerned with
the thérmddynamical aspeéts ) or the averdge structural parameters. Few
theoretical models taking into account the lattice relaxation in case of large
defect concentration exist: an attempt in this sense has been done by Durham
and Hawkins 29). They use an interaction potential containing Coulomb, Van
der Waals and exponential repulsive terms between NN and NNN. They
consider the octaedra having ions of two different species at the vertices, and
the common ion at the center, which relaxes depending on the kind of ions
which occupy the vertices; one must then take into account the probability of
each configuration. The idea of a bimodal distribution of the NN distance is
correct, but it is not sufficiently developed : the authors simply say that the
relaxations are very small and can be neglected in the evaluation of the heat
of formation of the solid solutions, for which they obtained theoretical values
which are too small by about 30% for KCl sBr 5 and K sRb.5CL.
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Chapter 3

ATOMIC-SCALE
CRYSTALLOGRAPHIC STRUCTURE
OF ALKALI HALIDE

SOLID SOLUTIONS

Summary

A very simple model of alkali halide solutions is presented in the first part
of this chapter, based on the virtual crystal approximation and on the Born—
Mayer model for treating ion—ion interactions. The results are poor, since the
predicted lattice parameter shows too large deviations from the Vegard law,
and the bimodal distribution of the NN distances is of course absent.

In order to take into account the lattice relaxation indicated by EXAFS
data, a more accurate model is proposed beyond the virtual crystal approxima-
tion. The random system is simulated with a periodically repeated supercell al-
lowing internal distorsions. For a given supercell the symmetry dictates precise
criteria for anion and cation distributions as well as for the atomic displace-
ments from the ideal sites of the rocksalt virtual crystal . The lattice energy
is evaluated with the Born-Mayer model generalized to include poIarizat;ioh ef-
fects. The resulting average lattice parameter and anion—cation distances agree
with recent EXAFS data on K{_.Rb,Br, RbBr,_.I,, and KCly_,Br,. The
results show that ionic polarization plays a significant role in the determination
of both interatomic distances and heats of formation.
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3.1
GENERALIZED BORN-MAYER MODEL -~
FOR SOLID SOLUTIONS IN A V.C.A. APPROACH

a) Lattice energy in the VCA

The virtual crystal approximation

The simplest model for the structure of a pseudobinary alloy A;_xByxC
describes it as an ideal and undistorted lattice; for the systems treated here,
it is a rocksalt lattice with one of the two FCC sublattices containing the ions
C and the other the ions A and B. The NN distances are thus all equal, being
a compromise between the NN distances of the constituents. We start with
this assumption, and we investigate if such a crude model gives reason of the
approximate validity of the Vegard law and of the deviations from it.

Lattice energy evaluated with the Born-Mayer model

We use the simplest version of the Born—-Mayer model, i.e. we neglect all
second—neighbour and Van der Waals interactions; the parameters B and p are
determined for each compound by fitting the analytic expression of the lattice

energy to the experimental equilibrium interatomic distance and bulk modulus,
and are reported in Tab. 1.

To Ko p B a B
(ang) (107'2cm?/dine) (ang) (10 %erg) (10%erg/em?) (10'2erg/cm?)
KCl 3.147 5.73 .326 2.05 4.943 —5.959
3.107* : .326* 1.86*
KBr 3.208 6.75 .336 2.30 4.397 —5.142
3.260* .336* 2.10* o
KI 3.530 8.55 .349 2.77 3.719 —4.172
RbBr 3.427 7.69 .342 2.61 4.032 —4.655
RbI 3.671 9.48 348 3.99 3.485 —3.899
Tab.1: Equilibrium lattice parameter, compressibility, repulsion parameters and

harmonic and anharmonic force constants for some alkali halides in standard conditions of

temperature and pressure. For KCl and KBr data at zero temperature and pressure‘are also

reported.
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We write the energy of the two pure compounds:

2

- age? - T T
EAc(a) = — + Bac exp(—~2 ) (3.1.1)
pac
Cqe? g -
Epcla) = — + Bpc exp(— ) (3.1.2)
a 2pBc

where a indicates the lattice parameter which is twice the NNV distance. If z is

the molar fraction of BC in the solid solution, the energy of the mixed crystal
within the VCA is:

Em(a) = xEBc(a) + (1 — :IJ)EA(;(G,) (3.1.3)
E (a) = _‘a(;e + zBge exp(—zp(;c) + (1 —z)Bac exp(————z—,—:—};)(?».l.ti)

which follows immediately if we consider that the Madelung energy is the same
in the pure compounds and in the solution, since the ions of mixed type are

isovalent, and if we evaluate the repulsive energy arising oniy from NN inter-
actions.

b) Average lattice parameter: deviations from Vegard law

Techniques and results

The equilibrium lattice parameter ag of the mixed crystal is found by
minimizing the lattice energy, i.e. by solving the equation:

dE.{a) age? Bgc ag Bac ao
=——x exp | — -(1-1x2) exp | — =0
da  |ieq, ag 2pBC 2pBC 2pac 2p4c

(3.1.5)
Although an exact analytic solution is not possible, one can easily check

that this equation does not express the Vegard law. Numerical solutions have
been carried out for KBry_,I;, RbBr;_,I., K;_xRb,Br and are reported in
Tab. 2. The deviations from the Vegard law are always positive and reach the

maximum value (about 4-5% of the difference of the lattice parameters of the
pure compounds) for z = .5.
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K Br_ I,

Xx r rVeg dr E E_ ep AHf AH,:3 .
0.0 3.298  3.298 .000 -157°981 -157°980 0
0.1 3.326 3.321 .005 1567664 -156"989 324
0.2 3.354 3.344 .009 -155°443 -1557998 554
0.3 3.379 3.368 .012 -154" 306 -1557006 699
0.4 3.404  3.391 .013 -1537245 -1547015 769
0.5 3.427  3.414 .013 -152°250 -1537023 773 390
0.6 3.449  3.472 . .012 . -1517315 -1527032 716
c.7 3.471  3.460 .011 -1507434 -1517041 606
0.8 3.491  3.484 .008 ~149°602 ~150°049 447
0.0 3.511  3.507 .004 -1487814 -140°058 244
1.0 3.530  3.530 .000 -148°066 -148°067 0

Rb Br,_ I
Xx r rVeg dr E Esep AHf
0.0 3.427 3.427 .000 -1527348  -1527349 0
0.1 3.458 3.451 .007 -1517078 ~1517418 339
0.2 3.488 3.476 .012 -149°911 -1507486 - 575
0.3 3.515 3.500 .015 -148°834 -149°555 721
0.4 3.541 3.525 .016 -147°835 -148°624 789
0.5 3.565 3.549 .017 -146°904 -147°693 789
0.6 3.589 3.574 .015 -1467034 ~146°762 728
0.7 3.611 3.598 .013 -145°218 -145°831 613
0.8 3.632 3.622 .010 ~144° 449 -144°900 450
0.9 3.652 3.647 .005 -143°724 -1437969 244
1.0 3.671 3.671 .000 -1437038 -143°038 0
Kl_x.beBr

x r Mg Jr E Ep OHf
0.0 3.298 3.298 .000 -157°981 -157°980 0
0.1 3.312 3.311 .002 -157°319  -157°417 97
0.2 3.327 3.324 .003 -156°683 -156°854 170
0.3 3.340 3.337 .004 ~156°072 ~156°201 219
0.4 3.354 3.349 .004  -155°482  -1557728 245
0.5 3.367 3.362 .004 -154°914 -1557164 250
0.6 3.379 3.375 .004  -154°366  -1547601 235
0.7 3.392 3.388 .003 -153°836 -1547038 202
0.8 3.404 3.401 .003 -1537324  -1537475 151
0.9 3.415 3.414 .001 -152°828 -1527912 83
1.0 3.427 3.427 .000 -152°348 -1527349 0

Tab.2: Deviations from Vegard law and heats of formation calculated within the VCA.
Distances are referred to the average anion—cation NN distances; E indicates the lattice energy

of the alloy and E,ep. the correspondent value of the mixture of the two compounds in the

separate phase; AH; is the heat of formation (distances in A, energies in cal. /mole).
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In order to find an approximate expression for ap we can solve eq. (3.1.5)
with respect to z, obtaining:

2
”1 - (;%) Aexp(_az-;:c )

5 - , (3.1.6)
(JHL) eXp(__aﬂ_aAC) _,( ap ) exp(—~“°_a59

aAcC 2pac apc 2pBC

(a0) =
|

where aac and apc are the equilibrium lattice parameters of the two systems.
We try then to approximate the inverse function aq(z) with a cubic polynomial
fitting the end points x = 0, 1 and the correspondent derivatives calculated from
z'(ao). We obtain:

ao(z) = ay (z) + 2(1 — z)[(ape — aac — ap(1)) z + (aac — ape + a5{0)) (1 — z)]
(3.1.7)

where ay (z) = zapc+(1—z)eac, as predicted by the Vegard law. The analytic
solution is very close to the numerical one, at least for the systems considered
here; it has the advantage of being very simple, making evident the Vegard law
and the deviations from it, which are proportional to (apc — aac)-

We ask ourselves if the present model indicates additivity of volumes
rather than of distances. The Retgers law can be written as:

el

ar(z) = [za}c + (1 — z)alc] (3.1.8)

Approximating it with a cubic polynomial fitting the end points z = 0,1 and
the corresponding derivatives, we obtain:

2apc +a apc + 2a
ao(z) = ay (z) + z(1 — z) (ape — aac)” [ 320 2L BCZ S22 (1 — z)
Bec Gac
(3.1.9)
2
with a positive deviation from ay (z) proportional to (226=24¢)"  [50king at

ajpcapc
the analytic formulation (eq. (3.1.7)) of our results, we can conclude that in

the present model neither the Vegard law nor the Retgers law are reproduced,
the latter conclusion following from the comparison of the deviations from the
Vegard law in eq. (3.1.7) and eq. (3.1.8). Looking in details at the results
obtained, we recognize that the Retgers law rather than the Vegard law is
followed, but the deviations from both these laws are not at all negligible.

We have also evaluated the heat of formation, i.e. the difference between
the lattice energy of the mixed crystal at equilibrium and the corresponding
weighted average of the lattice energies of the separated binary compounds.
The heats of formation are always positive: it could not be otherwise in this
model, as it appears evident from eq. (3.1.3).
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Comparison with experimental data

The equilibrium lattice parameter predicted by this model is compared
with the experimental data for KBrl_xIxu) and KCll_xBrxlo) in Fig. 11. The
observed positive bowing of a(z) with respect to ay (z) is reproduced, but the
-deviations are too large with respect to those experimentally observed.
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Fig.11: Differences of the equilibrium lattice parameter calculated according to the present
model in the VCA (a) and to the Retgers law (b) with respect to the value predicted by the

Vegard law. Dots indicate experimental data.

The heats of formation are also too large with respect to the measured quanti-

ties, as we have shown for instance in Fig. 12 for KCl;_«Bry, for which several

experimental data 7)=9) have been collected.
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Fig.12: Heats of formation for KClj . xBry at 80°K calculated according to the present VCA
model (solid line) and measured (solid circles from Ref. 7. open squares from Ref. 8, and

open triangles from Ref. 9)
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Harmonic and anharmonic terms

In order to understand the physical origin of the deviations from the Veg-
ard law, we separate the interionic potential near the equilibrium lattice param-
eter into its harmonic and anharmonic contributions. Considering only terms
up to the third order in Aa we can write for the total energy of the two binary -
compounds AC and BC:

Eac(a) = Efp + ancla—aac)® + Pac(e —anc)® (3.1.10)

Egc(a) = E.(Z)?C' + apcl(a— apc)z + Bpcla — ch)3 (3.1.11)

We obtain the equilibrium lattice parameter a(z) of the mixed system
A;1_xBxC by inserting eq. (3.1.10) and (3.1.11) in eq. (3.1.3) and minimizing
the total energy in third order. For harmonic systems, i.e. Sac = Bpec = 0,
with a common elastic constant aac = ags = « the equilibrium lattice pa-
rameter follows perfectly the Vegard law. In general s # ap¢, and there are
deviations from the Vegard law due to the difference between the elastic con-
stants; further deviations are given by the anharmonic terms. The equilibrium
condition gives:

[204c +3Bac(a —aac)] (a—aac)

[2a4c +3Bac(a—aac)|(a—anc) —[2a5c + 3Bpe(a — ape)] (a —ape)
(3.1.12)

z(a) =

or —with the usual approximate form for the inverse relation—:
a(z) Z ay(z) + z(1 — z)(apc — aac)-

'{(aBC‘“aAC) [——E———I— 1—:::] - g(ch —aac) [ﬂAcx-t— 'BBC(I—z)}}

apc  QAcC apc cAc ( )
3.1.13

If we use the simplest Born-Mayer model for an alkali halide and ap-
proximate the energy around the equilibrium lattice parameter ag in terms of

harmonic and anharmonic contributions, the force constants in terms of repul-
sive parameters are:

e’ (11 (3.1.14)
o= —_——— 1.
a2 \4p a0
‘)
age” {1 1
= = - 3.1.15
p=2 (5 mm) (3113

After having determined the force constants for the alkali halides consti-
tuting the alloy (see Tab. 1), we can use eq. 3.1.13 to evaluate the equilibrium
lattice parameter. Fig. 13 shows the results for Na;.,K.Cl, where the lattice
parameters of the end members are very different. One recognizes that:
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1) the deviations from the Vegard law due to harmonic terms are negative;
. 2) including also the third—order anharmonic terms, the deviations become
positive and are close to those calculated in the full ”VCA—Born-Mayer” model
as discussed above.

These simple computations show the importance of anharmonic forces in
alkali halide solid solutions. It is therefore important to check if the anharmonic
terms are well reproduced by the Born—-Mayer model, since the determination of
the repulsive parameters is done from experimental data which do not include
anharmonic force constants. Comparing the third derivative with respect to
the lattice parameter of the lattice energy obtained from the Born-Mayer model
with that obtained from experimental data on the derivative of the bulk modulus
with respect to pressure, we obtain an agreement of about 25% in the case of
NaCl, which is enough for our purposes.

We can approximate the deviations from the Vegard law with a cubic
polynomial:

Aga(z) = z(1 — ) [baz + by (1 — )] (3.1.16)

If by - b5 > O the deviations Aa(z) have the same sign —i.e. the common
sign of b; and by— in the whole interval (0,1); otherwise if b; - by < O the
deviations change sign as a function of composition z, becoming zero when =z =

1-— %}) . If the cohesive energy is developed up to third order anharmonic
terms only, the quantities b; and b, are always positive for the alkali halides, so
that in this approximation positive deviations from the Vegard law are predicted
for all alkali halide solid solutions. This result remains valid when anharmonic
terms of all orders are included.

Fig.18: Average lattice parameter of Na; _xK,Cl as a function of the composition x, pre-
dicted within the present model including all anharmonic terms (points), only the harmonic

(dotted line), and the harmonic and anharmonic terms up to third order.
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c) Limits of the present model

Limits of the virtual crystal approximation

The fundamental limit of the model presented in this chapter is that it
assumes an ideal undistorted lattice for the structure of the alloy, and hence
it does not allow a bimodal distribution of the NN distances, which is the
fundamental result of the EXAFS spectroscopy 14)~19).

Looking at the results for the lattice parameters, we recognize a qualitative
agreement with experimental data 1°)'1), but in general the deviations from
the Vegard law are much larger than those observed.

The model discussed in this chapter necessarily predicts positive heats
of mixing for all alkali halide solid solutions: this trend is evident also from
experimental data available 7)=9) but the predicted values are too large with
respect to those measured.

Beyond the VCA

We can easily recognize that the crystallographic structure of solid solu-
tions as assumed in the VCA is not stable. Let us discuss here not about the
general stability of the alloy, whose equilibrium configuration corresponds to
the minimum of the total cohesive energy, but about the relative stability of
the structure under internal distorsions, for a fixed volume. Looking at the
forces acting on each ion, we see that at each ideal site of the undistorted lat-
tice the resulting electrostatic force is zero, but this is not true for the short
range repulsive forces, except when A and B ions, nearest neighbours to C, are
symmetrically placed around C. The total force acting in genegal on C ions is
thus not zero; the short range repulsive forces, whose intensity depends on the
ion pair involved, tend to produce a relaxation of the lattice from the virtual
crystal configuration, whereas the Coulomb forces oppose to the distortions.
The final configuration depends on the balance of these two effects.

It becomes necessary now to introduce a model allowing lattice internal
distorsions: this is the subject of the next chapter.
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3.2
A "SUPERCELL” MODEL

a) Simulation of the real alloy

Definition of the supercell

Although the experimental data do not show any order in the distribution
of A and B ions in the homogeneous A,_,B,C solid solution, we simulate
here the alloy with a periodically repeated supercell, large enough to contain a
number of A and B ions as indicated by the molar fractions x and 1 — z.

Since the macroscopic symmetry of the real alloy is cubic we choose a cubic
supercell: SC, FCC or BCC. We can construct the smallest cubic supercells,
one for each kind of lattice. Starting from them, we can obtain bigger cells
by multiplying by an integer number N the length of the basis vectors of the
smallest cells. Correspondingly the number N of ions contained in the cell
increases as N3. The following Table 3 indicates the basic vectors for the
smallest unit cell of each superlattice; rg indicates the NN distance.

Kind ol member of basis vectors  *ompeitions
' 70(110)
FCCpn=1 2 70(101) 0,1
- 70(011)
. 27’0 (100)
SCN=1 8 2r4(010) 0,%,3,1
. 2r¢(001)
2ro(111)
BCCN=1 32 21‘0(111)
' 2r0(lli)

Tab.8: Different supercells describing the rocksalt sructure. Atomic displacements are not
possible within these small supercells, but in the bigger ones obtained by multiplying by an

integer N the length of the basis vectors.
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Symmetry-restricted filling of the supercell

‘Once the type of supercell has been choosen, one can consider as unit cell
the corresponding Wigner—Seitz cell. The important point is that the cubic
symmetry with respect to the center of the cell must be recovered when one
distributes anions and cations. The ions within the supercell can be grouped
into shells of symmetry—equivalent sites; we point out that each site must be
considered with an effective weight, which is 1 if it is really within the supercell,
and a fraction less than 1 if it is on a surface, or at a side or a vertex, since it
belongs simultaneously to several cells.

Each shell can contain only one kind of ions, so that each supercell allows only
for certain compositions £*. The smallest supercell simulating an alloy with
composition z different from 0 and 1 is the SC supercell which can describe a

solid solution with z = i or the complementary concentration z = —i—.

Symmetry-restricted distorsions

The cubic symmetry of the superlattice gives precise criteria also for the ionic
displacements from the sites of the undistorted lattice. Moreover, several dis-
placements for the ions at a surface, a side or a vertex of the considered Wigner—
Seitz cell are forbidden by translational symmetry. The smallest cubic supercell
which allows for atomic distortions is the FCCy—o unit cell with 16 ions (Fig.
14). The ions within the supercell can be grouped into shells of symmetry-
equivalent ions. The sublattice centered at the origin contains three shells with
1, 6, and 1 ions, respectively, while the other sublattice contains two shells with
6 and 2 ions, respectively. According to our filling criteria — i.e. each shell can
contain only one kind of ions — this supercell allows only for the compositions
z = 1/8, z = 1/4, and the complementary concentrations z = 7/8 and z = 3/4.
The fillings with compositions £ = 1/4 and z = 3/4 will not be considered any
further since in this case the supercell reduces to twice the SC cell with 8 ions,
and all atomic displacements from ideal sites are symmetry forbidden. For the
compositions z = 1/8 and = = 7/8 only the six ions which are octahedrally co-
ordinated to the central one can have a common radial relaxation 6 so that the
crystallographic structure is fully described by the lattice constant a = 4ro and
the internal distortion parameter ¢ = 6/a.

In the present work calculations have been performed for this simple cell, but
the programs implemented can be easily generalized to apply the model to larger
supercells.
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Fig.14: Wigner-Seitz unit cell of the FCC superlattice considered in the present work. The

unit cell contains 16 atoms. Non-equivalent atomic sites are indicated with different symbols.

b) Lattice energy with a generalized Born-Mayer model

Distorsion dependent Madelung energy

We intend now to verify if the Born-Mayer model 16) can be applied to the
atomic-scale structure of alkali-halide solid solutions and their heat of mixing.
As in the previous chapter, we use the simplest version of the model, i.e. we
neglect all second-neighbour and Van der Waals interactions, but we include the
effects of ionic polarization, which have been found to be important in analogous
circumstances of low atomic-site symmetry as for example in the presence of
isolated defects or impurities, lattice vibrations 47)  crystal surfaces 48) cohesion
of alkali-halide molecules 49).

The point—charge Coulomb interactions in the mixed crystal are the same which
are present in the pure compounds, since the ions of the mixed type are isovalent,
so that the Madelung energy does not depend on the particular alloy considered
but only on the geometry of the lattice structure, i.e. on the lattice constant
and the distorsion parameter.




The Madelung energy per unit supercell can be written as:

Eepur.(ar6) = —5—%‘@, (3:2.1)
where a,(€) is a distortion-dependent Madelung function (Fig. 15) which
for € =0 has the value a,(0) = 55.922 which corresponds to the well known
Madelung constant properly scaled to the dimension of our supercell. It has
been computed for several values of € with the Ewald method; it is convenient

to introduce the following analytic approximate expression, valid for || < .005:

o(€) = 55.922 — 693.08¢> (3.2.2)
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Fig.15: Madelung constant a(e¢) as a function of the internal distortion parameter. Dots
indicate the results of computations while the full line represents the quadratic approximation

given in the text.

Repulsive energy

In the Born—-Mayer model the repulsive energy can be seen as the potential
energy due to the repulsion between one ion and its NN. In the rocksalt
structure for each A(B) ion there are six AC(BC) bonds, each of them with a
repulsive energy equal to éB exp(——i). For a given supercell we consider each
bond separately with its proper repulsive energy, depending on the ionic pair
considered, and then we sum up over all the bonds.

For the small FCC supercell used in the present work we can give easily
an analytic expression for the repulsive energy per unit supercell. For z = 1/8
it can be written:

1
E.ep.(a,€) = Bpcexp (—a(z + G)/PBC) + Buc [2 exp (—a/4pac)

+ 4 exp (——a % + ez/pAo> + exp (—a(:li- —€) /pAc)(]3.2.3)

33




and a similar expression obtained by exchanging the A and B indices
holds for z = 7/8. The parameters By, Bpc,pac, and ppc are listed in Tab.
1 of the previous chapter, adjusted to reproduce the lattice constant and bulk
modulus of the pure AC and BC compounds.

Polarization energy

The local electric field E acting on a given ion is no longer zero when the
ion is displaced from its ideal virtual crystal site. The distortion of the lattice
induces an ionic dipole moment proportional to the local electric field, and —
if we consider only charge—dipole interactions — the polarization energy of the
ion is:

W = —a,u |E? (3.2.4)

where a0, is the ionic polarizability. The polarization energy per unit supercell
is then found by summing the charge—dipole interactions for each polarized ion
belonging to the supercell. Notice that the ionic polarization gives always a
negative contribution to the lattice energy, and thus tend to enhance the lattice
distortions.

The crystalline field has been evaluated with the Ewald method, taking
into account that the vector E(r) is the opposite of the gradient of the poten-
tial at the same position, and the electrostatic potential enters directly in the
evaluation of the Madelung constant. In the FCC supercell used here only the
six C ions surrounding the center of the cell can polarize; E,, can be written
as:

2
ace”fle
Epoz,(a,, 6) = _____c__(?i_(_)_, (3.2.5)
where o is the polarizability of the C ions, whose value is reported in Tab.4,
and f(e€) is a distortion dependent structural sum which must vanish for an
undistorted lattice, i.e. f(0) =0. Also for f(e) it is convenient to use the

following analytic approximate expression, valid for |¢| < .005:

f(e) = 1.028 + 107 €2 (3.2.6)
a
Li* 0,029 F~ 0.644
Na* 0.408 Cl~ 2.960
K* 1.334 Br~ 4.158
Rb* 1.979 I~ 6.431
Cs* 3.335

Tab.4: Polarizabilities of the ions in the crystal (from Ref.50) in ang.a.
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c¢) Structural parameters and heat of mixing

Techniques and results ,
The lattice energy per unit supercell is thus the sum of the three terms
E(a,€) = Eooui.(a,€) + Erep.(a,€) + Epor.(a,€). (3.2.7)

The equilibrium values of the lattice constant a(z) and of the internal
distortion parameter €(z) of K1 _xRbyxBr, RbBr{_xIx and KCl;_,Bry have been
computed for z = 1/8 and z = 7/8 by minimizing the total lattice energy with
respect to a and € simultaneously.

In order to understand the relevance of the ionic polarization we have also
computed the equilibrium values of a(z) and €(z) by neglecting the polarization
contribution. The resulting values of a(z) and €(z) are given in Fig. 16 and

compared with experiment. The calculated values of the heat of mixing are
given in Fig. 17.

Lattice parameter and NN distances

From Fig. 16 we see that the average NN distances calculated with the
present model and neglecting the ionic polarization follow quite closely the
Vegard law: the value is always greater than that predicted by the Vegard law,
but the deviations are significantly reduced (by about 50%) with respect to
those obtained with the VCA model. The lattice distortions play therefore an
important role for the validity of the Vegard law, with a better agreement with
the experimental data. The ionic polarization further reduces the equilibrium
value of the lattice constant improoving the agreement with experimental data,
although the differences between the results obtained by including or neglecting
the polarization effects are not very relevant.

Looking at the distortions predicted here, we see that the lattice relaxes
from the virtual crystal configuration increasing the bond length which would be
larger in the corresponding pure compound and decreasing the other. However
the variation of the bond length is not grater than 2%. In the present model
we have different lengths also for bonds of the same kind, but the essential
quantities are the two average bond lengths r[A-C] and r[B-C].

For the systems studied here we obtain A-C and B-C average equilibrium
distances which are closer to the respective distances in the pure compounds
than to the virtual crystal NN distances, as predicted by EXAFS data. The
agreement is very good for K; _,Rb,Br, whereas for RbBr, _, I, and KCl;_,Br,
the calculated internal distortions are smaller than those observed; moreover in
all these systems the inclusion of polarization effects improves the agreement
with the experimental data.
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Fig.16: Anion-cation nearest-neighbour distances (in A) calculated in this work for K3 _xRbxBr,
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KCly_xBryx are from Ref. 15.
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Heats of mixing
Theoretical values of the heats of formation (see Fig. 17) calculated with

the supercell tecnique are still positive for all the systems treated here, although
smaller than the corresponding values obtained in the VCA. They can be com-
pared with experiment only for KCl; _.Bry and in this casé good agreement is

obtained. . 600
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Predicted heats of solution (in cal./mole of ion pairs) as a function of composition for the
systems Kj_xRbyxBr, RbBrj_Ix, and KCli-xBrx. The points indicate the experimental
values for KCly_xBrx quoted in Ref. 7 (solid circles), Ref. 8 (open squares), and Ref. 9
(open triangles)‘ For the latter system the predictions obtained by neglecting simultaneously
polarization effects and internal distortions {dotted curve) and neglecting only polarization

effects (broken curve) are also represented.

Importance of polarization terms

The calculations performed neglecting the charge-dipole interaction en-
ergy in eq. 3.2.7 show that polarization effects cannot be neglected for an
accurate determination of the internal lattice distortion and hence for the eval-
uation of the NN distances. As already stressed, the charge—dipole energy is
negative and behaves as €2 for small ¢; it tends thus to increase the distortions.
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Polarization effects are specially important in the alloys having a common
anion. In this case the displaced ions are the anions, which in general are more
polarizable than the cations. This is, for instance, the case of Ky _,Rb,Br where
the agreement with EXAFS data is very good. Common cation alloys polarize
less and the inclusion of charge-dipole interactions is not sufficient to reproduce
the experimental data.

Tonic polarization is also significant for the heats of formation. The calcu-
lated values can only be compared with experiment for KCl; _,Bry: in this case
the polarization effects reduce their values and improve the agreement with the
observation.

Conclusions

The supercell used in this work is the smallest cubic cell allowing internal
distortions. Its A-B sublattice however cannot distort and only a fraction of
C ions are allowed by symmetry to move offsite. Nevertheless with this simple
supercell and a simple version of the Born-Mayer model we have obtained good
agreement with experimental data. The encouraging results obtained here sug-
gest that the local structure of alkali halide solid solutions could be satisfactory
explained using a refined version of the present model: first, using bigger su-
percells which allow several compositions £ and a more complete relaxation of
the lattice, giving a better simulation of the real disordered systems.

A refinement of the Born—-Mayer model should also be very important.
We should text the importance of the second-neighbour repulsions and Van der
Waals interactions. Moreover we should also try to go beyond the completely
phenomenological treatment of the short range repulsive interactions as done
in the Born—-Mayer model, and take into account inter—ionic interactions with
microscopic quantum mechanical computations. For instance, an explicit eval-
uation of the correction to the Madelung energy due to the effective charge
distribution in the crystal is in order. A theoretical investigation in this sense
is done in the next chapter.
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Chapter 4
ELECTRONIC

CHARGE DISTRIBUTION
OF ALKALI HALIDE COMPOUNDS"

Summary

The charge density of the alkali halides can be calculated in terms of
Bloch functions constructed with the tight-binding method. Hartree-Fock ionic
wave functions are used here as the basis expansion set for the Bloch functions.
Throughout the first part of the chapter will be clear how the charge density
can be obtained from these tight-binding Bloch functions; the various approx-
imations involved are explained, and the application to the particular case of
NaCl is shown.

The crystal charge density has the periodicity of the Bravais lattice and
can be expressed in terms of some localized charge densities centered on the
lattice sites. The crystal charge density previously calculated with the tight-
binding approach is rewritten as a sum of the charge density of some ”pseu-
doions” and of "orthogonality charges”; these picture allows a more direct com-
parison with the free-ion approximation, and makes easier the investigation of
the physical effects appearing when the ions join to form the crystal.

An alternative approach to the study of the charge density is finally de-
scribed: it includes from the beginning its symmetry properties with respect
to the punctual group of the Bravais lattice. The localized charge densities are
expressed in terms of symmetrized orbitals, which are particular LCAO orbitals

of well defined symmetry constructed for each shell of neighbours for a reference
lattice site.
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4.1
TIGHT-BINDING APPROACH
TO THE ELECTRONIC CHARGE DENSITY

a) Ionic wave functions

Analytic Hartree-Fock wave functions
In the present work we construct the crystal wave functions starting from

the free-ion Hartree-Fock wave functions 52)

. For our purpose we neglect the
spin functions. The orbitals are assumed to be orthogonal to each other. They
are characterized by three indices n,!, « which indicate respectively the princi-
pal quantum number, the symmetry species (i.e. the quantum number of the
angular momentum), and the ”"subspecies” respectively. The orbital .., is

expanded in terms of basis functions according to:

Pnla = chlepla (4.11)
p

The basis functions x are Slater-type orbitals with integer quantum numbers:

Xpla(ry 0, ¢) = Rlp(r)Yla(0, ¢) (41.2)

where
1
Rip(r) = [(2n1p)!] 7 (2€1p) ™ 5 rmir= g™ Com (4.1.3)

The Yg0(6, ) are normalized spherical harmonics

1
Y0,0(0’¢) = \/E (4.1.4)
3
Yio(0,¢) = Z;cos() (4.1.5)
3 .
Y11i1(0,¢) = F —é—;sinﬁei“b (416)
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Fig.17: Radial part of s and p orbitals of the outer occupied shell for C1™ and Na+, consid-

ered at distances equal to nn and NNN equilibrium distances in the crystal.
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In order to work with real ionic orbitals we define s and p states with angular
part given by linear combinations of spherical harmonics :

state «—— angular part 0
1 .
s «— Yoo = Jin (4.1.7)
1 3 =z
Pg 75(*1/1,1 +Yi-1) = ir 7 (4.1.8)
) 3 y
Dy < ﬁ(Ym +Y:-1) = o (4.1.9)

/3 =
Y, = _ = 4.1.10
Pz 210 P ( )

The radial part of s and p orbitals of the outer shell for Na® and C!™ are shown
in Fig. 17.

Overlap integrals

From Fig.17 we can see that the Na® and Cl~ ions overlap a little when
they are put together to form the crystal, which is characterized by a nearest
neighbour distance of 5.34 a.u. . The overlap effects play an important role in
our case when ionic orbitals are used for expanding the crystal wave functions,
so we implemented a very general procedure to calculate the overlap integrals
between two ionic orbitals. The integrals on the same center are zero or one
because of the properties of ionic orbitals. The non trivial quantities are the
two-center integrals of the type

[ Gientvm @bt = RYr (4.1.11)

where R is the relative distance between the centers, u and p' refer to the type
of ion, and n’l'm’, nlm are the quantum numbers of the orbitals.

Let us first consider the case where R is along the quantization axis. Because of
symmetry properties, the integral is non-zero only if m = m/, and do not depend
on the sign of m. The independent integrals are labelled with the symbols o, 7
corresponding to the values m = 0,11 (we are not interested here in states with
higher angular momenta). The overlap integrals between s and p functions are
thus expressed in terms of the independent integrals (sso), (spo), (ppo), and
(pp7r) 53)‘ o7

In the general case in which the vector R has direction cosines l,l,,l; with

respect to the axis z, y, z the two-centers integrakcan be also expressed in terms
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overlaps

of the independent integrals. The expressions of the overlap integrals between
real wave functions involving s and p,, py, p, orbitals are :

< s|s >=(ss0) \ (4.1.12)
< s |ps > = l;(spo) "(4.1.13)
< palps > = 12(ppo) + (1 — 12)(ppr) (4.1.14)
< Palpy > = luly(ppo) — luly (ppm) (4.1.15)

Using these expressions, the overlap integrals between ionic wave functions of
Nat and Cl™ centered on two arbitrary points can all be expressed in terms
of few independent integrals.

The starting point in our work is the calculation of the overlap integral between
two Slater-type atomic orbitals of arbitrary quantum numbers at a given dis-
tance along the common quantization axis. We use the exact general formula
derived in Ref. 54. The integrals (sso), (spo), (ppo), and (ppr) are then com-
puted in terms of these Slater-type orbitals integrals. Fig. 19 and 20 show the
independent integrals (sso), (spo), (ppo), and (ppr) for CI~-CI~ and Cl™-
Nat as a function of the distance between the centers. The values of these
integrals at the distances corresponding to the shells of neighbouring ions in
the crystal are reported in Tab. 5; Fig. 18 makes evident the comparison.
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Fig.18: Independent overlap integrals for C1~ -Cl~ and Cl—-Na+ at distances corresponding

to nn, nnn, NN, and NNN equilibrium distances in the crystal.
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overlap S(r)
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Cl™ — Cl™ overlaps
gontert °'fifu.) (ss0)  (spo) (ppo) (ppm)
0.000000 1.00000 0.00000 1.00000 1.00000
7.553220 0.00481 0.03197 —0.07232 0.01775
10.681818 0.00014 0.00334 —0.01347 0.00204
13.082450 0.00001 0.00051 —0.00310 0.00036
15.106334 0.00000 0.00010 —0.00082 0.00008
16.889450 0.00000 0.00002 —0.00024 0.00002
18.501443 0.00000 0.00000 —0.00008 0.00001
19.983866 0.00000 0.00000 —0.00003 0.00000
21.363636 0.00000 0.00000 —0.00001 0.00000
Cl~ — Nat overlaps
dss;';‘:; o’ff:u,) (8c1-8Na+0) (sc1-Pna+0) (8NatPc1-0) (Pc1-PNa+0) (Pc1-PNa+™)
5.340909 —0.00822 0.01256 —0.04588 —0.03706 0.00960
9.250775 —0.00005 0.00011 —0.00238 —0.00218 0.00030
11.942593 —0.00000 0.00000 —0.00027 —0.00027 0.00003
16.022727 0.00000 0.00000 —0.00001 —0.00001 0.00000

Tab.6: Independent overlap integrals for C1~ -C1~ and Cl”-Nat at distances corresponding

to the first shells of neighbour ions in the crystal.
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b) Bloch sums and orthonormalized Bloch functions

Bloch sums and normalization

The orbitals of the ions Nat and C[~ inside the unit cell of the crystal are
used to construct the crystal wave functions. Let us indicate the ionic orbital
with ¢, , where p is the type of ion and the index v summarizes the quantum
numbers n,l,m of the orbital. The vector d,, is the position of the ion in the
unit cell.

In the tight-binding method®®) the crystal wave function is expressed by
the Bloch sum:

W, (k,r) Ze "o (r —d, — R,) (4.1.16)

where R,, indicates a translation vector of the crystal latti'ce, which is in our
case a FCC lattice with lattice constant a = 10.681818 a.u.. We can set up such
Bloch sums corresponding to each atomic orbital of an ion, and corresponding
to each ion in the unit cell of the crystal. The Bloch sums corresponding to
different wave vectors are orthogonal to each other, whereas in general two
Bloch sums with different quantum numbers but with the same k vector are
not orthogonal .

However, the first problem that one has to solve is the normalization of
these Bloch sums. We can write them in a normalized form:

U, (k1) = A(k) > e*Frp,, (r—d, —R,) (4.1.17)
R,

where A(k) is the normalizing factor which depends on the vector k. If we
impose that the Bloch sums are normalized to one over the unit cell, the factor
A(k) is given by the condition:

< U, (k1) |V, (k,r) >a=1 (4.1.18)

that is, after a little of algebra:

1= |A(k) PZ ik R / Puv(t)Pu (r — Ry)dr (4.1.19)

space
Since the ionic functions are localized, the overlap between them decreases

sharply with increasing distance, and one can limit the sum in the eq. (4.1.19)
to a given order of neighbours.

We express the overlap integrals in terms of the independent integrals as
explained in the previous section. Once we have these independent integrals,
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the calculation can be carried out analytically for the first shells of neighbouring
ions in the FCC sublattice . Taking into account the contribution of nn and of

a

nnn ions for each sublattice ( positions like $(110) and @(100) ), the formulas
for the s-type and p.-type Bloch sums are :

AZ(K) = 1+ 4(ss0)1(cos &cosn + cos £ cos ¢ + cos g cosn)
+ 2(ss0)2(cos 2€ + cos 2n + cos 2¢) (4.1.20)
A?,z (K) = 1+ 2{(ppo) 1 [cos Ecosn + cos € cosg] +

+ (ppr) 1 [cos € cosn + cos £ cos ¢ + 2 cos g cos 17]}
+ 2 {(ppo)2cos2£ + (ppm)s [cos 2n + cos 26|} (4.1.21)
where we use the quantities

ak _ak, ak,
€= - 1=

(4.1.22)

The label put on the independent integrals indicate the corresponding distance:
1 for nn and 2 for nnn shell in each sublattice. The second formula with an
obvious permutation of indices holds for p, and p, functions.

I =22(0,0,0) | X = 27(1,0,0) | L = 2=(4,1 1)

B 0 1.0000 1.0000 1.0000

nn 0.9723 1.0098 1.0000

“ nnn 0.9719 1.0094 1.0004
Cl-

%, 0 1.0000 1.0000 1.0000

nn 1.0829 0.8807 1.0000

nnn 1.0950 0.8872 0.9907

B, 0 1.0000 1.0000 - 1.0000

- nn 1.0000 1.0000 1.0000

nnn 1.0000 1.0000 1.0000
Nat

L, 0 1.0000 1.0000 1.0000

nn 1.0000 1.0000 1.0000

nnn -0.9998 1.0002 1.0000

Tab.6: Normalization coefficients A(k) at ', X, L for the Bloch sums constructed
from s and p orbitals of C1~ and Nat. The contributions due to the overlap of the nn and

of the nnn shell are evident.
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The quantity A(k) is always of the order of unity, since the overlaps be-
tween orbitals centered on different sites are smaller than the overlap of one
orbital with itself and hence are corrections to it. In Tab. 6 we report the co-
efficients A(k) at T',X, L for the Bloch sums constructed from s and p orbitals
- of Cl™ and Nat , specifying the contributions of the first two shells of ions in
the anion or cation sublattices respectively. The most important overlap effects
can be seen for the p-like Bloch sums of C!™ where, for instance, the correction
to Ap,(X) arising from the nn anions is of the order of 12%; also for CI™
however, the contribution to A(k) arising from the nnn shell is never higher
than 1%. As far Na™ is concerned, since the ionic orbitals are very localized
we can neglect the overlap of the neighbouring ions in the normalization of the

corresponding Bloch sums , as it appears evident from the Table.

Orthogonalization of Bloch functions

We point out that the non trivial problem is to set up a system of orthog—
onal Bloch functions for any k vector. Let us consider the subspace spanned by
a certain family {¥,(k)} (n = 1,2,...,N) of Bloch sums. From this family we
can construct a basis set of orthogonal Bloch functions {®,} which are linear
combinations of all the Bloch sums W¥,,. For each k we consider the N X N
overlap matrix O(k) between these Bloch sums. The element (n,m) is:

Onm(k) =< U, (k,1)|¥,,(k,x) >q (4.1.23)

Let us indicate with A, (k) the eigenvalues and with v, (k) the array rep-

resenting the eigenvector corresponding to A, (k) and normalized to one. In
formulas:

N
O- Vo = :\nVn i.€. Z Oj,;vi,n = Anvj,n (4.1.24)
i=1
N
VI Vo =6pn G Y VinUinr = bpp (4.1.25)
=1

The important result is that we can construct the basis set {®,,} making
linear combinations of the W, with coefficients given by the components of

the eigenvectors of O, whereas the eigenvalues are related to the normalization
factor:

N
u(k,r) = An P (K) - S 070 (k) Ty (k, ) (4.1.26)

i=1

Using egs. 4.1.24 and 4.1.25 one can easily proove the orthonormalization:
< (I)n(k, r)]@bnz(k,r) >a= b,nt (4.1.27)
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The overlap matrix
The electronic configurations of Cl~ and of Na™ are:

Ccl™: 152 252 2p° 7332“'3;06
Nat : 1s? 252 2pS

In principle we should orthogonalize the Bloch sums coming from all the orbitals
of both Cl~ and Na* , and thus consider a complete overlap matrix with
rank N = 14. Since the lowest energy ionic orbitals of Nat (1s,2s) and those
of Cl~ (1s,2s,2p) are very localized, a good approximation is to consider the
corresponding Bloch sums already normalized and orthogonal each other and
with respect to all those arising from the remaining ionic orbitals. Our effort is
thus limited to the orthonormalization of the wave functions constructed from
the valence band of C!~ and from the highest core states of Nat only . We
thus consider the following Bloch sums:

Veor-8s0 Yeor-sp.s Yoi-sp,s Yoi-sp.

\I’Na,"',za’ \I’Na+,2pz, \I,Na"‘,Zpya \IINa‘*',sz

and the corresponding 8 X 8 overlap matrix. Within the accuracy of our calcu-
lations we can also neglect the overlaps between 2s and 2p orbitals of NaT and
consider the corresponding Bloch sums as already normalized and orthogonal
each other. We work thus with an overlap matrix with these structure:

Clia. NaZ...
Cl;al. A B
Na’tzt. BT 1

{he non-normalized Bloch sums were defined through the expression:

Uy (k,r) = > ™ Frp,,(r—du — Ry) (4.1.28)
Ra
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It is convenient to introduce a suitable phase factor and modify the defi-
nition of the Bloch sums as in the following:

U (k) =d'v Y e*dutBaly  (r—d, - R,) (4.1.28a)
Ron . .

With these definitions the overlap matrix is real and symmetric, and the
generic element O, , (k) is given by:

< U (k1) | ¥ s (K, 1) >q=

o le gtk (dypr—du) . Z e Rn/ ‘P/w - du)‘Pu’v’(r - Sut T n)dr

space
(4.1.29)
It is convenient to rearrange the terms and to change the integration
variable, so that the overlap integral can be written in the form

Opv (k) = =gl =l Zetk - / © o (F)Ppun (T — m)dr (4.1.30)

space

where now the sum Zrn runs over the vectors of one of the two FCC sublattices
of the crystal (one centered at the origin and coinciding with the FCC Bravais
lattice, the other shifted by 5(110)), depending on the fact that u = pu’ or
u # p'. The vectors 7, can be grouped into shells of symmetry-equivalent sites.
In Fig. 14 the ionic sites corresponding to different sublattices and different
shells are indicated with different symbols. Grouping the sum Zrn into sums
over shells and using the expressions of the overlap integrals in terms of the
independent quantities (sso), (spo), (ppo), and (ppm), one can write explicit
expressions for the elements of O (k). We list the formulas for the four different
kinds of elements of O(k):

U, |0, >= ) Ze"k"-‘] (s50)n (4.1.31)

ahells L 7¢

<V, ¥, >= Z Zilmie"k"‘} (spo)s (4.1.32)

shells L 7

< Wp,|¥p, > = Z { le i T‘] (ppo), [Z(l 1k-r.] (ppﬂ’)n}

shells
(4.1.33)
< ¥p,|¥p, >= Z { leely.-eik‘ﬂ:l (Ppo)n [z Izl ieik'f‘] (PPW)n}
shells L i
(4.1.34)
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The internal sum is done within a given shell, and the external runs over
different shells. The quantities in square brackets are structure factors that can
be computed once forever for the two FCC sublattices. For the cubic symmetry
of the crystal in the sums Er; at each vector 7; corresponds also the vector
—7;, so that the structure factors here considered are real quantities; we can
understand now the choice of the phase factor of the Bloch sums to have a real
symmetric overlap matrix.

Overlap matrix at high symmetry points

We have implemented very general programs to construct orthonormalized
Bloch functions at each k vector of the Brillouin zone, but as we will see later
only few points are needed to evaluate approximately the charge density and
in particular some high symmetry points can be used. We report in Tables 7-9
the overlap matrices and its eigenvectors in the points

2m 27 2mr, 1 1 1

= 00’07 X= ,0)0’ L=— PRI I
(0,0,0) (1,0,9) a(222)

a a
These and other high symmetry points of the Brillouin zone for the FCC struc-
ture are represented in Fig. 21.

Fig.21: Brillouin sone for the FCC structure. High symmetry points are indicated.
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]__1 Vor-s: Yoi-sp. Yei-sp, Yoi-sp. wﬁq*,za. '\I’I\_fa+,2ps ‘I’Naf,zpy Ut op,
Yeor- 3. - 1.059 0.000 0.000 0.000 —0.050 -0.000 0.000 -0.000
Y- 5p, 0.000 0.810 0.000 0.000 - 0.000 —0.042 0.000 0.000
W 3Dy 0.000 0.000 0.810 -0.000 0.000 0.000 —0.042 0.000
Y- .3p, 0.000 -0.000 0.000 -0.810 0.000 0.000 0.000 —0.042
Upatae | —0.050 0000 0000 0000 1000  0.000 0.000 0.000
Y Nat,2p, -0.000 —0.042 ~0.000 --0.000 0.000 -1.000 .0.000 0.000
‘I’Na+,2py -0.000 0.000 —0.042 -~0.000 -0.000 0.000 -1.000 0.000
Y Nat,2p, --.0.000 -0.000 -0.000 —0.042 0.000 0.000 -0.000 -1.000

~-0.801 - -0.801 -0.801 ‘0.972 1.009 1.009 -1.009 -1.087
1.003 40.000 0.000 :0.000 :0.000 0.025 0.025 0.025
0.000 -1.041 —0.148 —0.148 —0.068 0.000 0.000 0.000
0.060 —0.148 -1.041 —0.148 —0.068 0.000 0.000 0.060
0.000 -—-0.148 —-0.148 1.041 —0.068 0.000 0.000 0.000
0.000 —0.068 —0.068 —0.068 -1.018 0.000 0.000 0.000
0.025 0.000 -0.000 -0.000 0.000 1.001 0.001 0.001
0.025 0.000 0.000 -0.000 -0.000 0.001 1.001 0.001
0.025 0.000 0.000 0.000 0.000 0.001 0.001 1.001

Tab.7: Overlap matrix between Bloch sums constructed from s and p orbitals of Na+ and

Cl™ at T'; eigenvalues and inverse matrix are also reported.
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Uor-3s Yoi-3p. Yoimsp, Yoi-sp. ¥nat2e Ynatiop, YNat2p, \I’N“J“'?Pz

0.982 0.000 0.000 0.000 ~0.016 0.000 -0.000 0.000
*-0.000 1.258 0.000 0.000 0.000 0.115 -0.000 0.000
--0.000 0.000 0.923 - 0.000 -0.000 0.000 —0.070 0.000
0.000 0.000 0.000 0.923 -0.000 0.000 0.000 -0.070
—0.016 0.000 -0.000 -.-0.000 1.000 0.000 0.000 0.000
-0.000 0.115 -0.000 - 0.000 - 0.000 1.000 0.000 0.000
0.000 0.000 —0.070 .-0.000 -0.000 0.000 -1.000 0.000
0.000 0.000 -0.000 —0.070 --0.000 0.000 --0.000 '1.000
0.881 0.881 0.956 0.972 1.009  1.042 1.042 1.302
1.019 0.000 0.000 0.000 0.016 0.000 0.000 0.000
0.000 0.804 0.000 0.000 0.000 —0.093 0.000 0.000
0.000 0.000 1.089 0.000 0.000 0.000 0.076 0.000
0.000 0.000 0.000 1.089 0.000 0.000 0.000 0.076
0.016 0.000 0.000 0.000 1.000 0.000 0.000 0.000
0.000 —0.093 0.000 0.000 0.000 1.011 0.000 0.000
0.000 0.000 0.076 0.000 0.000 0.000 1.005 0.000
0.000 0.000 0.000 0.076 0.000 0.000 0.000 1.005

Tab.8: Overlap matrix between Bloch sums constructed from s and p orbitals of Nat and

Cl™ at X; eigenvalues and inverse matrix are also reported.
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L Voi-3s Yoi-3p,. Yor-3p, Yoi-8p. YnNat2s UnNat2p, YNa+t2p, UNat,o2p,
Y- 3s 0.999 0.000 0.000 O.QDO 4 0.000 —0.025 —0.025 —0.025
Uoi-sp, | 0000 1016 0175 0175  0.091 0.000 0.000 0.000
Woy- 3y 0.000 0.175 1.016 0.175 0.091 -0.000 0.000 0.000
Yeoir-,3p, 0.000 0.175 0.175 1.016 0.091 -0.000 0.000 0.000
Unatss | 0000 0001 0091 0001  1.000 0.000 0.000  0.000
Y Nat,2p, | —0.025 0.000 ‘ 0.000 0.000 0.000 1.000 0.000 0.000
Yna+,2p, | —0.025 0.000 0.000 0.000 0.000 0.000 -1.000 0.000
Tpatop, | —0.025 0000  0.000  0.000  0.000 0.000 0000  1.000

0.841 0.841 0.942 0.956 -1.000 -1.000 1.043 :1.425
0.947 0.000 0.000 0.000 0.047 0.000 0.000 0.000
0.000 1.237 0.000 0.000 0.000 0.052 0.000 0.000
0.000 0.000 1.237 0.000 - 0.000 0.000 0.052 0.000
0.000 0.000 0.000 1.237 0.000 0.000 0.000 0.052
0.047 0.000 0.000 0.000 1.7002 0.000 0.000 0.000
0.000 0.052 0.000 0.000 0.000 1.002 0.000 0.000
0.000 0.000 0.052 0.000 0.000 0.000 1.002 0.000
0.000 0.000 0.000 0.052 0.000 0.060 0.000 1.002

Tab.8: Overlap matrix between Bloch sums constructed from s and p orbitals of Nat and

C17 at L; eigenvalues and inverse matrix are also reported.
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Although we have implemented a very general procedure to construct
the basis set {®,} it is instructive to derive the same result from symmetry
properties where it is possible. Let us consider the point groups corresponding
to the high symmetry points I', X, L. For each group we can list the irreducible
representations®!) and the basis set for each of them, as reported in Tab. 10;
commas separate the different rows within a certain representation.

group representation bases
T = 22(0,0,0) rf 1
: ry T, Y, 2

X = 2%(1,0,0) Xy 1
X4
X5 Yy, 2

L-Z(id L 1
Lo z+y+=z
Ls Yy—2,2r—y—=z

Tab.10: Some irreducible representations for the groups of I'y X, L. Only those representa-

tions that can be described by s-like or p-like basie function are listed.

A correspondence can be established between basis functions and crystal
wave functions at these symmetry points. The symbols used for the basis of
the irreducible representations are 1 for s-like functions, z,y, z for p,, Py, P2-like
functions. Basis functions belonging to different representations or to different
rows of a certain representation do not combine wich each other, in particular
they have zero overlap. The coefficients of the linear combinations of z, y, z-like
functions in the basis predicts how these functions overlap with each other.

. All these considerations are really shown by the overlap matrices: for
instance at I and X only < s|s > and < p, | p. > elements are non zero; at
L we can recognize that ¥, , ¥, and ¥, Bloch sums of C!~ have the same
overlap one to each other, and the same occures for the s state of one ion
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with respect to the p states of the other. Within the subspace correspond-
ing to one kind of ion one could choose as basis set at high symmetry points the
linear combinations of the Bloch sums as indicated for the basis of the various
representations. At I' and X the tight-binding Bloch sums themselves can be
considered as the basis set {only the normalization is needed) whereas at L one
could choose for instance :

o =aV, (4.1.35)
@2 =f (Vp, + ¥p, + Tp,) (4.1.36)
®3 = (\ypy - \ijz) (4.1.37)

D=6 (29,, -V, —T,) (4.1.38)

v

where «, 3,7, 6 are the normalization coefficients:

a=  A,(L) | (4.1.39)
1

B = %A,,(L) (4.1.40)
1

N = ——\/—gA,,(L) (4.1.41)

5= 4,(L) (4.1.42)

V6
with
A,(L) =1.0004 ,  A,(L) = 0.9919 (4.1.43)

Now the problem that cannot be solved just using symmetry is imposing
the orthogonality between Bloch sums arising from orbitals of the same kind
but of different ions . Looking at the overlap matrices, we recognize that this is
again very easy at I' and X where the non-neglibible overlaps are only between
functions of the same type (s with s, p, with p,, etc.) also for ions of different
kinds. In this case it would be sufficient to consider (remembering that Ay ,+ (k)
is practically 1) :

Aci- 3. (k)Y 3, = Yot 2, (4.1.44)

V2
and similar combinations also for the other states. One should also carry on an
analogous reasoning for L, but at this point the use of symmetry is no longer

convenient with respect to the numerical effort required to diagonalize a 8 x 8
matrix.
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c) Charge density from the orthonormalized Bloch functions

Exact crystal states and tight-binding Bloch functions

Within the one-electron approximation and the band approximation the
crystal states can be chosen simultaneously to be eigenfunctions of the one-
electron hamiltonian H, and of all the translation operators; thus they are
Bloch-type functions characterized by a particular vector k and satisfying the
Schreedinger equation:

[ h?v2

2m

+ V(r)] U3ehr(k 1v) = E, (k) U3 (k,1) (4.1.45)

where V(r) is the periodic crystal potential. Some of the crystal states are
occupied and some are free, according to Fermi statistics. If they are normalized
we can correctly write the crystal charge density as

p(r) K Z > |wiehn (k,r) 2 (4.1.46)

k noce.

We could expand the crystal states U5°"™ on a complete set of Bloch-
type functions known, in particular of Bloch sums ¥,, constructed as linear
combinations of atomic orbitals, as suggested in the tight-binding method :

giehr(k,r) Zcmn m(k,T) (4.1.47)

The coefficients of the expansion must then be found by requiring that the
crystal states satisfy the appropriate Schreedinger equation.

The procedure is particularly convenient when only few terms in the ex-
pansion are important. This is the case of the inner or *core” crystal states:
atomic orbitals of low energy are very localized near the nucleus and are ex-
pected to change very little when ions (or atoms) are joined together to form
the crystal. To each inner atomic orbital correspond a very narrow energy band
En(k)SG) and crystal eigenfunctions which are nearly equal to linear combina-
tions of degenerate free-ion functions. This is the reason why we can ignore the
mixing of Bloch sums derived from core ionic orbitals with the others.

Moreover in the alkali halides there is a large gap of about 10eV between
the valence and the conduction band, so that one can also ignore the mixing
between Bloch sums constructed from the valence atomic states and those aris-
ing from higher energy atomic states. We can thus consider that the set of
the Bloch sums {¥,} constructed from the occupied atomic orbitals spans the
same Hilbert subspace corresponding to the occupied crystal states {\Ilf;f:f}
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‘Since the quantity (¥{"™,....., ¥{"") can be seen as a vector in this abstract
Hilbert subspace and the charge density as its "length”, one can show that it is
invariant for a unitary transformation (rotation) of the basis set {¥U5h™} . As
far as the charge density is concerned, we do not worry about finding the exact
solution of the Schreedinger equation but we just construct in this subspace a
basis set of orthonormal Bloch functions {®,,} from the occupied ionic orbitals;
the charge density can be calculated as:

p(r) = 2 R Z > |®n(k,r) (4.1.48)

k rnoce.

The orthonormalized Bloch functions can be constructed from the Bloch
sums with the method outlined in section b) :

o,(k,r) = ,\;% (k) - i v (k)P (k,r) (4.1.49)

j=1

Putting this expression in the formula for the crystal charge density we find:

p(r) = 2 Z S AT ®) v (k) (k) TS (k, 1) W (K, )

k noce. Joce. chc

(4.1.50)
One can show that:

Z Azt (k) v (k)vja(k) = (O—l(k)) T

i3’

(4.1.51)

Moce.

where O(k) is the n5cc. X Toce. OVerlap matrix between the Bloch sums involved in
the formula. Using this relationship we can write finally the following expression
relating the crystal charge density to the Bloch sums:

p(r) = zﬂ — Z >3 wh(k,r) (07H(K)), . Ynr(k,T) (4.1.52)

k noce. n’occ

Symmetry of the crystal charge density

From the previous equation we can consider the crystal charge density as
the integral over the first Brillouin zone of a periodic charge density, say p(k,r),
wich is a function of the vector k:

plk,r) =2 Z v, (k,r) (07Y(K)), ., Unr(k,T) (4.1.53)

Noce. n
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It has the periodicity of the crystal, but not the same symmetry with respect
to the bperations of the cubic punctual group.

From this charge density p(k,r) we can construct a charge density —
indicated with pi(r) — wich has the complete symmetry of the lattice:

1

pi(r) = - Z p(Tik, 1) (4.1.54)
where the T;’s range over all the operations of the cubic punctual group (the
group of the lattice) which originate different k vectors within the star of
symmetry—equivalent vectors, and ng is the number of such operations. This
symmetrized charge density py(r) is no longer a function of a particular vector
k , but it is determined by any representative vector of the star. The total
number of operations in the cubic punctual group is 48, but for instance the
star of X contains only 6 different vectors, and that of L contains 8. A further

reduction in the number of essential rotations occures since it is easily shown
that

p(—k,r) = p(k,r) (4.1.55)

Moreover one can proove that:

p(Tk,r) = p(k, T 'r) (4.1.56)

This result avoidsthe computation of different overlap matrices and the con-
struction of different Bloch sums (one for each vector Tk in the star). The
conclusion is that the symmetrized charge density in a given k is:

px(r) = -7;1; > olk, Tix (4.1.57)

Brillouin zone integration

Tocalculate the crystal charge density we must integrate over the Brillouin
zone the k—dependent charge density py(r) . In principle we should calculate
px(r) (i.e. the Bloch sums and the overlap matrix) at each point in the Brillouin
zone. In practice the knowledge of pi(r) over a set of points k is required if
one uses standard techniquess"')“6‘2f fo calculate the average < f > over the
Brillouin zone of a periodic functionYwave vector:

< f>= /(k)dk (4.1.58)

(27!')3 B.z.
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There are basically two techniques: a method due to Kleinman and Phillips®”)
based on a procedure for successive approximations, and a mean value represen-
tative points technique introduced by Baldereschi®®) and generalized by Chadi
and Cohen®9).

In the Kleinman— Phillips method®”) the reciprocal space is divided into
equal volumes similar to the first Brillouin zone. The first division uses the
Brillouin zone about each reciprocal lattice point G, . Successive approxi-
mations refine this subdivisions: at the second step one introduces the new
?sub-reciprocal —lattice points” %‘L; about each point of the new sublattice one
draws a subzone, similar to the first Brillouin zone but with a volume reduced
by a factor 23. For the FCC structure of NaCl , for instance, the first approxi-
mation uses the T point of the Brillouin zone; the second one uses 8 points: T,
X ( 8 equivalent points), L (4 equivalent points); the third one 64 points that
can be grouped into T', X, L, A, A,Cy where C; = 2&"5 2,40

The other technique %8)~59) to perform the Brillouin zone integration uses
another set of representative points. A mean-value point is defined as the point
such that the value which f(k) assumes at this point approximates for the best
its average over the Brillouin zone. If f(k) has the complete symmetry of the
crystal point group we can decompose it into symmetrized linear combinations -
of plane waves of symmetry T'y, as follows:

F&) = fo+ D fmGm(K) (4.1.59)
m=1
where
Gm(k) = ) €*E (4.1.60)
Re&star

and the star is that of the equivalent lattice vectors related to each other through
the operations of the cubic punctual group. Since

9]

'@r‘)“s‘/ Gm(k)dk =0  form=1,2,...00 (4.1.61)
B.z.

we have that:

9]
< f>=—— k)dk = 4.1.62
d (27r)3/3.z.f( ke = o (4.1.62)
If it would exist a point k* such that
Gn.(k*)=0 form=1,2,...00 (4.1.63)

we would immediately have: -
fo= f(k*) (4.1.64)
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Such a point does not exist, but we can find a point that satisfies eq. (4.1.63)
for m = 1,2,... up to a certain finite N. Baldereschi®® has found for the FCC
structure k* = 27(0.6223,0.2953,0) with N = 2. To satisfy the eq. (4.1.63) for
higher N a generalization is necessary. Many points must be used, say a certain
set (ki,k3,...k%) ; the conditions:’ .

Y aGn(k*)=0  form=1,2,...N (4.1.65)

‘must be imposed, where «; are the weighting factors corresponding to the spe-
cial poins of the set and such that:

Y ai=1 (4.1.66)

Within this scheme a good approximation to the average < f > is given by

<> aifm(k?) (4.1.67)

=1

The first approximation is thus the single mean-value point; the second
step requires the use of the two mean-value points of Chadi and Cohen®®) which
are for the FCC structure Cy = 25(3, 1 1)y and C, = =2n(i %, %) with weight-
ing factors a; = %,0{2 = Z . A further step requires 10 points, whose coordi-
nates and weights are:

kI:(la'a','l'), oy = "%; k2:(za_1'al)1 a2=§$31
k3=(§a§9%)5a3:%; kéz(ga%ag)’ 042%;
ks = (g, g,g), as =75, ke = (g, g,g), %6 = 35;
k7=(§,§,§), a7=§3§; ks =(3,5:58) @8 = 35;
ko =(3,5:8) % =35 Kio= (3,35, 3) ®10= 5.

In conclusion the crystal charge density p(r) can be calculated with a good
approximation using the weighted average of the symmetrized charge density
px(r) at some representative points of the Brillouin zone:

I‘) =~ Z a,-pk: (I') (4.1.68)
i=1
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d) Valence electron charge density in alkali halides:
application to NacCl

Core and valence charge

If we consider in the preceding formulas all the occupied crystal states,
the resulting p(r) is the total crystal charge. It is convenient to separate it into
a ”core” and a "valence” part. Since the overlap between Bloch sums arising
from core atomic states and from valence atomic states cannot be completely
neglected , the subspaces spanned by these two sets of Bloch sums are not
orthogonal, and they do not correspond exactly to the subspaces of core and
valence true crystal states.

The core crystal charge should be calculated properly from the true core
crystal states, whereas we assume that the contributions to the core crystal
charge density come only from all the core states of the anion and of the cation.
Since the corresponding Bloch sums are already normalized and orthogonal
each other, it is equivalent to calculate the core crystal charge by summing up
directly the ionic core charges:

pcore(r) - Z [pcore,Na+ (I‘ - dNa“‘ - Rn) + Pcore,Cl— (I‘ - dCl“ - Rn)]
Ry

(4.1.69)
This part of the crystal charge is thus unchanged with respect to the free—ion
approximation.

We consider the mixing of the Bloch sums arising from core atomic states
and from valence atomic states in the definition of the valence crystal charge.
We orthogonalize the Bloch sums constructed from the valence orbitals of the
anion with those constructed from the orbitals of the outer shell of the cation
(2s, 2p for Nat): the charge density calculated from this set of orthonormalized
Bloch functions contains also a part of the core crystal charge which must be
subtracted, otherwise it would be calculated twice in the evaluation of the total
crystal charge. The valence crystal charge density of NaCl, for instance, is
given by:

N
poa ) = 2 SN 1B r) P~ Yp  wer (= dwas —Ru)
k

(27[') 1 R, ezternal core

(4.1.70)
or
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Pyal. ( (27T 3 Z Z v (k r Ol_(k)) \Iln:(k,r)—
k nn=1

- Z P wat (r dNa+ n) (4.1.71)
Ry

exzternal core

where the indices n and n/ run over the Bloch sums constructed from the valence
band of CI~ and from 2s and 2p orbitals of Na*.

We are interested expecially in the valence crystal charge density which
contains the effects of the overlaps between ions.

Techniques and accuracies

We have calculated the valence part of the electronic crystal charge density
using both the techniques for the Brillouin zone integration presented before,
each of them at the first two levels of approximation. Tab. 11 summarizes the
various approximations to p(r) used.

Kleinman — Phillips method | mean — value points method

1°¢ level pr(r) pB(r)
274 level prxL(r) = pcc(r) =
gpr(r) + $ox(r) + o1(r) 30, (r) + fpc, (x)

Tab.11: The first and the second level of approximation in the Kleinmann— Phillips method

and in the mean—value points method for the Brillouin zone integration.

The T point is not a good representative point; a better approximation is
obtained using the mean-value point or a weighted sum of the charge densities
at I', X, and L; a further improvement is reached using the two mean-value
points of Chadi and Cohen.

In the calculation of the overlap matrix elements we have included 10 shells
of neighbouring ions in the case of CI~—Cl~ overlap and 6 shells in the case of
Nat-Cl~ to have an accuracy of 10~5. We are thus sure that approximations
introduced by truncating the infinite sums over the lattice at a given order do
not cover the physical effect that we are investigating.
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Deviations from the free-ion approximation

We have calculated the valence charge density by taking into account
the orthogonalization of CI™—C!{~ only, and also of CI™—Cl~ and Na*t-Cl~ .
The main result of thls tlght blndmg a,pproach to the correct charge density of
the crystal is ev1dent in both cases and at each step of approximation for the
Brillouin zone integration: the correct electron charge density is more localized
around the anion with respect to the free-ions approximation.

A part from the I' point which cannot be considered a good approximation
from a quantitative point of view, the effects are of the same order of magnitude
at each step of approximation and in particular the results appear to be already
in convergence using the two mean-value points of Chadi-Cohen; the results
reported and discussed here refer to this case, exceptions being specified.

We reported in Fig. 22 and 23 the plots for the total and the valence
charge densities (psor and pyq:) in the planes [001] and [011], with the same
scale used for the corresponding plots in the free-ion approximation (po,to: and
Powar) For a direct comparison we have also plotted in the same planes the
difference Ap = p — pg (see Fig. 24); the curves of pg yar (solid line) and of pya
(dashed line) are shown along the directions (100), (110), (111) in Fig. 25.

In order to understand the physical origin of the shrinkage of the anion
we performed our calculations both including and neglecting the anion— cation
overlap. Taking into account just the anion-anion overlaps there is an increasing
of the order of 2% for the electron charge density at a distance of about 1 a.u.
from a Cl~ site, where it reaches its relative maximum value; it is compensated
by a lack of electrons in the outer region, with an effect of the order of 10—
20% at distances of 34 a.u. . Adding the anion-cation orthogonalization there
is also a non-negligible valence electron density localized around the cation
sites; however the main result does not change, and we can confirm that the
localization of the charge density around the anion in the crystal is essentially
determined by the anion-anion overlap as already suggested in Ref. 22. The
anion-cation overlaps emphasize the shrinkage of the anion in particular along
the direction of the chemical bonding where the valence charge density reaches
a well defined minimum of 10~* electrons/a.u.? at about 4.2 a.u. from the

anion site, with a reduction of the order of 85% with respect to the free-ion
approximation.

Our choice of using just two mean-value points for the Brillouin zone
approximation is justified if we look at these quantities: the results obtained
with the single mean-value point and with two points differ of few % of the
deviations from the free-ion approximation.
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Fig.24: Difference between the electron density calculated within the present tight-binding

scheme and in within the free-ion approximation in the (001) plane (2) and in the (011)
plane (b). Chlorine ions are at the corners. The lowest level t.:orresponds to —.0015-107%

electrons/a_u.s, and the interval between the i-level and the (i—1)-level is 10~ ¢ electrons/a.u.a..
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Fig.28: Valence electron demsity profile along (100), (110), and (111) directions calculated
within the free—ion approximation (solid line) and within the present tight-binding approach

(dashed line), as a function of the distance from the chlorine site.

Deviations from sphericity

If we look at the charge density plots in the free—ion approximation we
recognize that the crystal charge density is spherical to a high degree around
a latticc site; deviations from the spherical shape are evident in the interstitial
regions and arise from the overlapping of the rigid ions put together to form

the crystal.
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The sphericity of the localized charge distributions constituting the crystal
is not substantially modified in the present calculations; from the differential
plot of the charge density we see that anisotropic effects due to the overlaps are
very small. As suggested by physical intuition, the anion—anion overlap, which
" is dominant, causes a'shrinkage of the valence electron density principally along
the (110) direction, and the anion—cation overlap along the direction of the
chemical bonding; in Fig. 24 we recognize a "hole” of electron density between
two NN anions. We compare in Fig. 26 the valence electron density profiles
around a Cl~ site along the three directions (100), (110) and (111).

0.30

0.27 (100)

1

—~~
[y
'—l
©)

—

1

024 L

—~
pod
e
[u—y

~—

|

021 L

0.18 L

015 L

012 |

009 L

electron density /o(r) (a.u.)

006 |

003 L

0.00 | L ...
0.00 0.53 1.07 1.60 2.14 2.67 3.20 3.74 4.27 4.81
r (a.u.)

5.34

Fig.26: Valence electron density calculated withiu the present tight-binding approach along

the directions (100), (110), and (111).
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4.2

DEFINITION OF "PSEUDOION” AND "ORTHOGO-
NALITY” CHARGE

a) Translational symmetry of the charge density

Localized charges

The periodicity of the crystal is taken into account in the tight-binding
approach to the charge density through the Bloch functions. With this approach
we are able to describe the charge density over the whole crystal, but it is not
evident the relationship with its constituents. Since the charge density has itself
the periodicity of the crystal, it should be written as a sum of charge densities
— which are no longer the spherical ionic charge densities, of course — centered
on the lattice sites R, :

o) = 3 4lr — R.) (42.1)
R,

The advantage of this description is that one can directly compare these new-
defined charges p with the charge density of a single free ion, trying to under-
stand how the ions modify from the free state when they are put together to
form the crystal. Our purpose now is not doing a new complete numerical calcu-
lation, but trying an analytic approach to the problem to describe qualitatively
the physical mechanism. ‘

With a small effort we can manipulate the formulas already used and
express the crystal charge density in terms of the ionic orbitals. We must.
remember the expression of the charge density:

p(r')=za%é-z S k) (07HH)) s Yanr(kr)  (422)

k pvp'v!

and of the Bloch sums with the correct phase factors:

Uy (k1) =i Y e dutRaly (r— g, — R,) (4.2.3)
R,

From the equations (4.2.1), (4.2.2), (4.2.3) one obtains:
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0

~ — L=y jik-(d,—d ) -1 .
p(r) - 2(27{-)3 Z Z t € ® * (O (k))y.u,u.’u’
k pvp'v!
Dt —du) Y e o (r = dy — Ry) (4.2.4)
Rn

Definition of pseudoion and orthogonality charge

If we consider the orthogonalization also with respect to the cation, in the
complicated expression written before one can easily recognize three types of
terms, which contain respectively products of C!{~ orbitals only, of Na* orbitals
only, and mixed products of CI~ and Na™ orbitals. The sum
orbitals can be separated into three sums:

o=t )

puo, v’ vyl vyt nvplv!
p=pl=Cli— p=p'=Nat uEpl

iyt OVET the
1

and the same holds for the charge density 4(r) .

One can look at the first two terms involving orbitals of the same ion
as a redefinition of the charge density of the ion, whereas the term with mixed
products of orbitals can be seen as a certain orthogonality charge. In conclusion
one can describe the crystal charge density as a sum of some ” pseudoions” and
of new ”orthogonality” charges:

p(r) =Y [poi-(r — doi- — Rp) + fnat (F = dyar — Ra) + Goc(r — Ry)]
Ry

| (4.2.5)
Although we have used a well defined criterion to distinguish in such a way

the localized charge densities, the definition of pseudoions and orthogonality
charge depends on our choice and it is not unique. It could be convenient, for
instance, to include also the mixed terms in the definition of the pseudoions.
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b) The pseudcion

Total valence charge of the pseudoion
According to our previous choice, the charge density of the pseudoion u
is given by:

ule) = 2555 D05 (07 ) s () D e Py~ R

k vu! Ry
(4.2.7)

We ask ourselves which is the difference with respect to the free ion charge
density p,(r) , and in particular we try to investigate analytically the deviations
from the spherical shape and to calculate the net amount of charge of this
pseudoion.

The last point requires a minimum effort. In fact if we integrate over the
whole space the pseudocharge §,(r), it is easy to recognize that:

jhor=te 3 ik R / 0o ()P (f = R)dr = Opppur(k)  (4.2.8)
R,

space

so that the total charge of the pseudoion is simply given by:
- 9 -
| et = 255 35 (07MK) s O () (4:29)
space k vl

In the following table we report the total number of valence electrons of the
pseudo Cl~ and of the pseudo Na™ in the different approximations.

Cl- | Nat

T 8.0176 | .0176

L 8.0406 | .0406

I X,L 8.0388 | .0388

B 8.0430 | .0430
C4,Cs 8.0419 | .0419

Cl™ — Cl™ only| 8.0000 | .0000
free ton 8.0000 | .0000

Tab.12: Total number of valence electrons of the "pseudoions” using different approxima-
tions. The first four rows are referred to the present tight-binding calculations, including the
effect of both the anion—-anion and anion—cation overlaps; there are also reported for compar-

ison the values obtained when only Cl1° —Cl~ overlaps are included, and within the free—ion

approximation.
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In this picture we have a net amount of —1.04 |¢| on C!~ and of +.96 |e]
on Nat: this is different from the effective charge picture, according to which
the overlapping charges of opposite sign partly neutralize with a significative
reduction of the effective charge. The neutrality of the system in our picture is
assured by the orthogonality charge, which is something of the order of +.08 |e|
per unit cell.

Notice that neglecting the Cl™~Na™ overlaps one looses the essential fea-
tures of this picture, i.e. the variation of the charge tranfer with respect the
picture of perfectly ionized ions and the introduction of the concept of orthog-
onality charge. Taking into account just the anion-anion overlap, the effect
of a redistribution of the charge density different from the rigid and perfectly
spherical one in the free ion is however recovered.

Charge density of the pseudoion at the I point

We try now to investigate the redistribution of the pseudoion charge: since
we are interested in a qualitative description of the effect, we study the situation
at the T’ point, where:

pu(l,r) =2 Z gl (O—l(r)),w,,w: 0 (r) Z Puw (r — Ry) (4.2.10)
v,v’ R,

At T the situation is very simplified, since the Bloch sums constructed from
ionic orbitals with different quantum numbers [ and m belong to different rep-
resentations or different rows and are thus orthogonal. In our case the index
v runs from 1 to 4 for each ion, and indicates s, pz, py, p» orbitals respectively.
The overlap matrix and its inverse are thus diagonal with respect to v:

Oll-Vvﬂ'U'(r) = 51/!/'0#1/,;1.’1/(:[‘) (4211)
(07HT)) py prve = B (07H(T)) (4.2.12)

wo,p'y

In the expression of the pseudoion charge p;,, at-I' there are not mixed

products of orbitals of different kinds; we can finally write the extremely simple
formula:

Bion(T,r) = 2) _(07HT)),, pu(r) D ou(r — Rn) (4.2.13)
v " Rn

where the index p of the ion is understood.
We now compare it with the free ion charge density:

pion(®) = 23 | (1)1 (4.2.14)
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A first difference is already evident from the terms [, (r)|2, which enter in
Pion With a renormalization factor (O“l(]f‘))W which takes into account the
orthogonalization effects with all the ions of the crystal.

Looking at the matrix O~ !(T') one recognizes that in CI~ the reduction
of the s orbital is Targely compensated by the weighting-factor for the p states,
increased by 24% : this is due to the fact that the (ppo) overlap, which is
dominant at the nn distance, is negative. This mechanism can partially explain
the localization of the electron charge density around the anion.

With the terms containing only orbitals centered on the same site the
spherical shape is retained, since the matrix elements O ~*(T') are the same for
V = Dz, Py, P> - Anisotropic deformations arise from products between orbitals

centered on different sites and are consequently smaller.

¢) The orthogonality charge

Total orthogonality charge over the unit cell
The expression of the orthogonality charge is something more complicated
than the pseudoion charges. We have:

ﬁOC(r) = 3 Z Z : u"‘luezk (d,r—dyu) (O )uu,u’u’ .

k v, w'v!
wEp'

P pu (I' - du.) Z Cik‘Rn‘Pu'u'(r - du.’ - Rn,) (4215)
R,

The sum ) ... contains for each term (pv,u'v') its complex conjugate, so
p#Ep

that we have a sum over distinct couples (uv, u'v’) of orbitals:

A=l ik-(d,~d -1
pOC( (27r 3 Z Z [ et ( » 1‘) (O (k))“u'u'v, .]
k distinct uouplee
()
“Ouu(r —d,) Z kR, "ouwi(r —du — Ry) + complex conjugate]

(4.2.16)
It appears now clear that the orthogonality charge is real:
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oo =15 Y Y (07 )

digtinct ‘.auph_o
(ppvpn’vlh)

Pu(r —du) Y cos [g(z,,, 1)+ k- (dy —d,) +k- Rn] Oun(t—d —R,)
o (4.2.17)
It is evident the structure of the orthogonality charge: we have products
of the orbitals of one ion p at a reference site with all those of the ions p' of
the other kind centered on all the sublattice sites and the same for the other
ion p'. Since we can distinguish in poc two parts, we have a criterion to give
a new definition of the pseudoions including also the orthogonality charge, if it
would be convenient.
However, let us examine it entirely; first of all we can give the amount
over a unit cell, as reported in the following Tab. 13:

orthogonality charge

T —.0352
I, X,L —.0776
B —.0860
Cy,Co —.0838

Tab.18: Total amount of orthogonality charge per unit cell, as obtained in the present tight—

binding calculations at different levels of approximation.

Distribution of the orthogonality charge at the I' point
Let us study poc at I'. The formula is simplified:

foo@r) =4 3 cos[3=1)] (O7HT)) e

distinct couplep
(v vl

Pur(r = d,) Y puni(r —duy —R,) (4.2.18)

Notice that there are nd present mixed products of orbitals s and Dz, O
Pz and py ..., because the corresponding elements of the inverse of the overlap
matrix are zeer, as already explained in the analysis of the pseudoion charge.
The expression of the orthogonality charge at T is thus further reduced; in
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conclusion expliciting the sum over the two kinds of ions and taking into account
the symmetry of O~!, we write:

poc(Tyr) =4y (07HT)),, -

| Pun(r —d,) Z Cun(t —du —Rp) + pun(r —du) Z Puv(r—d,—Ry)
Ry "Ry

(4.2.19)
where the index v indicates the orbitals of the same kind ( i.e. 2s for Nat with
3s for Cl7, etc. ...). This orthogonality charge is not localized, but it is sum

of quantities centered on anionic and cationic sites.
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4.3
A ?CLUSTER” APPROACH WITH THE USE OF SYM-
METRY

a) Various approaches to the charge density

We remember the starting point for our calculations of the charge density
in the crystal:

p(r) —2 32 > w (k) (07H(K)) i Vusrwr () (4.3.1)

k puv,pu'v’

where ¥,,,, are the Bloch sums and O(k) is the corresponding overlap matrix
as defined in this work .

According to a general result of Lowdin®*) for closed-shell systems the
charge density can also be written as:

I') =2 Z Z ('D”‘V(r - d"" - R"") (o_.l)/u/,Rm;p.'V',R,,, Pu'v! (r - d”" - Rn)

MV,I/"V’ R‘m’R"-
(4.3.2)
where now the overlap matrix is between ionic orbitals:

Ouv, Rmips'v' R =< QO (r — dpy — Ryp) | o (r — d. —Ry) >space  (4.3.3)

and has in principle an infinite rank.

We have already developed the eq. (4.3.1) and expressed the charge den-
sity in terms of the ionic orbitals:

p(r et =gl (dur=du) ( l(k)).uup-u' )
k pv,pu'v’
Z eik.(R"_Rm)‘Puv (I‘ - dll. - Rm)@l‘-'v'(r - dﬂ" - Rn) (434)
Rm,Ry

Comparing eq. (4.3.1) with eq. (4.3.3) we can establish the relationship between
the elements of the two overlap matrices:

0 .
-1 - o=l k{(d,+R,.-d,—R -1
(O )uuqu;M’U',Rn - (2”)3 ZY](: ghul Tl ot ( ! n m Am) (O (k))uu,“lul

(4.3.5)

78



i.e. we can tranform one into the other with a 3—~dimensional Fourier transform.

If one want to approach the problem of the crystal charge density from the
localized charge densities of the pseudoions and from the orthogonality charge,
the Lowdin formula seems to be more convenient than that one we have used:
but a heavy numerical effort is required to calculate and invert the infinite order
overlap matrix.

It must be possible however to do some semplifications. Using the trans-
lational properties of the system, the localized charge density is, following the
Lowdin approach:

plr) =2 Z O (r — dy) Z (Oﬁl),,,u,omr,,r,au Pu(r —duy —R,) (4.3.6)

pu,p' ! Ry

This localized charge density must have the complete cubic symmetry I‘f of
the crystal, and for this reason it must be written as a sum of products whose
factors have the same symmetry . It follows that, if I group the lattice vectors
into shells, and write:

ﬁ(l‘) =2 Z (,0‘“,(1' o d"’) Z Z Z (Onl)fLu,O;[l,’u’,Rn (p""'”'(r - dl‘" - R”')

[ ” R
Byl ehells egh’;ll

(4.3.7)
the object within square brakets must have the same symmetry of Ou(r—d,),
since the contributions of the various shells are independent, being not mixed by
the operations of the punctual cubic group Op; one could thus consider within
each shell only some particular linear combinations of atomic orbitals.

At this point it is more convenient to face the problem from the beginning.
Let us define a sort of ”shell symmetrized orbitals” &) (r), where « indicates
the symmetry species, and n is related to the shell and to the type of orbitals
considered (for each shell we can found more than one independent linear com-
bination of orbitals with symmetry T',, ). This is a sort of ”cluster” approach,
in which the ion at the center of the cluster plays an essential role; for our
purposes we shall thus consider the cluster around CI~ and that one around
Nat. The ”shell symmetrized orbitals” depend explicitly on the center of the
cluster, that we should specify with another index: we do not worry about it
for the moment, not to confuse with a lot of indices.

The contribution to the localized charge density arisig from the sym-
metrized orbital @(la) (r), which is just a real ionic orbital centered at the origin
of the cluster, is given by: '

pI(r) =20 (x) Y (071 () (r) (4.3.8)

Lain.a
n
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where O is the overlap matrix, as usual, between the functions of this new basis
set:

On,a;n’,a’ =< (I)La)(r) 1 (Digl)(r) > (439)

The 1mportant pomt is that since functions of different symmetry do not
mix, this overlap matrix is block— —diagonal: ‘

On,a;n.’,oz’ = 5aa’on,a;n',a - 5cx(r’onn’(a) (4310)

It becomes evident now the advantage of this cluster approach; infact the
inverse of a block—diagonal matrix is itself block—diagonal, and precisely each
bloch can be separately inverted:

A0 ...o0\T" At 98 .0
¢ B ... 0 @ B~' ... 0
oo . - : E : (4.3.11)
90 ... C 0 0 .. c

We have thus to invert more than one matrix, as many as the number
of the irreducible representations I', corresponding to the orbitals of a single
ion; the dimension of each matrix is determined by the number of neighbour
shells we want to include, and by the number of linear combinations — with that
symmetry — of orbitals belonging to each shell. A similar approach was used
in Ref. 61, confined to s—states, for the determination of the density matrix of
LiH and in Ref. 62 for the density matrix arising from = bands in graphite and
hexagonal BN.

We will see in the following section how many and which linear combina-
tions of orbitals we must consider. Since we are interested in an analytic study,
we stop to the NNN ions: the calculation requires a patient work, since we
have s and p orbitals.

b) Symmetrized orbitals

Method to construct symmetrized orbitals

We point out that each shell can be considered separately, since there is
no operation of the cubic punctual group transforming a vector of a given shell
into one of another shell; furthermore, for each shell one can consider separately

the sets of s and p orbitals since there is no operation of that group tranforming
a s-like orbital into a p-like or viceversa.
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We must solve the following general problem: for a given shell with N
sites and n orbitals centered on each site, how many symmetrized orbitals can
be constructed, and of which symmetry species ?

We can answer precisely to these questions using few simple concepts of the
group theory. We start writing the character table for the class of the nx N ionic
orbitals under the transformation of the cubic punctual group : each character
is the sum of the characters of the single ionic orbital, each one considered at
the proper lattice site. Once we have the character table we can decompose
the class of the nx N orbitals into irreducible representations; according to a
well-known theorem of the group theory this decomposition is uniquely defined
and the coefficients nr,, are given by solving the linear system of equations:

Y nr,,, xr.. (6) = X etuss of (2) (4.3.12)
Tirr
where x are the character tables and the index 7 indicates a particular row.

In Tab. 14 is reported the character table for the irreducible representa-
tions of the group Oy,.

E 8Cs 3C, 6Cy; 6C, J 8JC; 3JCy 6JCy 6JC}
TFl+1 41 +1 +1 41 +1 41 41 +1 1
FF|+1 +1 +1 -1 -1 +1 +1 41 -1 -1
rfl+2 -1 +2 +o \+0 +2 -1 42 40 0
Tyl +3 +0 -1 41 -1 43 40 -1 41 -1
Tg|l+3 40 -1 -1 +1 +3 +0 -1 -1 1
Frp+1 41 41 +1 41 -1 -1 -1 -1 -1
r;|+1 41 +1 -1 -1 -1 -1 -1  +1 1
gyl +2 -1 +2 40 40 -2 +1 -2 40 0
rgf+3 40 -1 +1 -1 -3 40 +1 -1 1
Fg|+3 40 -1 -1 41 -3 40 +1  +1 -1

Tab.14: Character table for the group Op (from Ref. 51).
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Since we are interested in calculating more accurately the valence crystal
charge density, we consider here the s and p orbitals of the outer shell of both
Na™ and Cl~. Taking into account the ion at the center of the cluster and the
NN and NN N ions we have six classes of orbitals:

(1) class = shell 0, 1 orbital s
(2) class = shell B, 3 orbitals p

(3) class = shell NN , 6 orbitals s
(4) class = shell NN , 18 orbitals p
(5) class = shell NNN, 12 orbitals s
(6) class = shell NNN, 36 orbitals p

It is evident that the orbital s at the center of the cluster has symmetry I"l"
and the orbitals p,,p,,p, belong to the different rows of the 3-dimensional
irreducible representation I'y , whereas the calculation of the character tables

for the remaining classes of orbitals require more attention; results are presented
in the following Tab. 15.

E 8C; 3Cy, 6Cy 6C, JE 8JC; 3JC, 6JC4 6JCY
s orbital 0 1 1 -1 1 1 1 1 1 -1 1
p orbitals 0 3 0 -1 1 -1 -3 0 1 -1 1
s orbitals NN 6 O 2 2 0 0 0 4 10 2
p orbitals NN | 18 0 -2 2 0 0 0 4 0 2 |
s orbitals NNN | 12 0 0 0 2 0 0 4 0 2 |
porbitals NNN |36 O 0 0 -2 0 0 4 0 2 |

Tab.16: Character table for the six classes of s and p orbitals centered on a given lattice site

and on its NN and NNN sites.

Using the eq. (4.3.12) we have calculated the coefficients of the decompo-
sition into irreducible representations. The results are summarized in Tab. 16;
the letters A, B indicate the two different ionic species.
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ton orbitals shell decomposition
A s 0 rt
| ) ) o 0 , - .
B s NN rt+rf+r]
B P NN Iy +TF+Tf+2r] +TF+T;
A s NNN It +Td+T;+Tf+T5
A P NNN T7+4+T}+T5 +2IF +T5 +20f +3T, +2TF +2I;

Tab.16: Decomposition in terms of irreducible representations of the six classes of s and p

orbitals in the cluster with two neighbour slhells described in this chapter.

For each of the two cluster (one with A=Cl!~ and B=Na™, the other
with A=Na* and B=CI!~ ) we thus can construct 5 symmetrized orbitals
with symmetry I'} and 24 with symmetry I'; (8 for each row of the 3-D
irreducible representation I'y); each of them is a linear combination of some
ionic orbitals centered on particular lattice sites and taken with a proper sign.
Tab.17 summarizes the kind of ionic orbitals involved in the construction of each
symmetrized orbital. In Fig. 27 and 28 the particular ionic orbitals chosen here
to construct the symmetrized orbitals are shown in detail, each one with its
proper sign considered in the linear combination.

I't  symmetrized orbitals

L orbitals s, shell @, 1ion A
DY orbitals s, shell NN, ion B

@gj orbitals p, shell NN, ion B

@Zt orbitals s, shell NNN, ion A

ot orbitals p, shell NNN, ion A

Tab.17a
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I',; symmetrized orbitals

o, orbitals p, shell B, ion A
g: orbitals s, shell NN,. ion-B
3 orbitals p, shell NN, ion B
3.

o, orbitals p, =~ shell NN, 1ion B

@L¢  orbitals s,  shell NNN, ion A
&Lt orbitals p,  shell NNN, ion A
&.¢  orbitals p,  shell NNN, ion A
2t orbitals p,  shell NNN, ion A

Tab.17b

Tab.17: List of symmetrized orbitals with 1"'1‘" and I'[ (one row) symmetry constructed with

the s and p orbitals of the cluster described in the present chapter.

Fig.27: Ionic orbitals constituting the P'l" symmetrizved cluster orbitals, each one with

the proper sign considered in the linear combination.
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symimetrized cluster orbitals, each one with

Fig.28: Ionic o

rbitals constituting the I'

sign considered in the linear con

the proper
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Overlap matrices

We have to compute now the overlap matrices O(I']) and O(T'7), which
are respectively a 5 X 5 and 8 x 8 real symmetric matrices. The calculation
of their elements requires a patient work but can be carried out analytically;
taking into account the overlaps between NN ions of different kind and nn ions
of the same kind, we can express all the elements in terms of the usual few

independent overlap integrals:

(sasa0),  (sapao), (papaoc), (papam),
(sespo), (sBpmo), (pBpBO), (PBPBT), (4.3.13)
(SASBU)s (SAPBU)a (SBPAU), (PAPBU), (PAPBW)

We report in Tables 18 and 19 the results, listing for semplicity only the
non-zero elements.

Matrix elements of O(T7T)
Oy =1
O12 =6(saspo)nn
O3 = 6(sappo) NN
O14 =12(54840) pn
O15 = 12V2(54PA0) n
Og2 =6[1 +4(s55B0)nn]
Oa3 = 12V2(spP50)nn
Oz4 = 24(sasp0) NN
O25 = 24(sBpad)nN
O33 =6[1 —2(pBPBO)nn + 2(PBPET)nn)
O35 = 24(PAPBT)nn
O4s =121 + 4(54540)nn]
Ous = 24V2(s4pa0) nn
Oss = 24[1 — (paPAO) nn + 3(PAPAT) nn]

Tab.18: The non-zero independent matrix clements between I"{ symmetrized cluster

orbitals. The indices are referred to the symmetrined orbitals as indicated in Fig.27.
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Matrix elements of O(T',)
Oi1=1
O12 = —2(sppac)nn
O3 = 2(papBo) NN
O14 = 4(papBT)NN
Ots = —4V2(54P40) i
O16 = 4(papa™)nn
O17 = 4[(paPa0)nn + (PAPAT) nn]
O18 =4[(paPa0)nn — (PAPAT) nn)
Ogq =2
Og4 = “4\/§(SBPBU)nn
Oss = 8(s4SBo)NN
O2s = 8(sppao)nn
Os3 =2
O34 = 4[(PBPBO)nn + (PBPBT)nn)
Os7 = 8(paPBT)NN
Oss =4[1 4+ 2(pBPBT)nn]
O4s5 = 8(s4PBO)NN
Oy = 8(paPB™)NN
Os7 = 8(papBO)NN
Oss = 81+ 2(54540)nn]
Os6 = —8V2(54P40)nn
Oss = 8vV2(54P40) nn
Ogs = 4
O67 = 8[(PAPAT) un + (PAPAT) nn]
Og7 = 8[1 + 2(pAPAT) rin]
Oss = 81 — (paPAO)nn + (PAPAT)nn]

Tab.19: The non-zero independent overlap matrix elements between I‘: symmetrized

cluster orbitals. The indices are referred to the symmetrized orbitals as indicated in Fig.28.
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Substituting the independent integrals with their values, we have explicitly
computed O(T'}) and O(T']) both for CI~ and Na™ at the center of the cluster;
also in this calculation we have neglected the overlap integral between cations.

The inversion of the overlap matrices has also been performed. Results are in
Tab. 20-23.

Overlap matrix O(T'T), Cl™ ion at the center

+ + + + +
RN SE SN SRR S S
P+
o, 1.000 -0.049 —0.075 -0.058 -0.542
+
@gl —0.049 6.000 -0.000 -0.197 -1.101
1'\+
&, | —0.075 -0.000 -6.000 -0.000 0.230
P+
o, 0.058 —0.197 -0.000 12.231 1.085
1'\+
@51 - 0.542 —1.101 -0.230 1.085 27.014

Tab.20

Overlap matrix O(F';,), CI™ ion at the center

ry ry ry ry ry Ty ry re
3] o7 R ) o, R oy 3,

@fz --1.000 0.092 -0.074 0.038 -—-0.181 0.071 —-0.218 —0.360

&,¢ | 0092 2000 0.000 -0.000 —0.066 0.00 -0.367 0.000
&.¢ |-0.074 0000 2.000 0000 0.000 0.000 0077 0.000

‘I)Z‘_ 0.038 0.000 0.000 8.000 0.100 0.077 —-0.296  0.000

<I>§‘_ -0.181 -0.066 0.000 -0.100 8.077 —0.362 0.000 0.362

@c¢ | 0071 0000 -0.000 -0.077 —0.362 4.000 —0.436  0.000

@5: -0.218 -—-0.367  0.077 —0.296 0.000 -0.436 8.284  0.000
@gf —0.360  -0.000 - -0.000 0.600 0.362 0.000  -0.000 8.721

Tab.21

88




Overlap matrix O(TT), Na™ ion at the center

+ + + + +
SRR SR S S
T " — B T —
371 | 1.000 —0.049 0275 0.000 0.000
P+
I.1 | —0.049 6117 0542 —0.197  0.301
ot
o;' | 0275 0.542 7.081 0.000 0.230
+
@1 | 0.000 —0.197 0.000 12.000 -0.000
+
@1 | 0.000 0301 0.230 0.000 24.000

Tab.22

Overlap matrix O(I';,), Na' jon at the center

Ty r; ry Ty Ty Ty r; r;
2, @, Oy @, @ o6 @y

@ ¢ | 1.000 —0025 —0074 0038 - 0.000 0.00 0.000 0.000

&.¢ | —0.025 2000 0.000 —0.181 —0.066 0.000 0.100 0.000

®,¢ | -0.074 0.000 2.000 -0.218 -0.000 0.000 0.077 0.000

o,¢| 0038 —0181 —0218 8284 —0.367 0.077 —0.296 0.000

@;¢ | 0000 —0066 0.000 —0.367 8000 0.000 -0.000 0.000

g4 | 0000 0000 0000 0077 0000 4000 0.000 0.000

o, 0.000 0.100 0.077 -0.296 -0.000 0.000 -8.000 0.000

Qg‘— 0.000 0.000 -0.000 -0.000 -0.000 0.000 -0.000 8.000

Tab.23

Tab.20—28: Overlap matrix elements between the symmetrized orbitals considered in

the present chapter and shown in Fig.27-28.
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¢) Pseudoion and orthogonality charge in terms of symmetrized orbitals

The charge density from the symmetrized orbitals
It is necessary now to introduce a new label for the symmetrized orbitals to
specify also the type of ion at the center of the cluster; we will write ®%=+*"(r)
We have seen that the contribution to the localized charge density arising
from the symmetrized orbital ®1***(r) is:

FReion(x) = 20T (1) 3 (0 (Lyion)),, BToon(r)  (4.3.14)

77

and hence the total charge localized on the site of an ion, for instance, will be:

5ion(r Zpl"a,zon
=2 Z &1 (1) Y (07 (D, ion)) |, OL="o"(r) (4.3.15)

n
where the sum ZI‘(, runs over all the irreducible representations involved and
all their rows, in particular over the three rows of the I'] representation.

Up to now we have considered the symmetrized orbitals for one of these
rows; what about the others ? A proper or improper rotation T' of the cubic
axes transform all the symmetrized orbitals (remember that functions with T';
symmetry transform like a vector ) but leave the overlap matrix and its inverse
unchanged; in particular this holds for those operations which transform a z—
like function into a y-like or a z-like function or, in other words, which change
one row of I', with another one. Formally we have thus:

B 4 (r) = 8nt (T 1)

O(l‘;t) = O(F;j) =0(ly)  alsoforis#yg
O"I(FL) = O"I(I‘;j) =0"YT';])  also fori#j (4.3.16)

The resulting effect on the contribution to the localized charge density is:
~TT 7. ~T'T
5T (x) = () (4.3.17)

The localized charge density, explicitly written, is:

5

: + ion . +3 n
Fon(r) = 2|71 " (x) Y (07HTF ion)),  &nt " (x)

n=1

8

3
+2 8 N(Tr) ) (07H(IS don)) @t (Tur) (43.18)
i=1

n=I1
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where now I'] means one particular row of the 'y representation and Ty =
E,Ty and Ts transform this row into the others.

We can give a definition of pseudoion and of orthogonality charge also
in terms of these symmetrized orbitals. According to the definitions used in
Ch. 4.2 we can consider for the pseudoion the terms which are products of
symmetrized orbitals only arising from atomic orbitals of that ion; looking at
the Tab. 17 of the symmetrized orbitals we have — notice the difference with

~ion

p*°™ which indicates the total charge density localized at that ion site — -

tion _ . +,ion.
Precuao (r) =2/ 21" (r) 3 (O HIF,don)), | @nt " (x)

ton
n=1;4;5

3 —
+3 8 (Thr) (0747, don)) , , @n ™ (Tir) (4.3.19)
i=1

n=1;5,8

With the orbitals we have used, this is exactly the valence charge density
if the ion considered is Cl~, whereas for Nat we must subtract, as already
pbinted out, the external core charge density.

For the orthogonality charge we have to sum the contributions arising
from the cluster centered on the anion and that one centered on the cation:

fool)=2 Y |@\1@) I (07H(IF,ion)), , 8L

ion=A,B n=2;3

3 — _— .
+ Z @f( ,zon(Tir) Z (O’I(I‘Z’ zon)) - (PE‘L‘ ,zOn(Tir)] (4.3.20)
i=1

n=24

Comparison with the free ion

In terms of symmetrized orbitals the free ion charge is:

3
r'fion T ion
Pion(r) =2 |2 (1)]2 + ) |0} (Tirn?} (4.3.21)

=1

It easy to recognize the renormalization of the terms products of orbitals on
the same site; one immediately recognizes that such terms give a spherical
contribution to tne ion, since (o~ 1>ton)) is identically the same for each
row of I';. Deviations from spherical symmetry are due to the terms which are
mixed products of orbitals belonging to different shells.
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Also in this scheme we have evaluated the total valence charge density
for the pseudoion and the total orthogonality charge per unit cell. The results,
expressed in number of electrons, are:

Ppgeudo Cl— = 8.0433
Ppseudo Nat+ = 0.0423
poc = —.0856 (4.3.22)

very close to those obtained with the tight-binding approach.
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Chapter 5
CONCLUSIONS
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It is convenient now to summarize the results obtained in this thesis, and
to sketch some lines for a future work. The results can be summarized in the
following points.

o Our first purpose was to explain the validity of the Vegard law for the
lattice parameters for the alkali halide solid solutions. To this goal we have first
developed a simple model based on the virtual crystal approximation and on the
Born—Mayer model for the evaluation of the lattice energy. The resulting theo-
retical predictions are very poor: the predicted lattice parameter a(z) deviates
considerably from both Vegard and Retgers laws, too much with respect to the
experimental data. These simple computations however allow us to understand
the importance of anharmonic forces in alkali halide solid solutions. Separating
the lattice energy into harmonic and anharmonic terms we have evaluated how
much each one contributes to the small deviations of a(z) from Vegard law.
Harmonic terms alone give the wrong sign for the deviations, (i.e. a sub-linear
behaviour), and only with the inclusion of the anharmonic terms one obtains the
experimentally observed positive bowing. Including anharmonic terms, positive
deviations from Vegard law are predicted for all alkali halide solid solutions.

We have then proposed a model allowing internal distorsions of the lattice.
Although the distribution of A and B ions in the homogeneous A _,B,C solid
solution is random, we have simulated the alloy with a periodically repeated
supercell. Since the macroscopic symmetry of the real alloy is cubic, we have
chosen a cubic supercell and distributed anions and cations in it according to
cubic symmetry. With these criteria a given cell allows only for particular
compositions x and symmetry-restricted atomic displacements from the ideal
sites of the rocksalt virtual crystal. Using the smallest cubic supercell allowing
internal distorsions, i.e. the FCC cell with 16 ions, we have evaluated the lattice
energy which depends on the lattice parameter and one distorsion parameter,
and we have obtained the equilibrium structure by minimizing the lattice energy
simultaneously with respect to both parameters.

We have seen that the atomic-scale rearrangement of the crystalline struc-
ture allows for a considerable reduction of the average ionic volume, and this
favours the additivity of distances rather than the additivity of volumes. Ap-
preciable results are obtained within the supercell method: positive deviations
from Vegard law are still predicted, but very close to the experimental data.
The calculations are performed both including and neglecting polarization ef-
fects: the agreement with the experimental data is improved when including
polarization effects, in particular when the negative ion is polarized.

e Another purpose of this work was to explain the bimodal distribution
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of the NN anion—cation distances. It was evident that the crystal structure of
an alloy cannot be at equilibrium if the ions occupy the virtual crystal lattice
sites, because of the different intensities of the repulsive forces for different ion
pairs. The supercell model can explain the experimental data: after weighted
average of the several NN distances present at equilibrium in the supercell,
we have obtained A-C and B-C distances which are closer to the respective
distances in the pure AC and BC compounds than to the virtual crystal NN
distance, in accordance with EXAFS data. Also for this lengths, the inclusion
of the polarization effects improves the agreement with the experimental data.

e Further improvements of these results could be obtained by applying the
simple model developed here to bigger supercells, in which more distortions are
allowed. Using the small FCC supercell, it has been possible to deal only with
average A-C and B-C distances, but with bigger supercells we could also study
the distribution of A-C and B-C distances around their average value. A great
supercell could also allow for more configurations for each given composition x:
we could determine the lowest energy configuration and examine its dependence
on the degree of order in the crystal.

e A larger part of the thesis has been reserved to some quantum me-
chanical calculations for an accurate description of the alkali halide electron
density. We have chosen NaCl as a prototype. Using Hartree-Fock ionic wave
functions we have performed tight-binding calculations for the charge density,
taking into account the overlap between the ions in the crystal. The result is a
clear shrinkage of the valence charge around the anions, the effect being essen-
tially determined by the anion-anion overlap, in particular between P orbitals.
The effect is of the order of few percent on the charge density: we are going
to examine its relevance on the lattice Coulomb energy (this calculation is in
progress now).

The electronic distribution in the pure alkali halides is not a new source
of investigation, whereas —as far as I know— the same quantity in the alkali
halide solid solutions has still to be examined. This constitutes the other pur-
pose of our next work. We would like to extend the techniques acquired and
developed here for the charge distribution of the pure alkali halide compounds
to study their solid solutions. We have implemented very general programs to
calculate overlap integrals between ionic orbitals as well as Bloch sums, and the
application to new systems can be easily done.

We would also like to go fully through the cluster-symmetrized—orbitals
approach, a technique which has so far only outlined, but which seems to be
very convenient.
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