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CHAPTER 1. I NTRODUCTTION

1.1 MOTIVATIONS AND OVERVIEW OF THE PROBLEM

It is a well-known fact that the kinematical properties of nearby disk stars
are sistematically related to their spectral class, and in particular that the
components of the stellar velocity dispersion show a tendency to increase with
increasing spectral type; this has been interpreted in terms of a corresponding
increase with age. Such a strong correlation between kinematical and physical
properties of disk stars is indeed at the basis of their subdivision into arche
type population groups, which are generally referred to as the spiral-arm popu
lation, the young disk population, the intermediate disk population and the old
est disk population. It should be born in mind, however, that globally the disk-
component population exhibts much more drastically different features with re
spect to the spheroidal-component population, which reflect their different cos
mological origin.

From a theoretical point of view, many efforts have been addressed to explain

the observed increase of the components of the stellar velocity dispersion with
age. The most diffused and currently accepted class of explanations is based on
the existence of relaxation mechanisms which lead to a secular heating of galac
tic disks; the basic physical source responsible for such a heating process is

still under debate. In this context it should be noted that observations do not

put yet any stringent constraint on the age-velocity dispersion relation, al
though the opposite is often claimed by observers; this is due to the large ex
perimental uncertainties and to the presence of statistical biases ingrained in
the sample selection, which often cannot properly be estimated. For this reason
only few theoretical models have definitely been ruled out, while a lot of specu
Tations involving hypothetical massive perturbers have been made mostly to find
upper and lower bounds for the mass of such objects; because of the large number
of free parameters involved these theories, although they are appealing due to

their connection with the problem of dark matter in the universe, have a low



level of predictability. In all these approaches the restriction to nearly inte
grable situations is tacitly assumed; for strong departures from the integrabil
ity condition the relaxation is governed by the effects of Lyapunov (orbital) in
stability.

Even though it is often left out, the secular evolution of galactic disks, of

of which the increase of the stellar velocity dispersion with age is the most
striking expression from a kinematical point of view, is closely related to their

stability properties. This fact stresses the crucial role that collective effects

play in stellar systems, or more in general in systems whose dynamics is governed
by long-range interactions. Such role is often underestimated in stellar dynamics,
while perhaps too much emphasis is given to relaxation processes involving binary
encounters alone. It is indeed a well-known fact that in (electromagnetic) plasmas
the rate of relaxation towards the equilibrium state can considerably be enhanced
by collective effects; when such collisionless relaxation mechanisms occur, more
effective heating processes become operative leading to a rapid but usually incom
plete randomization of particle velocities. It is just after such a collisionless
collective phase that binary encounters become effective, and Tead to a slow evol
ution of the partially relaxed system towards the final state of thermodynamical
equilibrium. In virtue of the dynamical similarity between ordinary (electromagnet
ic) plasmas and "gravitational plasmas", the same phenomenon is expected to occur
in stellar systems as well and to be competitive, if not dominant, with respect to
other more commonly invoked relaxation mechanisms. However, the analysis required
to describe quantitavely the relevant heating process would generally be much more
complicated because of the natural inhomogeneity of stellar systems, which in par
ticular makes the usual quasi-linear local approach no more suitable.

To avoid the difficulties connected with a global modal analysis, externally im
posed and thus non-self-sustained perturbations of spiral form have generally been
considered together with a local treatment in the action-angle canonical represent
ation; collective effects are thus not taken into account in this simplified ap
proach. An effective horizontal heating of galactic disks is then produced provided
these spiral waves are assumed to be recurrent transient large-scale phenomena. Des
pite the formal elegance of the action-angle canonical representation and the rela

tive simplicity inherent in a local analysis, two defects characterize this approach:



- The interpretation of the theoretical predictions in terms of observable phenom
ena might not be straightforward; this lack of physical intuition somewhat lowers
the predictability level of the theory.

- The most drastic consequence that arises from neglecting the self-consistency of
the perturbations lies in the fact that internal (to the system) excitation and
feedback mechanisms, crucial for the maintenance of global spiral modes, are not
taken into account; hence, most of the physics is missed.

For this reason it is worth formulating a global gquasi-linear theory of spiral

structure, in which the role of resonances is properly taken into account. To the
above-mentioned difficulties one has to add also those deriving from the consider

ation of the cold interstellar gas, whose damping role in non-linear regimes cannot

be disregarded as it contributes together with non-Tinear effects to saturate other
wise exponentially growing spiral overstabilities. Although the importance that such

self-regulation mechanisms may have in connection with the secular evolution of ga

lactic disks has long been recognized, no quantitative theory free from the above-
mentioned defects has been developed yet. This thesis is just devoted to lay the

foundations for such an attempt.

1.2 REVIEW OF OBSERVATIONS

In this section we shall discuss the main observational surveys which have recent
1y been performed to determine the age-velocity dispersion relation for disk stars,
and it will be shown that some of them are inconsistent with each other. This fact,
which essentially is due to the unavoidable use of biased samples of stars, shows
that observations do not put yet any stringent constraint on the age-dependence of
the components of the stellar velocity dispersion, although the opposite is often
claimed by obseryers. Other factors which contribute to such indetermination are the
large experimental uncertainties, which are difficult to estimate properly, and the
indirect estimates of stellar age. Moreover, some sample-selection criteria imply a
contamination by spheroidal-component stars, which have a different cosmological ori
gin and hence should not be included; however, they are spectroscopically so distinc

tive that generally it is not difficult to exclude them from the analysis. The fol



Towing discussion does not pretend to be exhaustive at all; a more detailed report
and comparison with other observational surveys can be found in the references cited.

In the 1970's three important observational surveys were performed by Byl (1974),
Mayor (1974) and Wielen (1974). In particular, Wielen's (1974) analysis (see also
Wielen 1967) is based on about 1000 stars contained in Gliese's (1969) catalogue of
stars within 20 pc of the sun, for which trigonometric parallaxes accurate to 1 10%
and accurate radial velocities and proper motions are known. This sample can be
plotted directly in an H-R diagram, and hence it can be divided into unambiguous age
groups by choosing stars found in definite color intervals along the main sequence
or near the positions of the subgiants or giant branches of clusters of known age.
For each main-sequence group the average age is assumed to be about half the main-
sequence lifetime of the proper stellar type (i.e., a constant star-formation rate
is assumed), and to the giants are assigned the ages of the clusters along whose
giant branches they most closely lie. The sample includes a large number of McCormick
K + M dwarfs With known Call emission-Tine intensities, for which mean ages can be
derived statistically from their relative abundances by assuming a constant star-for
mation rate over the lifetime of the Galaxy. These estimates can be checked by using
observed average emission-line strengths in clusters of known ages; the two sets of
age turn out to be in good agreement. The final results of this analysis are pre
sented in Fig. 1.1 and Table 1.1; in particular, it is found that the age-velocity
dispersion relation follows a (1/3 + 1/2)-power-law.

Wielen's (1974, 1977) estimates of the age-dependence of the components of the
stellar velocity dispersion has been questioned by very recent observational surveys
(Cariberg et al. 1985; Knude, Schnedler Nielsen and Winther 1987; Stromgren 1987),
which however are also inconsistent with each other.

Carlberg et al. (1985) combined Twarog's (1980) sample (suitably reduced to about
250 F stars within 100 pc of the sun), for which ages and photometric distances can
be determined, with astrometric data to obtain tangential velocities of a set of
stars with a large age-range. The stellar age was estimated by means of a new set of
stellar evolutionary sequences and isochrones incorporating substantial improvements
in the imput stellar physics. The resulting age-velocity dispersion relation rises
fairly steeply for stars less than 6 Gyr old, thereafter becoming nearly constant

with age (see Fig. 1.2 and Table 1.2).



Knude, Schnedler Nielsen and Winther (1987) considered the sample of stars obtained
from the intersection of a photometric catalogue of A and F stars at the North Galac
tic Pole (Knude 1987) with the AGK 3 catalogue of proper motions (Dieckvoss et al.
1975). Due to the high latitude of these stars (b > 70°), an accurate estimate of the
plane-parallel velocities was obtained from proper motions and distances alone (i.e.,
without considering radial velocities). Complete subsampies of about 550 unevolved
and slightly evolved F stars of solar composition roughly within 200 pc of the sun
were used to study the variation of the velocity dispersions oy and GV with age. Both
dispersions are found to follow power-laws very closely, but the two laws have sig
nificantly different powers, 0.53 =~ 1/2 and 0.27 =~ 1/4 respectively; the total planar
velocity dispersion is found to obey roughly a 1/2 -power-law (see Fig. 1.3 and Table
1.3). The most immediate consequence of this result would be a considerable change of
the shape of the velocity ellipsoid with age; more precisely, the axial ratio would
change from 1 to its equilibrium value of about 0.5 during a period Tasting 5 Gyr.
The observed relaxation time seems to be much longer than that suggested from studies
of early-type stars, which is of the order of the epicyclic period.

Stromgren (1987) considered a sample of about 2300 A5 to G Population I stars with
in 100 pc of the sun, belonging to Olsen-Perry's (1984) photometric catalogue and for
which a reliable determination of radial velocities was possible. Since for all these
stars adequate photometric distances and proper motions were available, galactic vel
ocity components relative to the sun of satisfactory accuracy were derived. It is
found that while the plane-parallel components of the velocity dispersion 9, and oy
increase markedly throughout the range 3 + 9 Gyr, their ratio ov/oU ~ 0.6 showing no
appreciable variation, the perpendicular component of the velocity dispersion oy
stops at a nearly constant value for stellar ages larger than 5 Gyr (see Table 1.4).

The apparent mutual inconsistency of the results of these observational surveys
shows that we are still far away from a satisfactory knoledge of the age-velocity dis
persion relation. In this context a more careful estimate of selection (and probably
also contamination) effects might indeed raise the confidence level of observations.

Some indirect constraints on the age-dependence of the components of the stellar
velocity dispersion can be obtained by constructing consistent kinematical and chemi

cal models (e.g., Vader and de Jong 1981; Lacey and Fall 1983, 1985) or dynamical

models (e.g., Bienaymé, Robin and Crézé 1987) of the Galactic disk in a solar neigh



bourhood.

1.3 PLAN OF THE THESIS

This thesis is divided into two parts. PART I is devoted to a review of the re
sults already known in the literature and of the methods employed to tackle the prob
Tem of the heating of galactic disks. This review does not pretend to be exhaustive,
mainly because the interest in this specific problem arose at the beginning of the
1950's and since then a conspicuous number of papers have been written to shed light
on it. However, among these only a few contributions have been so important as to
represent real turning points in the understanding of this problem; it is just to
such efforts that the review is mainly devoted. It should be born in mind, anyway,
that even more fundamental results have been found in other branches of physics,
which could suitably be extended to stellar dynamics and in particular applied to
the specific problem of the heating of galactic disks. Often the importance of such
suggestions is underestimated in favour of more standard viewpoints. The first part
of this thesis is indeed devoted also to clarify the crucial role that some not
properly appreciated effects (i.e., collective effects in nearly integrable systems
and the effects of Lyapunov instability in nbn—integrab1e systems) can have in the
secular evolution of stellar systems. The content of the various chapters will be
summarized in the corresponding introductory sections; in any case it should appear
clear even from their tities alone, which have been chosen in such a way as to re
sult as pregnant as possible.

PART II expresses my own point of view about the effectiveness of the heating
mechanisms described in chapter 5 in situations of astrophysical interest; in par
ticular, it will be stressed the fact that no such approaches take collective ef
fects properly into account, which instead are expected to drive the dynamical evol

ution of galactic disks. A global collective heating mechanism is then proposed in

strict analogy with the quasi-linear theory of plasma waves, which predicts the oc
currence of the so-called turbulent heating whenever an initial overstability is

saturated or damped by non-linear effects. Before tackling such a complicated glo

bal non-linear analysis, in which the cold interstellar gas plays a damping role,
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simpler self-regulation mechanisms in the Tinear regime will be considered, in which

such a cold component has instead a destabilizing role. Finally, some preliminary re
sults are given concerning the effects that the finite thickness of galactic disks
has on their stability properties, to which the above-mentioned self-regulation mech

anisms are intimately related. The originality of this analysis on finite-thickness

corrections to the local dispersion relation lies in the fact that the stellar and
the gaseous components are self-consistently taken into account in a more rigorous

way than in previous works.

FIGURE AND TABLE CAPTIONS

Fig. 1.1 Age-dependence of the components of the stellar velocity dispersion and
resulting age-(total) velocity dispersion relation derived by Wielen
(1974); the theoretical 1/3- and 1/2-power-laws are also shown. (Readapted
from Mihalas and Binney 1981).

Fig. 1.2 Age-stellar velocity dispersion relation derived by Carlberg et al. (1985).

Fig. 1.3 Age-dependence of the plane-parallel components o, (&) and oy () of the
stellar velocity dispersion and resulting age-planar velocity dispersion (x)

relation derived by Knude, Schnedler Nielsen and Winther (1987).

Table 1.1 Data relative to Fig. 1.1 (from Wielen 1977).

Table 1.2 Data relative to Fig. 1.2.

Table 1.3 Data relative to Fig. 1.3.

Table 1.4 Age-dependence of the components of the stellar velocity dispersion and
horizontal axial ratio of the velocity ellipsoid derived by Strimgren
(1987).
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CHAPTER 2. RELAXATION PROCESSES IN DYNAMICAL
SYSTEMS: CLASSICAL ESTIMATES AND
THEIR VALIDITY?®

2.1 INTRODUCTION

It is a well-known fact that many-particle systems tend asympotically to a state
of thermodynamical equilibrium characterized by a Maxwellian distribution function,
provided some general assumptions on the nature of the collision processes between
particles are fulfilled (see, e.g., Huang 1963). The relaxation towards this equi
librium state is governed by a characteristic timescale which generally is referred

to as the relaxation time of the system. In this particular context ordinary binary

collisions give the dominant contribution to the relaxation process leading to such
a randomization of particle velocities. In many situations of physical interest this
binary relaxation time turns out to be extremely Tong compared to the dynamical time
scale or even to any other "observable" characteristic time; systems whose dynamics
is governed by lTong-range .interactions, such as plasmas and stellar systems, can in
deed exhibit such a peculiar feature. If this 1is the case, other relaxation processes
toward approximate equilibrium states (stationary statesf are possible on the inter
mediate timescales of interest; this kind of relaxation mechanisms can actually be
much more effective than ordinary two-body encounters (which need not be "physical
collisions" in the case of long-range interactions), because they arise from the col
lective nature of long-range interactions.

We shall now stress the main differences and similarities between binary and col
lective relaxation processes:

- Ordinary binary encounters can be viewed as short-wave fluctuations of the inter

2 .
action field. They are essentially random, and produce small effects which accumu
Tate slowly in time. Each encounter can lead in two directions, increasing or de

creasing the energy of one of the particies, so that the cumulative effect is a

’In this introductory chapter a number of concepts and results will be given with
out a satisfactory discussion, that can instead be found in chapters 3. and 4. which
are intended to be a continuation of section 2.2.
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random walk of each particle in velocity space, which gradually takes the whole

system towards thermal equilibrium.

- Collective encounters are long-wave fluctuations of the interaction f1e1d? They

are completely analogous to binary encounters, except that one particle collides
simultaneously with many particles collected together by some coherent process
such as a wave. Observe that in this context the impact parameter can never be
taken much smaller than the characteristic wavelength of the perturbation, and
the collected bunch of particles moves with the group velocity of the wave rather
than with the typical particle velocity. Again the process is random (generally
it is not a random walk, as in the previous case, because memory effects cannot
be disregarded) but usually much stronger, and rapidly takes the whole system

towards a stationary state.

In this chapter we shall analyze in some detail the assumptions which are at the
basis of classical estimates of the relaxation time in many-particle dynamical sys
tems, with particular reference to plasmas and stellar systems. Often some of these
assumptions are tacitly taken for granted, or even worse the results obtained in
this context are claimed to be more general than they really are. A crucial point

that must indeed be stressed right now is that all classical estimates of the relax

ation time and related quantities apply to integrable sistems alone; in non-inte

grable systems, in fact, these calculations lose their validity because of the exist

ence of extremely rapid phase-mixing mechanisms which make the orbits very sensitive

to the initial conditions and to perturbations (Lyapunov instability). General refer

ence is made to Chandrasekhar (1960), who studied extensively in the 1940's the role
of binary encounters in the relaxation of stellar systems, Gurzadyan and Savvidy
(1986), Pfenniger (1986), who stressed the crucial point mentioned above, and to
books on dynamical systems and ordinary differential equations where rigorous formu
lations of the ergodic theory and of the Lyapunov stability are given (e.g., Arnold
and Avez 1968; Arnold 1974, 1980a,b; Arnold and.w1hstuts 1986; Bergé, Pomeau and
Vidal 1984; Cont&pou]os 1966, 1973, 1985; Galiullin 1984; Gallavotti 1986; Lindblad
1983; Moser 1973; Schuster 1984; Starzhinskii 1980; Voronov 1985; Wightman 1985).
See also the review papers by Eckman and Ruelle (1985), Escande (1985), Vivaldi
(1984). General reference is made also to the books on plasma physics and stellar dy

namics listed in section 3.7.
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2.2 THE GLOBAL RELAXATION TIME OF INTEGRABLE SYSTEMS: COLLISIONAL VS COLLISIONLESS
PROCESSES

From the discussion made in the previous section it appears that systems whose dy
namics is governed by long-range interactions are characterized by two relaxation

times: the binary relaxation time 7 associated with the relaxation towards the fi

nal thermodynamical-equilibrium staié? and the collective relaxation time Teol] 2559
ciated with the relaxation towards an intermediate stationary state. It is implicit
1y assumed that the systems under consideration are close to a situation of integr
ability (and quasi-stationariety), because otherwise other relaxation mechanisms oc
curring on shorter timescales are to be considered; a discussion of the effects of
such an orbital instability is deferred to the next section.

Another important fact to bear in mind is the characterization of the collision
processes in which binary encounters and collective effects are involved. Due to the
Tong-range nature of the interactions involved, a test particle during its motion in
teracts simultaneously with all the other field particles of the system, so that the
question arises whether a similar distinction between binary and collective encoun
ters does make sense. This question can be answered by observing that the main effect
of the collective property of these systems consists in the presence of large-scale

self-consistent mean fields (only in the gravitational case) and in the possibility

of exciting self-sustained oscillation modes? in this respect, differences in the

large-scale dynamics between plasmas and stellar systems arise from the fact that

in the former screening effects are present which make them locally neutral. The role
of collective effects can thus be singled out in a first approximation by formally di
viding the potential into two parts: a part consisting in the mean field itself plus
possible self-sustained perturbations of relatively long wavelengths, both produced
by the "smoothed out" distribution of matter, and a part which takes into account the
fluctuations of the interaction field of relatively short and intermediate wave
lengths arising from the "discrete" distribution of matter. With such a decomposition
the bulk of collective effects is contained in the first part, but a non-negligible
contribution (with respect to binary encounters) is given also by the intermediate-
wavelength fluctuations, in which particle correlations are taken into account. The

following characterization hence follows: collective effects are mainly associated
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with collisionless relaxation processes, even though they contribute also to colli

sional relaxation processes, whereas binary encounters are relevant to collisional

relaxation processes alone. It turns out that binary and collective encounters give

comparable contributions to collisional relaxation processes in several situations
of physical interest, as will be discussed later on in this section; the non-Markov
ian character of collective encounters, however, makes them difficult to treat. In
this context it should be mentioned that several authors have tried to evaluate such
a contribution by calculating the relaxation time or the dynamical friction in ideal
ized models of stellar systems (e.g., Julian and Toomre 1966; Julian 1967; Thorne
1968; Kalnajs 1972). Although they clame to have taken collective effects fully into
account, actually their analyses are restricted to neutral fluctuations alone, and
thus disregard the most essential contribution which comes indeed from overstabil
ities of the system.

We shall now 1ist the basic assumptions underlying classical estimates of the re

laxation time of systems governed by long-range interactions (Chandrasekhar 1960,
for the gravitational case); some of them will be discussed in some detail, together
with their physical and mathematical implications, in chapter 3. The system is as
sumed to be homogeneous, and only instantaneous, distant, mutually independent, bi
nary encounters in the impulse approximation (straight-line orbits) are considered.
As all these work assumptions lead to an overidealized model of relaxation process,
only the order of magnitude of the relaxation time so derived is thought to be mean
ingful. For this reason we prefer to give a rough expression, as derived by Hénon
(1973) 1in fhe case of stellar systems, rather than the extremely precise formulae
(different possible definitions of relaxation time can in fact be given) found in
Chandrasekhar (1960):

3
v

T . = , (2.1)
bIn 5 w6? mon N

where N is the total number of stars in the system of mass m, mean volume density p
and typical random velocity v; here the virial theorem for stellar systems has been
used to express the Coulomb Togarithm In (b __ /b . ) in terms of the total number

max’ min
of particles in the system, b being the impact parameter. Note that the relaxation

time of large stellar systems, as elliptical and spiral galaxies, largely exceeds

even the age of the universe (Hubble time). An unphysical feature deriving from the
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use of drastic assumptions such as the restriction to instantaneous binary encoun
ters and the impulse approximation consists in the fact that logarithmic divergences
occur at small and large impact parameters, which are formally removed by introduc
ing the long-range and short-range cutoffs bmax and bmin’ respectively (bmax is dif
ferent in the two cases of plasmas and stellar systems; see section 3.3). Several
attempts have been made to relax some of the classical assumptions mentioned previ
ously (e.g., Hénon 1958; King 1958; Lee 1968; Ostriker and Davidsen 1968; see also
Horedt 1984) and to take collective effects into account (see the references cited
in the previous paragraph). The order of magnitude of the relaxation time or related
quantities turns out to be preserved, except in some "pathological" cases (e.g.,
Kalnajs 1972) which can be explained in the light of more sophisticated approaches
(see the references Tisted at the end of section 3.3 concerning dynamical friction).

The use of the collisionless Boltzmann equation (Vlasov equation) for investigat
- 1ing galactic structure and dynamics- has been justified by simple estimates of the

ratio of the relaxation time by particle encounters ¢ to the typical orbital time

bin
in the mean field, i.e. the crossing time Tcross' It is found that (see, e.g., King
1967; Hénon 1973)

T, . N
bin : (2.2)
In N

Tcross
so that for large N the effects of particle encounters can be neglected on a dynami

cal timescale. Galactic disks, even though they may be considered very thin, are
still 3-dimensional systems, and it is to 3-dimensional systems that these estimates
of relaxation time apply. However, galactic disks are often approximated as strictly
disk systems, in which stars are still assumed to interact by inverse-square forces
but are constrained to move in a plane; therefore, it is of some interest to con
sider the problem of relaxation time for strictly disk systems. It is found that
(Rybicki 1972)

T, . A -V

bin 5
)

~

I

s (2.3
T 2 2V

Cross
where V is the typical total particle velocity and v the typical random particle vel
ocity relative to a local frame of rest, so that the relaxation time is at most of

the same order of magnitude as the crossing time, independently of the number of par
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ticles. Therefore, the collisionless Boltzmann equation can never provide an adequate
description of strictly disk systems, however large. It can be shown also that, in
contrast to the 3-dimensional case, the relaxation is substantially due to close en
counters, and that the cumulative effect of Tong-range encounters is of no more than
the same order of magnitUde; thus, the assumption of independence of encounters does
not present any difficulty in this 2-dimensional case, since close encounters are in
deed expected to occur independently. In this regard it is interesting to note that
the long-range divergence occurring in the 3-dimensional case when simple derivations
are used does not occur in the 2-dimensional case, so that there is no need to intro
duce a long-range cutoff. All these differences can be traced back to the different
statistical weighting of impact parameters in the two cases. These arguments concern
ing strictly disk systems of course do not apply to actual galaxies, which are 3-di
mensjonal systems; the validity of the Vlasov equation is rather well established in
this case (see, however, section 2.3). However, strictly disk sistem approximations
are commonly used in analytical and numerical treatments of disk galaxies, and hence
it 1s necessary to judge these approximations in the 1ight of the preceding results.
For analytical treatments there is no such problem of the relaxation time at all. The
use of Vlasov theory is first established in view of the finite thickness of the disk,
and then it is simply a question whether a 2-dimensional form of the Vlasov equation
is a good approximation to the 3-dimensional form; although this question is not triv
ial, at Teast it can be answered within the framework of Vlasov theory. The situation
concerning numerical simulations, on the other hand, is not so straightforward: 2-di
mensional models of disk galaxies are often used, and the relaxation results pre
sented here apply. Therefore, 2-dimensional N-body codes, if performed in a suffi
ciently precise way, are not faithful simulation of the Vlasov equation and thus do
not apply to actual disk galaxies; fortunately, numerical simulations are themselves
subject to further approximations which tend to reduce the severity of this diffi

culty. For a more detailed discussion reference is made to Rybicki (1972).

2.3 THE ORBITAL RELAXATION TIME OF NON-INTEGRABLE SYSTEMS: THE EFFECTS OF LYAPUNOV
INSTABILITY

Many numerical tests have been performed during the last two decades concerning
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the applicability of the classical expression for the relaxation time Tbin given in
section 2.2. Some of them (e.g., Miller 1964), although they were based on 3-dimen
sional models of stellar systems and thus were free from the criticism arisen by
Rybicki (1972), showed a general and fast exponential divergence of systems start
ing very close to each other in the 6N-dimensional phase space; even when no close
encounters occurred, such systems diverged exponentially at a rate much larger than
that estimated by Chandrasekhar (1960). A rough explanation of this peculiar behav
iour was put forward by Miller (1966) in terms of "polarization effects in the dif
ference medium (system)". Put in another way, he gave an original formulation of the
well-known problem of Lyapunov instability in dinamical systems, but a number of
wrong conclusions were drawn (e.g., regular orbits do not show an exponential but
rather a linear divergence; see below); the roughness of this formulation lies in
deed in the fact that it cannot discriminate integrable from non-integrable systems.
The aim of the forthcoming discussion is just to explain these concepts in some more
detail and to describe the effects of Lyapunov instability on the relaxation of dy

namical systems, with particular reference to stellar systems.

In the framework of the ergodic theory dynamical systems are divided into two

classes:

- Integrable systems, for which the number of integrals of motion is equal to the

number of degrees of freedom and the phase space trajectories lie on N-dimensional
tori.

- Non-integrable systems, whose classification is given by increasing the degree of

their statistical properties: dynamical systems with divided phase space (i.e.,
containing both motion on N-dimensional tori and chaotic motions), ergodic sys
tems, systems with weak and n-fold mixing, K-systems and finally Bernoulli sys
tems, which are a subclass of K-systems. More precisely, the classification cri
terion is the rate at which an initial cell of phase space tends to cover uniform
1y the energy hypersurface. In mixing systems an initial cell complicates its
shape in such a way (i.e., preserving its volume) as to cover uniformly the en
ergy asymptotically; in this sense, a mixing system in a non-equilibrium state
tends asymptotically to equilibrium. K-mixing systems, which possess maximally
strong statistical properties, tend to such microcanonical equilibrium state with

an exponential rate, the relaxation time being proportiona] to the Kolmogorov
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entropy; one of their main properties is, in fact, the decay of phase space tra

jectories into beams of exponentially approaching and expanding trajectories

(transversal fibers).

Several attempts have been made to relate the exponential divergence observed 1in
the above-mentioned numerical experiments to the peculiar behaviour characterizing
strongly non-integrable systems. From the point of view of ergodic theory, this can
be attained by reducing the problem of a self-gravitating N-body system to the inves
tigation of the behaviour of a geodesic flow on a Riemannian manifold, making use of
the Maupertuis principle. It is found that the negativity of the 2-dimensional curva
ture of this manifold is a sufficient condition for an exponential deviation of the
geodesics, and the minimum of its absolute value defines an orbital relaxation time
(e.g., Gurzadyan and Savvidy 1986; Gurzadyan and Kocharyan 1987a,b). Although this
geometric method for investigating the stochasticity of dynamical systems is attrac
tive from a formal point of view, other methods have been found to be more predic

tive from a numerical point of view; they are based on the calculation of the so-

called Lyapunov characteristic exponents Xi’ which will now be discussed in some de
tail. An important property of non-integrable systems is to contain a definite frac

tion of irregular orbits, also qualified as stochastic, semi-ergodic etc., exhibit

ing an exponential sensitivity to the initial conditions and to perturbations (as,

e.g., the granularity of the system), which thus are rapidly amplified; in contrast,

regular orbits are only linearly sensitive® This intrinsic sensitivity is measured,

indeed, by the Lyapunov exponents. After a certain time the largest one, if positive,

will dominate the divergence, and is therefore the best physically observable one;

it determines an (individual) orbital relaxation time Torb™ x%;xz which is not a
global relaxation time of the system (see also below; for a more detailed discussion
see Pfenniger 1986). The other X5 can be computed by various numerical techniques.
For an autonomous (i.e., time-independent) Hamiltonian system with n degrees of free
dom there exist 2n Lyapunov exponents, two of which vanish for every isolating inte
gral of motiongand the others appear in pairs (- xi’ l1)5 each isolating integral,
therefore, makes the motion robust in two directions of phase space, which are char
acterized by a simple linear divergence. As a consequence, actions characterize reg

ular orbits, while the positive Lyapunov exponents characterize irregular orbits.

The sum of these positive exponents turns out to be just the (specific) KoTmogorov
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entropy (see also the discussion made in the previous paragraph), which otherwise
vanishes for regular orbits, so that only non-integrable systems evolve irrevers
ibly.

We now turn to analyze the most direct physical implications of Lyapunov instabil

ity. The extreme sensitivity of irregular orbits to the initial conditions and to
perturbations makes estimates of the binary relaxation time clearly meaningless.
This difficulty also occurs when collective effects are taken into account, because

the rapid phase-mixing mechanisms associated with this orbital instability can damp

self-sustained oscillations of the system on timescales much shorter than the dynami
cal timescale, which in turn is generally comparable to the inverse of the growth
rates of these oscillations (i.e., no coherent process such as a self-sustained wave
can be maintained over the relevant timescales). A global relaxation time is thus no
more meaningful because, apart from the impossibility of defining a binary or a col
lective relaxation time, one has to consider also the fact that the Lyapunov relax

ation time zbr can be very different from orbit to orbit since different values of

Zmax are 1nvo13ed. On the other hand, binary encounters and collective effects are
the most effective relaxation mechanisms in integrable systems, or in those regions
of nearly integrable systems where regular orbits are dominant. Moreover, classical
estimates of the relaxation time still hold in non-integrable systems, provided it
is defined in such a way as to refer to the exchange of isolating integrals alone.
The same considerations apply as regards the formal validity of the stochastic equa
tions which will be investigated in section 3.2; in non-integrable systems the dif
fusion in velocity space produced by Lyapunov instability cannot in fact be disre
garded (see also below). In non-integrable systems the non-uniform coverage of phase
space by irregular orbits makes the use of the Vlasov equation and the applicability
of Jeans theorem questionable as well (cf. Binney 1982). The question thus naturally
arises how often the departure from integrability of observed stellar systems can

be neglected; but since all kind of systems exist, from systems far from integrabil
ity as small open clusters up to nearly integrable systems as spherical globular
clusters, no general rule can be given. Analytical methods usually apply to nearly
integrable problems, so that the successful models are strongly biased toward "nice
1y symmetric situations. Attention must be paid, however, not to extrapolate super

ficially the results so obtained to real stellar systems; from KAM (Kolmogorov,



- 24 -

Arnold, Moser) theorem it follows, in fact, that asymmetries can generally destroy the
principal isolating integrals of motion, since stochasticity invades phase space in a

complicated manner as a perturbation grows, sometimes abruptely (Arnold diffusion).

Note, however, that Nekhoroshev theorem on Arnold diffusion shows that under quite

mild assumptions this is a very slow phenomenon (see, e.g., Benettin, Galgani and
Giorgilli 1985; Benettin and Gallavotti 1986; Benettin 1986, 1987; Galgani 1985).

So far we have more or less tacitly assumed to be in time-independent or at least
in weakly time-dependent situations. Indeed, the “"autonomous" assumption is not re
strictive at all; we can, in fact, always transform a time-dependent Hamiltonian Sys
tem into an autonomous Hamiltonian system by extending its phase space in such a way
as to include the time coordinate. The considerations made in the previous paragraph
can thus be applied even to stellar systems in a collapse phase; We shall now discuss

some of their physical implications in relation to the theory of violent relaxation

(Lynden-Bell 1967; see also section 4.2). In some cases it may happen that the col
lapsing system is integrable, so that some non-classical individual stellar integrals
are conserved; this situation would not be radically different from a steady-state
system. But what makes the concept of violent relaxation nevertheless mostly correct
is that integrable systems are very rare, so that a spherical collapse is expected

to produce a large fraction of stochastic orbits; as a consequence of their exponent
ial sensitivity to perturbations, strong phase-mixinggmechanisms become operative and
Tead to an efficient relaxation of the system. The violence of the relaxation is thus
the consequence of the strongly non-integrable situations considered. For a more de

tailed discussion reference is made to Pfenniger (1986).

FOOT-NOTES

The term "equilibrium" is properly referred to the thermodynamical state which is
ultimately attained in the process of randomization of particle velocities; in any
other time-independent situation the term "stationary" is commonly used. In the
following we shall drop this distinction whenever no ambiguity arises, bearing in
mind, however, that such a distinction does indeed exist.

The fluctuations of the interaction field that a particle experiences during its
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motion among the other particles of the system can be Fourier analyzed (under the
assumption of local homogeneity) into wave components with different wave-vector

k. The distinction between binary and collective encounters is based, indeed, on

the different typical wavelengths involved in the two cases, which are to be com
pared to the mean interparticle distance.

The self-consistency property concerning the mean fields and the self-sustenance

property concerning the oscillation modes express the fact that these large-scale

phenomena are produced by the distribution of matter in the system (Poisson equa
tijon), and thus are not externally imposed.

Bear in mind that the virial theorem implies a relaxation in the configuration

space, which generally is attained in a dynamical timescale Tcr , the

< T,
0SS bin
latter being associated with the relaxation in velocity space.(see the discussion
on the validity of the collisionless Boltzmann equation in strictly disk systems).
Large stellar systems, for instance, have a stationary shape but have not yet
reached a state characterized by a complete randomization of particle velocities.
This result can be expressed in a compact form relating the relaxation time rbin
to the epicyclic frequency x and to the Jocal stability parameter Q of infini

tesimally thin, one-component, self-gravitating disk systems in differential ro

tation (for the definition of Q see Toomre 1964):

XT ~ i
bin (w/2) Q . (2.3)

The exponential or the Tinear character of this sensitivity is restricted to the

linear regime. In a non-linear regime, in fact, saturation effects occur due to
the presence of damping terms neglected in the linear treatment.

If‘xmax is close to zero (nearly regular orbits), then a more detailed analysis,

as for instance that performed by Chandrasekhar (1960), is required since the re
laxation time turns out to be directly dependent on the characteristics of the
system. '

The number of isolating integrals of motion is connected with the symmetry prop

erties of the system, and therefore depends on the form of the (self-consistent)
potential (see, e.g., Freeman 1975; Woltjer 1967).

This extremely rapid phase mixing is not to be confused with the ordinary phase

mixing occurring in gquasi-stationary nearly integrable systems, which instead

proceeds only linearly in time (see, e.g., Frieman 1975).
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CHAPTER 3. COLLISITONAL RELAXATION PROCESSES:
THE FOKKER-PLANCK APPROACH AND OTHER
ALTERNATIVE DESCRIPTIONS

3.1 INTRODUCTION

The Fokker-Planck equation has widely been applied to the study of plasmas and
stellar systems for describing the evolution of the one-particle distribution func
tion when collisional effects are taken into account. Its derivation is based on a
number of assumptions which in general are not clearly specified or are tacitly taken
for granted. In this chapter we shall inquire into the validity of this equation by
analyzing the underlying assumptions in some detail. The following discussion does
not pretend to be exhaustive, because most of the mathematical concepts and tech
niques inherent in this description are subtle and cannot thus properly be expressed
and discussed in this context. Reference is made to books on probability theory and
stochastic processes, where rigorous derivations of the Fokker-Planck equation (cf.
Kolmogorov forward equation) are given (e.g., Cox and Miller 1965; Feller 1968, 1971;
Friedman 1975, 1976; Kac and Logan 1987; Montroll and West 1987; Nelson 1967; Ventsel
1983; Wax 1954); see also the review papers by Haken (1975), Li (1986), Spohn (1980).
General reference is made also to books on plasma physics (e.g., Boyd and Sanderson
1969; Hinton 1983; Ichimaru 1980; Krall and Trievelpiece 1973; Schmidt 1979; Sivukhin
1966) and stellar dynamics (e.g., Binney and Tremaine 1987; Saslaw 1985). Some other
more general and/or correct, but less predictive, approaches will also be described.

The evolution of the one-particle distribution function f(x,v;t) in the 6-dimen

sional phase space w is described by the Boltzmann equation

df _ 0F | [ry] - (af

dt = ot 55)0011’

(3.1)

where H is the Hamiltonian of the system, self-consistently related to f via the
Poisson equation, the symbol [..,..] denotes the Poisson brackets, and the term

(of/at) represents the contribution of particle encounters to the time-variation

coll
of f. In general this is an integro-differential equation, which can be reduced to a

differential equation only by making certain assumptions on the collision processes.
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For instance, if in the relevant timescale collisional effects can be neglected (as
in high-temperature plasmas and large stellar systems, where the relaxation time
largely exceeds the dynamical timescale), we recover the Vlasov equation

of
at

+ [f,H] =0 (3.2)

it states that f is a conserved quantity along the particle orbit. For steady-state
systems this implies that f is a function of the isolating integrals of motion alone

(Jeans theorem; see, e.g., Chandrasekhar 1960; Lynden-Bell 1962; for some controver

sial points see section 2.3). The collisionless Boltzmann equation should not be con

fused with the Lijouville equation

(N)
CARER F0 ST R (3.3)

at
(N)

which describes the evolution of the N-particle distribution function f (51"°’5N;
X],..,XN;t) in the 6N-dimensional phase space I without any assumption on the colli
sional nature of the system.

3.2 MARKOVIAN STOCHASTIC APPROACHES: THE CONCEPT OF DYNAMICAL FRICTION

When the effect of encounters is taken into account, the only way to reduce the
Boltzmann equation to a differential equation, i.e. to make it operate locally in
time, is to require that the system has no memory in the collision processes (ergodic
assumption), so that a test particle suffers random displacements in velocity space
generated by the fluctuating part of the interaction field in a manner that can be
described in terms of a random walk; this is equivalent to state that the increments
of velocities are regarded as stochastically independent in disjoint time intervals.
In systems whose dynamics is governed by long-range interactions, such as indeed
plasmas and stellar systems, this assumption may not be well justified because corre
lations among particles cannot be disregarded a priori; collective effects, in fact,
always play an important or even dominant role in these two kinds of systems (in the
gravitational case even more than in the electromagnetic case because no Debye shield
ing length, i.e. no local neutrality, exists). We then keep this as a working assump

tion, bearing in mind that the resulting evolution equation neglects collisional col

Tective effects; a different approach which takes them fully into account will be dis
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cussed in section 3.3.

The standard approach consists in deriving a diffusion process in velocity space

(see, e.g., Chandrasekhar 1943a,b,c,d). The evolution of the distribution function

f(x,v;t) is then written in the form of a Fokker-Planck-type equation:

S [oH]= Yy (qup Femfur), (3:4)

where we recall that H is the Hamiltonian related to the smoothed out distribution

of matter, q = q(v) is the diffusion coefficient and = m(v) is the coefficient of
.. . .o .

dynamical friction appearing in the Langevin equation; these two coefficients are re

Tated by the condition that a given Maxwellian distribution function f remains in

M

variant in time, i.e. (an/at) =0, so that 7 turns out to be connected with the

coll
reciprocal of the relaxation time of the system. More standard forms of the Fokker-

Planck equation are the following:

o o <oud\, 4 O AU AU .
X i [BH]e- 2 (pSAud ), 4 r (3.4)
ot + 1A H] U ( At )+ 290 9y <F At )

(see, e.g., Hénon 1973), where the averages are taken with respect to a transition

probability distribution of gaussian type, and

DZ
PLARIV

: . .
sorLoHl- 5 (efle s (Dig#) (54

found in most plasma physics textbooks, where A1 and Dij are referred to as the dy
namical-friction vector and the diffusion tensor, respective1y? Sometimes it is more
useful, especially in the case of stellar systems, to use the action-angle variables
as the proper canonical coordinates in virtue of their physical meaning (the actions
correspond to adiabatic invariants); the Fokker-Planck equation retains exactly the
same form with the velocities Vi replaced by the actions Ji'

Now it should be born in mind that the sample paths of every diffusion process
are continuous (with probability one), so that the random velocity of the test ob
ject varies continuously in the course of time. Because of this fact, the Fokker-
Planck approach seems not to be suitable to describe systems governed by the electro

magnetic or the gravitational interaction, since a close encounter of a test par
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ticle with a field particle is able to produce a large change of velocity within a
small time interval, clearly contradicting the notion of continuity. This difficulty
arises because the ergodic assumption is indeed more general than the choice of a
diffusion process; in other words, the phrase "stochastically independent events in
disjoint time intervals" is not equivalent to the property "diffusion", since there

exist infinitely many Markov processes which share only the first property but not

the second (these concepts will be explained in some more detail in the forthcoming

discussion). If the stochastic variations in velocity space can approximately be de

scribed as a Markov process on the whole, the question arises whether it is uniquely
- determined by the properties of the fluctuating part of the interaction field, and
whether the jump phenomena mentioned above can be explained by an analysis of its
sample paths alone without employing additional assumptions. Several attempts have
been made to answer this question, and more in general to formulate a statistical
theory in the framework of stellar dynamics, but we are still far away from a satis
factory understanding (e.g., Chandrasekhar 1941, 1943a,b,c,d; Chandrasekhar and von
Neumann 1942, 1943 and Chandrasekhar 1944a,b; see also Chandrasekhar 1960 for a re
view; Camm 1963; Lee 1968; Tscharnuter 1972).

Bearing this fact in mind, we shall now briefly discuss some basic ideas which
lead to the derivation of another, still not complietely satisfactory, stochastic
differential equation for plasmas and stellar systems. Let us first reformulate more

definitely the conditions of a random walk: the total increment of velocity within

the time interval (0,t), where t is much larger than the characteristic time T dur
ing which an elementary fluctuation of the random interaction field takes place, can
be written as a sum of a great number of 1ndependent3random variables representing
the (at least on the average) small displacements in velocity space after the small

amount of time T has passed. Now the crucial point is the determination of the dis

tribution law of this sum. This problem, however, is solved exhaustively by the so-
called extended central Timit theorems of probability theory, which were essential
1y established by Lévi and Khintchine in the 1930's. In general, a convergence to

the normal (i.e., gaussian) distribution and hence a diffusion is expected, but the

probability distribution of the random gravitational field is shown to be asymptotic

ally the Holtsmark distribution, whose characteristic function (Fourier transform)

is h(o0) = exp(—a|gj3/2) (however, even this distribution contains some unphysical
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features; see, e.g., Chandrasekhar 1941, 1943a, 1960; Feller 1971). The Holtsmark
distribution is a symmetric stable distributionf and belongs therefore to its own
domain of attraction. This leads necessarily to a distribution law for the total in
crement of velocity within the time interval (0,t) with characteristic function
plw) = exp(—atlgﬂB/Z), where ¢ = aT]/Z? @is the Fourier transform of the transi

tion function belonging to the Markov process which is called the stable process

with characteristic exponent 3/2. From general theorems on Markov processes it fol

Tows that its sample paths are right-continuous (i.e., jump phenomena occur). It
can also be shown that the mean number of jumps increases to infinity as their
heights converge to zero, and conversely; this is a very important property because,
if one identifies these jumps as the results of far and close encounters respective
ly, the importance of far encounters is emphasized on the one hand, but spontaneous
large changes in velocity due to close encounters are also possible on the other
hand.

So far dynamical friction acting in a purely systematic manner has been ignored;

taking it into account, a stochastic equation for the stable Markov process with

characteristic exponent 3/2, analogous to the diffusion equation derived by Chandra

sekhar, can be written down (Tscharnuter 1972):

2 3/
XM= (Vs) (@8)«Ve(nte), (3.5)

where ¢ appears to play a role similar to the diffusion coefficient g in Chandrase
khar diffusion equation. The 3/4 -power of the Laplace operator'Vi is uniquely de
fined in the sense of its spectral representation: this elliptic pseudo-differential
operator (see, e.g., Hormander 1976, 1985; Taylor 1981) acts on a given function f
3)3/4f(x) is the functionlgﬂ3/z%(gg),

where ? denotes the Fourier transform of f. The correct derivation of this term in

in such a way that the Fourier transform of (-V

the previous evolution equation is not simple and requires sophisticated functional
analysis techniques (semi-group theory). Since it seems impossible to solve Tscharnu
ter stochastic equation in the whole 6-dimensional phase space analytically as well

as numerically, its investigation relies on the assumption of spatial homogeneity,

i.e. [f,H] =0, which is a quite drastic assumption for stellar systems; bear in

mind, however, that this assumption is already inherent in the derivation of the



- 37 -

Holtsmark distribution, and is used also to calculate explicitly the coefficients of
diffusion and dynamical friction in the Fokker-Planck equation. In contrast to the
Fokker-PTanck equation, it can be shown that a Maxwellian distribution function fM

is not an invariant distribution of the given Markov process, i.e. (an/at) Z0;

this fact causes troubles since the relation between ¢ and 7 cannot directliogl es
tablished, and might have important physical implications.

Now the question arises which of the two Markovian stochastic approaches described
here is more correct from a physical point of view. Both of them, in fact, seem to

give rise to unphysical features: the Fokker-Planck approach predicts continuous

sample paths, whereas the Tscharnuter approach, although it is characterized by
right-continuous sample paths (jump phenomena), predicts too high probabilities for
high field values (the Holtsmark distribution has infinite variance); in other words,
they seem to overestimate the effect of distant and close encounters, respectively.
The unphysical features present in the two cases are intimately related and seem un
avoidable; in fact, every finite-variance distribution for the interaction field
gives rise to a normal distribution for the total increment of velocity (central
1imit theorem), which is at the basis of the Fokker-Planck approach for diffusion
processes. Any attempt to regularize the Holtsmark distribution for avoiding high-
field divergences falls therefore in this case. It is difficult to judge whether
these are real unphysical features because, for instance, the notion of continuity
(with probability one) of the sample paths is not intuitive at all (it implies the
existence of a stochastic process with continuous sample paths equivalent to that
physically observed). Apart from these difficulties, which however should be born in
mind, the Fokker-Planck equation has widely been used in view of its higher Tlevel of

predictability.

3.3 GENERAL STATISTICAL APPROACH: THE CONCEPT OF DYNAMICAL FRICTION REVISED

As mentioned in section 3.2, an unphysical feature inherent in the ergodic assump
tion, used to reduce the Boltzmann equation to a differential equation, lies in the
fact that this approach does not take collisional collective effects into account,

which cannot be disregarded a priori in systems whose dynamics is governed by long-
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range interactions. A different description which overcomes this difficulty and is
not restricted by the assumption of spatial homogeneity, inherent in the two previ
ous approaches, will now be discussed.

Statistical correlations amongrparticles arise both from the initial probability
distribution and the dynamics. It seems plausible that in most cases the disorganized
motions of the particles will disrupt groups which were initially nearby, quickly
erasing the original correlations; the resulting correlations will then be determined
by the dynamics and the single-particle distribution function alone. In order to ob
tain a closed theory in which the one-particle distribution function is the only vari

able, Gilbert (1968) (see also Gilbert 1972) made the basic assumption that the prob

ability distributions have evolved from initially uncorrelated states (although it is

possible to imagine also quite different situations). The strategy he adopted in its

theory on collisional collective processes in stellar systems consists in a decoupl

ing of the BBGKY (Bogolioubov, Born, Green, Kirkwood, Ivon) hierarchyGaccomp1ished
by a perturbation series expansion in powers of 1/N , the inverse of the total num
ber of stars in the system, with the aid of certain combinations of the distribution
functions called the correlation functions g(s) (they represent multi-particle corre
lations). A system of two coupled evolution equations of integro-differential type
for f(]) and 9(2) is thus obtained, which in principle may simultaneously be solved.

The simplest situation occurs when the system is in equilibrium with respect to pure

1y collective motions, and the only time-dependence is through the slow, secular ef

(M)

fects of stellar encounters; in that case a kinetic equation for f alone can for
mally be derived (the corresponding equation of plasma physics is the Balescu-Lenard

equation).

(1) (2)

The two coupled evolution equation for f and g derived for stellar systems
are similar but not identical to the corresponding plasma equations. The differences
come about because the latter are based upon a perturbation series expansion in
powers of the 1nyerse of the number of electrons contained in a Debye sphere (see,
e.g., Rostoker and Rosenbluth 1960), which is independent of the total number of
electrons in the system, usually taken as infinite. On the other hand, the role of
the Debye screening 1ength for a stellar system is played by the linear dimensions
of the system itself; the number of stars in a Debye sphere is thus equal to the to

tal number of stars, so that N has a dual meaning. Another point which should be
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stressed in this context is the fact that, while it is reasonable to assume spatial
homogeneity in plasmas (not subject to strong external fielids), the same is not true
in self-gravitating systems, because the absence of screening effects makes them natu

rally inhomogeneous on large scales. The mathematical counterpart of this different

physical feature is expressed by the fact that an explicit elimination of 9(2) in

terms of f(l) cannot be achieved in the gravitational case, but it is still possible

(2) (1)

to construct a formal solution (determining g as a functional of f' 7) and to in
terpret it in terms of the under]ying physical processes.
The physical content of this formal solution can more easily be understood in

terms of the auxiliary concept of gravitational polarization (for the plasmistic ana

Togue of this effect see, e.g., Balescu 1960). It represents the response of the sys
tem to the gravitatioﬁa] field of a selected star moving in a specified orbit. In
calculating this response one ignores collisional effects entirely and treats the
field of a selected star as a small externally applied perturbation; the polariz
ation is the change in the single-particle distribution function that this perturba
tion induces. The final result of this analysis is that collisional effects in stel
lar systems, i.e. dynamical effects of order 1/N (this ordering holds provided the
system is in equilibrium with respect to purely collective motions), may be divided
into two distinct phenomena:

- The gravitational force exerted on each star by the polarization (wake) it in

duces, which may be termed polarization drag (it represents a more precise formu

lation of the concept of dynamical frictionz first introduced by Chandrasekhar

1943b). It is expected to retard the motion of a test star, the deceleration being
directly related to its velocity; moreover, since the polarization induced by a
given star is proportional to its mass, we expect heavy stars to be siowed more ef
fectively than light stars. It may be worth observing also that, since the charac
teristic distance over which the gravitational polarization extends is of the same
order as the linear dimensions of the stellar system, a given star cannot be
thought of as being affected only by stars in its immediate neighbourhood.

- The effect upon each star of the random fluctuating field resulting from the super
position of the fields of the other stars, each modified by its own polarization;
these stars are to be considered to move in unperturbed orbits and not to respond

to the influence of the test star under consideration. It may be termed statisti
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cal acceleration. The statistical acceleration acting on a star increases on the

average its energy and, because of the identity between the inertial and the gravi

tational mass, affects all stars in the same way.
A nice description of these two effects can be found in Hénon (1973) as well. A simi
lar decomposition exists also for the Fokker-Planck collisional term calculated under
the assumptions of spatial homogeneity and binary encounters; there, however, the po
larization term is incompletely calculated and the statistical term consists of a
superposition of bare (i.e., not modified by polarization effects) interparticle
forces. To stress the contribution of these two effects to the collisional relaxation

of stellar systems, the resulting kinetic equation for the evolution of the single-

particle distribution function can be written in the following form:

e or Tl At @ B 00

where the factor (1 - 1/N) reflects the fact that the test star feels the average
gravitational acceleration due to the other N-1 stars, and not the fota] average
gravitational acceleration. The competition between polarization and statistical ef
fects is expected to lead to a relative concentration of heavier stars in the central
regions of stellar systems and Tighter stars in their outer parts, i.e. an approach

to equipartition (see, e.g., Hénon 1973; Lynden-Bell 1973).

The theory sketched here takes thoroughly into account the effects of collective
interactions and spatial inhomogeneity which are absent from more elementary treat

ments; as a consequence, no long-range divergence appears as it does in the Fokker-

Planck approach (when the coefficients of diffusion and dynamical friction are evalu
ated according to the standard treatment; see, e.g., Braginskii 1965). It is inter
esting to note that although the equations of plasma physics and stellar dynamics
are very similar, the mechanism for the elimination of this divergence is different
in the two cases. In p]aémas the repulsive interparticle force results in Debye
shielding which cuts the force off, eliminating the divergence. In stellar systems
the attractive interstellar force results in anti-shielding or amplification of the
"bare" gravitational force of a star; this tends to make the divergence worse, and
it is only the limited spatial extent of the system that finally removes it. There

is, however, in the present theory a divergence at small distances, arising because
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the perturbation series expansion in powers of 1/N is non-uniformly convergent. The
physics behind this is quite simple, since this divergence is precisely equivalent
to that occurring in elementary Fokker-Planck treatments, where the impulse approxi
mation (straight-line orbits) fails at small impact parameters (see, e.g., Braginskii
1965); the corresponding failure in the Gilbert approach can easily be expressed in

(1) (2)

terms of f . The suppression of this unphysical divergence can be achieved

(2)

and g
by retaining all terms in g appearing in the two original exact coupled equations;
simpler approaches, in which the true inverse-square force is replaced by an effec

tive fictitious force, can also be used.

FOOT-NOTES

The Langevin equation represents an attempt to rewrite the equations of motion in

many-particle systems in such a way as to split the contribution of the smoothed
out distribution of matter from the effect of the fluctuating part of the interac
tion field (of the perturbers):

v=a+R-nv, (3.7)
where a is the systematic acceleration produced by the former, R and - nv the

stochastic acceleration and the dynamical friction due to the action of the lat

ter, respectively.

g This definition is different from that given by Chandrasekhar, apart from the ob
vious generalizations inherent in this Tast equation.

5 The ergodic property characterizing random walks "no memory of the initial state
after a macroscopically small time intervall" or equivalently “stochastically in
dependent events in disjoint time intervals" is stronger than the Markovian prop
erty "future development dependent only on the present state, and not on the pagf
history of the process or on the manner in which the present state was reached".

4

Stable distributions play an important role in the theory of stochastic processes
as a natural generalization of the normal distribution. The importance of the nor

mal distribution N is largely due to the central limit theorem. Let X.,..,X be

mutually independent variables with a common distribution F having zero expecta

tion and unit variance, and define SnEEX] +..+ X ; the central limit theorem
-n - -
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-1/2

states that the distribution of §n n tends asymptotically to N. For distribu

tion without variance similar Timit theorems (extended central Timit theorems)

can be formulated, but the norming constants must be chosen differently; the in

teresting point is that all stable distributions and no others occur as such

Timits.
Chandrasekhar's (1941) use of a gaussian distribution is justified by the fact

that the modified Holtsmark distribution, that he derived for avoiding some un

physical divergences at small distances, has finite variance and hence falls into
the cases considered by the central 1imit theorem; the corresponding evolution
equation 1is thus of diffusion type.

The BBGKY hierarchy of equations is obtained by integrating the Liouville eguation

over the phase space of all but s particles (1<s<N-1). It turns out that the
evolution equation for f(s) involves f<s+1) as well, so that these N-1 equations
are all coupled; the closure of the system is given by the Liouville equation it

(N)

self, as it involves f alone.

The important role played by dynamical friction especially in situations of astro

physical interest has stimulated many analytical works confined to nearly integr
able systems (e.g., Tremaine 1981; Palmer and Papaloizou 1982, 1985; Palmer 1983;
Tremaine and Weinberg 1984) in addition to those listed in section 2.2; they all
stress the crucial contributions of’the'rESonances where precisely in an integr
able system slightly perturbed irregular orbits first appear. For a more exhaus

tive and detailed discussion reference is made to Manorama (1986).

FIGURE AND TABLE CAPTIONS

Fig. 3.1 Oversimplified hierarchical scheme for stochastic processes.

Table 3.1 Comparison between the three basic approaches discussed in this chapter.
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CHAPTER 4. COLLISIONLESS RELAXATION PROCESSES:
THE ROLE OF COLLECTIVE EFFECTS IN
ELECTROMAGNETIC AND GRAVITATIONAL
PLASMAS

4.1 INTRODUCTION

In the previous chapters we have often stessed the fact that collective effects
always play a crucial role in systems whose dynamics is governed by long-range inter
actions, such as plasmas and stellar systems; large-scale organized motions and co
herent processes such as self-sustained waves in isolated systems (e.g., differen
tial rotation and spiral density waves in disk galaxies) are indeed expressions of
the collective nature of such interactions. From a mathematical point of view, one

of the main implications of this Ties in the fact that a local analysis is often no

more suitable for describing electromagnetic and gravitational plasmas, and a global
analysis is thus required (i.e., boundary conditions are to be taken into account).
In the gravitational case a further mathematical complication arises from the fact
that stellar systems are naturally inhomogeneous, because the gravitational force is
always attractive (there is, in fact, only one gravitational charge) and screening
effects are thus absent; the presence of these large-scale inhomogeneities generally
requires the use of certain asymptotic perturbation methods, whose validity depends
upon the value of some local parameters characterizing the equilibrium state of the
system.
In this chapter we shall restrict only to one particular role played by collec

tive effects in electromagnetic and gravitational plasmas, namely the enhancement of

relaxation processes by collective effects, a complete discussion of the general

topic being extremely wide (see, e.g., Fridman and Polyachenko 1984) and not direct
ly related to the argument of the thesis. To be more specific, we shall analyze col

lisionless relaxation processes alone (i.e., we shall adopt the Vlasov description),

@ . . .
The term "gravitational plasmas" is often used to indicate stellar systems in vir
tue of the fact that they are in several respects dynamically similar to ordinary
(electromagnetic) plasmas (see, e.g., Bertin 1980; Lin and Bertin 1981).
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since the role of collective interactions on collisional relaxation processes has al
ready been discussed in section 3.3; in the framework of the Gilbert (1968) approach,
this corresponds to drop the assumption that the system is in equilibrium with re
spect to purely collective motions and to neglect particle correlations at all. Two
limits of the weakly non-linear theory of plasma waves, which gives the correct frame
work for studying such collective relaxation processes, will finally be discussed.
General reference is made to the review papers by Kulsrud (1972) and Sagdeev (1966),
and to the books on plasma physics and stellar dynamics Tisted in section 3.1; other

more specific references will be given later on.

4.2 ENHANCEMENT OF RELAXATION PROCESSES BY COLLECTIVE EFFECTS

It is a well-known fact that in a plasma the rate of relaxation towards the equi
Tibrium state can be enhanced by collective effects; in virtue of the analogy be
tween electromagnetic and gravitational plasmas, the question naturally arises
whether a similar enhancement may be observed in stellar systems as well. From an ob
servational point of view, the existence of rapid relaxation mechanisms can be in
ferred from the fact that galaxies seem well relaxed, as they exhibit well-developed
velocity distributions, and from the consideration that in such systems ordinary two-
body collision processes operate on timescales largely exceeding even the Hubble time

(Zwicky's paradox). An important step to explain this phenomenon was made by Lynden-

Bell (1967), who formulated the theory of collisionless violent relaxation (see also

section 2.3). This theory, although it has a great heuristic advantage and has stimu
lated a lot of interest (e.g., Saslaw 1968, 1969, 1970; Goldstein, Cuperman and

Lecar 1969; Cuperman, Goldstein and Lecar 1969; Shu 1978, 1987; Madsen 1987), never
theless cannot avoid certain difficulties; one of these lies in the fact that it de
scribe essentially the non-equilibrium phase of evolution (collapse) of stellar sys
tems and not their quasi-equilibrium phase. Among many further attempts to understand
the relaxation of collisionless stellar systems it is worth mentioning that of
Severne and Luwel (1980), where the contribution of fluctuations of the self-consist
ent field to the relaxation process has been considered (see also section 4.4). Be

fore considering the gravitational case in more detail, it is better to review such
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phenomena in plasmas, since they have long been studied just in this context. Because
of the reasons mentioned at the biginning of this section, the extension of these re
sults to stellar systems is not straightforward.

Examples of rapid relaxation in plasmas and the corresponding relaxation times are

the following:
3,-1 -6 . -4
D) Tbinﬁv(]o - 10 )

. A similar situation in which no exponential relaxation occurs is provided by

- The confinement of a plasma in a mirror machine: TcoTlhd(nA

T
bin
the particles of the van Allen's belt trapped (mirror effect) in the earth dipole
magnetic field.
~(n 3)—]v
coll beam "D bin’
Note the different orders of magnitude involved in the two cases of binary and col

- The two-stream instability: 7

lective relaxation processes. The Debye shielding length lD is defined as

(__Eifﬂ___)dl= C!ih) (4.7)
LTTme® wel’

where n is the number density of the relevant particles contributing to the relax

Ao

ation (ions in the first example, electrons in the second examp]e),(up their plasma

frequency and Vi their one-dimensional thermal velocity. These examples are only

two of the possiz1e cases in which enhancement of relaxation can occur in a plasma,

but in some sense they are typical and the following comments about them are relevant:

- These instabilities are in some sense weak. Strong instabilities tend to destroy
the equilibrium; these weak instabilities work instead on a smaller scale, lead
ing to a rapid relaxation towards a situation in which the equilibrium is no more
unstable.

- These instabilities can occur in a time-dependent situation, in which case they
usually Tead to a relaxation at a rate comparable to the growth rate of the insta
bility, or in a steady state, in which case they lead to a marginally stable equi
Tibrium with a relaxation rate in balance with whatever external forces tend to
disturb it. '

- The process of growth of the waves and relaxation towards the equilibrium are in
timately related. They can generally be interpreted as a maser in which the un

stable equilibrium corresponds to an overpopulation of the emitting states for

the wave; the induced emission process is then the scattering process, as well as
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the process which makes the wave grow.

- The wave scattering is a collective process in which the particles collide with
bunches of particles.
It turns out that these phenomena can no longer be described in the framework of

a linear theory of plasma waves. There are two limits in which the weakly non-Tinear

theory is tractable. In the first case, where there are only a few waves of finite
amplitude, it is possible to treat each wave individually; this is called the theory

of weak coherent waves. The second case concerns the situation in which so many waves

are present that a statistical approach can be employed to find those features of the
time evolution of the plasma state which do not depend on the details of the initial

phase of the waves (random-phase approximation; see, e.g., Pines and Schrieffer 1962);

other approaches resembling the van der Pol method used in non-linear mechanics (see,

e.g., Starzhinskii 1980) can also be employed. This is called the theory of weak tur

bulence, in which three basic interactions are taken into account:

- The wave-particle interaction (quasi-linear effect), studied in the framework of

the quasi-linear theory, which is particularly strong near the resonance @ = k-v

when no external magnetic field is app]iedf

- The non-linear wave-wave interaction (secdnd—order effect), also known as the res
onant-mode coupling, characterized by the resonance condition(u] +(D2 + ag =0,
Eq + 52 + 53 = 0.

- The wave-particle-wave interaction (third-order effect), also known as the non-
Tinear wave-particle interaction, characterized by the resonance conditionco} t
tw, = (l<_] i:_l_<_2)-y_.

Both theories proceed essentially out of an iteration of the Vlasov equation, and

fail when the wave amplitudes become so large that either the perturbation theory

fails to converge, or the particle orbits become so distorted by the wave fields that
the equilibrium distribution function can no longer be used to calculate accurately

the linear wave properties of the plasma; the most usual example of such a distortion

of orbits occurs when the particles become trapped in the troughs of plasma waves.

4.3 THE QUASI-LINEAR THEORY OF PLASMA WAVES

The quantitative theory which describes rapid relaxation processes of the type dis
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cussed in section 4.2 is the quasi-linear theory, first proposed by Vedenov, Velikhov
and Sagdeev (1961, 1962), Romanov and Filippov (1961), Drummond and Pines (1962). For
general reference and different formulations see, in addition to the references cited
in section ﬂ;i, also Akhiezer et al. (1975), Biskamp (1973), Dewar (1970), Drummond
and Pines (1964), Drummond (1965), Drummond and Ross (1973), Frieman, Bodner and
Rutherford (1963), Frieman and Rutherford (1964), Galeev and Sagdeev (1979, 1983),
Goldman (1984), Lifshitz and Pitaevskii (1981), Pines and Schrieffer (1962), Sagdeev
and Galeev (1969), Sitenko (1982), Tsytovich (1970, 1972), Vedenov (1967), Whitham
(1965), Yasseen and Vaclavik (1983). We shall now sketch out the basic ideas under
lying this theory. When studying small (linear) oscillations in a plasma the distribu
tion function is taken to be split into two terms: a non-oscillating part (the in
itial distribution function) and a small correction to it which oscillates with the
frequency of the plasma waves; the non-oscillating part is then assumed not to be con
nected at all with the oscillations. Actually, however, either the damping or the
growth of plasma waves affects the unperturbed distribution function, and this in
turn generally alters the stability properties of the plasma; this effect increases
with increasing amplitude of the oscillations. When the amplitude of the oscillations
increases the basic property of linear oscillations, i.e. the independence of the
propagation of oscillations with different wave-vectors and frequencies (superposi
tion principle), tends also to be violated since processes involving the interac
tions between different waves begin to play an ever more important role. The simpl
est among the non-linear processes which cannot be treated without taking into ac
count the effect of plasma oscillations on the non-oscillating part of the distribu
tion function, while the violation of the superposition principle is still neglected,

is indeed the quasi-linear relaxation. In this process only the distribution of the

resonant particles, whose number is assumed to be much smaller than the total number
of particles (i.e., only sharp wave packets in k-space are considered), is affected

in a non-negligible manner by these weakly non-linear waves (quasi-Tlinear diffusion);

such particles, in fact, are involved in strong interactions with the plasma oscil
Jations, which Tead to damping (Landau damping) or amplification (inverse Landau
damping) phenomena depending on the monotonic properties of their velocity distribu
tion. Non-resonant particles do not exchange energy with the waves on the average,

so that their distribution is almost insensitive to the effect of the oscillations
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(adiabatic quasi-linear diffusion).

Having stressed the main ideas which are at the basis of the quasi-linear theory,
we now turn to discuss their implications in some more detail also from a quantitat
ive point of view. As mentioned at the biginning of this section, different (almost
equivalent) formulations can be given; in what follows we shall try to extract the
common essential features of these approaches, avoiding any particular reference to
specific physical situations. Taking into account the fact that two considerably dif
ferent timescales are involved, one governing the relaxation towards the equilibrium
state and the other associated with the plasma oscillations, we separate the dis

tribution function into a slowly varying part f, and a rapidly varying part f]:

FOt,usb) = Fo (0, U58) + Fo (%, 05t) ‘Df’b‘&\« \%_"EF_“ . (4.2)

The distribution function f is then taken to satisfy the system of the (coupled)
Vlasov and Poisson equations (self-consistent description). By singling out the two
contributions and performing a Fourier expansion of the perturbations, it can be

shown that under the basic assumptions discussed previously (quasi-Tinear approxima

tion) the time evolution of f, is described by the guasi-linear diffusion equation

3
where the diffusion tensor Dij = Dij(XPt) is of second order in the perturbations,
being a Tinear functional of the energy density of the waves in the turbulent plasma;
it is the main task of the quasi-linear theory to express it in terms of the wave
spectrum. This evolution equation has exéct1y the same form as the Fokker-Planck equa
tion with vanishing coefficient of dynamical friction, which is a higher (than sec
ond) order effect; it should be noted, however, that the quadratic form Dijvivj is

not necessarily positive definite as in the case of collisional relaxation processes,
and this stresses the fact that in collisionless relaxation processes stochastic de
celeration mechanisms can take place. Processes in which particles are scattered by
plasma waves (wave-particle 1nteract10n)4are thus formally similar, but not identical,
to ordinary particle-particle scattering processes. From a quantum-mechanical point
of view, the resonance condition for this interaction expresses the conservation of

energy and momentum in the elementary process involving the emission or absorption
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of a plasmon with energy Ww and momentum Ak by a particle moving with velocity v;

thus it is not surprising that the wave-particle interaction conserves the total en
ergy and momentum of the waves and particles, rather than the energy and momentum of
the waves alone. The number of plasmons tends to be conserved and satisfies a conti

nuity equation with a source term in the (x,k) phase space:

INk

F+[N|_<)(JJE]= LYk N\S (4.4)

valid for inhomogeneous equilibrium states, provided the wavelengths are sufficient

ly short and the frequencies sufficiently large; N, 1is the plasmon density in phase

k

space (wave-action density), defined as

£k (4.5)
Ne =g

being the energy density of the waves in phase space, @, and yk their frequency

€
k k
and growth (or damping) rate respectively. These two quantities are related to the

wave-vector k and to the quasi-equilibrium distribution function f, by the same dis

persion relation holding in the Tinear regime:

D(w,Y;k;F6)=0- (4.6)

The quasi-linear diffusion equation for f,, the continuity equation for the number
of plasmons, and the dispersion relation for @ and y represent the complete set of
equations of the quasi-linear theory.

In the forthcoming discussion we shall assume that no external magnetic field is
applied; in the more general case in which an external magnetic field is present the
results presented below are still roughly valid, even though a more detailed descrip
tion is required. Particle diffusion resulting from the scattering by plasma waves
leads to the establishment of an asymptotic stationary state, which is characterized
by a fixed distribution of resonant particles and some definite spectral level; more
precisely, either the oscillations are damped or a plateau is formed on the distribu
tion function (i.e., fy is constant in the resonant 1nterva1z]knk/k) along the direc

tion of wave propagation. It may be worth noting that if the phdgé-space volume oc
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cupied by resonant particles is rather large, the formation of a plateau in that vol
ume becomes impossible as it would require too much energy; in that case either the
oscillations are damped, or the spectrum becomes one-dimensional while along the di
rection of wave propagation a plateau is formed on the distribution function. As a
consequence of the quasi-linear relaxation process in which an initial overstabi]ity5
is finally damped (i.e., y(t)<O0 for t — o) all the particles of the system (es
pecially the resonant particles) undergo an effective collisionless stochastic heat

ing, which is called the turbulent heating; when an initial overstability is instead

only saturated (i.e., y(t) =0 for t — o) the same phenomenon occurs, but it is re
stricted to the particles belonging to certain regions of velocity space, due to the
presence of a plateau on the distribution function. In the case of transient waves
(i.e., y(t)<0) the corresponding heating process is effective as long as the initial
amplitudes are properly large. Part of the ordered motion associated with the waves
is thus converted into random motion of the particles; this is just an example of

anomalous-transport phenomena occurring in a plasma which, as a consequence of an

overstability, passes from a laminar to a turbulent state. Other weaker heating pro
cesses due to wave-particle interactions can be described in the framework of the
more general weakly non-linear theory; such non-linear wave-particle interactions are
responsible for the damping phenomena occurring in the waves which lead to these heat
ing processes, and are thus referred to as the non-Tinear Landau damping.

We shall now inquire into the validity of the quasi-linear theory, by explaining
in what physical situations it becomes inapplicable. To the order in the amplitude
of the waves to which the quasi-linear theory is valid no interaction between the
waves themselves occurs, but the second order effect of the interaction between waves
and particles is included. As one considers the situation in which the amplitude is
larger, it is expected that even this interaction is not well represented by the the
ory. Since the theory basically assumes the orbits of the particles to be modified
by small amounts from their unperturbed orbits, it can be guessed that a Timit on the
theory will occur when the amplitude of the waves is large enough to trap the par
ticles; therefore, if the bounce period of a particle trapped in a wave is shorter
than the time this particle spends in the wave packet, it could be reasonably ex
pected the theory to be inaccurate.

So far we have considered the situation in which so many waves of finite ampli
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tude are present that a statistical approach can be employed to formulate a quasi-
linear thecry of plasma waves. However, in some important physical situations only a

few waves are involved, so that a different treatment is required (theory of weak co

herent waves). Using the Drummond and Pines (1962) approach, which is not based on

statistical assumptions, it can be shown that the time evolution of the slowly vary

ing distribution function f, is indeed described by a guasi-linear diffusion equation

exactly of the same form as that derived in the case of many waves (to which this ap
proach refers). In this context (wave-particle interaction) only the calculation of
the diffusion tensor cannot be carried out along the same line (an integration over
the wave-vector k is replaced by a finite sum over_ﬁi). Because of this fact, bear
ing in mind that we are interested in the wave-particle interaction alone, we shall
extend the meaning of the term "quasi-linear theory" to include also the case 1in

which a few waves are considered.

4.4 ATTEMPTS TO ACHIEVE A SATISFACTORY FORMULATION OF A QUASI-LINEAR THEORY IN THE
GRAVITATIONAL CASE

This section is mostly devoted to explain the main difficulties which are to be
tackled, from a general point of view, for extending the quasi-Tinear theory to stel
lar systems as well, and to mention the suggestions of various authors to achieve a
satisfactory formulation of such a theory, which is not available yet. My own contri
bution and proposals in the particular framework of spiral structure theory will be
stressed in the second part of this thesis, as they are intended to be a contribution
to the understanding of the heating of galactic disks.

In plasma physics one usually deals with systems many orders of magnitude larger
than the scale of the waves contributing to collective processes, namely the Debye
shielding length; this makes the analysis comparatively simple, since the standard
Fourier expansion technique can be used. Stated in another way, in plasmas the re
quirement of performing a global modal analysis can often be by-passed because the
assumption of spatial homogeneity is reasonably satisfied in many cases of physical
interest, so that a local analysis can suitably be used. Unfortunately this is not

the case for self-gravitating systems, whose size is not so drastically different
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from the wavelength scale; this makes it necessary to treat the waves as eigenmodes
of the system. There is, however, even in the case of stellar systems a cunning trick
for eliminating, from a formal point of view, the "unpleasant" effect of large-scale
inhiomogeneities; it simply consists in using the action-angle variables {(Ji’wi); i=
= 1,2,3} as the proper canonical coordinates. In this representation, in fact, the
equilibrium quantities of integrable systems turn out to depend only on Ji’ which 1in
this context (and also in a more general context; cf. the Hamilton equations) play
thus the role of the velocity components v, (see, e.g., Kalnajs 1971; Galgani 1985).
Taking into account the physical meaning of these variables (the actions Ji corre
spond to adiabatic invariants) and the "strengthened" Jeans theorem, it can be shown
that even in quasi-equilibrium situations a similar result holds apart from the fact
that in this case an explicit dependence on time is allowed (see, e.g., Binney and
Lacey 1987); in particular, this is true for the slowly varying part of the distribu
tion function f, = fo(Ji’t) and for the self-consistent Hamiltonian Hj = Ho(Jj,t),

so that [fO,HO] = 0. The most direct mathematical implication of the dependence of
fo and Hy on the actions alone consists in the possibility of adopting the standard
Fourier representation61n the angle space for the perturbations. While on the one
hand there is the advantage of using this local treatment avoiding the difficulties
connected with the solution of a global-mode equation, on the other hand this canoni
cal representation has the drawback of being nof simply related to directly observ
able quantities as indeed x and v. It is just for this reason that basically import
ant theories of stellar systems, such-as for instance the spiral structure theory,
are expressed in terms of the usual canonical coordinates (x,v); the formal elegance
and the compactness deriving from the use of the action-angle variables are indeed
sacrificed in favour of a higher level of predictability and a simpler interpretation
in terms of observable phenomena.

Because of the above-mentioned difficulties, only local formulations of the quasi-

linear theory for gravitational plasmas have been given so far, and mostly in the
framework of spiral structure theory (Marochnik and Suchkov 1969; see also Marochnik
1970; Dekker 1975, who extended the work of Lynden-Bell and Kalnajs 1972; see also
Contopoulos 1974). These works, however, neither have shed new 1ight on the problem
of spiral structure (apart from some local results which can easily be extrapolated

from the plasmistic analogue of spiral waves, i.e. the Bernstein waves), nor have
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tried to incorporate the fundamental role played excitation mechanisms at the corota

tion resonance shown in global Tinear treatments (for a more exhaustive discussion

see section 6.2a of Part EE). A Tocal formulation of considerably different type re

lated to the theory of violent relaxation (Lynden-Bell 1967) has been proposed by

Severne and Luwel (1980) along a line similar to that followed by Kadomtsev and

Pogutse (1970) in the context of weak homogeneous plasma turbulence. Extremely inter

esting discussions on related subjects can be found in Saslaw (1985).

FOOT-NOTES

The wave-particle resonance condition in the absence of an external magnetic field

is expressed by the requirement that the velocity component of the particle along
the direction of propagation of the wave should be equal to its phase velocity
(see the formula given in the text). In the more general case in which an exter
nal magnetic field is also present two resonance conditions are possible: the
Cherenkov resonance condition @ - 1a% = kyv)» and the cyclotron resonance condi
tionw - 1&2 = kyvy s (1€Z) where reference is made to the direction of the magnet
ic field and a% is the corresponding cyclotron frequency.

The wave-wave resonance condition when more than three waves are involved in the

scattering process (higher-order effects) is Z];coi =0, 2];54 =0 (i°=3).

Bear in mind that to zeroth order of expansion fo satisfies the stationary Vlasov
equation [fg,Hy ] = O.
Since this interaction involves resonant particles, it cannot be considered with

in the framework of an equivalent fluid theory.

Given a perturbation whose time-dependence is of the form f1Aae_1aﬁ withw = oy +
+ iy , the following terminology is used:
- Instability: ¥>0, @y = 0.

- QOverstability: ¥>0, wgy # 0.

Standard Fourier expansion means that the perturbation is of the form f] = %]e1kx,

If the system is inhomogeneous along the x-direction, the previous expression is

to be replaced by the more general dependence f] = %](x)expﬁfx k(x')dx'].
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CHAPTER 5. HEATING MECHANISMS IN GALACTIC DISKS

5.1 INTRODUCTION

In section 1.2 we have seen that the components of the velocity dispersion of disk
stars in a solar neighbourhood show a tendency to increase with increasing spectral
type, and this has been interpreted in terms of a corresponding increase of the com
ponents of the stellar velocity dispersion with age. Because of the observational dif
ficulties connected with the determination of the stellar velocity dispersion, we do
not know yet for certain whether such a systematic behaviour is restricted only to a
small solar neighbourhood or instead is a general feature of galactic disks! We shall
see, however, that from a theoretical point of view there is no problem to account
for the same phenomenon on larger scales or even in other similar stellar systems,

provided the sun is not thought of as belonging to a privileged region of the Galaxy.

Two classes of explanations have been invoked; the most diffused and currently ac

cepted of them is based on the existence of relaxation mechanisms leading to a secu

lar heating of galactic disks, the other regards the observed velocity dispersions as

native properties. In this chapter we shall review the relaxation mechanisms which

are thought to contribute more effectively to the increase of the components of the
stellar velocity dispersion with age; other less important relaxation mechanisms will
be mentioned for the sake of completeness in the forthcoming discussion. We shall
also describe in less detail the basic ideas underlying the second class of explana
tions.

The velocity dispersion of disk stars can be affected by the following mechanisms?
(see Wielen and Fuchs 1985; see also Binney and Tremaine 1987; Mihalas and Binney
1981):

- The stochastic heating (random increase of the stellar velocity dispersion) caused

by Tocal irregularities in the galactic gravitational field due to the existence
of massive perturbers, as giant molecular clouds (GMC's) and hypothetical massive
halo objects, or by large-scale phenomena as transient spiral waves? ordinary bi

nary encounters between stars, in fact, are known to be completely inefficient
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(see section 2.2).

- The deflections (random changes in the direction of the stellar velocity) caused
by the same phenomena responsible for the stochastic heating. Their overall import
ance lies in the fact that they can transfer energy (and energy changes) between
the motions of a star perpendicular and parallel to the galactic plane, so that de
flections may be of primary importance for the axial ratios of the velocity ellip
soid even though the heating effect of the same irregularities is nearly negli
gible. This fact occurs when the velocity dispersion of the massive perturbers is
much smaller than that of the test stars; in this case, in fact, the relaxation
time for deflections T_ turns out to be much smaller than the relaxation time for

D
equipartition of energy T_ (see Chandrasekhar 1960).

e (
- The adiabatic heating or cooling (adiabatic changes in the stellar velocity) pro

duced by sTow changes in the regular gravitational field of galactic disks. Its ef
fect is probably stronger perpendicularly to the galactic plane, because the disk
is nearly self-gravitating in this direction. Two typical examples of adiabatic
changes in galactic disks are the adiabatic cooling due to stochastic heating and
the adiabatic heating due to infall of gas from haloes.
While the adiabatic heating and cooling discussed above primarily affect the perpen
dicular motion of stars, deflections can partially transfer this energy change to
their parallel motions. Only the first two relaxation mechanisms will be considered

in this chapter, the'third one acting on much longer timescales.

5.2 THE ROLE OF MASSIVE PERTURBERS

5.2a GIANT MOLECULAR CLOUDS AND COMPLEXES

The importance that massive perturbers might have in the dynamical evolution of
disk stars has first been stressed by Spitzer and Schwarzschild (1951, 1953), who hy
pothesized the existence of Tow-velocity dispersion (cgﬂv10 km sec_]) massive (Mg~'
-1O5 %~1O6 M@) gas clouds and complexes to account for the observed velocity disper
sion of stars of different spectral class. In the first paper they performed a numeri
cal integration of the Fokker-Planck equation, taking the small gas velocity disper

sion into account but disregarding the effects of galactic rotation and the vertical
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motion of stars. They noted that the so-obtained age-dependence of the stellar veloc
/5

A

ity dispersion, c(t) ::cg(1+E)] with time expressed in dimensionless units, could
more simply be derived assuming that the stellar distribution function remains Maxwel
Tian at all times (a Maxwellian distribution function was taken as the initial condi
tion). Taking this fact into account, in the second paper they performed analytical
calculations of the kind used for studying the secular effects of binary encounters
(Chandrasekhar 1960; see also Hénon 1973), considering the epicyclic motion of stars
in the galactic plane but still disregarding their vertical motion and also the small
turbulent velocities of the interstellar clouds. They obtained a different power-Tlaw

1/3

for the evolution of the stellar velocity dispersion: c(%) ::co(1+£) , where the
same notations as before have been used.

The existence of giant molecular clouds and complexes has definitely been shown in
the 1970's. Since then a lot of observational and theoretical works have been devoted
~to investigate their physical and kinematical properties, as well as to study their
role in the context of galactic disk stability and evolution (for a more detailed dis
cussion see Romeo 1985; Bertin and Romeo 1987; and references therein cited). It is
quite surprising that the mass of GMC's has been estimated to be of the same order as
that theoretically predicted by Spitzer and Schwarzschild (1951, .1953), even though
their turbulent velocities are thought to be smaller (~4 <+ 8 km sec—T).

As regards the problem of stochastic heating of galactic disks, in which we are
mostly interested, the contribution of Lacey (1984a) (see also Lacey 1984b, 1985) de
serves particular attention, and thus will be discussed in detail. It can be con
sidered a generalization of Spitzer-Schwarzschild's (1953) work, since it relies on
the same assumptions and employs similar methods but takes the vertical motion of
stars into account. This extension is expected to be important both because of the in
trinsic interest in predicting the evolution of the vertical velocity dispersion of
disk stars, and because their vertical epicyclic oscillations can take stars out of
the layer of perturbing GMC's so as to reduce the scattering rate. The assumptions
made by Lacey (1984) are those commonly used to treat star-GMC encounters in such a
degree of approximation as to make analytical calculations not particularly stiff,
but at the same time to give a correct physical description retaining the essential
features of the relaxation mechanism. They are the following:

- The orbits of disk stars in the background galactic potential (assumed to be axi
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symmetric and plane-symmetric) are described by the first-order epicyclic theory.
GMC's are long-lived, much more massive than disk stars and move in circular or
bits.

GMC's are randomly distributed and act independently; thus the possibility of the
GMC distribution being organized on a large scale (i.e., into spiral arms) is ne
glected.

For a typical star-GMC encounter the effective interaction time is short compared
to the epicyclic time, and the velocity difference between the Local Standard of
Rest (LSR) at the stars and at the GMC positions is negligible with respect to the
peculiar velocity of the star.

The change of the stellar peculiar velocities is dominated by the effect of many

distant weak encounters.

The first, the second and the fifth assumption are reasonably satisfied, whereas the

third and the fourth assumption may be criticized, the former being the most drastic

one; these working assumptions, however, allow us to make use of standard methods for

deriving the diffusion and the dynamical-friction coefficients in binary-encounter

processes (Chandrasekhar 1960; see also Hénon 1973).

The evolution of the stellar velocity dispersion can be divided into two phases:

A transient relaxation in which the shape of the velocity ellipsoid relaxes to a

final steady state with ¢ : ¢y :c =1:1/8:a(f), where B=2Q/x and a =
EECz/Cr"Q =Q(r) and % = %(r) being the angular velocity and the epicyclic fre
quency respectively. The existence of this phase depends on the non-vanishing of
the dynamical-friction coefficient.

A steady heating (absent for a solid-body rotation curve) in which the velocity

dispersion increases steadily on a longer timescale, while its components maintain
constant ratios depending only on the value of the Tocal parameter B: c(%) ~ co(1+
+€)]/4. It is worth noting that Spitzer and Schwarzschild (1953) 1/3 -power-law is
recovered in the unphysical Timit in which the scale-height of disk stars is much

smaller than the scale-height of GMC's.

The apparent discrepancy between these theoretical predictions and observational re

sults (up to the year of publication of this paper) seemed to rule GMC's out of the

role of most promising heating mechanism in galactic disks. It should be born in mind,

however, as stressed in section 1.2 and less explicitly pointed out by Lacey (1984),
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that observations do not put yet any stringent constraint on the age-dependence of
the components of the stellar velocity dispersion and on the shape of the velocity el
1ipsoid because strong selection and contamination effects, inherent in the choice of
otherwise claimed to be reliable samples, tend to bias such samp]esvin a not simply
estimable manner; a proof of this lies in the fact that even some recent observation
al surveys are inconsistent with each other.

The contribution of GMC's to the stochastic heating of galactic disks has been in
vestigated also by several other authors both analytically (e.g., Fujimoto 1980: 1/2;
Kamahori and Fujimoto 1986a: 1/3 for vanishing dynamical friction, otherwise satura
tion; Semenzato 1987: 1/3) and numerically (e.g., Icke 1982: 1/3 = 1/2; Villumsen
1983, 1985a,b: 1/2: Kamahori and Fujimoto 1987: 1/3). Differences in the results can
be ascribed to the different approaches and approximations employed in the various
cases. However, they all predict observationally consistent power-laws for the age-
dependence of the stellar velocity dispersion (as indicated at the side of each ref
erence) except Kamahori and Fujimoto 1986a, where the observed saturation of its com
ponents is clearly due to a wrong treatment of dynamical friction in the framework of

the Langevin approach.

5.2b HYPOTHETICAL MASSIVE HALO OBJECTS

Stimulated by the ever more growing interest in the problem of dark matter in the
universe, a number of authors have recently speculated upon the existence of massive
(-106 Mg) halo objects, as massive black holes and dark clusters, as possible candi
dades for the heating mechanism invoked in galactic disks (e.g., Lacey 1984b; Lacey
and Ostriker 1985; Ipser and Semenzato 1985; see also Ipser and Semenzato 1983; Kama
hori and Fujimoto 1986b, 1987; Carr and Lacey 1987). Dark clusters produce similar
heating effects as massive black holes, but have the advantage of circumventing some
of the problems inherent in the black hole model; in particular, dynamical friction
~is prevented from building up too much mass at the galactic centre if the clusters
are disrupted by mutual collisions or tidal effects before dynamical friction can be
come operative, and the problem that these halo objects may generate too much lumin
osity through accretion is avoided. The methods employed in this case are substan
tially the same as those used in the case of GMC's; the calculations are anyway more

complicated because the velocity dispersion of these hypothetical halo objects cannot
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some free parameters the results are in agreement with observations, but the Targe

number of these free parameters makes indeed the theory not highly predictive.

5.3 THE ROLE OF TRANSIENT SPIRAL WAVES

A different point of view was introduced by Barbanis and Woltjer (1967), who
stressed the importance that large-scale phenomena as spiral waves4might have in the
secular evolution of the components of the stellar velocity dispersion parallel to
the galactic disk; a heuristic argument was also presented to show that the same heat
ing mechanism might account for the increase of the vertical component of the veloc
ity dispersion with age as we]]? Their analysis does not make reference to any speci
fic formulation of spiral structure theory. They only investigated, in fact, the ef
fect of an imposed spiral potential of particular form on the epicyclic motion of
disk stars; in this sense the spiral waves they considered are not self-sustained.
Their suggestion that recurrent transient spiral waves might naturally heat galactic
disks, even though no explicit time-dependence was derived, lies at the basis of fur
ther analytical (e.g., Byl 1974; Carlberg 1984; Carlberg and Sellwood 1985) and nu
merical investigations (e.g., Carlberg and Sellwood 1983; Sellwood and Carlberg 1984;
Carlberg and Freedman 1985). In this context it should be noted that the restriction
to transient non-self-sustained spiral waves, while on the one hand it avoids the dif
ficulties arising from the consideration of the Poisson equation and from all its
physical implications (i.e., excitation mechanisms in self-sustained spiral waves,
etc.), on the other hand at the same time lowers the level of predictability of the
theory (which is,in fact, Tess constrained).

The theoretical framework of these recent investigations.(except the confused at
tempt made by Byl 1974) is a simplified formulation of the quasi-linear theory in the
action-angle canonical representation; the simplification corresponds indeed not to
care about the self-consistency of the theory (hence, only the quasi-Tinear diffusion
equation is considered), which instead is expected to have a crucial role (see sec
tion 6.2a of Part II). Only spiral waves varying on a timescale comparable to the

basic periods of oscillation in the disk are considered, because otherwise counter-
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reacting relaxation mechanisms would take adiabatically the system back to its initial
unperturbed state without any appreciable dynamical effect. If transient spiral waves
of a particularly simple form recur at a constant rate in time, then the increase of

the planar velocity dispersion with age for a coeval population of disk stars follows
a 1/2 -power-law; however, as the velocity dispersion becomes as large as to make the
size of the epicycles comparable to the wavelength of the spiral wave, the horizontal

heating rate follows a 1/5 -power-law. On the other hand, the vertical heating associ

ated with such transient spiral waves is completely inefficient, just because they
propagate along the galactic plane. Carlberg (1984) suggested that a way of overcom
ing this difficulty in the context of a similar scenario is to invoke the existence

of bending waves, whose observational counterparts are the well-known warps in spiral

galaxies.

5.4 MORE GENERAL APPROACHES

Since the basic physical mechanism responsible for the heating of galactic disks

is not well-known at present, a phenomenological description of the heating process

by the theory of orbital diffusion seems to be rather adequate; this line was first
pursued by Wielen (1977), Wielen and Fuchs (1983, 1985). More precisely, in this ap
proach the heating of galactic disks is basically described by a diffusion process in
velocity space,”in which dynamical friction is not taken into account and the dif
fusion coefficient is empirically determined from the observed age-dependence of the
components of the velocity dispersion of nearby stars. The advantage of such an em
piric procedure lies in the fact that it avoids as far as possible uncertain assump
tions on the basic physical source of the irregular part of the galactic gravitation
al field, apart from those inherent in the choice of a diffusion process among all
the possible stochastic processes. Wielen (1977) showed that a constant (time and vel
ocity independent) diffusion coefficient, despite its extremely simple form, can ex
plain fairly well both the age-dependence of the components of the stellar velocity
dispersion (a 1/2 -power-law is obtained) and the axial ratios of the velocity ellips

oid. It turns out also that for a constant diffusion coefficient the Fokker-Planck

equation admits self-similar solutions of Schwarzschild type (i.e., gaussian distribu
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tion functions with an anisotropic time-dependent velocity dispersion), provided the
radial gradient of the (axisymmetric) distribution function is neglected with respect
to its vertical variation and the epicyclic approximation is used (Wielen and Fuchs
1983); this result is extremely important in view of the relevance that the Schwarz

schild distribution function has on observational grounds. Although it is appealing

due to its simplicity, a constant diffusion coefficient is not the only physically
relevant one; other more physically meaningful choices of isotropic (in velocity
space) time-dependent diffusion coefficients can satisfactorily mimic the observed be
haviour of the components of the stellar velocity dispersion as well (Wielen 1977).
Amore detailed analysis (Wielen and Fuchs 1985) suggests that the stochastic heating
is the main relaxation process in galactic disks, while other processes as adiabatic
cooling and infall of gas from haloes are only of secondary importance from a dy
namical point of view.

A similar approach has recently been undertaken by Binney and Lacey (1987), who
transposed Wielen's results in the action-angle canonical representation, more el
egant from a formal point of view but also less predictive when it is applied to real
physical situations (see section 4.4). As particular cases of heating mechanisms they
considered the effects of GMC's and transient spiral waves, for which they derived
the quasi-linear diffusion equation within the framework of the Fokker-Planck ap
proach calculating the diffusion tensor by means of the Hamilton perturbation theory.
They showed that both these heating mechanisms are inconsistent with the "observed"
1/2 -power-law for the age-dependence of the components of the stellar velocity dis
persion (bear in mind, however, the Tow confidence level of such observations; see
section l;g_ahd cf. section 5.2a). This fact led them to the conclusion that other re
Taxation mechanisms, as the scattering of disk stars by massive halo objects, might

play a major role in the stochastic heating of galactic disks.

5.5 ANOTHER CLASS OF EXPLANATIONS

As mentioned in the introductory section 5.1, there is another class of explana
tions which interpret the observed increase of the stellar velocity dispersion with

age in terms of native properties of disk stars. Tinsley and Larson (1978) suggested

that the kinematics of stars older than 109 yr can be explained by a gradual decay of
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turbulent motions, as is predicted by certain extremely slow collapse models, and
showed that the correlation between velocity dispersion and metallicity predicted by
such models is in agreement with observations. This effect cannot directly account
for the rapid variation of the velocity dispersion with age observed even for stars
younger than 109 yr, but they suggested that this could be explained if the velocity
dispersion of the youngest stars reflects only the Tocal turbulent motions in the gas,
while the velocity dispersion of older stars reflects in addition larger-scale non-
circular motions in the galactic gas layer. If interstellar medium possesses a hier
archy of motions whose velocity dispersion increases with the size of the region con
sidered older stars, which have travelled farther since their formation, will experi
ence gas motions over a larger space volume and thus will acquire larger velocity dis
persions than younger stars.

This possibility was further investigated by Larson (1979). The relation between
the gaseous velocity dispersion and the region size that is required if such inter
stellar motions are to explain the dependence of the stellar velocity dispersion c on

1/2

age t can be estimated from the empiric relation c~t " ~. If ¢ is equal to the vel

ocity dispersion of the gas in a region of size L in which the stars of age t have

1/3

originated, then we obtain c~L since L~ct. The agreement between this power-law

and the Kolmogorov spectrum for incompressible turbulence is suggestive, if perhaps

only accidental. The Kolmogorov Taw depends on the assumption that energy is success
ively transferred into motions on ever smaller scales until it is entirely dissi
pated by viscosity. In general this is not expected if the motions are supersonic, as
in interstellar medium, since energy can then directly be dissipated on Targe scales
by shock fronts; this Teaves less energy for small-scale motions, and produces a
steeper dependence of ¢ on L. Data assembled by Larson (1979) from a variety of
sources show indeed that the velocity dispersion of young stars and cold interstellar
gas increases systematically with the size of the region considered over a wide range
of scale-lengths, and this effect is sufficient to account for the observed age-depen
dence of the velocity dispersion of disk stars for ages up to about 109 yr. The ob
served dependence of the gas velocity dispersion on region size suggests the exist
ence of a hierarchy of turbulent motions in which smaller-scale motions are produced

by the turbulent decay of larger-scale motions.
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FOOT-NOTES

Recall that the spheroidal component has a different cosmological origin than the

disk component, so that the same age-velocity dispersion relation is not expected
to hold.

Recall that the restriction to nearly integrable situations is assumed. For strong

departures from the integrability condition other relaxation mechanisms become op
erative due to the effects of Lyapunov instability (see section 2.3).

Transient spiral waves are not self-sustained. In the second part of this thesis

we shall propose the interaction of disk stars with self-sustained spiral waves as
the dominant heating mechanism in galactic disks.

Small-scale irregular spiral features can be induced as a wake by massive perturb

ers in the galactic plane (Julian and Toomre 1966), and thus can be studied in
that context by taking collective effects into account.

The suspicion that spiral-arm formation might be the dominant relaxation mechanism

in galactic disks had already been expressed by Goldreich and Lynden-Bell (1965b).



PART 11

MY OWN CONTRIBUTION: PROPOSALS AND

PRELIMINARY RESULTS
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CHAPTER 6. SELF-REGULATION MECHANISMS IN
GALACTIC DISKS

6.1 INTRODUCTION

A careful inspection of the heating mechanisms of galactic disks described in chap
ter 5. shows that none of them takes collective effects properly into account; this
is indeed a very severe restriction, because collective effects are known to play a
crucial role in systems whose dynamics is governed by long-range interactions. It may
be objected that the heating mechanisms by recurrent transient Targe-scale spiral
waves proposed by Barbanis and Woltjer (1967) and further investigated by Carlberg
and Sellwood (1985) represent an attempt to estimate the role that such effects may
have in driving the secular evolution of galactic disks. This is in part true, be
cause the large-scale spiral structure observed in disk galaxies is a visible ﬁanifeg
tation of them. The problem, however, lies in the fact that these simplified models
do not even retain the most essential physics of the phenomenon, which derives from
the self-sustenance property of spiral waves. In fact, when a global Tinear analysis
is performed taking the self-gravity of the perturbations into account, these modes
are found to be maintained by internal excitation and feedback mechanisms, which a 1o
cal treatment cannot predict; in this context the role played by the resonances turns
out to be crucial. |

While on the one hand stellar dynamics tends to give too much emphasis to binary
relaxation processes, on the other hand the spiral structure theory suggests the ex

istence of global self-regulation mechanisms, due to collective effects, which lead

to an increase of the stellar velocity dispersion in such a way as to saturate other
wise exponentially growing overstabilities. In simpler local self-regulation pro
cesses, which do not take internal excitation mechanisms into account, the stellar
velocity dispersion is expected to settle at a critical local value which ensures a
situation of marginal stability of the system. These self-regulation mechanisms, to
gether with the crucial role that the cold interstellar gas plays in them, will be

discussed in more detail in this chapter.
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6.2 PROPOSED GLOBAL COLLECTIVE HEATING MECHANISM

6.2a BASIC IDEAS FOR THE FORMULATION OF A GLOBAL QUASI-LINEAR THEORY OF SPIRAL
STRUCTURE

As we have discussed in section 4.4, a number of attempts have been made to extend
the gquasi-linear theory of plasma waves to the gravitational case as well. The major
difficulty which is to be tackled for achieving a satisfactory formulation of this
theory consists in the necessity of using a global approach. The following discussion
is just devoted to explain it in more detail.

Let us first examine the case of self-gravitating purely stellar disks in differen

tial rotationQ(r). As in the linear theory of spiral structure, perturbations of the

form

fi= 8 (’C,@,E;’Un,qfe,’\frx}t): E, (TZ,TL}UR,UG,Um).Q}XP[L (fme—wﬂ] (6-]>1

are self-consistently imposed on an axisymmetric and plane-symmetric state described
by a distribution function f,, which in the quasi-Tinear treatment is allowed to vary

slowly with time:

AInG
2t

. (6.2)

ﬁo:Fo(R,R}’\Tn,UG,U&jt) ) l:)l’mFe

mll < |

In writing these expressions a system of cylindrical coordinates has been used to take
into account the approximate symmetry properties of galactic disks; furthermore, k =

= k(r) Ez-i(alnfl/af) is the complex radial wavenumber of the perturbation, whose
radial dependence takes the inhomogeneity of the system into account, m is the num
ber of spiral arms,SQpEsRe(aD/m is the pattern frequency, and y=Im(w) is the growth
(or damping) rate of the spiral wave. The standard linear theory relies on a number
of assumptions which allow to make the system of coupled Vlasov and Poisson equations
more tractable; the same assumptions are taken to hold in the quasi-linear theory as
well:

- Only infinitesimally thin disk systems are considered; as regards the perturba

tions this assumption implies lk<z>|«1, where<z>1is the thickness-scale of the

system.
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- Only tightly wound spiral waves are considered: |klr >>m; consistently with this

assumption the radial gradient of f, is neglected with respect to that of f., and

‘ 1
WKBJ asymptotic expansion techniques are employed.
- Only small departures from circular orbits are considered:Acr/rx << 1 (epicyclic

approximation), where Cr is the radial velocity dispersion and % the epicyclic fre

quency.

- The winding and the epicyclic parameters are formally taken to be of the same or

der: m/lklr ~ cr/rx<Kﬂ.

In a local approach, when finite-thickness corrections are taken into account, the
form of thé final dispersion relation remains the same provided the unperturbed sur
face density is multiplied by a suitable reduction factor; furthermore, another reduc
tion factor Towers the response of high-velocity dispersion stars (see section 7.3a).
From a formal point of view, a quasi-linear diffusion equation for the evolution of
fo can be derived along a Tine similar to that followed in the case of plasma waves,
and the corresponding diffusion tensor turns out to be of second order in the pertur

bations. The wave-particle resonances which play the dominant role are the following:

m [_Q_P..Q (R“ﬂ = (Corotation resonance), (6.3)

m [ﬂ- p-Q (TLtLR)-_\

=- (Inner Lindblad resonance), (6.4)
K (Tiir)
m LD-P"'Q(T("LQ\] — (Outer Lindblad resonance). (6.5)
K(ToLr) ~

At this stage the global approach has been required just because the diffusion tensor
is dominated by the effects of these resonances, which cannot properly be described

in the framework of a local approach (breakdown of the concept of dispersion rela

tion). But what makes the use of a global approach really essential is the fact that
in a local treatment propagating spiral waves (m[S)p-i)] # 0) turn out to be neutral

(7= 0), while the actual situation is not indeed so simple.
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Unfortunately an exhaustive discussion cannot be given straightforwardly in this
context, because the subject is extremely specific; we shall only try to express the
basic ideas underlying the internal excitation and feedback mechanisms which make the
maintenance of global spiral modes possible. For a more detailed description of these
mechanisms in the framework of the linear theory reference is made to the original pa
pers by Mark (1974a,b, 1976a,b,c, 1977) and to the review papers by Bertin (1980,
1987), Lin and Bertin (1985), Lin and Lau (1979). The starting point is the global-

mode equation deduced by combining the Tinearized Vlasov and Poisson equations? This

equation, which is Schrodinger type (but not identical to the quantum-mechanical wave

equation), exhibits two turning points: a first-order turning point, the bulge radius

Pee? and a second-order turning point, the corotation radius Peo Far away from them

and from the outer Lindblad resonance (m = 2 models do not generally exhibit the inner

Lindblad resonance) the global-mode equation approximately reduces to a local disper

sion relation. The solution of this wave equation can be found by methods similar to

those employed in quantum mechanics when a WKBJ approach is used: the global solution
is obtained by performing an asymptotic matching of the Tocal solutions’at the turn
ing points, and by imposing a radiation condition at infinity (which in our case is
represented by the outer Lindblad resonance). In particular, a quantum condition for
the wave-vector similar to the Bohr-Sommerfeld quantum condition is found. This analy
sis shows also that linear wave-wave interactions occur at the two turning points;
these interactions are at the basis of the above-mentioned internal excitation and
feedback processes for the maintenance of global spiral modes. The overstabilities,
therefore, are not produced by non-monotonic features in the velocity distribution,
as instead occurs in plasmas (in the cases generally considered by the quasi-linear
theory). The simplest mechanism (only lTowest-order terms in the WKBJ expansion are re
tained) involves only trailing spifa1 waves® When a long trailing wave propagating
away from the bulge enters the corotation region, it undergoes an over-reflection pro
cess (WASER) in which two short trailing waves are produced:

- The reflected wave is always amplified, because the energy flux associated with
the wave changes sign when it passes through the corotation resonance. This wave
propagates back towards the bulge, where it is turned into a long trailing wave by
a feedback mechanism. During this cycle non-linear effects act in such a way as to

damp the wave, whereas the amplification process occurs only inside the corotation
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region,
- The transmitted wave propagates out towards the outer Lindblad resonance, where it
is absorbed due to Landau damping mechanisms.

Another possible over-reflection process (swing amplification), involving both trail

ing and leading open wavesf is shown to occur when second-order terms in the WKBJ ex
pansion are retained.

We expect the same kind of internal excitation and feedback mechanisms to occur
also in the framework of the guasi-linear theory; the only complication which might
invalidate the linear results at a quantitative level lies in the fact that in the
linear approach a time-independent properly modified Schwarzschild distribution func
tion has been assumed, while it is not known a priori whether the form of the dif
fusion tensor allows self-similar solutions of this type for the quasi-linear dif
fusion equation (cf. section 5.4). We recall that the use of local Schwarzschild dis
tribution functions has mainly been invoked on observational grounds; the effect that
a different choice of the stellar distribution function may have in the global stabil
ity properties of galactic disks is not known yet (see Lin and Bertin 1985; Romeo
1985).

Although this physical picture is already extremely complicated, it is not yet sat

jsfactorily complete; the dual dynamical role that the cold interstellar gas has in

the stability of galactic disks cannot in fact be disregarded (Romeo 1985, 1987; Ber
tin and Romeo 1987). On the one hand, the presence of such a cold component can sig
nificantly destabilize the sistem in the Tinear regime, and in some pathological situ-
ations might even excite more complicated wave channels and wave cycles. On the other
hand, the cold interstellar gas can be shocked and thus contributes, together with
non-linear effects, to saturate otherwise exponentially growing spiral overstabil
ities; in the context of these self-regulation mechanisms, it thus tends to inhibit

an excessive heating of the stellar component which would be produced by the above-

mentioned non-linear effects (see also section 6.3).

6.2b GLOBAL SELF-REGULATION MECHANISMS: ASTROPHYSICAL IMPLICATIONS AND OBSERVATIONAL

EVIDENCES

We shall now discuss the expected astrophysical implications of the heating pro
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cess associated with such global self-regulation mechanisms. First of all it is appar
ent that the proposed global heating mechanism can be effective in the galactic plane
alone, just because spiral waves propagate in it. The corresponding vertical heating
is thus expected.to be almost vanishing, and the consideration of finite-thickness ef
fects cannot appreciably change the situation at all; other global or local relax
ation mechanisms, such as those associated with bending wave-star interactions or
GMC-star encounters respectively, are surely more effective. From an observational
point of view, this fact implies that the age-dependence of the horizontal and verti
cal components of the stellar velocity dispersion is not constrained to obey the same
power-law.

The proposed global collective heating mechanism is expected to be dominant, or at

least competitive, with respect to the other local non-collective heating mechanisms

so far invoked (see chapter 5.). There are indeed some observational evidences which

seem to support and suggest this fact. Some normal spiral galaxies, whose most repre
sentative case is that of NGC 488, are characterized by high planar stellar velocity
dispersions, whereas the vertical stellar velocity dispersions are expected to be
very low, because the extremely tightly wound (nearly circular) spiral structure of
these galaxies suggests that their disks should be very thin (see Romeo 1985, 1987
also for other implications in connection with their global stability properties). It
seems reasonable to interpret this strong "temperature" anisotropy as produced by rad
ically different heating mechanisms, and to conclude that at Teast in such disk gal
axies the horizontal heating mechanism is much more effective than the vertical one;
this is indeed in agreement with our theoretical predictions.

Finally, we want to mention the fact that this description has a defect which

might make the comparison with observations not straightforward: as in the linear spi

ral structure theory, a single equivalent stellar component is taken to be representa
tive of the whole active stellar disk (see section 7.1). The consideration of more
stellar components would give rise to several complications due to their gravitation
al coupling via the Poisson equation, as required by the self-consistency condition.
On the other hand, it should be noted that observations tend to overestimate the ef
fect of high-velocity dispersion stars, while only low-velocity dispersion stars are

dynamically relevant (see Lin and Bertin 1985; Romeo 1985).
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6.3 LOCAL SELF-REGULATION MECHANISMS

While on the one hand the formulation of a global quasi-linear theory of spiral
structure is required for making these theoretical predictions quantitative, on the
other hand some physically relevant gualitative conclusions can be drawn even by mak
ing use of simple local models of self-regulation in which the effects of the cold in
terstellar gas are taken into account, as shown by Bertin and Romeo (1987). The two-
component local self-regulation processes underlying these models are based on the
following facts:

- In the disk the stellar component tends to heat up via gravitational instabilities

and possibly because of interactions with GMC's; the former, being a collective
heating mechanism, is very sensitive to the Tocal Tevel of stability. No obvious
cooling mechanisms are at hand.

- The cold gaseous component tends to cool off on a short timescale due to turbulent

dissipation (inelastic cloud-cloud collisions); this cooling mechanism is not sen
sitive to the local Tevel of stability. It also suffers heating via the same gravi
tational instabilities, but at a faster rate because of the stronger reaction of
the (thinner) gaseous component.
- Cooling is a source of dynamical instabilities, so that it generates heating, en
suring self-regulation.
Such self-regulation mechanisms produce a rapid increase of the planar stellar veloc
ity dispersion up to a quasi-stationary (secularly increasing) critical value which
ensures a situation of marginal stability of the systemf Note that if the cold inter
stellar gas is not taken into account the critical value of the planar stellar veloc
ity dispersion remains fixed in time, so that no secular evolution occurs? this fact
shows how crucial is the role of the cold interstellar gas in the physical picture of
spiral galaxies.

The rapid phase of these local self-regulation mechanisms may be expected to domi

nate the initial evolution of the planar stellar velocity dispersion up to its criti

cal value for marginal stability; the subsequent secular evolution is Tikely to be

governed both by Tocal and global self-regulation mechanisms °




- 67 -
FOOT-NOTES

In the local approach the radial dependence of f} is partially explicited:

n

km')dn‘me-wt)], (6.1)'

~
i

f,= F,(Q,B,)'L')’U‘nlve,’lfn_')ﬂ =f (’(;JL)'U-RIUS,U&) WP[LU

where it is assumed that |a1n?}/arl<K1kl and lak/ar|<3:k2, so that the final glo

bal-mode equation reduces to a local dispersion relation (in the case of infini

tesimally thin disk systems).

The same global-mode equation holds in the quasi-linear theory as well, because

only the evolution of the slowly varying part of the distribution function, fo, is
determined by second-order terms in the perturbations.

Three kinds of spiral waves have been studied so far: short waves, long waves and

finally open waves, which have intermediate properties with respect to the others

(they are more open than long waves, but they propagate similarly to short waves).
In each case the trailing and leading configurations are possible; only trailing

spiral waves can propagate between the corotation and the outer Lindblad resonance
in such a way as to satisfy the radiation condition.

When such marginal stability condition is imposed throughout the disk and reason

able equilibrium models are considered, the profiles of the radial stellar veloc
ity dispersion resemble those inferred from observations of external galaxies (see

Romeo 1985; Bertin and Romeo 1987).

Recall that in local self-regulation processes internal excitation mechanisms con
tributing to the secular evolution of the stellar velocity dispersion are not
taken into account.

Recall that the global modal analysis considers propagating spiral waves, and the

propagation condition (see section 6.2a) is just the stability condition given in

the local analysis. This explains why local and global self-regulation mechanisms

are expected to operate simultaneously in the secular phase.
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CHAPTER 7. FINITE-THICKNESS EFFECTS TN TWO-
COMPONENT GALACTIC DISKS: PRELIMINARY
RESULTS

7.1 INTRODUCTION

As we have mentioned in section 6.2a, the spiral structure theory relies on a num
ber of work assumptions which allow to make the linearized system of coupled Vlasov
and Poisson equations more tractable; however, in some situations of astrophysical in
terest the validity of such assumptions may be questioned. For instance, we know that
real galactic disks have finite, although small, thickness and the possibility of re
garding them as infinitesimally thin depends on the relevant wavelengths of the per
turbations excited; in some cases, when the underlying spiral structure has a high
winding degree, finite-thickness effects should be taken into account in the stabil
ity ana]ysié. In view of the importance that such effects might have in the self-regu
lation mechanisms which are expected to operate in galactic disks and to be at the
basis of their secular heating, we have tried to evaluate them. This can be done only
after that their perpendicular structure at equilibrium has carefully been investi
gated.

In performing this analysis, we have made use of simplified models of galactic
disks in which stars and the cold interstellar gas are treated as two different compo
nents. Although such models might be thought of as being inaccurate to describe ac
tual galactic disks, which are known to consist of different populations of stars and
gas components, they incorporate indeed the most essential features as regards their
stability properties. In this context it should be noted that such a single stellar
component is taken to be representative of the whole active stellar disk consisting
of Tow-velocity dispersion stars (high-velocity dispersion stars do not participate
appreciably in spiral structure), whereas the single gaseous component is taken to
simulate H I regions of neutral atomic hydrogen and giant molecular clouds. Generally
even more drastically simplified galactic models are used, in which the cold inter

stellar gas is not taken into account; in some situations of astrophysical interest
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this further simplification may not be justified, because the cold interstellar gas
is expected to play an important or even crucial role in the stability of galactic
disks due to its Tow turbulent velocities (Romeo 1985, 1937; Bertin and Romeo 1987).
Several attempts have already been made to estimate finite-thickness corrections
to the local dispersion relation in one-component galactic disks (e.g., Toomre 1964,
1974, Goldreich and Lynden-Bell 1965a; Vandervoort 1970b; Genkin and Safronov 1975;
see also Fridman and Polyachenko 1984 for a review). While it is generally agreed
that the form of the dispersion relation remains the same provided the unperturbed

surface density is multiplied by a suitable reduction factor, different estimates of

such reduction factor have been given by the various authors. The most reliable and
complete analysis is that of Vandervoort (1970b), which is local in the galactic
plane and global perpendicularly to it; the reduction factor, found by solving an
eigenvalue problem, has been shown to be very well approximated by the simple ex

pression

1

m ) k(’l‘>= O(i‘ ) (7.1)

where k is the local radial wavenumber of the perturbation and<z>1is the thickness-
scale of the galactic disk. This estimate should be compared to that naively obtained

by Toomre (1964):

A axp -kl
T = |k (y)

) kvl (7.2)

As regards more realistic models of galactic disks in which more (than one) compo
nents are present, no so rigorous partially global analysis has been performed (e.g.,
Shu 1968; Vandervoort 1970c; Nakamura 1978; Jog and Solomon 1984); among these at
tempts Shu's (1968) contribution is surely the most important one, while Vandervoort
(1970c) refers only to a particular continuous model of stellar populations without
performing a proper stability analysis. The aim of our calculations is just to extend
the rigorous partially global analysis of Vandevoort (1970b) in such a way as to in

clude the cold interstellar gas as well.
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7.2 PERPENDICULAR STRUCTURE OF GALACTIC DISKS

The perpendicular structure of galactic disks has recently been investigated in de
tail by a number of authors, who made use of multi-component locally isothermal
models (e.g., Bahcall 1984; Bahcall and Casertano 1984). These analyses take into ac
count the fact that galactic disks are nearly self-gravitating perpendicularly to
their symmetry plane, so that standard asymptotic expansion techniques can be em
ployed. While in the case of one-component stellar disks this is all that is needed
to make the problem analytically tractable (see Vandervoort 1967, 1970a for the most
rigorous analysis in this context), when multi-component models are considered fur
ther assumptions are to be made to this end: generally the component with the largest
scale-height is taken to have the largest mass density, so that a perturbative ap
proach can be employed. In our two-component model this assumption is certainly sat
isfied, but a perturbative approach of this kind may not always be suitable because
in the outermost regions of galactic disks the mass density of the cold interstellar
gas becomes comparable to that of disk stars. For this reason we have tried to relax
this assumption, and this has allowed us to perform a detailed analysis only at small
and large distances from the galactic plane; anyway it is shown that these are the .
distances most relevant to the stability analysis (see section 7.3b), and also from
an observational point of view. A number of asymptotic regimes of astrophysical inter
est have finally been investigated. Our analysis on the perpendicular structure of ga
lactic disks should further be refined in view of its relevance to the stability

analysis concerning finite-thickness effects.

7.2a ONE-COMPONENT CASE

We shall now briefly discuss the one-component case because the investigation of
two-component galactic disks, although it is much more complicated, employs similar
methods. The system, which is assumed to be in an axisymmetric and plane-symmetric
equi]ibrium state and to be locally isothermal perpendicularly to the galactic plane,

is described by the Poisson equation

4 9% 9§ _ (7.3)
T o Ton =Lmée

>0

o
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supplemented by the "locally isothermal" condition

g lnn)= QO(R)MPECQ—M {@(’t,ﬂ.)-@(n)o)k]- (7.4)

If<r>and<z>are respectively the characteristic radius and the thickness-scale (de
fined to be positive) of the system, then (BZQVarZ) + r—](BQVar) = O«ﬁ%<r>?) and
(aZQVazZ) = 0(¢V<z>?). Therefore, taking into account that galactic disks are highly

flattened, we can perform an asymptotic expansion in powers of the small parameter ¢=

=<z>/Kr><<1; we obtain the following hierarchy of equations derived from the Poisson

equation (Vandervoort 1967, 1970a):

2 < (3)
D 0
¢ o, (7.3){°
b
2 = (1) (])
J (o) (7.3)
= LT G
SRR
2 o (m=-2) (m-2) Z . (m)
PIK) 1 29 i) (m=1) (n)
A S R - (7.3)
yn? n IX In2 L’“GS) (m>2) )
where 1in this notationsp(n), Q(n) = O(sn). In the following we shall consider only

lowest-order non-trivial contributions, which are represented by equation (7.3)(])°
Combining this equation with the "locally isothermal" condition and suppressing the

order-indices for simplicity of notations, we find in dimensionless form:

A

&
d

where we have adopted the following scaling:

¥
7':1,1' ) (7.5)

;.!)

A 7L C’:i 1
e (7.6
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E (@@) 0,2 dx,0) -

(7

7)

This non-linear second-order differential equation can easily be integrated by quadra

tures (see, e.g., Bahcall 1984); imposing the boundary conditions

@(0)'-'0 ) dg
o

we find:

) A
e LR

e
whose solution is

B (3=t (cor 1)

The corresponding volume density is

QUL 1)= 9, (1) sech (N )) .

The following two asymptotic limits are of interest:

%
Q(rn) =< Qo wp( z ) ) Zg(Gaussian thickness-scale) = 4;
Inl«d G

[nl ) .
i - z_(Exponential thickness-scale)=4/2.
JERN ml»AL'Q"m ( ) ) p (Exp )

nE

(7.

Integrating the volume density given in (7.11) over z, we find the following ex

pression for the surface density:

o= ol [28001]

.10)

11)

.12)

13)

14)
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so that in this cne-component case the expansion thickness scale 1is

(= A ) (7.15)

expressing it in terms of the surface density, we find:

Ch .
Az(’rr&a‘)' (7.6)

7.2b  TWO-COMPONENT CASE

While the investigation of the one-component case is more or less trivial at this
order of approximation, the same is not true for two-component galactic disks: sev
eral complications arise, some of which were already hidden in the one-component case.
The two components will be denoted by different labels, H(=Hot) and C(=Cold), in or
der to recall that they are characterized by different vertical velocity dispersions.
Having in mind cases of astrophysical interest, we shall refer to them as the stars
(H) and the cold interstellar gas (C); however, we could also consider the case where
gas is absent but two stellar populations with different scale-heights can be ident
ified. It is assumed that the system possesses the same symmetry properties as in the
one-component case, and that each component is locally isothermal in the z-direction;
moreover, the only interaction between the two cdmponents is taken to occur via the

gravitational field (Poisson equation):

MEFoM IXN anz:““G(QH*Qc)) (7.16)

95(""”=90‘L(’”Wp[- i {@(R,R)‘@(’w)ﬂ (i=H,¢C) - (7.17)

C;"(n)
Proceeding along the same Tine as in the one-component case, we find that equation

(7.5) 1s replaced by

(7.18)
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where we have adopted the following scaling and parametrization:

1 1fa
L N - : (7.19)
L2 AL=(I“GQDJ (L'HJC)J

55 (@-1@0) ) @05 B (n o0l } (7.20)

Cl

- nc

Bn= 2C (7.21)
CnH

Y = Qoc | (7.22)

Q(QH

This equation can formally be integrated by quadratures with the same boundary condi

tions as in the previous case:

R
. {(1— )+ Y;Sn.(i-,l-ﬁ;:@) }1/9,

however, in contrast to the one-component case, the left-hand side of this equation

= Fl@]-218!; (7.23)

cannot explicitly be expressed in terms of elementary or special functions for arbit

rary values of the local parameter BZ. In order to overcome this difficulty two strat

egies can be employed:
- One consists in investigating the asymptotic behaviour of FEﬁ] as @ — 0 and & -+

so as to estimate ¥(Z) at small and large z (non-perturbative method).

- The other consists in assuming y52<z:] and in carrying out an asymptotic expansion

in this small quantity (perturbative method).

Both methods will be considered and the corresponding results will be compared in

such a way as to draw as much information as possible.

Let us first consider the non-perturbative approach. Expanding the integrand func

tion in powers of @ as @ — 0 and retaining only first-order terms, we obtain:
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1@”L T AL
~ . 7.24
it }@*o (4+y)"> = d(1 == (i (7.28)

Studying the behaviour of the integrand function in the range O:S(§<:+a>, we realize
that the following reasonable lower estimate can be given for F{éﬂas D — +00:

A

F[@]N 2 = @(&)N 2 (d+yRn EARE (7.25)

-»+oo (i )/ﬁn\]’/l IRl>+e0

Later on we shall see that a more precise estimate is indeed required for the stabil
ity analysis; unfortunately this cannot easily be obtained. The correct Tower and up

per asymptotic scales are respectively:

NLo=Tlee ) (7.26)

Moo = JLEH fmox[i,ﬂmg."] (7.27)

(see equations (7.28), (7.29), (7.35) below); these scales have not properly been es
timated by Bahcall (1984). The volume densities of the two components have the follow

ing asymptotic behaviours:

2 ) "
0; (,n) == QowWP( 2 )) ch,as(—g‘“—“) ((=H,c) (7.28)

Ini<< ne

( ﬁ nl - Cni "z ). (7.29)
-7'(37., = = . .
Q m»n 9°°WP n.u }RELS 8T G (Qoy Crn+ Qoc Coc) (c=H,C
Observe that
Nec i/a (7.30)
- ﬁn" )
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- B - (7.31)

The z-independent exponents Ki in equation (7.29) depend on the higher-order correc
tions which we have not been able to estimate properly in equation (7.25). Although
the volume densities of the two components are not known in the whole range 0<|z|<+o
but only asymptotically, their surface densities can all the same be determined exact

1y without performing any integration. This is indeed a delicate point; some authors

(Talbot and Arnett 1975), in fact, generalized superficially equation (7.14) found in

the one-component case obtaining the wrong relation 0. = Qs (2z It is not the

Gi)'
gaussian thickness-scales of the two components that determine their surface den.
sities but their exponential thickness-scales, as can be deduced from the work of
Bahcall and Casertano (1984) when equation (7.29) is taken into account; this fact is
not apparent in the one-component case, because there the gaussian and the exponent
ial thickness-scales are identical apart from numerical factors (see equations (7.12)

and (7.13)). Therefore, the surface densities of the two components are:

W(n)zgo;(n)[qflei(m] (t=H,c) ; (7.32)

this result is not intuitive at all. Expressing the gaussian and the exponential

thickness-scales of the two components in terms of their surface densities, we find:

: : (ol cani) o .
Rei=2n =H C (7.28)
e = [{(Vulfrfuh(ccldid} ] (G<R,C /

Cai : ,
e = L=H.c) " (7.29)
EL (m@o (L=H,C) )
. 1/2 . . . . .
in the one-component case [....] in equation (7.28)' reduces to unity. The meaning

of equations (7.28) and (7.29)' is clear: the total volume density in the plane deter

mines the gaussian thickness-scales of the two components, while the total surface

density determines their exponential thickness-scales. A global thickness-scale of
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the system, which can be identified with the expansion thickness-scale <z>, may be

defined as

(nyz L - _TLeH e (7.33)

2 0o (bngwnee)’®

in analogy with the one-component case; observe that the following inequalities hold:

Lnge < Nee < Y < neH <L NEY - (7.34)

Let us now introduce the dimensionless local parameter

o

-
_6__:__ =Y Bn ) (7.35)

which in a flat galactic disk is more relevant than 7, and investigate some asymptot

ic regimes of astrophysical interest (see Table 7.1). The interpretation of these re
sults, which are very sensitive to the ordering between a and ﬁé, is straightforward
once equations (7.30), (7.31), (7.35) are taken into account. Substantial differences
with respect to the one-component case (e.g., note the frequent presence of the geo
metric mean of the exponential thickness-scales) can be ascribed to the strong gravi
tational coupling of the two components.

Let us now consider the perturbative approach (Bahcall 1984). Performing an asymp

totic expansion in powers of the small local parameter a <1 and retaining only first-

order terms, we obtain:

A

@ﬁ éo"' a $| ) a @l << @o (Self-consistency condition); (7.36)

®,(2)= m (coni4) ; ) )
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I(i,ﬁé) cannot explicitly be expressed in terms of elementary or special functions
for arbitrary values of the local parameter BZ, so that only its asymptotic behaviour
can be investigated analytically. We shall not pursue this 1line, because this has
been done even without the restriction a <1 1in the non-perturbative approach dis
cussed previously; only a further, still not satisfactory (for the stability analy
sis), information on the z-independent exponents Ki in equation (7.29) can be drawnT
Rather, we shall consider the case in which first-order contributions can be ne .

glected, so that only iz is relevant to the following analysis. The volume densities

of the two components are:

L
Ou b, M2 QQH(n)uc)nl( ) ) (7.39)

An(n)
(ac S’M.\

zﬁﬁ{ "
~~— . (7.40)
Qc(ﬂ,&15—«7 Qoc () S2ch ( )

Ay 00
(<< ﬁn.)
The further restriction a<@<ﬁ% has been derived by comparing the gaussian and the ex

ponential thickness-scales of each component found in this lowest-order approximation
to those found in the non-perturbative approach (see Table 7.1); it can be identified
with the asymptotic self-consistency condition of this perturbative approach. For an

interesting discussion on the observational implications of this analysis see Bahcall
(1984), Bahcall and Casertano (1984).

From the results obtained in this section it follows that our non-perturbative ap
proach is richer in information than the perturbative approach employed by Bahcall
(1984) except in the asymptotic regime y<<I (a<@<BZ). Nevertheless, this is not yet
all that is required for performing a detailed stability analysis concerning finite-
thickness effects; in particular, a more accurate estimate of the z-independent expo

nents Ki would be necessary.

7.3 STABILITY ANALYSIS: FINITE-THICKNESS CORRECTIONS TO THE LOCAL DISPERSION
RELATION

The basis of our investigation on finite-thickness effects in two-component galac
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tic disks is the stability analysis performed by Vandervoort (1970b) in the case of
one-component purely stellar disks. The method we have employed is in fact a trivial
extension of that of Vandervoort (1970b) to the case in which two stellar populations
are present (the consideration of a fluid component might give rise to some diffi
culties), but the resulting analysis is indeed much more complicated than in the one-
component case. For this reason we shall briefly discuss the one-component case be

fore.

7.3a ONE-COMPONENT CASE

The work assumptions made by Vandervoort (1970b) are the same as those used in the
Tocal spiral structure theory (see section 6.2a), except that concerning the infini

tesimal thickness of the models. The method employed to solve the Vlasov equation

when z-motions are taken into account is based on the existence of an adiabatic in
variant JZ, whose approximate constancy characterizes the perpendicular motion of
disk stars. This is a characteristic of highly flattened galactic disks, where the
frequency of the oscillation in the z-direction is large compared to frequency of the
epicyclic motion in the symmetry plane, which in turn is generally of the same order
as the pattern frequency of spiral waves. To lowest order, assuming an unperturbed
distribution function of Schwarzschild type, it is found that the perturbed volume

density 1is

977 am 59041 (znti)"’- g(@»"@'ﬂ ""P(‘ zté)d”m -

(7.47)

0 Ikl 1 X i )
T 4mGpoh (amci)™ D<@~>WP( zer]dvn )

where we have adopted the same notations as in sections 6.2a and 7.2a; <...>denotes

the average over the angles conjugated to the action JZ,

4G 0o Alkl _ at eolkl 2
D K% (w-m)* P (] kK= (w-ma)* For () (7.42)

in

+T

2 -n R
E ()= i-v [j_- ve g P cm(wf’rﬂdp] ) (7.43)

2 mmvm )
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- tk*
VE(‘%—K@B) ) M= CK:. ) (7.44)

where F,_(x) is a reduction factor which lowers the response of high-radial velocity
dispersion stars and v is the dimensionless Doppler-shifted frequency of the spiral

wave. In considering the Poisson equation, we shall assume that the following order

ing holds:

L« ) [<kolKny s> m oy <kyA=0(4) (7.45)

(ny
where <k>1is the characteristic radial wavenumber of the perturbation. Self-consist

ency requires:

31§ﬁ tr _ 20 i
TN k9, = QQA‘LGci)“S@ HIXP( )&L@ } (7.46)

?"Az = ynj@ Y axp (- __)dm

to the same order of approximation, where we have defined

(7.47)

A=zlklaD ;

this wave equation is to be solved with the boundary conditions

(7.48)

é,(ﬂ.) o O

This complicated eigenvalue problem for A can be reduced to a simpler eigenvalue

problem, by observing that the perturbed volume density

| (7.49)

gives rise to the same surface density as Q] to the order of approximation to which

we are working. Thus a reasonable approximation to the eigenvalue problem for A can
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be obtained by replacing o, with QT:

Y gL A I
3;;'4<§,——'ZI‘$Kh( )@ é( MH+w Morew ) 50

which is a Schrdodinger-type wave equation. Note, however, that this eigenvalue prob

lem differs from the usual quantum-mechanical problem, for it consists in fixing the
energy of the particle (in a bound state) and in seeking the depths of the potential
well for which that energy is allowed. Nevertheless, the solution can be obtained

along a Tine similar to the quantum-mechanical case (see, e.g., Landau and Lifshitz

1977); the corresponding quantum condition is

Am = (m+1kla) (m+1klAa+d)  (meIN) - (7.51)°

Note that only the lowest eigenvalue is physically relevant, because all the others
do not vanish as |kl4—0 in such a way as to recover the equation valid for infini
tesimally thin disks (this is just equation (7.50) with the right-hand side replaced
by the term 4mG 7, 0(z), where the self-consistency condition has not been imposed).

Therefore, imposing the restricted quantum condition

= 1klA (4+1k1d) = D=1+ lklA (7.52)

and taking into account equation (7.42) and foot-note 2, we find that finite-thick
ness corrections to the local dispersion relation correspond to a lowering in the re
sponse of disk stars, which can equivalently be thought of as a lowering in their

equilibrium surface density by .the reduction factor

4 _ 4
= 1+ 1klA T 4«lk<nl

Therefore, the effective surface density Ueff and not ¢ is relevant to the local sta

bility of one-component purely stellar disks. From the form of the reduction factor

, Tage=ToO - Ay

it is apparent that such a simple result does no longer hold when a global (in the ga

lactic plane) analysis is performed.
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7.3b  TWO-COMPONENT CASE

When two stellar populations are considered instead of one, the method employed by

Vandervoort (1970b) to solve the Vlasov equation when z-motions are taken into ac

count applies separately to each component. Therefore, assuming that the ordering

%;-«1 V<Y <y s ) (kY= 0(4) (7.53)

holds, we find that to lowest non-trivial order the wave equation is now written as

IN? (2ne)” Qon  (27Ec)* Qoc In.|—> + 00

Y (oLt A o A c
@‘k@ﬁ-[ "o A 8 ]@N 5 0, (7.54)

where we have defined

Ao zlkl@ne) Dr (i=H,c) (7.55)

4

. LT Qei ekl £ _2mGoclk] ., (7.56)
Di = ki (w-mR)* F'v(n‘)" K (wW-ma)? F'V(Xt) ((=H,C) -

When one of the two components is fluid, such as in the case in which the cold in

terstellar gas is considered, the same wave equation with the corresponding gaseous

reduction factor

4
- (7.57)
F"’ (MC) T 4+ {efa-va)}

is not expected to hold, because for such a component the Vlasov equation is replaced

by the standard hydrodynamical equations and the method developed by Vandervoort

(1970b) cannot be applied. A more careful analysis is thus required in this case (fi
nite-thickness effects in one-component fluid models have been estimated by Goldreich
and Lynden-Bell 1965a).

Let us now make some general remarks on the wave eguation obtained when two stel

lar components are present. We observe that, since the quantum condition is deter

mined by imposing the boundary conditions QH(Z)-—»O as |z]—»+o, only the asymptotic
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behaviour of the solutions as |z|—+ois indeed required. For this reason we can ap
proximate Qi(r,z)/goi(r,z) in equation (7.54) with their asymptotic Timits given in
(7.29) (this explains why the z-independent exponents Ki should be estimated accurate
1y):

0 r [ A K (lnl) Ne ke ( (7.58)
It Ki‘- [(QREH)ZL[ P NLEH +(1715c)7"" -)@ @(R}I:;’_;:OO

Moreover, the quantum condition of this double-eigenvalue problem forziH andlic, which

determines the correct Tocal dispersion relation, is expected to be of the form

£(Mu, A2kt men) 2lklnec ym)=0 (7.59)

apart from the dependence on the Tocal parameters o and BZ contained 1in Ki' While it
seems reasonable that even in this two-component case only the Towest eigenvalues (n=
=0) are physically relevant, it cannot be expected a priori that such relation could

be reduced to the particular form

Du My (2 1kl ey ;DJk\JLEC) '*'Dc.Tc,(l[klkaH,llliLec): 1 (7.60)

in analogy with the one-component case, where TH and TC are the reduction factors of
the two components. If this were not the case, finite-thickness corrections to the Io
cal dispersion relation could not simply be expressed in terms of two reduction fac
tors, one for each component; in other words, the local dispersion relation could not
be reduced to the form obtained in the case of infinitesimally thin disks by a suit
able scaling of the surface densities of the two components.

We shall now try to be more specific. In contrast to the one-component case which

is exactly soluble, the wave equation (7.58) cannot be reduced to a Fuchsian differen
tial equation or to other well-known classes of differential equations whose sol
utions are expressible in terms of elementary or special functions, for arbitrary
values of the local parameter BZ = ZEC/ZEH (see, e.g., Abramowitz and Stegun 1970;
Bender and Orszag 1978; Erdelyi 1956, 1981; Gradshteyn and Ryzhik 1980; Morse and

Feshbach 1953; Smirnov 1964). For this reason we have developed a perturbative method ®

similar but not identical to that employed in quantum mechanics to solve the Schrodin
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ger equation when the potential is of the form U(z) = V(z) + W(z ) W(z) representing

a small perturbation of V(z) (see, e.g., Bender and Orszag ]978) Our perturbative

method is based on the following two facts:

- The contribution of the cold component becomes rapidly negligible with respect to
the contribution of the hot component as |z|—+oo(recall that only this asymptotic

regime is relevant to the quantum condition):
ln\

MP( Nee /’UXP

- The case in which only the hot component is present is exactly soluble.

{nd
JLEH

= X [- (HEH"D\EC) ln.l:l 0 - (7.61)

TewnJlec in )= +00

A drawback inherent in perturbative methods of this type is that they require the "po

tential" to be known in the whole interval 0<|z|<+o; for this reason we are forced
to consider the general form of the wave equation (7.54), which for simplifying the

notations we rewrite in the form

9.1(1)+[/\H\/H( Y+ Ae Ve (n k]g(n,)_ ) Y(r) ——0 - (7.54)"

)=+ 00

Introducing the local expansion parameter

Vc(&)
g(n (7.62)
VH(’l)

we perform an asymptotic expansion of y,ziH andz1C:

o o0 0
9:1.: ng(&) ) AH:Z /\Hm )/\C:Z Nem ) (7.63)
mMm=0 mz=o m=0

where in this notation yn’11Hn’11Cn = O(en). To lowest (n=0) order we recover the

1imit of one-component systems:

Yo + [ AnoVu- K ]yo=0 - (7.54),

To n(=1)th order the wave equation becomes:

9"‘+[/\H°vﬂ k]{j"":—virlz/\l-ljgm j"ch /\c:y_\\jm 3 (7. 54)

n=l
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Writing Yo in the form

L_’ima 30 Fm (7‘64)nz1
and multiplying equation (7.54)A>] by yo, we find:

d l m ™m

a‘; (93 Fm):— Yo [VH Z‘/\H] Fm-j ‘\-\/cz,‘/\cj_, ,,,_3] ) (7.65)n2]

where the Towest-order equation (7.54)' has been taken into account. Integrating over

i
0
z and taking the boundary conditions into account, we find:

szi;/\“?gwﬂ“-?v“ d ’”él/\cs—\ E%%-SVC dn=0 - 0 e

Let us now examine the zeroth and the first order of approximation to understand how
this perturbative method works:
- n=0 —

AwzNuo= 21kl men (1+2H<\)15H) : (7.67),

as derived in the one-component case-(cf. equation (7.52)).

- n:] —

/\Hij‘)ivg ol n + /\wjg’;vcm =0, (7.66),

N

Nuo* Aws (7-68);

7.69
/\c /\czo ’ ( 4

Combining these equations, we obtain:



- 86 -

S‘ngcdn
SHEVHdR

whereziHO is given in (7.67)0.

(7.67),

AHO:AH+

c )

In general the same procedure applies to nth order as well, where equation (7'66)n>1

is to be considered together with equations

m
Aw=3 AwT ) (7.68),
J=0

m-1
/\c=_2 /\CJ ) (7_69)n2]
J=0

We can e]iminateziHn from equation (7.66) A from equation (7.69)n and all

n=l’""Cn-1 =1
the remainingziHj,z1cj_] (1<j<n-1) from the equations obtained up to (n-1)th order;

finally, equation (7.68)n can be used to re]ateziH andAC toziHo, which is given 1in

=
(7.67)0, obtaining the restricted gquantum condition

/\HO = leHm /\H + 'ch /\C ) (7'67)nz1

where f1n=f1n(2|k|ZEH’2lkleC) (i = H,C) are determined by the iterative method just
discussed above.

We plan to inquire into the validity of this perturbative approach (convergence of
the asymptotic series) soon; for the moment, however, it is interesting to note that,
when such an asymptotic expansion is justified, finite-thickness corrections to the

local dispersion relation reduce to a simple scaling of the surface densities of the

two components by two corresponding reduction factors:

o Net Pim
Tim= mo Toatkinen D Tum + De Tem=1 (7.60) .

where equations (7.55) and (7.67)O have been used to re-express equation (7'67)n>4

In order to make this perturbative method operative, we should try to give reasonable

estimates of the integrals involved in this analysis, such as those contained in equa
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tion (7.67).. We expect the dominant contribution to be given by the gaussian asymp

totic 11m1t]of the volume densities of the two components; if this is true, we can
avoid the difficulties connected with the exponential asymptotic Timit (proper evalu
ation of the z-independent exponents Ki)’ as well as those even more drastic deriving
from our ignorance of the general z-behaviour of their volume densities (except in

the asymptotic regime y <<1).

FOOT-NOTES

The best estimate of the z-independent exponents Ki we have succeeded to give is

1+7 2 -\
( Mﬁn)ﬁo%qx—ﬁ Ku{ i~9”—3-2—)’(1-[5n_) LO%JL ) KCEB& Ky ) (7.70)

where the upper bound has been derived in the framework of the perturbative ap
proach and thus holds provided 1.

D =1 1is just the Tocal dispersion relation without finite-thickness corrections.

The guantum condition derived by Vandervoort (1970b) (which is just equation (7.57)

with n replaced by 2n) is probably wrong.

D, + D; = 1 is just the local dispersion relation without finite-thickness correc

tions.

A WKBJ approach Teading to a quantum condition of Bohr-Sommerfeld type cannot be

employed here because it fails for low values of the quantum number n (recall that
we are interested in n=0).

Differences between our perturbative method and that used in quantum mechanics
arise because, in quantum-mechanical language, the energy of the particle is fixed

and two eigenvalues are associated with a double-well potential.

FIGURE AND TABLE CAPTIONS

Table 7.1 Relation among the relevant thickness-scales in asymptotic regimes of as

trophysical interest.
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