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Introduction

The extensive study of 2D conformal QFT in the last years was motivated
mainly by their close connection with (super) string theories and 2D statistical
mechanics. In the former case the conformal symmetry automaticaly arises after
the gauge fixing as a symmetry on the world-sheet and and this requires that every
vacuum solution of the string theory is nessesserily conformal QFT. The latter
observation is based on the suggestion of Polyakov [1] that the fluctuations of the
order parameter fields at the second order phase transition possesses conformal
as well as scale invariance. Therefore the problem of classification of all types
of universal critical behaviour can be formulated as the problem of finding the

conformaly invariant solutions of the QFT.

The two space-time dimensions are distinguished between others by the fact
that the conformal group (= group of analytic transformations of the complex
plane) is infinite dimensional. The corresponaing infinite dirmensional Lie algebra
is generated by the zz- (2%-) component of the stress-energy tensor T(z) (T(Z))
and is equivalent to the well known Virasoro algebra [2]

[Lny Lm] = (‘ITL - n)Lm—l-n + i%:m(mz - 1)6-m.+n,0

Here L, are the coefficients in the Laurent expansion of T(z) and ¢ is the Virasoro
central charge. Consequently all the fields present in the theory can be classified

completely in terms of the representations of this algebra.



The simplest fields,transforming homogeneously under the action of the gen-
erators,are called "primary” ones [3]. They give rise to a representation charac-
terized by the value of the conformal dimension A of the primary field (highest
weight). Such a representation is not in general irreducible - at certain level it
appears a field which is again primary. Setting the corresponding Hilbert space
states ("null vectors”) to zero assures the irredusibility of the representation
and imposes nontrivial conditions on the fields of the theory. Together with the
conformal Ward identities this leads to differential equations satisfied by their
correlation functions which permit to construct them and hence to solve the the-
ory. A particular consequence of the existence of null vectors is that the operator
algebra closes on finite number of fields only. These models are knoun under the

name "minimal models” (m.m.) [3].

All interesting and tractable models of 2D conformal QFT correspond to cer-
tain rational values of the Virasoro central charge and the conformal dimensions.
They are based on the presence of null vectors and contain a finite number of pri-
mary fields (rational conformal QFT). The first and simplest of them, described
by Belavin,Polyakov and Zamolodchikov, are the minimal conformal models cor-
responding to the Virasoro central charge ¢ < 1. Of most interest, actualy,is their

infinite subfamily obeying the unitarity conditions - the "unitary discrete series”
[4]

6
=1- M=12....
¢ (M +2)(M 1 3) &

However the m.m do not exhaust all the solutions of the conformal QFTs in
2D.One can consider the case when the theory (at the fixed point B(g) = 0) has
higher than conformal infinite symmetries. The two simplest examples are the
N =1 superconformal symmetry [5] and the conformal current algebra [6]. By
using these and other infinite symmetries one can construct new exact solutions

of the conformal field theories and thereby to describe new fixed points.

The infinite dimensional algebra of superconformal symmetry - the Neveu-
Schwartz-Ramond algebra - contains the Virasoro algebra as a subalgebra.All the

fields in the theory can be classified according to its representations.The unitary
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minimal superconformal models [5] correspond to the value

3 12
2 (M +2)(M +4)’

c= M=1,2...

of the central charge of the Virasoro algebra.

The Wess-Zumino-Witten model possesses at the fixed point symmetry with
respect to G x (3 current algebra,i.e.,with respect to the direct product of "left”
and "right” Kac-Moody algebras (. The energy momentum tensor of this theory
is expressible quadratically in terms of the currents by the Sugawara construction
[7]. The corresponding values of the central charge are given (for the case of the
semisimple group G) by

. dg k
Tk C,

C

where dg is the dimension of the group G,C), is the quadratic Casimir opera-
tor in the adjoint representation and k is the central charge of the Kac-Moody

algebra,which takes (in unitary theory) integer values k = 1,2,....

The superconformal and Kac-Moody symmetries are generated by local cur-
rents of spin % and 1 -respectively. One can consider also the general case of local
currents of higher order spins(see {8]). Another series of models are generated
by the nonlocal currents with fractional spins (”parafermions”).Fields with such
spins arise naturaly in Zy symmetric statistical systems [9]. A series of exactly

solvable unitary models of central charges

arising as representations of the algebra of the parafermionic currents, was pro-

posed by Zamolodchikov and Fateev [10].

One can continue this list of conformal models adding the NV = 2 superconfor-
mal m.m.’s [11], generalized parafermions , [12], the variuos W-algebras {13] etc.
The question arises: how to classify all the possible 2D symmetries (and their
m.m.’s)containing Virasoro algebra as a subalgebra? Despite recent progress in

the classification of the CFT’s two important problems remain open:



a)the explicite construction of the solutions of all of these models, i.e.,4-point

functions,structure constants,the fusion algebras etc.

b)the problem of their irreducibility.In other words: can one find a minimal
set of conformal models in terms of which one can construct and explicitely solve

all the other "reducible” models?

One of the powerfull approaches to these problems is the so called GKO

construction [14].

Let G be a Kac-Moody algebra and H its subalgebra, T and Ty being the
generators of the Virasoro algebra (i.e., stress-energy tensors in the Sugawara
construction). Then the difference T' = Tg—Tg commutes with all the generators

of H and represents the Virasoro algebra with
c(G/H) = ¢(G, k) — (G, k")

where k and %' are the central charges of the algebras G and H respectively. A
particular,but very general case is presented by the symmetric coset
ék X G’[
G
with & being some semisimple Lie algebra. The corresponding Virasoro central

charge in the case [ =1 is given by

rk(2h—|—k+1)
(h+E)h+k+1)

T 1s the rank and h - the dual Coxeter number of G.

There is a big evidence that in order to solve the models so constructed it is
only nesessary to solve the ones with { = 1.One of the main goals of this thesis

is to make this sugestion more clear.Consider in particular the construction with

G = SU(N) and

C;I(Nz—'l)( NN+ )
N +1 (N+E}N+Ek+1))

In Chapters 1 and 2 below it is shown on the example of SU(2) that all these

models can be constructed as specific projected tensor products of the Virasoro

m.m. (with { =1).



All the presently known unitary minimal models can be realized by the GKO
construction.Important examples which are not included in the above ones are
the parafermionic theories SU(2)/(U(1) and the N = 2 superconformal m.m.’s
wich have a GKO realization SU(2) x U(1)/U(1) and a central charge

c=3-—"  N=12,...

However,with this construction of the solutions,the question of the internal sym-

metries of the models usualy remains open.

Having solved the various m.m.’s on the sphere the natural question to ad-
dress is: how one can define and solve these models on compact higher genus Rie-
mann surfaces? Besides the pure statistical interpretation, [15],and the analytic-
geometrical bootstrap programm of Friedan and Shenker, [16],there are at least
two additional motivations to study the conformal models on compact Riemann
surfaces. The first one 1s their role in the perturbative description of the heterotic
string vacua [17]. Many results on the partition functions relevant to string the-
ory were obtained [18]. These,however,deal essentialy with the free field theories,
where the partition functions are expressible as a functional determinants of the
0 operator. The second reason for this interest is to examine the specific features
of the QFT on curved spaces with nontrivial topology and to understand the
- role of the moduli space [19], [20]. For the conformal QFT’s of nongaussian type
(e.g. the conformal m.m.’s),general results are known in the case of torus (g = 1)
where the partition function can be constructed in terms of the characters of the
irreducible representations of the conformal algebra (or higher symmetry alge-
bra) [15]. In particular,the general classification of the modular invariant toroidal

partition functions relevant to unitary m.m.’s was achieved in [21].

In the present thesis we describe the conformal m.m. on a restricted class of
surfaces which can be represented as a double covering of the branched sphere.
Such surfaces are known as hyperelliptic surfaces.The strategy we will use is to
reduce the genus g problem to the corresponding g = 0 problem. The central idea
of this method is that the topological properties of the Zs-surface Xéz) of genus
g are simulated by the specific vertices V(a;) (called branching operators) placed

at the points a; of the branched sphere. The main advantage of this approach is



that the calculation of the n-point correlation functions of the conformal fields on
2 éz) reduces to the problem of the construction of n+2g+2-point function on the
sphere [22]. Hence ,the problem we address is the following: for each conformal
m.m. defined on X_.g2) find the relevant conformal model (central charge,fields

and branching operators) on the (branched) sphere.

A natural extension of this procedure to the case of superconformal {Chapter
4) and higher level SU(2)-coset models can also be considered. Following the
methods of Chapter 1 we show in Chapter 4 below that the latter ones can be
constructed and solved using only the information about the level 1 m.m. on
Xég).:[n this way one can compute the partition functions of V(L, M) models on
the torus and genus two Riemann surfaces as 4- and 6-point functions of certain

conformal fields from the Virasoro models on the branched sphere.

The construction of the exact conformal solution corresponding to a fixed
point enables us to develope a perturbation theory and to examine the behaviour

of the renormalization group in a neighborhood of this point.

The study of the relevant perturbations of 2D CFTs [3] is motivated by their
role in the description of the off-critical behaviour of the corresponding 2D sta-
tistical models. Zamolodchikov has shown [23] that in 2D renormalizable field
theory there exists a function ¢(g) of coupling constants ¢ = (g*,¢%,...,9")
which decreases monotonically under renormalization group (RG) transforma-
tions, and which is equal to the central charge of the corresponding CFT in the
RG-fixed points. Furthermore, in the context of the Virasoro minimal models
V(M) with M >> 1, one can construct a field theory which, in a leading approx-
imation in 1/M, corresponds to the RG-flow connecting the fixed points V(M)
and V(M —1) [24]. For the superVirasoro models V(2,M) with M >> 1, a
similar calculation [25,26] shows that the corresponding RG-flow is from V{A)
to V(M — 2).

Let us make a brief review of the Zamolodchikov’s construction [24]. Starting
~ from the action H(1, M) corresponding to the M-th model (M >> 1) in the
L = 1 series, one perturbs it with Hini(1,M) = g [ ¢13(1, M)(z)d?z. Here,
¢13(1, M) is the primary field in the M-th model with the conformal weight
A(l, M) =1—¢(1,M), e(1,M) = 2/(M + 1) < 1. In the perturbation theory
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expansion for g ~ € <« 1, one then obtains for the S-function

Blg) = eg — %ng + 0(g%),

where C = C(13)(13)(13)(1, M) is the corresponding structure constant. Using the
results of [27] for C, it is easy to show that §(g) has another (IR) fixed point
g" in the vicinity and that ¢(g*) = (M) — 12 qu‘ B(g)dg = c¢(M —1).The same

procedure can be applyed also to the case of superVirasoro models.

Within the SU(2) coset models V(L, M), [14], the Virasoro and superVira-
soro series are just the first two members (L = 1 and L = 2) of an infinite series
SUn(2) x SUL(2)/SUpr+1(2). The natural question is: can one say something
about the RG-flow for a general coset model?

In generalizing this construction to an arbitrary L, the main obstacle is the
lack of detailed information, such as the structure constants, about arbitrary
level models. To obtain this information and extend the calculation to a general
level L, we shall use the representation of the higher level coset models in terms
of the (projected) tensor products of the lower level models [28], described in
Chapters 1 and 2. Let V(L, M) be the AM-th model in the discrete series at the
L-th level.In Chapter 5 below we construct a perturbation of V(IL, M) which ,in
a leading approximation in 1/M for M >> 1,gives the RG-flow

V(L, M) — V(L,M ~ L).

This thesis is organized as follows.In Chapter 1 we show that the higher
level SU(2)- coset models can be represented by the projected tensor products
of the Virasoro models. We prove the modular covariance of the prescription
and construct explicitely the higher level primary fields. Chapter 2 is devoted
to the construction of the monodromy - invariant correlation functions of these
fields and calculate some of the structure constants. For level L > 4, the pro-
jected tensor products span a & L(L — 1)L — 2)(L — 3)- dimensional space. In
Chapter 3 we describe the Virasoro m.m.’s on the hyperelliptic surfaces. They
are mapped into the specific models on the branched sphere. The latter are de-

scribed by a generalized Coulomb gas representation. The results of this Chapter



serve as a ingredient for the construction of the higher level SU(2) coset models
on the hyperelliptic surfaces, considered in Chapter 4. We discuss in more de-
tailes the superconformal m.m.’s which are mapped into the m.m.’s of the Dzﬂ
parafermionic algebra on the sphere. In Chapter 5 is investigated the the be-
haviour of the RG in the vicinity of the fixed point of the latter models.We show
that there exists a RG- flow from the AM-th to the (M — L)-thy model in the
L-th level SU(2) coset series, for M large. Finaly, in the three Appendices, we
give a detailed prove of some statements about the correlation functions and the
structure constants used in Chapters 1, 2 and 5. We show also that the model
V(1) x V(2,1) with ¢ = 6/5 coincides with the second model of the W- algebra

series of models.



Chapter 1

Fusions of conformal models

1.1 Introduction

After the initial period of proliferation of new minimal models and new sym-
metry algebras [3, 13, 29, 30, 31, 14, 32, 33], the study of the 2D conformal
field theories (CFTs) has turned to the analysis of the relations between these
models and search of the classification principles [34]. To make the meaning of
“irreducibility” of the minimal models (and their symmetries) clearer, we start
with the description of the “quark structure” of the 5T (2) coset family of mini-
mal models V (L, M) ~ SU(2)z x SU(2)ar/SU(2) 46> L, M =1,2,... [14]. The
main statement in the present Chapter is that e general L-th family of mini-
mal models V{(L,M) L >1, M = 1,2,..., can be realized as a projected tensor
product of consequent Virasoro minimal models V(1,M) = V(M). As we shall
show, all the data for a general V(L, M) model: the primary fields, the conformal
blocks and the 4-point functions, the structure constants, the fusion algebra, the
characters efc. can be expressed explicitly in terms of the corresponding data

from the Virasoro minimal models only. It is in this sense that all the minimal

models V(L, M) with L > 1 are reducible.
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The simplest example for such reducible models are the N = 1 superconfor-

mal models [5], i.e. V(2,M). The initial observation is that:
5U(2); x §U(2) y S5U(2)2 x SU2)m

‘@(2)2 15——75(2)}'1‘142 (1.1)
_ SU(2): x 5U(2)m y SU(2)1 x SU(2)ar41
SU(2)a+1 SU(2)w+2 '

A consequence of (1.1) is an identity for the central charges:

o(1,1) + (2, M) =c(1, M) + o{1, M +1),
6 3 12 (1.2)

(M +2)(M +3) (2, M) =73 -

(1, M) =1 2 (M+2)(M+4)

The observations (1.1) and (1.2) motivate our basic statement:
V) @VE,M)=P(V(IM)®V(M+1)), M=12,..., (1.3)

where P is a certain projection whose rigorous definition in terms of characters is

given in the next section. In terms of the primary fields, P projects from the space
of all products of the fields” {pM¢M+1} =V(M) ® V(A + 1) to the subspace

PV(M)® V(M +1)) = {$MeM1},  p=1,...,M +2,

which is isomorphic to the representation space V(1) @ V(2,M). This isomor-
phism is based on the following simple relations between the dimensions of the

primary fields from two consequent Virasoro minimal models [3], N = 1 super-

conformal minimal models [5] and Ising model ¥ (1):

. 2
Arp(L, M) + Bpo(1, M +1) = ALF(2, M) = 3( - TH) ,

2 2
— 27
rTeeAs \ (1.4)
R 1 r+ s 1
Arp(L, M) + Dps(1, M +1) = AR(2,M) = 5 (p_ : ) -
m—n¢€2Z+1,
and therefare
M M1
Nes = 4091 ra)e (1.5)

it _ M M+1 .
R = bt e Pz P L2

Here, o is the Ising fleld with A = <%, N,, and R}, are the NS- and R-fields of

* Throughout the thesis both ¢} and ¢,,(1, M), and AM and A,,(1, M) are used to denote
the Virasoro fields and their dimensions.
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the N = 1 superconformal minimal model. The rest of the products qb% gf"'}
for p # (r + 5)/2 or (r + s F 1)/2 correspond to the descendants of the primary

fields (1.5).

A remarkable property of this construction is that N = 1 superconformal
symmetry naturally arises as a symmetry of P(V(M) ® V(M + 1)), and the

supercurrent is simply realized in terms of the Virasoro primary fields:

. 1
Gm\/ A THoETT [MOHos - (r +o)eelel ). o)

Although qug and qbg/‘lr"'l are not free fields and have complicated 4-point func-
tions, G(z) defined by (1.6) indeed has the well-known free 4-point function (see
sec.1.3 and App. A for the proof) and reproduces the standard OPEs with the
primary fields (1.5).

In fact the representation space P(V(M) ® V(M + 1)) is full of symmetries.

The simplest one is generated by the free fermion
M M+1
P = 1265 "

and is related to the Ising model V(1). The spin-2 field T' = q‘;%qfv‘%"’l, the
spin-3 field W = X¢¥ Bqﬁ‘;‘/{‘{‘l + u(8opM )qﬁé"{‘i_l and the stress-energy tensors T(*)
and T+ realize a large symmetry algebra of three spin-2 currents and oune
spin-3 current. As is shown in App. C, in the particular case M = 1, i.e.
c(1) + ¢(2) = 6/5, this algebra has as a subalgebra the well-known W;j algebra
(29].

The above construction has a straightforward generalization for general L:
V(LL-1)@V(L,M)=P(V(M)® V(L -1,M + 1)). (1.7)

By iterating {1.7) we arrive at

V(L,M)®P(V(1,1)@ V(1,2)®---® V(1,L —1)) = s
=P(V(,M)®V(1,M +2)®---@V(1,M + L —1)). '

In words, (1.8) means that any model V(L, M), L > 1 can be constructed and

ezplicitly solved in terms of the Virasoro models only. Note that we have imposed

12



the projection P on the LHS of (1.8) too. We will take (1.7) and (1.8) to mean
that for any field from V(L, M), one can find fields from V(1,L — 1), V(M)
and V(L —1,M + 1) such that the (projected) products of the fields that are
identified Like in (1.5) have the same correlation functions. Furthermore, where
there is no projection P (like between V(1,L—1) and V(L, M)), the monodromy-
invariant 2D correlation function of the product of the fields factorizes into the
product of the correlation functions. The bulk of the proof of (1.8) appears
in secs.1.2 through 2.2. The crucial role will be played by the projection P,
t.e. the restriction to the products of the type 95%1 ﬂ’ﬂ;‘;l ces égf'_*'ﬁ_l only. In
particular, in computing the 4-point functions only the products of conformal
blocks corresponding to such products of fields are allowed. Still, in secs.1.4 and
2.1 we will show that this is enough to construct monodromy-invariant correlation

functions. In this way, we will obtain the corresponding structure constants as

the products of the structure constants of the Virasore models.

One could wonder how general is this procedure of reducing and solving a
general coset model in terms of the lowest level coset models only. Concerning
the SU (2) coset models, we present in chap. 2 one more example proving that
N = 2 superconformal minimal models (i.e. SU(2)3r x U(1)/U(1) coset models)
can be solved in terms of the V(2, M) and the parafermionic models [30] V,#(M):

P(Vor(M +2)@V(2, M +2)) = V=2 @ V(1). (1.9)

Our conjecture for the arbitrary (symmetric) coset series of models [35] G(k,1) =
G % G1/Gyqt (G, denotes level k of the affine algebra () is that G(k,[) are
reducible to the products of the first level models only.

In this preliminary discussion we have succeeded in avoiding the question:
what is the origin of the reducibility of the V(L,M), L > 1 coset models? A

formal answer is that it follows from the obvious coset identities:

SU(2): x 8§U(2)1_1 y SU(2)L x SU2)w

SU(2); SU@2)az (1.10)
_ SU(2)1 x SU(2)ar o SU(2)p-1 x SU(2) a1
SU(2)ar41 SU(2) ML

As we shall show less formally in the next section, the basic relations (1.7), (1.4)
and (1.5) responsible for the reducibility follow from the branching rules for the

13



ST (2)-characters and specific associativity properties of the branching functions.
Finally, one can think that the reducibility of V(L, M) reflects the well-known
fusing property of the associated lattice spin-I{/2 models [39], since all of them

can be realized as fusions of the basic (spin-1/2)} 6-vertex model.

1.2 Modular properties of the projected tensor products

As will be shown in detail in sec. 1.4, the dimensions of the primary fields of
the V(L, M) agree with the dimensions of the specific products of the primary
fields of the lower level models, and we would like to identify them with those

products. In particular, the proposed identifications are: for n —m € LZ,

n- (L —1)m

qsmﬂ(L’M) = ¢mp(1aM)¢'pn(L - 1:M + 1)3 P I 1 (1'11)
andforn—me LZF,1<I<L-1
‘?SI,H-l(la L — 1)¢mn(L1M) - ¢mp(1:M)¢’pn(L - 11M + 1)3
n+(L—1)mF(L—10) (1.12)

L

We would like to prove now that the subspace

P(V(M) ® V(L - laM -+ 1)) = {qf’mp(la-m{)(ﬁpn(-[’ - laM + 1)}

is isomorphic to the representation space V(1,L—1)® V(L, M) given by the LHS
of (1.11) and (1.12). To prove this we have to answer the following two questions:

a) do the fields ¢mn(L, M) defined by (1.11) and (1.12) span a representation
of the conformal chiral algebra specific to V(L, M)?

b} is the projection P as defined in (1.11) and (1.12) consistent with the
modular invariance, i.e. is the subspace P(V(M) ® V(L — 1,M + 1)) invariant

w.r.t. the modular transformations?

14



We will start with the simplest case (L = 2) of the N = 1 superconformal
minimal models . The proof of the above statement is based on the following sim-
ple relations between the characters %,4(7, M), %rs(7, M), %E(7, M) of V(2,M)
and these of V(1), V(M) and V(M + 1). For r — s € 2Z we have

M+42
Hra T) Z XTP(T M)Xps('r M 4+ 1) (XD + X%)}:’_rs(‘rr M):
p=1
N M2 _
Hpo(1) = Z (_1)p+(r+s)/2X1‘p(T:M)XPS(T:M +1)=(xo0— X%)fu(T:M)-
p=1
(1.13)
Ifr—~se2Z+4+1,
R M2 R
‘Hrs(T) = Z XTP(T? M)XP-’(T'.'M + 1) = QX%(T))AC”(T,M). (1'14)
p=1

One can derive (1.13) and (1.14) in three different ways. The first observation
is that H,s(7) (defined as a sum of products of the Virasoro characters) under
the modular transformations behaves as a product of Ising model and N = 1
minimal model characters and has the same behaviour for small q. The modular
properties of both sides of (1.13) and (1.14) can be easily checked using the
standard formulae [21]:

T: xrp(T + 1, M) = e2rilAn- C(M)/M)er(ﬂ M),
5 Xrp(=1/m, M) = > Srp;;}p'x"’P'(T:-M)s
™

st _ 2 () gy T TP
THTP (M-}~2)(M+3) M—|—2 M+3’
and a few identities like
M2 — 17 M
{p"y . TPP TPP +3
Z (—1)1’(? +p )51n M+ 3 M T 3 2 (617'.}7" — p',M+3—p")1 M e 27.

p=1

Another way to prove (1.13) and (1.14) is to use the explicit expression for
Xrp(T, M) [21]:

oo, M) = g2 (g) 3 ( i) _ a0 ))
nel

[2(M +2)(M + 3)n + r(M +3) —p(M +2)* - 1 2rir

(M) g=e¢

orp (n) = 4M +2)(M -+ 3) ’

By resumming the LHS of (1.13) and (1.14) one obtains the product of Ising and

15



N =1 characters.

The equations (1.13) and (1.14) are in fact simple consequences of the asso-
ciativity of the branching rules for the SU(2);-characters x; (7, z) (k is the level
and I/2 is the spin) [40]:

M42

Xl,e(T,Z)XM',p_I(T,Z) - Z XPQ(T’M)XM-H.Q—l(T} Z): e=10,1,
=1
q-—p:qe mod 2

M43

(x20(m:2) + x22(ny 2))xaep—a(T2) = D0 Rpe(m M)xara,-1(T2)-
=1
q—p:qC} mod 2
(1.15)
Applying (1.15) several times we get:
M3 M4-2
(x1,0X1,0 + X1,1X1,1) XM p—1 = > X421 2 Xpg(Ty M)xgr(T, M +1)
r=1 g=1

r—p=0 mod 2
and

X1,0X1,0 + X1,1X1,1 = (xo + x1 )(x2,0 + x2,2)-

3
These identities, together with the second of equations (1.15), lead to the first of

equations (1.13). The remaining two equations in (1.13) can be obtained by the

modular transformations of the first one or directly by following the procedure

described above:

M3 M42

2X1,1X1,0XMp-1 = > xi+2,0-1(T,2) Y Xpg(T, M)xgr (T, M + 1),
'r——p=rl=1:'lnod 2 =1

x1,o(T,Z)X1,z(TaZ) = Xf_ﬁ("')xml("': z),
M+3
x211('r, z)x_n,f|p_1 ('r, z) = Z XM+2,1-—1(T: z)?&p‘r (T: M)

r—1
r—p=1 mod 2

Consider an arbitrary L-th level coset model V(L,M). Our main tool in
the proof of (1.7), (1.11) and (1.12) are the branching properties of the SU(2)-
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characters [40}:

M4L41
XL,r (T: Z)XM,p—l (T: z) = Z b;;)(TILa M)XM*{-L.q—l (T': z)'
=1
q—p"—?r mod 2

The branching functions bl(,?(TIL, M) have the properties

L—
b&? - bg&f+;)—p.M+z+L—q’

bg,?:O for p~qe2Z 47141,
and the following modular transformations:
M+1M4+L+1 L

(1) =3 3 3 AR g0 05,
p'=1 g'=1 ¢'=0

A(M+z) 2 wpp
M+2 M—|—2’

bz(,;)('r 4 1) - ez::rl(»’.\:rq";;)bg;)(q- + 1).

The corresponding characters of irreducible representations of V(L, M) are linear

combinations of bg;) with integer coeflicients n,:

Xpg(T1L, M) = Z n.b pq ) Xpa(TI1, M) = bpq.
r=0

Applying the branching rules to the triple product y M-2p-1X1,0XL,s and using
their associativity, we obtain the following identity:

M2 M+2
Z sz(M tr (L M +1) Z Xs+l,q(L+ 2)b§3'_1}(L +11M)! (116)

t=1 g=1
which appears as a generalization of the equations (1.13) and (1.14). One can
easily check the modular covariance of (1.16). This establishes the consistence of
the projection defined by (1.7), (1.11) and (1.12)with the modular transforma-
tions. Note that the sum on the RHS of (1.16) reflects a certain projection in
the product V(1,L ~ 1) @ V(L, M) as well. In the simplest case of L = 2 this
property is expressed by the fact that only the states with zero total Z; charge

(i.e. X%;Qg,};) and (xo + x%);f(ggs)) are consistent with the projection P on the

LHS of (1.13) and (1.14).
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The goal of the above discussion was the proof (at the level of characters and
branching functions) that the generic V(L, M) model can be realized in terms of
V(M), V(L—1,M +1) and V(1,L ~ 1) models. Obviously, this is not the only
way to construct V(L, M). For example, the 4/3-parafermionic models V(4, M)

[33] have an alternative construction in terms of ¥ = 1 superconformal models

only:

V(Z2,2)@V(4,M)=P(V(2,M)® V(2,M + 2)).

Applying again the branching rules method and using the fact that [41]
(4, M) + 034, M) = xB(4,M), p-qe2Z+1,

we find that the following identity holds:

ES NS
3 Ror(m Mg (r, M 4+ 2) = 2257 (7, 20 (74, M)

r=1

for p— g € 2Z + 1, where % 1 is the character of the representation with A = %
16
in the NS-sector of V(2,2).

The realization (1.9) of N = 2 superconformal models VY=2(M) in terms of
V(2,M +2), VP/(M + 2) and V(1) announced in the introduction is based on

the following relations between the dimensions of the fields in these models:

1
ARPIM +2) + ARTpsr (M +2) = Do o(M) + (k= 1),

1 1
AP +2) + Af n (M +2) = AL (M) + (k=141 ~ o,

where k — [ is even, which imply the following identifications:

NL,D(M) = ¢L(M + 2)Npjq 101 (M +2),
RL 4y (M)os = ¢h (M +2)Rig1 1pa(M +2).

Denote by xfm('r,z|M) (lgl €1,08 <1< M) with s = 0,2 mod 4 the characters
for the NS sector (xf;(NS) = xf]‘g + Xf;,z) and with s = 41 the ones for the R
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sector. They are related to the SU(2)-characters x,,; by the following identity
[42]:
3 x4Oumiz = Xmi(Ooz + 022), I—ge€2Z.
g mod 2(m-+32)

Remembering that

X2,0 +x2,2 = {x0 + x%)(@o,z + 0O3.2)
we obtain

(xo + X%) > X;@q,m+2 = xm,i(x2,0 + Xx2,2)
a

m+-2 (VS)
= Z Xit1, s1(Tm A+ 2) Xm0
s— lE?Z
Since the parafermionic characters n(r)Cl,(+) are simply related with Xm+432,s @5

in
Xm+2,s = z C';(m -+ 2)(‘:‘)3,",,_;_2,
q

the above identities take the desired form:

m—+42

(XD + X-;-)X:I;(T:m) = Z XI+1 3+1(T m + 2)03(7‘177" + 2) (1'17)
3=
s~lg2Z

In closing, we would like to point out that the relations (1.13), (1.14), (1.16)and
(1.17)provide us with a simple method for the construction of nontrivial nondi-
agonal modular invariant partition functions for the projected temsor product
models P(@fz_ol V(M + k)). For example, the partition functions for the models
PVIM)® V(M +1)) withc=2— 12/(M + 2)}(M + 4) have the form:

Z(r,7) = Z NS g () H (7)+

ra,r's’
+ E NE;NT’S' T8 ) rrar(7) Z Nri)-'s‘HR T)Hﬁ:’(?)'
r,a,r 8! r.gr,.q
(1.18)

The matrices N(V5), N3 and N are the same as in the V(2, M) partition
functions and are classified in [43]. Similarly, using the corresponding N-matrices

for the N = 2 minimal models [44], one can construct the partition functions for

the P(fo(M +2)® V(2,M + 2)) models.
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The two simplest cases illustrating the above discussion are the models with
¢ = 3/2 and ¢ = 6/5. Taking the matrices Ngfﬁf,vs'm for the nondiagonal in-

variant for the superVirasoro model ¢(2,2) = 1, we obtain the following modular

invariant for the model ¢ = 3/2 =1+ 1/2 = 7/10 + 4/5:

_ 1 1 - =
Z(r,7) = 5N + H [P + S [HY + H P + | HG
- 1
+ [ HS [+ HR ) + S HR[

where H., are realized in terms of the products of the characters of ¢(1,2) = 7/10
and ¢(1,3) = 4/5 models. For example:

Ha1 = x 1 (2)(x0(3) + x3(3)) + x 3 (2)(x2 (3} + xz(3)),
Hi + Hu = 2(x0(2)x0(3) + x2(2)xz (3))-

This partition function coincides with the Z,Ma(\/g) for the ¢ = 3/2 model found
by Dixon, Ginsparg and Harvey in [45]. Using the corresponding matrices for the
diagonal invariant of ¢ = 1 superVirasoro model one can write one more invariant
for the projected tensor product model P(V(2) @ V(3)), ¢ = 7/10 + 4/5 = 3/2.
As it is shown in App. C, the tensor product model P(V(1) @ V(2)) with ¢ =
1/247/10 = 6/5 can be reinterpreted as the second model in the series of minimal
models of the W;-algebra [29]. The corresponding modular invariant obtained
by using the matrices N, (NS.N5,R) of ¢ = 7/10 model,

rs,7's

e

B

(ENS + [EXS)? + | BESP + | AR5 + | BR ) + | HEP,

is a nondjagonal invariant of ¢ = 6/5 model of the W-algebra.

1.3 Operator constructions

Consider now the problem of the realization of the V{L, M) chiral algebra
and its fleld representations in the space P(V(M) @ V(L — 1, M + 1)). We will

begin with the simplest case I = 2. The natural candidates for the generators
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of the N = 1 superconformal algebra in P(V(M) @ V(M + 1)) are the fields
hp = 45 ¢>M+1 = 2,3 with dimensions A, = %(p —1)2, their derivatives,
and the stress-energy tensors T(M), T(M+1) of V(M) and V(M + 1). Define the

following field combinations:

Y=gl
r_ M+2 an, M+4 oy IM(M +6) M1
= 4(M+5)T (M + )T 4(M+1)(M+5)¢13¢ ’
(1.19)
and

. 1
¢= “\/(M T 2)(M +4)

susy _ (M +6),_an 3M ey 1 3M(M + 6) M1
ST v LTy vl 5 4(M+1)(M+5)¢13¢’ '

[qu{"{aqu“ (M + 6)(3¢73) M“]

(1.20)

The statements we are going to prove in the following are:
(a) T! and + generate the usual Ising model algebra of central charge ¢ = 1 /2;

(b) T3YSY and G are the generators of the N = 1 superconformal algebra
with ¢ = 3/2 — 12/(M + 2)(M + 4);
(c) the (T7,4) and (TVSY | @) algebras are in direct product;

(d) the fields N, and B!, defined in (1.5) are the primary fields of the N = 1
algebra generated by G and T5V5Y of (1.20).

Let us start with (a). Using the OPEs of V(M) and V(M + 1) models we
have to prove that 1 and T given by (1.19) satisfy the well-known OPEs [3]:
2

2
1

1
THOT(2) = — +
4z3,  Z3,

TI(2) + —BT!(2) + -,
Z12
TI(1)4(2) = 5}?—1‘5(2) @)+,
212 Z19

BB = = + 2T (D) oo,

To do this we have to implement the projection P in the OPEs and in the con-
struction of the conformal blocks of %, G, T and of the primary fields in terms
of V(M) ® V(M + 1) blocks. Postponing the general discussion to secs.1.4 and
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2.1, we consider here the specific problem of constructing the 4-point functions
and the OPEs of the currents ¢, G and 1, using the conformal blocks of the
ingredients and ¢M+l p=1,2,3. According to the construction (1.19), the

4-point functlon of 1(z) can be written as a sum of the products of the conformal
blocks I of ¥ and I of ¢I{+1:

2
Fy(z) = ($(0)h(2)(1)9p(c0)) = 2(1 — 2) 3 VI (=)} H(2).

1,i=1
Note that at z = 0 I{M and I{W'H are analytic and I.ff ~ P AMA2)/(M+3)

Iéu 1 1-2(M4)/(M+3) [27]. Then the condition for the monodromy invariance

of Fyy(z) at z = 0 implies Y33 = 0 = Yoy, i.e.
Fy(z) = (z(1 = 2))7
X{F(——- M 1 2 .Z)F(_M-I—ﬁ_ 12 _z)
M+3 M+3 M43 M+3 M4+3 M+3
M+2 1 2M—{—4 M+ 4 1 2M-|—8
M+3' M+3 M+3' ) (M+3 M+3 M+3’ )}’

+ Y222 F (
(1.21)

where Y31 = 1 is a convenient normalization. Considering the small distance be-
haviour z — 0 of (1.21), we conclude that the first term gives rise to ¢ qﬁM'*“l( 0)
in the OPE #(z)(0) and the second one to c;fr{‘gqéM'*’l( 0), i.e. the terms ¢7] ¢M+1
and quﬁgﬁﬁ"“l are projected out. What we have learned is that in this case ap-

plying the projection P is the same as requiring monodromy invariance around

z = 0 for the {-point functions.

As it is shown in Apps. A and B, the monodromy invariance around z = 1

fixes

3M(M + 6)
M M1 _
Y22 = Otmanan Gy = g1  1)(07 +5)’

(1.22)
where anfz)(lz)(la) and Ggl-;(gl)(‘%l) are the structure constants of the scalar fields
M(2)¢H(2) and $3 T (2)pd 1 (z) [27):

ol =M 4 ok Ak
(12)(12)(13) = Jr 1 (21)(a1)(31) ~ 4(M + 5)

A= (r(ﬁ%)r(mzﬁ)%(%))%.

T () T (20) T (33)

A_l




This determines completely the 4-point function Fy(z). Since the crossing-
symmetric, monodromy-invariant 4-point function of the free Majorana field (z)

is given by
(B0 (2)p(1)d(c0)) = (2(1 — 2)) M1 — 2+ 2%),

we have obtained as a bonus a proof of the nontrivial identity

F(_ M 12 _Z)F(_MJrﬁ_ 12 'z)

M+3 M+3 M+3’ M+3 M43 M+3
3M(M+6) , (M+2 1 2M+44
4(M+1)(M+5)ZF(M+3’M+3;M+3;z)
(M+4 1 2M+38

XF . .

(1.23)

— =1- 2
M+3 M+3’M+3’z) 2z

We provide an independent proof of (1.23) in App. B. Clearly, the present for-
malism can be used as a machine for generating similar identities among the sums

of products of {generalized) hypergeometric functions.

Since the structure constants appearing in the OPEs are square roots of the
corresponding coeficients in the 4-point functions [27], we obtain the following
OPE:

M+l
BENH0) == +22 [A—%TW)(D) +An_gar).,

(M) i(M +1) (1.24)
VTt + o

From (1.21), (1.22) and (1.23) we see that the structure constant in front of
the (;S%qbﬁ'!'l(()) term in (1.24) is \/Ca{?)(lz)(la)cgﬁ(lzl)(al)’ a square root of what
one would naively expect. To understand this, remember that the OPEs should

always be thought of as operations performed within well-defined correlation
functions. Since the currents are distinguished from all the other conformal fields
by having well-defined 1D (i.e. dependent only on z, i.e.with only left-moving
fields) correlation functions, their 1D OPEs are well-defined. In the present
context, the currents are realized as sums of products of ordinary conformal fields,
whose only well-defined correlation functions (and therefore OPEs and structure

constants) are usually 2D. Still, as is shown in detail in App. A, the particular
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combinations used to construct curremts can have well-defined 1D correlation

functions like

4
<H qbg;tﬁﬁ{1+l(zi)> ) 1<pi<M+2

1=1

and
<¢ﬁ¢£"{+1(0)¢n(2:ﬂ4)(22, Z2)brp b 1 (23)rs (2, M) (24, 54)) , T—sE€2Z

Thus, as we have seen in (1.21), (1.22) and (1.23), and as is shown for all the
other relevant cases in App. A, the monodromy invariance around z = 1 of the
1D 4-point functions of the currents results in the structure constants of 1D OPFEs
being constructed from the square roots of the standard 2D siructure constants.
Heuristically, one could think of the square root appearing since only the left-
moving flelds contribute to the OPE.

After this digression we return to the proof of (2) and consider the OPE T4,
Keeping in mind what was just said and using the Ward identity

(M) _\ 1M AY u 1M
TV (z)¢12(0) = 22 ¢12(0) + ;aﬁf’zz(o) +e
we find that

(AM? (AMRYR  aMM46) ]
e(M) co(M+1) " 8(M +1)}(M +5) z—2¢()+’

1
21;2‘1!’(0)“*““-

T!(z)4$(0) =

This demonstrates that there are infinitely many ways (indexed by M), to realize
the free spin-1/2 Majorana field % in terms of its “asymmetric square roots” ¢I%
and qbgf"'l, which in their turn are non-free fields with fractional spins 4—(%-{-37

and JJT":%—)—, respectively.

In proving (b), (c) and (d) we follow the same procedure, i.e. start with the
construction (1.19) and (1.20), and do the OPEs. In the OPEs, keep only the

terms consistent with P and use the square roots of the 2D structure constants in
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1D OPEs. For example, applying this recipe to the product of two supercurrents
G(z)G(0), we obtain the well-known OPE [5]

MM+6) 1 2[3M+6,
(M+2)(M+4) My

rOe(0) - 3 Tl el 20 +

implying c(2, M) = 3/2~12/(M+2)(M+4). Analogous calculations for ¥(z)G(0)
and TY(z)T5USY(0) show that no singular terms appear in these OPEs. For

G(2)G(0) = (0)+

4M+1

example,

Gl s 1 (M +2)(M +6), )
$(2)G(0) \/(M+2)(M+4){ DL+ O

MM +4) g g+
T —— T +2/Yar itz ¢ )

(1.25)

i.e. the Ising model algebra (77, %) and the N = 1 superconformal algebra are

in fact in direct product.

It remains to cousider the supercurrent Ward identities and the properties of
the primary fields. Starting with the NS sector, we have to find a realization of
the second component NI, with the dimension A.4(2, M)+ 1/2, consistent with
the constructions for G and N,,, i.e. satisfying the OPEs:

Go)Ves(0) = TiNT(O) 4o, s €22,
(1.26)
G(Z)Ni{(o) = MT‘NM(O) + %?'BNT.!(O) + e
The result is
II M M+1
Noi(M) = a- (M)‘?S V5 (r+s)— 1¢1(r+s) 1, +“+(M)¢’r,g-(r+s)+1¢§(:r+s)+1,s’
- 1 M1 M+1 _ AM+1 )
= V(M +2)(M +4) [M (A%(r+a)¢1.a — 80T T Al
- (M + 6) (A A (ra)Fl T A Ar,z(r-’r.s))
M1
% \/ (12)(7'1,(f+5))(n2(r+:)¢1)c{21)( F(r+s),s)(F(r+s)FLis)
(1.27)

For example, for r = 1, s = 3 we obtain the field driving the RG-flow V(2, M) —
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V(2,M — 2) [49]:"

Nis =1/ 37 [2( Ttiel 4 2( ¢i‘§¢”+1]. (1.28)

Note that there is one more field with the same dimension:

BNy M+ 2)pM gMH1 L prgM a1

el

but only N{{ given by (1.28) has all the properties of the second component of
N3,

To conclude the discussion of the supercurrent Ward identities, we turn to
the Ramond sector. Using (1.5), one can show that

G(z)BRXD(0) = /Ay, — 2R2(1)(0) + .

24 53/

To prove that N;y and Hrs constructed as above obey all the required null-
vector properties [5, 46|, what we have done so far is still not enough. We have to
show that their fusion rules, structure constants, and 4-point functions coincide
with the ones for the N = 1 minimal models [46, 47, 26]. We postpone this

discussion to the following sections.

In extending the discussion of the current algebra and the Ward identities
to the higher level coset models, one encounters new difficulties. We will outline
them here briefly, motivating the change of sirategy we will use for L > 2, which
will entail abandoning of the study of the current algebra and focusing on the
direct construction of monodromy invariants. The first difficulty is the simple
fact that even the dimensions of all the currents are not known.® The other
added difficulty has to do with the fact that the dimension of the A% current

stops being a multiple of 1/2 for L > 2. Therefore, we cannot expect that such

a curent has a monodromy-invariant 1D correlation function. As explained in

* Do not forget that these are 1D second components. The full 2D second component is
N{3(z,2) = N{{(z)N{{(2).
¢ For L > 5 there seem to exist additional currents over and above the well-known A = 2 {T)

and A = Li-}-" ones.
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App. A, one can construct monodromy-invariant 1D correlation functions of the

following kind:
M M L-1
0= (IT sl ottt i), (129

The dimension of 9513;1 g{;;l - tﬁﬁi"’fi ! is always a multiple of 1/2. Therefore, it

can be identified with a product of Az4s with some non-trivial field from V(1,L—
T+3

1) on the LHS of (1.7). For example, for L = 3, among the projected products

that could be used for the representation of Aq/5 the lowest dimension ones have

dimension equal to 3/2, as for example ¢4 43 +1¢M+2 Since % — % = -1%, a look
at (1.8) tells us that Aq/s appears multiplied by the field ¢13(2,1). A similar
structure persists for higher L; in constructing the current 4 out of projected
products of dimension 3/2 one has to multiply it with the field ¢13(2,L — 2) of
dimension 2&;_{_22) Therefore, the correlation function (1.29) has to be interpreted

Gap = <1fl Ad13(2,L — 2)(2i)> :

It seems impossible to factorize G 44 into some 1D correlation functions (I] 4(z))
and (T] ¢13(2, L — 2)(z)).

Obviously, at this stage we cannot be very precise about the current algebras
for L = 3,5,6,.... Therefore, for the study of these higher levels we adopt a dif-
ferent strategy. In the next section, we will start by constructing all the primary
fields for any L in terms of the projected products of the Virasoro fields. Then, we
will construct the corresponding conformal blocks and their monodromy-invariant
combinations. That will allow us to obtain the fusion rules (which we work out
explicitly for the fusions of two vacuum sector fields) and the structure constants.
In the cases where there are any previous results to compare with {L = 2 and

L = 4), our results will be confirmed.

1.4 Construction of the higher level primary fields

In this section we present an explicit construction of the fields belonging to

the higher level models. Our goal is to reduce everything to the products of the
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Virasoro fields since their conformal blocks, correlation functions eic. are fully
understood and explicitly calculated. At the outset we will guide ourselves solely
by comparing the dimensions of the fields. Having established a tentative identi-
fication, we will show in the sections that follow that such an identification leads
to monodromy-invariant correlation functions and to the structure constants that

agree with the previous results.

Here we limit ourselves to the fields which are primary relative to the stress-
energy tensor and all the additional currents present in the higher level models.
We will have more to say about the descendants later on. The primary fields of
the model M at level L are ¢mn(L, M), with the conformal dimension given by
32)

(L+M+2ym—(M+2n]?-L* L(L-2L)
AL(M +2){(L + M +2) L(L+2)’
1 L

£:§|m—-nmod2l}|, OSESE’

1<m<M+1, 1<n<L+M+1, M, L=1,2,..

Apn(L, M) =

If n —m € LZ, the expression for A, simplifies since £(L — 2L} = 0. For
L = 2 such fields belong to the Neveu-Schwarz sector, for general L we will call
such sector the “vacuum sector.” Since it is significantly simpler, we present the

construction first for such fields.

It is easy to check that
Amn{L, M) = Apa(1, M) + Azn(L — 1, M + 1)
if z = #(n + (L — 1)m). This identity leads us o write
$mn(M, L) = ¢ 1 (np(5-1)m) (LMD 1 (nr(L1ym)n (D — T M +1). (1.30)

Two remarks are in order: first, note that V(1,L — 1) from the LHS of (1.7)
contributes the identity field to the LHS of (1.30); second, as will become clear
later on, the products ¢me(1l, M) (L — 1, M + 1) with ¢ # z represent (parts
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of) descendants of ¢mn(L,M). Since

n_%ﬂ_ﬂle@_nz,

we can immediately iterate (1.30) and finally obtain ¢mn(L, M) written in terms
of the Virasoro fields:

L-1

‘Ebmn(L:M) = H ¢kiki+1(11M + i):
=0 (1.31)
A+ (L —1)m

ki = n-—meELZ.

L ?

Let us pause for a moment to study (1.31). Firstly, note that we can treat
any two consequtive Virasoro fields ¢z, (1, M + i)dp,, 5, (1L, M +1+1), i =
0,...,L — 2 as representing a superVirasoro NS field ¢p,,,(2, M + 7). Namely,
since ki = $(in + (L —i)m) = m+ 1K, K = H(n — m), it is clear that kiis —
ki = 2K € 2Z. Since kiz; = (ki + kiy2), all of these NS fields are primaries.

Furthermore, starting from (1.31) one can reach any other projected product
St (L M)y o (LM +1) gy (1, M+ L—1), (1.32)

by changing k; into k1, kg into k3 etc.. By (1.4), the dimension of (1.32) is higher
than the one of (1.31) by a multiple of 1/2. We interpret products as (1.32) as
(parts of) descendants of gma(L, M) w.rt. T, G (L = 2), ¢13(2, L — 2)A%—5_, any

other additional currents that appear for I > 4, or a product of these currents.”

To summarize, among all the products {1.32) we search for the one with the
lowest dimension to identify it with the primary field ¢ma(L, M). Minimizing
the dimension is equivalent to minimizing S = Zf’__jal(k; — ki1 )2. Iftm—-nelLlZ
there is a unique solution (with kg = m, kr = n) that gives § = LK?, namely
equidistant ks , ki = m + 4K, K = £(n — m) that we already wrote down in
(1.31).

5

* The dimension of ¢13(2, L~2) is z2=2-. The current AlzY=3_A.z77" 3 is not branched

HL+2)"
around the vacuum sector fields, and therefore is moded by r € 7 — Putting this

1

-2
P ) L4z
3{I+3) Tt =

together, we obtain
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Turning to the non-vacuum sector (Ramond and the analogues), namely fields
Gmn(L, M) with m —n & LZ, we will see that things stop being quite so simple.
We will begin by deriving the expression for one product of the Virasoro fields
having the required (minimal) dimension. Unfortunately, it will become obvious
that for non-vacuum sectors that expression is not unique. We will study the
field ¢ma(L, M) withn —m € LZF1,1 <1< L-—1. (A part of the reason for
non-uniqueness should be already obvious, namely if n — m € LZ F [ then also
n—m € LZ £ (L —1).) Some straightforward algebra will show that

AIJ-H(LL - 1) + Amﬂ(L:M) = Am‘y(l:M) + A'yﬂ(L -1, M+ 1):
where y = 7((L — 1)m + n F (L —1)). Therefore, we write

$r141(L L — D)dmnl(L, M) = b 1 (1 1ympngp(z—1)) (1 M)

(1.33)
% ¢%((L—1)m+nrg-(L-l))'n(L —1,M +1).

This time V(1, L —1) contributes a nontrivial field® ¢1141(1, L—1). Analogously

to the discussion for the vacuum sector, n — m € LZ 7 | implies

n—(L_l)m"%*Ln?(L“l) e(L-1ZF(-1).

The field from V(L — 1, M + 1) is again from a non-vacuum sector, even though
one step closer to the vacuum sector. We again iterate the process and after [

steps obtain the following identification among the products of the fields:

$19(1, L — Daa(1, L — 1+ 1) - 111 (1, b — 1)pmn(L, M) =
- qsm‘%((L_l)er“?(L—l))(l!MW%((L—1)m+n¢(L—l)):%((L—z)erzwz(L—z))(1,M +1)
X 1 (L 2)mt2ng2(L—1)), L ((L-3)mt3ng3(@-1) {1, M +2) x -+
X DL (Lt 1y (e D (- 1)(E- 1), 2 (L Dmttnzi( L) (L M + 1= 1)
X P1((L—tym+tnmi( -t L — LM +1).
This time
(L-Om+InFlL-1)

n— 7 e (L-1)Z,

and the field ¢%((L—l)m+1n:Fl(L—l)),n(L —I,M +1) is in the vacuum sector. Using

o Note that (1.33) includes also the vacuum sector expression (1.30). Forl= 1L, ¢p 14+1(1, L—
1) = ¢11(1, L — 1), using the identification ¢nn(L, M) = ¢rmrso—marLsz—a(L, M).
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(1.31) we can write

b1 L-tymttngl( D)l — LM +1) =
= 96%((L_Ijmﬂnﬂ(‘g_l))'%((L"["l)m-i-(l%-l)n;l(Luz_.l))(1,M +1)
X DLt 1)met (Il E—1—1)), (L -2yt (it 2)npi( D ——2))( L, ML+ T+ 1) X oo
X qf’%(rra+(L—1)n—.rrz),,,,(1,M +L-1).

We arrive at the general formula for the non-vacuum sector fields:

$12(1, L — Dpaa(1, L — 1+ 1)+ - @pip1(1, L — 1)pmal L, M) =
I—1
= ¢ 141, L — Dpma{ L, M) = || brikiy, (L, M +3),
0

1=

n—mecLlxl, 1<I<L-1, (1.34)
kiz(l}uz’)m+in+d§-
7 ,
dl_z{:Fi(L—z), ifi <1,
YOl ~1), fi>1

The minimum of S would again be obtained for k; — kjp1 = %(n —m), if
#(n — m) were an integer. Since it is not, we have to content ourselves with
the next best thing, provided by (1.34). According to (1.34), kiy1 — ki = F(n —
m)F (L ~1) or $(n—m) -+ %, so it is always one of the two integers closest to
+(n —m). In other words, since n — m = LK F I, L — I of the (ki1 — k;)’s can
remain equal to K, but the remaining [ have to be equal to K F 1. Obviously, it
makes no difference which (kiq1 — ki)’s will be equal to K 31, and we arrive thus
at (‘?) different products of the Virasoro fields that have the same dimension,
equal to the dimension of ¢4 1:1(I, L — )¢pma(L, M).

How should we interpret this embarassment of riches, namely, having too
many ways to represent a given field as a product of the Virasoro fields? One
could try to explain it away claiming that it is only a certain linear combination
of these (’;‘ ) products that is well-defined. Since we will show in the next chapter
that each of these products separately has a perfectly well-defined monodromy-
invariant 4-point function that cannot be true. To understand better the origin of

this degeneracy, note that ¢1;,4(I, L —1) in (1.34) represents actually (remember

31



(1.8)) the product

$11(1,1) - ¢11(1, L — 1 — 1)p1o(1, L — I)pa3(L, L — 1+ 1) -+~ 131 (1, L — 1).

From the discussion bellow (1.34) follows that there are exactly (L'Iml) such pro-
jected products of the fields from P(V(1,1) ® --- ® V(1,L — 1)) that have the
same dimension. What is more, assuming that L — 1 # [ (i.e. | # L/2), we
could view the original ¢mn(L, M) field as belonging to the (L — I)-sector. In
that case in (1.34) would appear the field ¢y 1_111(L — L,I) (Ay01(L, L~ 1) =

Appop{L~-LD) = éﬁ(‘g—:_%) which in its turn would represent (f’“:_—%) products like

$1:(1,1) - 11(1,1 — 1)a2(1, Do (L, 1+ 1) - @y p—131(1, L — 1).

Ly (L-1 + L-1
1)\ 1 L-1)’
we conclude that for 1 £ L/2 all of the degeneracy on the RHS of (1.34) is

accounted for by the degeneracy on the LHS. As a simple example, consider the

field ¢19(4, M). It can be viewed as belonging to the [ = 1 or I = 3 sector. In the

Finally, since

projected tensor product it appears as

M+l  M+2 M43 1 42 43
Pl T el T2l t $1s 0883
M+1  M+2 M43 1 42 3
9’5%{ 11+ @12+ ¢22+ _ 4 M 911011912
MM+, M+2 M43 = ¢12(4, M) % 1 42 13
P11 P10 Faa " D2o $11972932
Ml M2  M1s 1 42 (3
¢5%¢22+ ¢22+ 2z+ P12092030

That leaves us with the case | = L/2, for which replacing ! by L — I obviously

does not produce any new products of fields with equal dimension. In that case

(1) =)

and we conclude that for every even L, the fields from the | = L/2 sector are
doubly degenerate, i.e. for every m and n such that m —n € LZ + L/2 there are
two distinct fields ¢,,(L, M), i = 1,2, with the same dimension but with, in

principle, different correlation functions and structure constants. The simplest
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example for this is (1.5), the Ramond fields in the superVirasoro models. A more
non-trivial example is provided by ¢13(4, M) field, belonging to the sector { =2
for L = 4. The products with the same dimension are:

ol o1 ot )

Mo MAY  MA4-2 M43
9611 12 ¢'22 ‘;623

142 43
G I G M2 M 43 _ P11912%33
M M A2 M4 ¢ = B13(4, M) X § Pladiad3s (1.35)
11912 P23 P33 1 .2 3
P12053P33-
SO 0

ST el e )
On the LHS of (1.35) we could form six linearly independent combinations with
the same dimension, whereas on the RHS there are 3n linearly independent com-
binations, where n is the degree of degeneracy of ¢13(4, M). Obviously, n = 2,
which we denote by ¢i,(4, M), i =1,2.

In [33], the two ¢13(4, M) fields are denoted Ds3 and ’Dh. They form a two-
dimensional representation of 53, generated by the charge conjugation C and Z3

generator {2 and defined by the relations
ct=1, =1, Cn=0%C.

Since

1

Dus(1)D54(2) ~ =5 (1.36)
£12

D13 and DEB are conjugate to each other, with Z3 charges equal to +1 and —1,
respectively. We see that in the basis spanned by Di3 and 2713 ( is realized
off-diagonaly and Z3 is diagonal. In contrast, the six products on the LHS of
(1.35) are self-conjugate. Therefore, in this basis C' is diagonal and © has to be
off-diagonal to preserve (1.36).
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Chapter 2

Correlation Functions
and Structure Constants

2.1 Correlation functions

In this section we will present the explicit construction of the 4-point corre-
lation functions for arbitrary fields from a higher level model. We start with the

simplest example of

G(z, %) = (¢mn(L:M)(0)¢mn(L,M)(zvE)QSmﬂ(LrM)(l)d)mn(L:M)(m)) ,» (2.1)

where n — m € LZ. There are two basic steps in the calculation of @G, according
to [27]. First, one obtains the conformal blocks, i.e.the linearly independent solu-
tions of the differential equation obeyed by the correlation function, and second,
one combines them in a monodromy-invariant expression which is the correlation
function. By (1.31) ¢mn(L, M) is a product of the Virasoro fields and therefore
the conformal blocks for (2.1) will be the products of the Virasoro conformal
blocks. Of course, only certain products of conformal blocks will survive the

projection P.

34



To proceed we need to introduce some notation. For instance, the conformal

blocks of the correlation function of the Virasoro fields

Gv(z,2) = {$r(1l, M)(0)pri(1, M)(z, Z)dri(1, M)(1) (1, M)(c0))

can be obtained with the Coulomb gas technology as certain multi-contour inte-

grals {27], denoted as Ig‘r(a,a’;z), wherei=1,...,k, j=1,...,], and

a = Zo_oyy, a = 204 oy,
1
o = 5[(1 —k)ay 4+ (1 —Dea-], apo. =—1,
a2mM+3;' QZ_M+2:
TS M2 T My ?

By studying the leading behaviour of Igf(z) as z — 0, it is easy to see that it
corresponds to the field ¢pg_s)i1,90-5)+1(1, M) in the intermediate channel.”

Therefore, in order to preserve the projection P in the intermediate channel, we
allow only products of the conformal blocks of the form

M M+l pMAL-1 (2.2)

1011 " 1113 tL—-11L

Having obtained the conformal blocks, we want to construct their monodromy-
invariant combinations. We start with the simple example of I = 2, i.e. 4-point
functions of NS fields ¢mn(2, M) = ¢mz(1, M)pzn(1, M + 1) and z = $(m + n).
The task is to find the coeflicients Xiyi i, jo5.5, sSuch that

= - M M+l NTM 7M1y
G(z,2) = Z Ainiliz,jojdnfinilfilij (z)IijIjlj:' (z)
’:ijp=1w-:'m

1=z
13,]::1,...,11

1s monodromy-invariant. In other words, we want G(z, Z) to be well-defined, that
is single-valued in the complex plane. Since the conformal blocks only have poles
at z = 0,1 and o0, G(z,z) will be single-valued everywhere if it is invariant under
analytic continuation in z along a contour surrounding z = 0 and along a contour

surrounding z = 1.

* In the correlation function I¥ is multiplied by [z(1— 2)]?®4, which will be tacitly assumed
in all our expressions for the correlation functions, even though we will omit to write it
explicitly.
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We start with the behaviour around z = 0. The conformal block .Iﬁl (to-

gether with the factor {2(1 — z)]zaz) has the leading behaviour for z — 0 given
by

zAZ(fn-io J+L,2(x—dy J+1 (lfM)_zﬂruz(l'M) ]

Therefore, under the monodromy transformation z — ze?**, # — Ze ™, the

term I I-M-_"l(z)IM- IM¥1(2) will get a phase 2™, where

101171112 JonT 2z

_AM M+1
P = Bafm—in)1,2(z—in)t1 T Aoz )41,2(nin) 1
M M1
- Az(m—jo)+1,2($—1'1)+1 - A2(15—;;'1)+1,2(n—jg)+1'

Again, some straightforward algebra will show that in order for ¢ to be an integer,

we have to demand
10 = Jo, iy = Ja.

Note that there are no new restrictions on 7; and j:. We conclude that

= M FM41 M+1
G(z,z): Z Xfuiliifinnithij (z)Iij:.leIjn':_ (z) (2°3)
faﬂlp..,m
i],j1=1,...,z
fa=1,...,n

is invariant under z — ze?™,

We turn to the study of the analytic continuation around z = 1. Let us
return to the 4-point function of the Virasoro field ¢4(1, M), and study its con-
formal blocks Ii(f[)(z). Unfortunately, they do not have as simple transformation
properties under monodromy around z = 1 as they do around z = 0. Following
[27], we will rewrite them in terms of I;;(z) = I;;(1 — z), and then repeat the
same argument as for z = 0. Define a-matrices by

Ig“)(a, aiz) = Z agfgq(a, a’)I;(,{;l)(a, a';1— z).

p=1,..k
g1l

The main ingredient in obtaining the fully monodromy-invariant G(z,%) is a
rather special and surprising identity that the a-matrices satisfy, which we now

proceed to discuss.
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Among the Virasoro fields ¢, there is a particularly simple subclass con-
taining fields like qﬁf’{ and gbﬁ . Since the 4-point functions of such fields require
only a single kind of screening charges, the corresponding conformal blocks I;
and the matrix «;; depend on only one of the two parameters a and a’. A very

important, simple fact proved in [27] is that

oD (a,d') = off(a)af (). (2.4)

t1.pq

In the following, we will sometimes write this as ajjpq = a::pajq- We focus onto
the two-index matrix a;;. The explicit expressions for the a-matrices have been
obtained in {27, 48]. In particular, they state that a generic matrix element a;;

is a sum of the products of even number of factors of the kind
f = sinfr(4e + Bp),

where A and B are some integers. In determining the monodromy properties of

the 4-point function of ¢gmn(2, M) = ¢mz(1, M)¢za(1, M + 1), we will encounter

o (M) = ™ (M)l T (M) and o (M+1) = ol (M +1)alT™ (M +1).

1],?3

The identity we mentioned and are now going to prove is

TN = T M + 1), (2.5)

1]

The proof is immediate. Since

z—1 M+2 1

M) = 200y =m0 — , _ _
o(M) =20 m+M+3 M) =3r3=1" 3773
11—z M4 1
M4+1) =20 a5, =1 — M41)= =
G(M+1) =200 =n—ot gy, PMA1) =30 =1+ 5

f(M) is up to a sign equal to f'(M +1).

Now we are fully equiped to conclude our construction of the monodromy-

invariant 4-point functions of the NS fields in the superVirasoro models. To
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study (2.3) under (1 — z) — (1 — 2)e?™ we use a-matrices to transform I(z)’s

into I(1 — z)'s. The result is

Glz,z) = ZXinljlgz aﬁ:{-l'efa?i-:;hcr?ﬂllraa:ﬁiiufgf;{'}'l(l — z)IffI?f’*’l(l — z).

(2.6)
There are two requirements that have to be satisfied. First, a-transformation
should not take us outside of the subspace defined by P. Second, G(z, z) should
be of the same form w.r.t. I{1 — z) as (2.3) is w.r.t. I(z) to insure invariance

under the monodromy transformation around z == 1. Both of these requirements

will be satisfied if

R - § M+l M M41
Z Xiuzljliza‘l‘ﬂil1efai1i:!,gha?:ajljrﬂajliz,tu [». o §fg55¢537-5hu. (2.7)

10,31 ,71,%2
By (2.4) and (2.5) the LHS of (2.7) is equal to

.o M M M1 M4l M M M+l M1
_ Z ' -quhtzaineailfailg C‘igh aiarajuajlt Qe T
tit1,71402
. LM oM M M1 M M4l M+l M4l
= Z - th_,maiaecxilfailgaizh cx,-urajls D‘jﬂ a‘ig'u. .
‘fo.il,h,l:

It is clear that (2.7) will be satisfied if we choose
M M < 1M - M
Xiuiu"xi: = X:n Ail X_;l +1;\-1‘3 +1:
where each of the X;’s on the RHS is a solution of the equation
Z-Xiﬂir&is e Opg. (2.8)

The solution to (2.8) can be written as [27]
Xy _ an
Xy oy’

where N is the maximum value of k. Since a’s factorize as in (2.4), X's do too.

We write
X = Xula,d') = Xp(d)Xi(e) = XX
Thus we arrive at the final form of our monodromy-invariant correlation function

Gz,2) = Y. X} xMHM pMH M M), (2.9)

Jria “totiT %y 071" J112
W,t1.71,%2

Since X's (up to certain normalization constants) give the structure constants,

we can already see that the Neveu-Schwarz structure constants for (2, M) will
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be given by certain products of the Virasoro siructure constants for (1,M) and
(1,M + 1). But, before turning to the structure constants, we would like to
generalize the simple example that resulted in (2.9).

As a first step in the generalization, let us consider the correlation function
(2.1). The relevant conformal blocks are of the form (2.2). An analysis similar
to the one for L = 2 shows that only the terms in the correlation function of the

form

™ IM+1...IM+1.3—1(Z)IM. IM.+1...IM+{5—1(Z)

01112 tL~11L WwJi"J112 JL—~11L

are invariant under z — ze®**. Since it is obvious that (2.5) does not depend
on the particular values of m,z,n or M, the monodromy-invariant correlation

function will be

G(z,2) = Zx.M. XM+l xM+L-1pM ML PM ML

1911 fita jr—ir  “ien L—11L W1 JL—115

(2.10)

We can generalize further and discuss asymmetrical correlation functions

4
Ga(z,5)=<H q_’:mAnA(L,M)(zA,EA)>, myg —ng € LZ.
A=1
Now Is, a’s and X's depend on 3 sets of parameters:
a=2a_omn,, b=20_amm,, €= 20QQmyng,

I 1 !
a = 20 Qmn,, b =20i10m,n,, € = 204am,n,.

It is straightforward to go over the arguments and convince oneself that there
are no significant changes. For instance, a-matrices will now be the sums of an

even number of the factors of the form
sin[r(A4a + Bb+ Cc+ Dp)],

where A, B,C and D are some integers. Obviously, (2.5) remains to hold.

Turning to the non-vacuum sectors, we want to calculate the 4-point function
of ¢pmn(L, M}, wheren —m € LZF1,1 <1 < L —1. By (1.34) we know that
the product ¢y 111(I, L —1)¢mn(L, M) can be expressed as various products of the
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Virasoro fields. The construction of the 4-point functions of these products of
the Virasoro fields proceeds as above and we conclude that the 4-point function
of ¢1 141(l, L — [}pmn(L, M) has the form (2.10). Furthermore, since there is no
projection between ¢1141(I, L — 1) and ¢mn(L, M), the 4-point function of the
product factorizes into the product of the 4-point function of ¢ 4.1({, L — ) and
4-point function of ¢nn(L, M).

2.2 Fusion algebras and structure constants

In this section we will use the construction of the monodromy-invariant 4-
point functions performed in the previous section to study the fusion algebras
and the structure constants for higher level models. The discussion is going to
be llustrative rather than exhaustive, since we discuss explicitly only the fusions

of two vacuum sector fields.

L=2

The NS fields in question are constructed as follows:

bmn(2, M) = ¢¥ g+ n—me2Z (2.11)

() i (mtn),n?

All the other combinations qSﬂP PMnH belong to the descendants of ¢mn(2, M),

with the dimension App(2, M) + %(p — %(m +n))?. Since we have seen that the
conformal blocks used in the previous section are projected products of (1, M)

and (1, M + 1) conformal blocks, the fusion algebra will follow the same recipe.

For the study of the fusion rules, it suffices to consider only the diagonal
terms (i3 = 71} in (2.9). To see this, remember that the non-diagonal terms can
have left dimension equal or different by an integer from the right dimension.
In the later case, the intermediate field is a descendant w.r.t. T'(z) or T(Z) of
a field corresponding to a diagonal term. In the former case, the left and the
right field are the two parts of a descendant w.r.t. G(z)G(Z), a field already
represented by its diagonal terms. Such non-diagonal scalar fields appearing in

the supersymmetric fusions are discussed in all the detail in App. A.
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Taking the diagonal terms in (2.9) is equivalent to using the Virasoro fusion
rules [3]:

min{mi+mz—1,2(M+42)—m; —ma—1)

m;nl ¢’m2112 =
k:lm;,—m; |+1

min(n+nz—1,2(M+3)~n; ~n1—1) o
x > Pl
l:|n1 —13 |+1

(k and ! advance in steps of two), for each of the fields in (2.11) and then imposing
the projection by identifying the middle indices. The result is

min(my +ma—1,2(M+2)~m; -ma—1})
¢m1n1 (2a-ﬂ/I) X ¢m,n,(2,M) = Z

p=|mi—mal+1
min( %—(m1+n1 +ma+ng )—1,2(M+3)—%(m1+n1+m;+n3)—1)
x
g=| %‘(ml +ai)— %(mz +nz)|+1

min(n;+n;—1,2(M+4)-—n1-—-ng-l)
M+1
X 2 Bradber -

rm=|ng —naf+1

The remaining problem is identifying the products gL’v QSM *1 with the superVira-
soro fields. Firstly, note that

7 —p = |n1 — ng| — |m1 — mg| mod 2,

=n; —my — (n2 —m2) mod 2 € 2Z.

Therefore, ¢ ¢M+1 stands for a NS field ¢, (2, M) or its descendant. A Lttle
thought shows that the range of %(p + r) is within the range of g, i.e. for every
choice of p and r, there is a ¢ = g, that minimizes %(q - %(p + 7))?, and such
a gmin differs from l(p + r) by at most 1. If it does differ by 1, the dimension
of épqmmqﬁg’r{:ﬂ will be Ap(2, M) + 1/2 and we interpret it as (a part of) the
descendant qﬁp (2, M) of ¢pr(2,M) wrt. G. All the other qbgquM"‘l {(with ¢
differing by an even integer from gmiy) are parts of the descendants (relative to
T) of ¢II(2 M). On the other hand, if p and r are such that there exists a gy, =
i(p+r), then ¢, M+l o ¢pr(2,M). Again, the remaining qbpgng"'l are

P 3(P+f)¢‘(11+r),r
descendants relative to T' of ¢ (2, M). We conclude that the following NS fusion
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rules hold;

min(m+ma—1,2{M+2)—my—ma2—1)
Prmama (2: M) X Prmana (2: M) =
k,:]ml—mﬂ—l—l
min(ny+nza—1,2{M+4)—n1—na—1)

x ) ¢47(2, M),

l=|n —ng|+1
mi —ni € 24,
HI0 = {Cﬁkz if k41— |m1+n1 —mg —na| €4Z 4 2,
Hif if k41— |m1+mny—my —ng| € 4Z,

(2.12)
in agreement with [46].
L=3
We study the fusions of two vacuum sector fields like
M
$mn(3, M) = ¢, 1(n+zm)¢1(n+zm) (2n+m)‘?15 (2n+m) W m—mE 3L
By the same sort of arguments as for I = 2, we can immediately write
min(m;+mz—1,2(M+2)—m;—ma—1)
Prmany (3, M) X Pmyn, (3, M) = Z
kg=|m1-m2|+1
min{3(ny-+2mi +na+2m2 )—1,2{ M+3)— 3 (n142m +ng+2m2)—1)
X
k1ﬂ|%(n1+2m1)—%(ng~}-2m3)[+l (2.13)
min(%(Zn;+m1+2n;+m;)-1,2(M+4)—;—(2n1+m1+2n2+mz)—1)
x 2
kzﬂli(znl-l-mi)—-%(2n2+m:)|+1
min(n-bnz~1,2{M-+5)—n; —n2—1) At r
+1 4 M +2
X Z ¢Ln}b1 ‘?‘!)L,_kq koka °
k3ﬂ|n1—nz|+1
In contrast to the L = 2 case, here
kg — ko =T — 1] — (ng - TTLg) mod 2 (2.14)

is not any more in 3Z in general. We encounter a new feature; in the fusion of
two vacuum sector fields (1.31) appears a non-vacuum sector field (1.34), or a

descendant of such a field.
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The fleld with k3 — kg & 3Z cannot be a primary field. To see this think of the
V(1,2) (cf. LHS of (1.7)) part of the fusion rules. If the field was primary those
fusion rules would imply that ¢12(1,2) can arise in the fusion of the identity fields,
an impossibility, We will show that all such fields are descendants of non-vacuum

sector fields w.r.t. the current A, /5

We want to establish a precise correspondence between the products of the
Virasoro fields appearing in (2.13) and the L = 3 fields. Start by checking again
that the range of k; includes the range of %(ka + 2kg) and that the range of kp
includes the range of l(2&:3 + ko). Then determine ki, k; which minimize the
dimension of & = ¢’k9 ks ff g; 1¢£&ﬂ;2 for a given pair of kg, k3. The only obstacle

to minimizing A(®) might come from the parities of k3 and k,.

Since k; = |a+1iz|+1 mod 2, where a = my—Tmg, T = %(n; —m1 —(ng —my)),
ko and k; have the same parity as ky and ki, respectively. This fact is general;
for arbitrary L, kg,...,kr split into two equivalence classes relative to parity;
k;, 1 = 0 mod 2 and ki, 1 = 1 mod 2. This results in two kinds of behaviour
of the fusion rules, relative to L. For I even kj and kp are in the same class,
kr — ko € 2Z, and the knowledge of kp and kg is not enough to determine all
the relative parities of the k;’s, whereas for L odd the opposite is true. In other
words, for I odd all sectors can in general appear in the fusion of two vacuum

sector fields, whereas for L even only the sectors with even [ appear.

Going back to L = 3, assume k3 — kg = 3K. Then, setting k; = kg + 1K
minimizes A(®). We obtain the primary field

M+2
¢k0k3(3’ M) ¢k0|£(k3+2ku ¢3(k3+2k0),3(2k3+ko)¢3(2ka+ku) ka”

Again, the other choices of k1 and ks give the descendants of ¢y, (3, M). We
turn now to the case k3 — kg = 3K -+ 1. Note that if K is odd all k;’s have the
same parity, whereas if K is even kg = k2 mod 2 # k3 = k3 mod 2. In both cases
Afin, the minimum dimension consistent with the parities, is obtained with the
following three sets of choices for kip1 — ki, 2 = 0,1, 2:

ki —ko ko—Fk1 ks—ko

K+1 K+1 KF1

K+1 KFi K1

Kl K+1 K+1
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If there was no restriction on ¥ and k3, the minimum dimension Apy, with given

ko and k3, k3 — kp = 3K £ 1 is obtained with

kl—kg ko — k1 k3 — ko

K K K+1
K K41 K
K=+1 K K

As discussed in sec. 1.4,

1
Amin = Aknk3(3:M) -}~ A12(1,2) = Akuks(giM) + ‘:["6

Since
. 1 3

we see that the field belonging to the class [¢p,i,(3, M)], with k3 — ko € 3Z £ 1,
appearing in the fusion of two vacuum sector fields, is a descendant of the primary

field ¢p,r,(3, M) w.r.t. Aq/5. In conclusion, we have shown that the following
L = 3 fusion rules hold:

min(m1+mg—1,2(M+2)—m1—mg—l)
brmang (3) M) X g, (3, M) =
kxlml—mgl-}—l
min(ny +n2—1,2{ M 4-5)~n; —nz—1) @
X Y. br (3, M),
l=|n1—ng[+1

where k and [ advance in steps of 2 and qﬁgj)(?;, M) is the primary field ¢x(3, M)
if & -1 € 3Z and its descendant w.r.t. Ay/5 otherwise.

As an illustration of the foregoing somewhat dry discussion, let us look at
the fusion of ¢14(3, M) = ¢MMT1pM+2 ith itself. The terms with ko = 1 and

k3 = 3 are

M1 M2 M4l M42 IM+1M+2
9?5 ¢'11+¢' 20 oMaM et oMol dns

M1 M2 M+1 M2 M1M+z
MpMrlghez oMM 10 +2 dM gt ios ™,

Here, k3 — kp = 3K — 1, K = 1. Therefore, the dimension would be minimized

by ¢‘:T{1T¢1I+1¢M+2 1 ¢M+1 M+2 and ¢ q’)M +1¢M *2_ Since these terms cannot
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appear due to the wrong k; and/or ky parity, the terms with the lowest dimension
are qi)iv{ ¢ﬁ+1¢% +2 qﬁf/ir ¢%+1¢ﬁ+2 and ¢ff ¢g§+1¢gg+z, all with dimension higher
by 1/2. These three terms form the descendant A7/5¢13(3,M). The remaining
terms have dimensions higher than A7 5¢13(3, M) by a multiple of 2 and can be

identified with its descendants relative to the energy-momentum tenser.

L=4

We can immediately write down the analogue of (2.13):

min{my+ma—1,2{M+2)—m; —ma—1)

¢’m1n1 (4'1 M) = quzﬂz(‘ilM) = E ZZZ

ko=fmi—ma|+1 ki ka ki

min{n, +n2—1,2(M+6)—n1 —na—1) o
M M4 M2 43
X E q")kuh ¢k1ka qbk:ks ¢kak4 .
k4:|1’11—n2|+1

One can distinguish the following cases:

a) k4 —kp = 4K and K and k; — kg have the same parity; k; = kg+1K and the
field from [¢y,r,(4, M)] appearing in the fusion is the primary field ¢z, (4, M).

b) ks — kg = 4K + 2; A, is obtained, for example, by
ki —ky ka—k1 ks—ky ks—ks
K K K+1 K+1
whereas AZ ;. is obtained, for example, by
ki—ko ka—ky ksi—Fky ka—Fks
K K K K+2

or
ki—ky ko—k1 ka—hky ks— k3
K+1 K+1 K+1 K -1

depending on the relative parity of K and k; — kg. Again,

. 1 1 2
Amin = Amin + :?' = Akgk4(4:M) + A13(2:2) + E = Akok4(43M) + 57

and we conclude that the field from [¢p,z, (4, M)] appearing in the fusion is the
descendant Ag/s ik, (4, M).
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c) kg — ko = 4K, but K and k1 — ko do not have the same parity; AS. is

obtained from, for example,

ki—ko ko—ky ka—ky ka— ks
K+1 K-1 K41 K-1

Since Af. = App(4, M) + 1, we conclude that the fleld from [¢g,z, {4, M)]
appearing in the fusion is the “double” descendant Ai/S[}14/3((;5,1:0;Ls (4, M))].

In summary, the fusion rules of two L = 4 vacuum sector fields are

1'[1.;.11(1111 +m3 —1,2(M+2)—m1 —Thz —1)

¢’m1n;(4, M) ks ¢m2“2(4iM) = Z
k=|m1—mg|+1
min{n+ns—1,2(M+6)—n; —nz—1) P
X Z ¢§cl)(41 M):
I=|n;~na|+1
where
(4, M) ifl — k=4K and X is even,
64, M) = { A pual4, 3) Wl—k=4K +2,

AyysAl )y da(4, M) if 1 — k= 4K and K is odd,
where K € Zand K= K — %Hnl + 3my — (ng + 3ma)| — |m1 —ma|]. -
L=5

This is where the lack of more detailed knowledge of the extended current
algebra for L > 5 catches up with us. Let us just briefly illustrate what is

happening. As a result of the fusion we obtain a product of 5 Virasoro fields
M M1 M2 M3 M4
qskukxqbkﬂ;t qbkgk_:t qsk;,}j; ‘?5k4}_ct . (216)

As Jong as kg — ks = 5K, we obtain the primary field ¢, (5, M) by setting
ki = ko +1K. What happens if, for example, kg = 1 and ks = 37 Such fields
should belong to the class [¢13(5, AM)]. By (1.34), we know that

A($13(2,3)13(5, M)) = A(gM g1 gM+2g M3 42wy,

Since a product like (2.16), obtained from the fusion of two vacuum sector fields,

has kg = kg = ks mod 2 and k; = k3 = k5 mod 2, the lowest dimension descendant
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of ¢13(4, M) that can appear is
T R (R R (2.17)
with the dimension
1 5
A13(5,M) -+ A13(2,3) -+ 5 = A13(5,M) + -;i

We interpret (2.17) as a (part of the) descendant of ¢13(5, M) w.r.t. Aﬁ.}:ﬂ

7

with dimension Liz 7 greater than Ay3(5, M). This is the field used in [49] to
perturb the conformal Lagrangian. Finally, the problems begin if, for example,
ko =1 but ks = 2. Such a field should belong to [¢12(5, M)]. Again, by (1.34)

we know that

A(p12(1,4)p12(5, M) = A(¢H M1 gM 250 +3 g1+,

Again, because of parities of k;’s coming from the fusion rules, the lowest dimen-

sion descendant of ¢12(5, M) that can appear is
Blagn ol e et (218)

with the dimension

1 1 8
A12(5,M) + A12(1,4) + "2- + ‘2- = A12(5,M) + ?

One should probably interpret (2.18) as a descendant of ¢12(5, M) w.r.t. some
new current B. One could probably also extend the present line of argument and
obtain the dimension and the analytic properties of B, but we will refrain from

trying to do it here and leave it for future work.

Arbitrary L

In conclusion, we can write the general vacuum-sector fusion rules, for general
L, in the following form:

min(my+ma—1,2{M+2}—my—ma—1)
Gmymi (Ly M) X Prugn, (L, M) =
k=|m;—ma|+1
min(ny+n3—1,2(M+L+2)—n; —nz—1) J
x )D #i (L, M),
I=|n1—na|+1

where m; —n; € LZ, k and ! advance in steps of 2, and qSS:f)(L, M) is the primary
field ¢p(L, M) (if k-l =LK, K € Zand K — #{n1 + (L — 1)1 — (na + (L —
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1)mnz)| — |ma — mal|] € 2Z), and its descendant w.r.t. A%u, one of the additional
2

currents appearing for L > 5, or some product of those currents otherwise.

Structure constants

In the last section we have exhaustively demonstrated that, as long as we stay
within the part of the fusion rules that maps the primar_;)r vacuum sector fields
into the primary vacuum sector fields, we have full control, for any L. We will
use that control now {o obtain explicit expressions for the structure constants

connecting 3 vacuum sector primary fields, for arbitrary L.

The structure constants appear as a limit of monodromy-invariant 4-point
functions. The conformal blocks whose limits one is taking are nothing but the
products of the Virasoro conformal blocks. Since for the primary fields from
the vacuum sector the mapping from the L-level fields into the products of the
Virasoro fields remains strictly one-to-one and does not involve any non-trivial
fields from V'(1, L--1) (cf. (1.7)) and/or additional currents, it should be obvious
that the L-level vacuum sector structure constants are given by the products of

the Virasoro structure constants.

Explicitly, for the fields

L1
Smana( Dy M) = [ drere,, (1, M +1),
1=0
na—maELZ, G:1’2’3, kf:zna_}_(i_z)ma’
(n3 —ma) — [In1 + (L — 1)m1 — (n2 + (L — 1)ma)| — [m1 — ma|] € 2LZ,

the structure constants are given by

e e ek (LM +d). (2.19)

L-1
G(m;m)(mzn:)(m;na)(LaM) = l;l(:) C(k4k1

One could consider (2.19) as one of the main results obtained in the present thesis

by an application of the techniques developed here,

As a simple check and illustration of (2.19), let us set I = 2 and reexpress

a (known) superVirasoro siructure constant as a product of Virasoro ones. For
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example, take
$33(2, M) = pf335 7,
$22(2, M) = B335+,
As it is well-known [46, 47, 26], and as it also follows from (2.12), the following
fusion rules hold:

(2.20)

$22(2, M)$22(2, M) = 11(2, M) + Clagyazyaay (2, M)$13(2, M)
+ Claz)(zz)ay (2, M)$31(2, M) + Clazy(z2)(33)(2: M) ¢33 (2, M),

where (47, 26]

M N1 3
Claz)(azy(ss)(2: M) = {7(M+ 2) 7(M+2)7(M+2)

2 \? /M+3\ [(M+1)\)?
Namya) "\Mmra) " \m+4/[ "

The construction (2.20) gives

$radis T x PR ppa Tt = MMt 4 0(4“24’2)(22)(33)C(J‘z‘-’;)f(lzz)(s3)¢§§¢§§+l o

Using the expression [27]

oM B M\ (1 3
(22)(22)(33) = {7 M2 Y M1 Y Mto

y 2 \2 (M+2 M \)?
Nw+3) "\ar13/"\arxs/ [

it is easy to show that

O{‘é’z)(zm(ss)c’f‘z‘ﬁ(ln)(a@ = Clan)(az)(as)(2, M),

as predicted by (2.19).

* We remind the reader again that in our notation M =1,2,....
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2.3 Moduli of the projected products

There are two remarkable properties of the projected tensor products, re-
lated to their possible interpretation in terms of some target geometry. The two

properties are:

a) each model V{y = P(®L! V(M +4)) contains h(1) = S L(L — 1)(L ~
2)(L — 3) inlegrable marginal operators = moduli = “massless states”. This

provides VIfM with the structure of an h-dimensional space of conformal models

with ¢”(L,M) = L — (M+2)(%I+L+2)’ in analogy with the line (h(1) =1)ofe=1
models.

b) the models V_rf ar obey higher supersymmetries, in particular ¥ = 1 and
N =2.

Start by counting the fields v,b,f of dimension A = 1/2in fo - They can be
written in terms of the Virasoro fields ¢12(M + 1) = 12, ¢aa(M + k) = 22 and
¢a1(M +5) =21, for some 0 < i < k < s < L—1, using the basic elements 12 21
and 12 22...22 21, for example:

M M+1 M+2 ... M+: M+i+1 ... M+L-1
12 21 11 11 11 11
11 11 11 12 21 11
12 22 21 11 11 11
12 22 22 22 22 21

Their total number is 2(1/2) = 1L(L — 1). The fields J& of dimension 1 can be
obtained from the 1!:,{’ 's applying the following rules:

1) joining two %¢'s of appropriate lenghts : JF = ¢fl_p'¢,b§;,
2) replacing a pair 22 22 in ¥§ with the pair 23 32:

12 ... 22 22 ... 21 —=12 ... 23 32 ... 21
3) inserting 33 in a J¥ from 2) according to the rule

23 32 ... — ... 23 33 32
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The result of the counting is
L-3 1
R(1)= Y (L—1-2)l+ )= ﬁL(L — 1)L - 2)(L — 3).
=1
The candidates for the supercurrents Gf, i.e. fields with A = 3/2 can be
constructed by the following rules:
i) as appropriate combinations of derivatives of gb;?’s, see for example (1.20),

ii) all the products G} = 1 PJL,

iit) from J& by replacing a pair Like 22 22 by 23 32 or a pair like 33 33 by 32
23 or 34 43,

iv) inserting the field kk, k£ =1,2,3,4:
Ik ks ...— ... Ik Rk ks
in the G‘,E”s from ii) and iii) or in the new basic fields appearing for L = 3:
G3 =133221 and G5 =12 23 31.

One may continue the above constructions thus enumerating the fields of

dimensions 2, 5/2, 3, etc..

Consider now the OPEs of J}‘f"s and GL’s, crucial for establishing the an-
nounced geometrical properties of fo - Applying the general fusion rules of
sec.2.2 to Jf’s we obtain the following two kinds of OPEs:

(a) Jf(l)J;E(Z) = E%-?—- + reg.terms,

#12
) Apim Biim

() TR = 5+ =5 PR(2) + —15 Gm(2) + reg.terms,
12 Z1g Zyy

Akkm =0= Bkkm'

For example, the only two marginal operators for L = 4, Jf = 12 21 12 21 and
J3 =12 23 32 21 close an algebra of type (a). For L = 5, (1) = 10, and one can
find 5 pairs of J?'s with the algebra of type (a). The OPEs among the J?’s from
different pairs are of type (b). For example:
Ji = 12 21 12 22 21 JP = 12 21 11 12 21
J; = 12 23 32 22 21 JP = 12 23 33 32 21

then (J7,J3) and (J, J§) combine in pairs with the discussed properties.
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According to the general criteria {50, 51], all the operators Jf = JF(z)JE(2)
of dimension (A,A) = (1,1) are marginal operators to the first order in the
perturbation theory. This means that while deforming the fo 2r model by adding

the marginal perturbations

A(1) ~
Y gi [ =7k () TE(2),
k=1

the central charge ¢¥'(L, M) does not change whereas the dimensions of the fields
o € Vf ar change continuously by

§A¢ = Craabgr = §Aq,
k

where Cpag is the structure constant (JF¢a¢e) (see chap. 6). Thus we obtain
a h(1)-dimensional space of conformal models with, in general, fractional central
charge cf (L, M). The rational CFTs correspond to the specific points {g%} =
{nt/my, ng,mi € Z,}. One can consider this construction as a generalization

of the well-known lines (A(1) == 1} of CFTs with ¢ = 1 and ¢ = 3/2 [50, 52, 45].

Among all marginal operators J = J¥(z)JF(Z), the ones whose OPEs with
all the other J{r’ ’s are of the type (a) remain integrable to all orders of the pertur-
bation theory. The question of the integrability to higher orders of the remaining
marginal operators (or of their specific linear combinations) requires further anal-
ysis of certain integrals of their 4-, 5- and higher point functions appearing in the

higher order contributions to the central charge and the anomalous dimensions

[51).

In the case of integer” central charge ¢ (for example, L = 25, 5M = L,
CP(L, M) = 24), the natural attempt is to find a c-dimensional® space-time in-
terpretation of VLP: ar with A(1)-dirnensional moduli space. A necessary condition
for fo pr to represent an acceptable superstring vacuum is for it to have N = 2
world-sheet supersymmetry (i.e. N = 1 space-time supersymmetry). With a

large number of fields of dimensions 3/2 and 1 (G’i15 and J‘,{’) in hand, it is not

* The non-integer ¢ (say 1013} can be interesting for the comstruction of (dilaton) time-
dependent string vacua in the spirit of [53].
o For N =1 space-time supersymmetry, the space-time is 2c/3-dimensional.
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difficult to find combinations that close the N = 2 algebra. In the simplest case
(L = 4) the fields

G;1=13322221 G, =12 2223 31,
J=J1 4+ Jq,
J1=12211221, Js =12 23 32 21,

and the total stress-energy temsor T' = Y+ ; 7} indeed close the N = 2 OPE

algebra:

G1(1)G1(2) = G2(1)Ga(2) = T 4 T(2) +---,
%12 %12
G1(1)Ga(2) = Z—LJ(Q) Foen
TO)I2) = 5+,
%12

T(1)G1(2) = iaz(z) +een

One can easily generalize this construction to arbitrary L by considering

Gy=11...11 133222 21,
L—4
Gy =11 ...11122223 31,

Jy=11...1112211221,
Jp=11...1112233221.

However, since it is possible that the N == 2 algebra with ¢y = ¢ includes many
more G-’f;"s, the establishment of the N = 2 structure of VLI? ar requires further
analysis. An important open problem in this case is how the 7,b£"s and part of

the J¥’s can be organized in the N = 2 multiplets of the massless states.

In closing, let us point out that the purpose of the present far-from-conclusive
discussion of the geometry of Vlf 3 was to demonstrate that the 2D conformal
data of the projected tensor product models provide interesting possibilities for
the various geometrical constructions useful in the description of the multicritical

behaviour of the statistical systems or for the constructions of the superstring

vaclua.
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Chapter 3

Minimal Models
on Hyperelliptic Surfaces

3.1 Construction of the models

In this Chapter, we describe the conformal minimal models on a restricted
class of surfaces which can be represented as a double (in general n-) covering
of the branched sphere. Such surfaces are known as hyperelliptic (in general
Z,-) surfaces. The strategy we will use is to reduce the genus-g problem to the
corresponding g = 0 problem.

For ¢ = 1 and g = 2 the Z3-surfaces exhaust the entire moduli space. There-
fore, the hyperelliptic construction of the minimal models that we present in this
Chapter (Coulomb gas, partition functions etc.), possesses all the specific fea-
tures of the models on arbitrary Riemann surfaces. As such it can be used as a

starting point for the further generalizations.

Recently, the hyperelliptic formalism was widely explored in the two-loop (su-
per)string calculations, [22, 55], and in the description of the orbifolds ,[22,56],
and the critical Ashkin-Teller model [57]. Our discussion of the conformal mini-

mal models is based on an appropriate generalization of the methods of [22] and
[57].
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The central idea of this method is that the topological properties of the Z-

surface Xéz) of genus g:

2g+2 . 2942
V(@)= T[(z~a), ™= |[(z—a), k=01 (3.1)
=1 =1

are simulated by the specific vertices V(a;) (called branching operators) placed
at the points a; of the branched sphere. Three of these points can be fixed by
an SL(2,R) transformation, and the remaining 29 — 1 points a; play the role of
the moduli of the corresponding surface. The main advantage of this approach
is that the calculation of the n-point correlation functions of the conformal fields
U;(y) on Xg(Z) reduces to the problem of the construction of the n + 2g + 2-point

function
2g9+2

(M ¥®) T Vie)) k=01
=1 =1

on the sphere [22]. Under the hyperelliptic map (3.1) the field ¥(y) on X_,§2) maps

into two fields
FRON
R,y — [ 9% 7 (%}
¥ = (42) v,

living on the corresponding Riemann sheets (=branched spheres). These fields
have to satisfy, on top of the usual conformal properties (encoded in their OPE’s
with the stress-energy tensors T(k)(z)) an additional monodromy property [22]

L¥O(z) = 27 290(),  muW(z) =0®, @ =8 (32)

around each branch point ¢;. (The general form of (3.2) is, say, I, ¥{0(z,7) =
e“zWi(A_‘&)\If(l)(z, %), but we shall systematically omit the Z dependence.) These
boundary conditions are obtained by the analytic continuation of y(¥) through
the cut to the next sheet y(F+1); .

Hay(k) — y(k'-l-‘}.)’ Haz — ze?‘iri + a.

Similarly to the Ramond (spin) fields, the geometrical vertices V(a;) appear in
the branching points a; in order to generate (by their OPE’s with the II,-diagonal

combinations of \Ii(k)’s) the monodromies (3.2).
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The problem we address is the following: for each conformal minimal model,{3],
given by the central charge é, = 1 — 6/p(p + 1), p = 3,4,... and finite set
of primary fields {¥;(y)} defined on ng), find the relevant conformal model
{\I‘Ek)(z), V(a;)} on the sphere. The main idea of this paper is to consider the
algebra 1}, on the branched sphere, obtained by the hyperelliptic map (3.1) from
the stress-energy tensor T'(y) (“Virasoro”) algebra on ng) [19]. As we shall see,
the {¥,V} models that we are looking for are the minimal models of Vj,.

To obtain V4, note that (3.1) maps T(y) into two fields T(*¥)(z), where
T(k)(zl )T(k)(z;;) is the usual (compactified plane) OPE [3], and T(k)(zl)T(k')(ZQ) ~
finite for k& # k'. In addition, T(k)(z) obey the monodromy condition

I, 730 = 7+ 2 =1, (3.3)

We see that V), is the doubled Virasoro algebra with specific Z3 boundary con-
ditions (3.3} for the spin 2 currents T(k)(z).

It is convenient to analyze the properties of this algebra and its representa-

tions in the Zj-diagonal basis

T =70 4 T(l), O,7 =T,
. (3.4)
Tt = 7O _ (1), 0,77 = —71t.

i.e. T and T carry Zy-charges 0 and 1. The corresponding OPE algebra describ-

ing the symmetries of the diagonalised sheets is a simple consequence of the T(*)
OPE’s:

e 2 1
T()T(2) = ———-2z§2 + _z§2 T(2) + —2126T(2) + -
2 1
T(1)TY(2) = 5-T1(2) + —a8T (2) +---, (3.5)
Z12 £12
2 1
TH)THR) = —— + —T(2) + —8T(2) +---, = 24).
(1)T(2) z%2+z%2 ()+m @)+ (c = 2¢)

The primary states and fields of this algebra can be organized in two sectors
according to its Zz-structure. The states on which the boundary conditions (3.4)

are realized have Zs-charge { = 1 and represent the “branching sector” (= twisted
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T1). The nontwisted Z,-sector (I = 0) is represented by the states corresponding

to the following (“nonbranching points”) boundary conditions:

mT="7 oTt=T1"

Following the analogy with the generalized parafermionic algebras [30] Z5;(A =
pk(N — k)/N + M) (N =2, p= 4 in our case), we define the mode expansions
of T and T:

T (0) = 3 7 Eoalig(0),
ne

f o (3.6)
THz)¥y(0) = 3 2" *" 5 M_,, 1 Viy(0).
nez

In terms of the Laurent modes L, Mn+§ (I = 0,1) the OPE algebra (3.5) takes

the form:

[Lm, La] = (m — n)Lmyn + i%m(mz - 1)6m+n,0,

[
[Mm+ (m =+ 5) 5'm.—|—-n+l,0:

i
3

2
c {
!Mn-!-é-} =(m — n)Lm+n+I + D) {(m + -2-) -1

l
(3.7)

According to the standard BPZ procedure [3] the primary states of (3.7) are given
by:
[ = 0 (untwisted sector):

LolA, A = A|AAT), LA, A = 0 = M]A, AT)

MolA, A = At|A, AT n>1

V(0)[0,0) = {4, AT)
! =1 (branched sector):
LDIA)=A|A>, Ln!A) =0=Mn_%'A), n>1,

V133(0)[0,0) = |A).

Since we are interested in the degenerate unitary representations of (3.7), we
shall start with the analysis of the null-vectors:

I =1 sector: level % M_%IA) =0 ffA= é% (8)
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level 1 {Mfl Lez8UAt I)L_l} |A) =0 iff
3 12¢
A ¢+10% /(2 ~ ¢)(50 —¢) )
64
| = 0 sector: level 1 {L_l - %M_l} 1A, AN = 01 A = £A1 ete. (10)

The degenerate field V35(z) corresponding to the level 1/2 null state (3.8) will
play the ceniral role in our construction of the minimal models on / 52). It has
all the properties of the Knizhnik’s branch point operators introduced in [22] for

the ghost and matter string systems on Xg(z).

Applying the GKO (coset constructions) method, [14], for the group SU(2) x
SU(2) = O(4), i.e.considering O(4) x O(4)/0(4), we conclude that the central
charge of the degenerate unitary representations of (3.7) is quantized:

12

c=2— = 2¢ =3,4,.... 3.11
p(p+1) H .p E ( )

In order to obtain the Kac-spectrum, correlation functions, fusion rules, etc.
for the minimal models of (3.7) one can continue with the analysis of the null
vectors, Ward identities and corresponding differential equations. The other,
more powerfull approach to the minimal models is the Dotsenko-Fateev Coulomb
gas representation{27]. Our description of the minimal models of (3.7) is based

on the following Coulomb gas representation

(k) — %(atp(k))?a + ag8pt®),
8" = ap*+) (o(1)pl)(2)) = 67 In 215

(ad = 1/2p(p + 1) for the discrete series (3.11)). That is, we start with the usual
(sphere) Coulomb gas for each sheet separately. Passing to the Z;-diagonal basis
(3.4

ﬁ?s = ‘P(O) + {P(l): Haaﬁf’ - 345: Haaqﬁ = '_69{’)[1
ot = @ — 1), 0,00 = g4, (3.12)
(#(1)$(2)) = 2Inziz = (pH(1)1(2)),  ($(1)01(2)) = 0.
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we can write T and T in the form:

T = i(aqﬁ)" + aoaw—f—i(aqﬁ*)z, ' = éacb@qs’f + a8,

c=2— 240l

(3.13)

which makes transparent the splitting of the Coulomb gas system with respect
to the Virasoro subalgebra of (3.7) into the sphere minimal models with ¢, =
- 1-12/p(p+ 1) and the Zy-orbifold 5 /Z3-model with ¢,y = 1. In this basis the

vertex operator construction of the primary fields is straightforward:

[ = 0 sector: Vop(z) = e“¢+b¢', (14)
Dgp= a’ — 2aga + 52,
Al = 2ab — 200, (15)
[ =1 sector: Va,e(z) = e“¢ae(z), e=0,1 (16)
1
Ay = a? — 2cp0 + i—g (17)

Since ¢f(z) lives on the orbifold S$'/Z, having two fixed points ¢5 = 0 and
qbi = %(QTI'R), the lowest energy states of T, = %(Bqﬁf)z are represented by the
well-known twist fields o(z) (see refs. [57) and [56]) of dimension A, = -1% They
satisfy the following basic OPE’s:

861(2)e(0) = 217&5(0) T

061()5(0) = 5 el0) + =(@:a(0) + -+,

where G, is an excited twist field of dimension A, = 9/16. Direct inspection,

(3.18)

using (3.16) and (3.18), shows that the branching operators Vy¢(z) reproduce
the boundary conditions (3.4) and the OPE’s (3.6), i.e.

20 — ag .~ 1

TT(Z)VQ,E(O) - an,e((}) + O (72) = ;T (JVI_%VQ'E) (ﬂ') 4. ’

VCZ,E == eaé&f.

(3.19)

A simple consequence of (3.19) is the explicit construction of the lowest-dimensional

branching operators representing the degenerate state at level 1/2 (3.8):

a= % ie. Vye=eTto, (3.20)

with dimension A, = (1 — 1203)/16 = ¢/32.
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To find the screening operators we take a special I = 0 vertex S, ; and require

that Qo p = § d25, 3(2) be invariant under the action of T and Tt i.e.

Sap(z2)
212

Sa,b(ZZ)
2312

T(21)5,5(z2) = G3 ( ) + reg. terms,

TT(zl)Sa,b(zz) = a0y ( ) + reg. terms.

These conditions are satisfied iff @ = 45, a? — aga = 1/2, which gives

2 1 1
at = %9- + (%) + 30 O+ +a_ =ap, aya_ = —5 (3.21)

Therefore, the screening operators we are looking for have the form:

ST = o2(838) g _ eal(é-d) (3.22)
In the derivation of the dimensions of the primary fields of the minimal models of
(3.7) we closely follow the methods developed in [29], addapting them to the case
of the O(4) ~ SU(2) x SU(2) underlying algebra. Representing the completely
degenerate stetes of (3.7) as contour integrals of products of arbitrary number of
screening operators (3.22) and one vertex (3.14) or (3.16), we get the following

Kac-spectrum for the degenerate primary fields from the discrete series (3.11) (
(58] for details):

! e — !
! = 0 sector: alnm] = 2-n—n a+ + 2-m—m a_
2 2
n—n' m—m'
bnm] = 5 O+ 5 -
1<n,n <p, 1<mm <p-—1 (23)
Apnmy = B+ m)E+1) = (mtm)pl” + (0 —n)(p+1) = (m — m')pl” — 4
o 8p(p+1)
Affam] = — [(mn+nY)p+1) — (m +mpl[(n —n)p+1) - (m—m)p|
n' m 4?(?"‘1)
[ =1 sector: ozgfrznz 2;na++2;ma_
n—mp]"—4 1 (2)
AR et _ Al 24
n,m 8P(P+ 1) + 16 p—n,p+1-m ( )
1<n<p, 1<m<p-1



The branching operator (3.20) appears as the lowest dimension field in the
branched sector (n = 1 = m), A1 = (1 ~ p(p+1

sponding lowest energy field in the untwisted sector (n = 1 =n/, m =1 = m')

)) As usual, the corre-

has quantum numbers A = 0 = Al and is represented by the unity operator. We
shall give as an example the constructions of some of the primary fields in the

simplest model ¢ =1 (é = 1/2, corresponding to the Ising model on }:52)):

a 1
=1 Vﬁ2=e_ﬂt¢a-e; Vaq =0 A1,2=A2,2=E
o 9
1/26}1 = £ 2 qbo-e, A2,l prminet ?3:?:
(T, 1 ] —_
b=0 AT=0: W=t AR =g ¥Ril=e ™t ARY=1
1
Al=—a: W= T00, AR = o
Y= F, A=
At =A: ‘I’[fi]ze"uT_(‘ﬁ""ﬁ'), A[:j]:% ete
7 12 2= gt 9
Afzimé: T2 = FEHTT 0 NHEE

(3.25)

3.2 Partition- and correlation functions on hyperelliptic
surfaces

The next important issue in the description of the minimal models of (3.7)
is the explicit structure of the corresponding OPE-algebras, i.e. the fusion rules
and structure constants. Omitting the details (see [58]), we present here only a
part of the fusion rules we need for the construction of the partition functions of
the Virasoro minimal models on Xéz). As it is explained in ref. [59], the fusion
rules can be obtained by examining all the possible ways to screen the 3-point

functions:

a

(Vi ms (Vi ma ()22 21 T QEG), (T[] [z m] @ :,"*,chi(z)

h 1 1 2
i
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satisfying each time the neutrality condition:
> @i +niy+n'd, +mi- +m'd. = 2& (3.26)
where
& = (ai, b)), gy = ayx(1,1), @, = ax(1,-1), 28y = (2aq,0).

The screening procedure together with the symmetry conditions

] — { p—n ptl—m ]
p—-n! p+1—-7u pun! ppioam’

Alpml=Armmes] = AL

nf m! mf

(and the same for A7) and (3.24) leads to the following fusion rules (7 = (n,m)):

b= 7 iy -7z —1 iy pis—1 E
xp(j)xp(ﬁf): 3 > |7 (3.27)

nl 2 = -~ Tt =t
k=|7y ~fig|+1 I=tr) —7h1+1

p pti
ViV =20 30 [e(m)] (3-28)
n=1m=1
V[ )V = [Viem)] (3.29)

The OPE’s corresponding to the fusion rules (3.29)

B2 ) (VO(0) = 0 IV 0) 4 -
U(r ) (V0) = CL) a3l T v ) (0) + - - (3.30)
Vi = e

play a crucial role in the description of the possible boundary conditions of the
fields ¥[7 7] around the basic cycles 44, Bs (@ = 1,...,9) of Xéz). Another
important consequence of the analysis of the 3-point functions and the fusion
rules is that the radius of the orbifold §'/Zs on which ¢ lives is fixed by the
screening procedure to B = —2a_ (up to the symmetry ,[60], R — 2/R). In fact,
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the possible screenings of the 3-point functions (Vl 2 I‘I‘[n, m,]) reflected in the
fusion rules (3.28) imply that the function:

(oere [ et $' O ] e*e-#'0))
i i

is not vanishing, i.e.in the OPE [57,60]

A% gom
G (1)oe(2) = 3 2l TESRR)
- . (3.31)
crez 1?'__ L €} €2
=Rty (m+ 7 ) R

only the fields with R = —2a_ contribute. The fusion rules (3.28) describe
qualitatively the handle degeneration of Xj () 4o X (2)1 with marked points and

the projection of the null-states in the corresponding channel.

In the construction of the correlation functions of the primary fields of (3.7)
we restrict ourselves to the functions

2g+2

(T V(e qu[i;;i] 2)(Q1)(Q)), Y e=0mod2.  (3.32)

=1

As we shall see, they are simply related to the correlation functions of the Virasoro
minimal models on X§2). Using the vertex constructions (3.20) and (3.22) and
the neutrality condition (3.26), we can write an integral representation for the

“partition functions” on Xf):

25!-{-2
V(o) = (]I Vi(e)(Q2Y (QzQ™)
T 'rp-{-] g
- H H fd:l:_, f dul j£ d'U H ez 'ﬁ(a' e —paro p(z.) a-é(u;) a+q5('um))

s=0 Lm=0 ¢ “o P
2g+2 1
H Te (a. )e Fraos! (z) da_g (u:) ta, ot (um))
i=1

(3.33)

where

Q:T: = ﬁdl‘eﬂpan(q&(z)i‘ﬁt(z))’ 4. = —pag.

The contours C,, C& can be fixed by the branch cuts of the integrend as in ref.

[27]. It remains to construct explicitly the correlation function of 2g + 2-twist
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fields o¢ and an arbitrary number of untwisted vertices et¢'

2g+2

G({ai},{zr}) = H ae.(az)ﬂem‘m) = 5" G(pa; 2, T

EP:L + Pg+1 + Z qr = 0, Zei = 0 mod 2 (3.34)
a=1 k=1
e 1 - €t €t
péiteis — 53 + 3 (ma + ..,.mg,,i'm) R, R=—_%.

The direct generalization, [58], of the method of ref. [57] to the case of the
function (3.34) allows us to derive a system of differential equations for the mul-
tipoint blocks (j}’(pa; ai,z3). The starting point is the construction of the anxiliary
functions

29+2 n

Tlpa; 2i,21:7) = (86(2) 1T oa(er) 11 wlzn))
i=1

- 2§+2 n i
I'(pa; ai, zp, 2 )= (quf Fe(ai) H oea:) H oI+9 (Ik))
1=2 k=1
using the OPE’s (3.18), the Ward identity
@¢T(z)eq¢7(z) = 2 =) 2 6 28 (=) o

—=z
and the block condition coded in the OPE (3.31):

f P(z: ai:mk;pd)dz = zpaé(Pﬂ-; a‘i:xk)'

Aq
(The basic cycles Az, B, are chosen as in ref. [57], fig. 2.) The differential

equations we look for have the following form [58]:

BG 2942 5 1 g 2
Ba; ];[ % 2 Palla(a;) + kZ}q;cy k) (a1 T ;Ma(wk)ﬂa(ai))
J?él
2g+2 R _
_1 L__l_alndet_r{(g) G
8 jo1 @i 2 da;
J#
G
3 ZP«: (zr) — ary(zk) ZM (2 ) Ro(zp )+
mk ( a=1

2g-+2 _
+ >: giy(wi) (m— - Z Ma(z:) R (mk))] ;q% 3 1 }G

) =1 Tk — 4
1#k
(3.35)
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where Ra(z) = 37_, P l(ff“l)ba, M,(z;) and K, p(a;) denote the complete hy-
perelliptic integrals of third and first kind respectively:

dz _ | z ;
M) f gy )= f e

a i

The solutions of this system can be easily found taking into account the simple
fact, [58], that the equations (3.35) are the handle degeneration lLimits Xé?) —

Xéz), g — g = n, of the corresponding equations B for the proper twist function

(szi'l—i-z Ue.‘(ai)): .

_ 9'—g 2g'+2
Glpasaiz) = [ bm  (agke100) %( [] oalar)
E—1 Azkw1 2x—0 =1
2g-+2 a . .
= [I a;;*(det KE@W)Texp {wiW(n’g)(Pa:Qk;Giawk)]
1<3
g n 2g9+2 = .
T/V(""g) = Z (Pa + 5)Tab(Pb ! /[(zpa + 5)1'}(”') + ij(f’)],
a,b=1 i|j=1 =1 g + lﬂs
5= 2%
g+1
(3.36)
The abelian differentials ﬁ(“)(z) = Ry(z)/y(z) have the standard normalization
f‘i‘?(a) = aa.ba ( ) — Tub
B,
and the third kind abelian differentials
(5) — o(a [_1_,,_ Ma(2,)5®
wv = ylz; 21 )0\ (=
) | o ~ 2 M)
have zero A,-periods §,_ w*) = 0 and residua normalized to +1.
Now we are able to write explicitly the correlation function (3.33):
r(p-{—l)-i—l grp+1 g 25’+2 PR 1
Yii(ai) = jgduz jlg dvp (v -——u;) H (ai;)7#= 733 ( detKg) z
m=0 e ck i<j
2g+2 r(p+1)+1-g , TPl-g 0al
x ]:[ (as _ ul)aua._(as _ vm)aoa+ H (ulk)Qn_ H ('vmn) i
3=} k>l Tn>m
x ), exp [ﬂ'iW(“‘g)(pu;Qk;ai,uz,vm)]
{(na,me)Ely
(3.37)
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where

. . g
- o e 545

Extending the arguments of ref. [57] (Sect. 5) to the case of Y7i(a;), we can
construct the corresponding crossing-symmetric 2-D correlation function. Since
the contour integrals can be rewritten as integrals on the whole complex plane,

[61], we get the following monodromy- (and modular-) invariant function:

. ) #{p+1H+1—g rp+l—g
Zai, @) = |ag|"F | det K97 ] 11 /dzuzdzvm|vm--u1]_2

=0 m=0
2g+2 T(p+1)+i—g R
w H |as _ uz|2cxna,_ |a'3 _ vaQQOa_ H |u”c|4a_
5=1 k>1
Tptl—yg 2 . .
% H |'Umn |4cr.+ H em(W’—W)
nom (pB)ET S
(3.38)
where ¢;’s and ;s are either all equal to 0 or all equal to 1 and
= g n 2g+2 g i ~(a) )
W= 3 (et 6B+ 6+ Y, 2 —or [1(25a + 615 + gjal)
ab=1 ij=1a=1 9T 15 (3.39)
n* 1
o= 72"

(z.e. the classical solutions contributing only to the untwisted part of the Z-

orbifold’s correlation functions (3.34) are considered.) Another solution is to take

the twisted part of the Zy-orbifold function (3.34), i.e. to change the momenta
. mg+87 1 4+ Mg+ 6}

a a _ l a a

to redefine
W' —W'=W(p) - W(p,) + 2e5(m® + 63) + 2¢} (n® + 67) (3.41)

and to sum in a modular-invariant way over all possible choices of the g-dimensional
vectors &%, € (with components 0 or 1/2), provided that (—1)%1% = 1 =
(—=1)*2%2, For R* = p/q the infinite sum over (n®,m?®) € Z7 reduces to a finite

sum, [57, 60], which is important for the interpretation of 25(,2) as a “partition
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function” of the Virasoro minimal models on Xéz). The choice ¢ = 0 = 65

corresponds to the following crossing-symmetric function:

g+1

>4 H Vv 0(a;,a;) H v, 5) ] @F),

where the sum is over all independent permutations of a; and &;.

So far we have constructed the most important ingredients of the minimal
models of (3.7) on the branched sphere and now we have to answer the question
how can one construct the partition and the correlation functions of the Virasoro
minimal models on Xg(z) in terms of the crossing-symmetric functions (3.32).
Start with the path-integral definition of the partition function on Xg(z) in the
spirit of the ghost system constructions [22,55,63,62]

Zymiymg) = 3, [ Dpet [ oedortan [R( Gy (Qroryetize (3.42)

winding
numbers

where the screening charges
Q% = f d2gearse(eltasd(®) g7 = /d2m6—2pﬂo(ﬁa(z)+¢(i)), cs = 2au
x®

make neutral the measure of integration:
—2prag+(rp+1—glag +(rp+1 =~ g)a_ = ~2aq(g ~ 1)

(The anomaly for g = 0 is 2ag.) The hyperelliptic map (3.1) (see also (3.12))
reduces (3.42) to the specific partition function on the branched sphere, intro-
ducing the branching operators Tﬁ(’? to simulate the boundary conditions of the
fields around the basic cycles 4,, B, of ngz):

r(p-+1)+1—g rpt+li~—g

Zews)= 5 I I [ dudton [ Dwgsfexp[ [ 0305

viding 10
2g9+2
+ 2ap f R=04 + H f 5¢T5¢‘r} gH V() (a5, @) e (P8 )(w) grs (26 ) ()
4 1=}
42
5 TLITf Pudton I eFHecmdoe-stodgerdt g
winding f=1
2942 L} 1
( H G’e(ai,ﬁ{)eia_qﬁ (u:)e:i:a.+¢ (-u;))g=0.
i=1

(3.43)
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Note that the branched sphere correlation functions in (3.43) satisfy the neutral-
ity condition with the sphere anomaly:

(9 + 1)y —rpag +{rp+1—g)ag = 209

for the first one and (3.34) for the second one. The above arguments strongly
suggest that the crossing-symmetric (e.g. modular invariant) correlation func-
tions (3.38), (3.40) and (3.41) or their linear combinations (even with different
but conjugate radii R of the Zy-orbifold) can be identified with the partition
function Z; of the Virasoro minimal models on X!gz). For g > 2 the problem of
the classification of all modular invariants is still open. For the torus, the corre-
sponding partition function does not contain any screening operators. As it can

be seen from (3.38), (3.40), (3.41) and (3.43), Z2_, is proportional to the twisted
part of the Zy-orbifold partition function and it reproduces, [58], the well-known
modular invariants [21]. Remember that for & # 0 partition functions transform

covariantly under the local rescaling of the surface metric, {16],:
Z(efg) - Z(g)eésr,(f,é)

where Sy (f, §) is the Liouville action of the function f in the metric §. Our metric
on X 52) is the singular one induced from the metric § = dzdZz on the sphere by
the hyperelliptic map z — y(z). So, for instance, to obtain the partition function
for the flat metric ¢ = dydy on the torus, one has to multiply (3.38), (3.43) by

the factor [];«; iaijlé/lz.

Qur quite incomplete description of the minimal models on X_(gz) was con-
centrated on the construction of g > 1 partition functions and left unanswered
a lot of important questions: 1) the factorization properties of these partition
functions; 2) the explicit construction of the correlation functions; 3) the classi-
fication (according to some physical principle) of the different modular invariant
partition functions for g > 2 ete.. Nevertheless, we hope that our description of
minimal models on some Riemann surfaces with g > 1 contains certain prompts

on how to treat these models even on arbitrary compact surfaces.
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Chapter 4

Higher Level Models
on Hyperelliptic Surfaces

4.1 Superconformal models

We continue our study of the minimal models generalizing the method we
have used in Chap. 3 (see also [36]) to the case of the N = 1 superconformal
minimal models [5] on Z;-hyperelliptic supersurfaces ,[64], Sng). The problem
is to find the appropriate m.m.’s on the branched supersphere which describe the
N =1 minimal models on SX_(gz).

Analogously to Xéz), the S.Xg(z) can be defined as a double cover of the
supersphere CP!+t, branched over 2g + 2 points, by defining all of the coordinate
patches and the transition functions among them. The supersphere has two
coordinate patches: (z,4) and (w,x) = (—1/z,6/z). To define the transition
functions around the superbranch points we recall the general solution of the

superconformal constraint , [65], Dw = yDx:
w(z,8) = u(z) — u'(2)e(2)4,
x(z,8) = Vu'(z) (9 + e(z) + %eae(z)é’) ,

where u(z) is a function and e(z) is 2 (—1/2)-differential defined on the intersec-

tion of charts. Most of the u’s and €’s can be removed by the superconformal
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transformations in various charts, the remaining ones contain information on the
supermoduli of the SRS. For SX!SE) u; = +/z —a;, and €(z) = ai(z — a;)" /4,
where ¢; is an odd parameter, is a (—1/2)-differential with a first order pole at

a;. In such a way, we define a super hyperelliptic map

wilz,0) = 'z — & — aib(z — ) ¥,
(s gy Bt ei(z =) (+1)
xi(z,0) = V2(z — a,,;):_

As shown in [64], accepting this definition of the hyperelliptic supersurface SX 52)
one can derive the dimensions dy of the corresponding supermoduli space .sMgz).
For g = 1 one obtains d§?*" = (1]0) for the even spin structures and d$%¢ = (1{1)

for the odd one. For g =2 dy = (3|2) for all spin structures.

The most attractive feature of the N = 1 superconformal algebra on the
SXESz), generated by the super stress-energy tensor W{w,x) = {T(w), G(w}}, is
that it maps into Zf::z parafermionic algebra, {30], on the branched supersphere
[64]. Under (4.1) T'(w) and G(w) get mapped onto T{F)(z) and G*¥)(z) (k = 0,1),
defined on the corresponding sheets. For a given &k they satisfy the usual OPE’s
[5] and for k& # m the OPE’s contain only régular terms:

TEY (2 YT (z29) ~ TN (21)G™ (23) ~ GF(21)GU™(23) ~ reg. for k # m.

The analytic continuation of T(*)(z) and G{™)(z) around the branch point leads

to the following monodromy conditions:
I, 7T¢*) = T(k+1), G0 = —G(l), e = g0,

We can diagonalize II, by changing the basis as follows:

T =7 4 71, T =T,
7t = 70 _ (1) 7" = -7t

mé =1, (4.2)
G =GO _icn), II,G = -G,

Gt=6® +ic®,  mat=iat,

The Z4 charge of T, TT, G and GTis 0, 1, 2 and 3, respectively. Around the other
arbitrary “nonbranching” points T and T are periodic (see Chapter 3) and G
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and G' have Z;-boundary conditions corresponding to the NS (Z4-charge [ = 0)
and Ramond (I = 2) marked points on CPM! [64]. Using the sheetwise OPE's it
is easy to derive the OPE algebra of T, T, G and G [64]:

T(1)7(2) ~ TH)TH(2) ~ °/2 —'?'Z—-T(z)—i-%é‘gT(Q),

12 12
T()TH(2) ~ z—f;-f’f(z) +-_aTi(2),

T(1)G(2) ~ TH(1)GH(2) ~ 3/ 26(2) + L 8,6(2),
zl; 12 (4.3)
TG (2) ~ THWGE) ~ 62 + —a6')
G1)G(2) ~ GIL)GH(2) ~ it Lri),
G(1)G'(2) ~ C/S / ~T(2), & = 2.

The primary states and fields of (4.3) are divided into four sectors Vj(2) (I =
0,1,2,3) according to the four possible sets of branching conditions for the gen-
erators T, T%, G, Gt. The primary fields V() realize these boundary conditions
through their OPE’s with the generators:

T(Z)T/E;](U) = Z z—n—anV[q(O), anil](o) —_ dzz n+1T(z)V[](0)
nel

THVY0) = 3 7™ 7" M, (Vig(0), M, 4 Vy(0) = dzz mE T (2) Vi (0),
neZ 2

1 d
GEVn(0) = 3° 27" 5 G, s Vin(0), G, i 1 Vy(0) = ¢ 27 G(Z)V{q(o),

neZ 177 2
G0 = 3 et , (), Gt Vig(0) = jf Vg (0)-
'n.EZ v 2 1

(4.4)
A simple consequence of (4.3) and (4.4) is the following Laurent modes algebra:
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[Mm—i-%’ iw.}"%]z[—(m‘Fl‘Fl)—n] Gn+m+-‘——l’

1
{Cmits3sCnrtot) = 5 Magmats

1

c l { 1
{Gm+%+;,Gnmlh%}:1—2— m+E+1 'JTL-I—Z 5n+m,0+§1:’n+m‘

(4.5)
The direct comparison with the parafermionic algebras of [30] shows that (4.5)
represents the generalized parafermionic Zfﬂz algebra. However, for SX_$2) (and
in general in the presence of fields of half-integer spin on X 5(,2) the monodromies
 (4.2) do not exhaust all the discrete symmetries, i.e. all the boundary conditions
for T,T1,G, G1. In fact, the sheet-interchange Z3 symmetry, together with (4.2)
leads to D4 as a group of monodromies [38]. It turns out, [38], that only the ver-
tices from the Zs-sectors (the usual order-disorder fields) play an jmportant role
in the construction of the N = 1 superconformal partition functions. Therefore,

in what follows, we shall consider the even (order) sectors of sz:z parafermionic
algebra only.

The unitary degenerate representations of this algebra can be obtained by
the GKO method, [14], for the coset Da(p ~ 2) x D2(2)/D2(p), which results in
the central charge € of (4.5) being quantized as follows:

__ 24
p(p + 2)

=3 =2, p=234,...

We start the construction of these representations by taking the usual (super-
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symmetric) Coulomb gas realization, [5,59], of T(®) and G*) (k =0,1):

(k) — .;.(3@(@)2 + %(3¢(k))¢(k) + agdp®)

(4.6)
®) = 58 5o® 1+ 20090E) 2 _ 1
G '4’ Y + 2ap 'l;b ’ 25} P(P“l‘z)’

where #%(*) are free Majorana fermions

BP0 ) = 4,

z12
Ip(® = (1), My = (),
and the free scalar fields (%) are defined as in Chapter 3 (see also [38] eq.12). In
the Z4-diagonal basis (4.2) egs. (4.6) become

1 Loz, 1 t, Logt 2
T = 4(3¢)2+ 1(0¢ )2+4(6¢)¢ + (891 )Y + 09,

Tt = 104041 + a0 + (%) + L (0v1)e,
: 1 : : (1)
G = 59106 + Sp04' + 200097,

1
G = S04+ 21041 + 20084,

where the 1/2-spin fields 1 = %{%® +43(1} and o7 = (0 — (1) obey the following

monodromy conditions around the branch points:

Mo = ip,  Hap! = —ipl,

Note that with respect to the Virasoro subalgebra of (4.7) the Coulomb gas
system splits into the sphere minimal model with ¢;p = 1— 5"(3%’2")"’ the Zs-orbifold
with ¢ = 1 and R = —24_, and the X? Ising model with e, = 1.

The lowest energy vertex operators in the different sectors, satisfying the
OPE’s (4.4), can be constructed in terms of ¢, ¢, the Zs-twist fields o and the
Ising model (& = 1, ¢ = 1/2) fields V{9 = v}, WY = V| with A = 1/32 and
$[31] = V) with A = 1/16 (see (3.30)):

ag t 20 (gt
Vioy = e p-+bo Vg = V{;'b]e Pp+41)

e a0y

g (4.8)
Vi = Vo8

Y
Vi = Vg9 (o)

The two A = 1/2 Ising model fields #%[!!] = exp(—%:(¢ — ¢7)) with AT =

21

—1/2 and #[?!] = exp(~5(¢ + ¢1)) with At = 1/2 are related to ¥*) through
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P11l =(0) = %(’&b + 1) and P[21] =41 = %(gb — 1), We have to mention that
the fields in the [ = 0 (NS) sector can be realized as N = 1 superfields. In fact
the vertex V) represents the first component of the NS superfield, the second

component is given by V =(ao®) + botp!) exp(aog + bogl).

As usual, the screening operators are particular { = ( vertices, whose contour
integrals are invariant under the action of the generators. In our case these

requirements are satisfied by:

53 =j£dz(zb +phyeaslereh) g jgdz(v,b EINERCD

.9 R 1 R o + cx%—}—l A ) o 1
a:b—ﬂlﬁaiﬁz, ai=————2—, ay + a_ = ag, a.,.a_:—i.

To find the vertices representing the primary fields of the l-sector of the discrete
series of the unitary representations of (4.5) we simply repeat the procedure
described in Chapter 3. The primary fields we are looking for have the same

form as (4.8), but with the following quantized charges:

: VI = V¥geetnmt,
=3 k U AE],m = ai,m . 2aoan m + ?Tf

1=0 n0_meaz Vigilas ] = exp (al 5 16 -+ b2 ]87)
=2 a-mle2z241  Vynm]= V[f] exp (a[2 m]é+ b5 m1g')

TI.’ ﬂl'

where a | and b{ ] are of the form (3.23) (with @4 instead of ay) and

An important peculiarity of the supersymmetric partition functions is their
dependence on the odd moduli [66]. According to the discussion for the super-
string case in [64,67|, the relevant branching operators for the non-split Sng)
are ff[l] = Vg +2aG_34 Vi), I = 1,3 and « is the odd modulus (cf. (4.1)). In the

case of the N = 1 superconformal minimal models these operators are realized
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as:

V[ } (V(ﬂ) (0) + ZOLV(G) (D))e 3

3z 15 32 16

V[3 _(V(I)L+2 V(l)g,,) (11)6—,"—45_

15

Leaving the general case for [58], we restrict ourselves to the construction of
the “partition function” for the split (@1 = ey = 0) SX (2 )2 surface and for the

models with even p = 2k:

[
vEzp(e) = (11 Valw) Q20200
=1

k 1
o dz fg du; jg dv, <H e 7 #(ad) g—kaod(z) a—d(u) ﬂ+¢(‘um)>
1, c c]— c'-;.I i=1 (49)
X <H a‘el-(ai)e:Fkaotﬁ'(z)ei&—fi’t(“l)eih&+¢t(vm)>
i=1

x(ﬁw” ) )¢(k‘)(uz)¢(k“)(vm)>,

1

where 3" ¢; = 0 mod 2 and

Gz = § 4o ($(2) 2 41(2)) exp (~Eao(d(2) 2 61(a))) ,

«

2 = -pag, ki=0,1, @D ~ypy, O~y
and

Ve = V;.'-&Uﬂec;_ogba Voo = V{lp]’ qulb =V

The correlation function G{p,, a;, = k) of 2g+2 = 6 twist fields o, and an arbitrary

number of the untwisted vertices e’ has the form (3.36)It remains to construct
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the multipoint Ising fermion correlation function on X !Sz:)z [58]:

M
ST= a5ty vme) = <H V3 (ax) H ¥ 11w) T ¢[éi](vm)@;Q;(Qi)’>,

=1 m=1

o fo g e e

c- ¢ =l

eui;aqa(um)e—aau¢(z)ea-¢(y)ea+¢(z,-)>

x <fI Ue;(ai) H e'""u_;t‘#’t(uf)e“‘%l"‘{’t(”ﬂl)eiiiau(ﬁt(”)e¢ﬂ—-¢T(y)e:F'1+¢’(zJ‘)>

i=1 Im

=2 H jgdb: jgdmjgdsz ai,p1,p2, {@h B g)(POWERS)

P1p2 =1
(4.10)

where

1 2 3
L+M:28, Qg:ﬁ, E+=7€', ﬂ._:—m,

and Gp—3 is a special case of eq. (1.36). Putting all the ingredients, (3.36)and
(4.10), into (4.9) we get the integral representation for the holomorphic {“left”)
part of the partition function. The modular invariant construction of the full
g = 2 partition function for the N = 1 superconformal models will be given in
[58].
For the non-split case we have to construct, in addition to (4.9), the following
6-point functions:
6
(T fes,)02(0300)),
=1

which requires evaluation of the Ising correlators of the type

<v.., (a) Hvl (a)V.(as) ot T 122 vm)HQ>,

m=]

and of the modified Ashkin-Teller correlators
N t
1=1

In conclusion we shall briefly describe another generalization of the method

of Chapter 3, the construction of the Virasoro minimal models on the Zy-
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hyperelliptic surfaces X_.EN). Representing the stress-energy tensor T'(y) by N
fields T®)(2), k = 0,...,N —1 (one for each sheet y(*) = 827’5%(3 — a)%) in the
Z y-diagonal basis

N-1
T _ —~2migk (k) ’
() ,§, e NI (=) (4.11)

mid N
LTy = MR T,y, OF =1

we obtain the following OPE algebra:

~

N¢

Zu 2 1
Tw(1)Ty(2) = %%wp + ;ET(HV)(?) + Z—IZBT(HV)(?) + -

In the discrete basis

Ty (2)Vy(0) = ZZ""_'*“%“ZLEQ%I;VM(G)

T

the above OPE algebra takes the form:

[LE:)—E-'-’LEIII_)”_!] = (m —n— M) L(#+v) n

N n+m—r”';;’“
Né pl pl\? -
+E(’““N) [(mTN) -1

The simplest null-vector in the branched sector I = 1 is at level 1/N:

Ly
8000 - letedt el g

(4.12)

6 —0iF A= N ( - L)
Lm%%l](ONO) = 0 lﬁ‘ A{l] - 24 1 Nz .
A natural generalization of the Z; Coulomb gas representation is the following

Zy Coulomb gas:

1 N-1
Tiw = 337 22 000190 + 20 g ()

MaBp(uy = ™R Bp(y, ooy = ¢

Vi = e(1-%)bg 5= Aﬁi or,  Alog) = 1E (1 — ‘Ec“) » A(o) =
P} AN N

N?—1
24N
(4.13)

where oy are the corresponding Z iy-orbifold twisted fields [56]. The Kac-spectrum

for the branched sectors I = 1,..., N —1 of the minimal models of (4.12) is given
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by the following finite set of primary fields:
N—-In N -Im

n,m __ ﬂn,m(l)t,ﬁ _
V" =e a, nm(l) = 7o+ + a_ e
Al ()N anm(l) _|_jz_1 (414
mm = Gmm 2 a0 24N

As in the case of the Zs-surfaces, the partition function of the minimal models
on XéN) can be written in terms of the lowest energy branching operators V[i]’l =

V[i‘rl_l] with A = g—f(l — N%_) and the screening operators

ot rike
Sy = oxp [ 52 L e g

Again, the nontrivial ingredients of these constructions are the mixed correlation

functions of twisted fields o(,) and untwisted vertices exp {%?—(—1)3%"""(")] (see

[58])-

4.2 Generalization for the higher levels

The natural question that poses itself is does the strategy of solving general
V(L,M) models by using the Virasoro models as the building blocks extend
from the sphere to higher genus Riemann surfaces. In the following we consider

hyperelliptic surfaces X_q'.

As it was shown in Chapter 3 the Virasoro models V(M) on X, can be
described in terms of the minimal models of WD3(M) = O(4)x x O(4)1/0(4)k41
on the branched sphere [36, 57]. The supersymmetric minimal models V(2, M) on
splited hyperelliptic supersurfaces §X, are mapped into the W.Dy(2, M) minimal
models (~ D5 parafermionic minimal models ) on the branched sphere [38].

Then the hyperelliptic version of (1.3) reads as:
WDq(1) @ WDa(2, M) = P(WD2(M) @ WDy(M +1}). (4.15)

One can easily repeat all the constructions of Chapter 1. For example, the
currents of WD3(2,M): T, T%, G, GT have a form similar to (1.19) and (1.20),
where the basic ingredients now are the fields #[1}] = ¥12(M), ¥[}]] = 'qug(M),

11

o1 (M + 1), b1, (M + 1) ete. (see [36, 38] for the notation).
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Following our method we will indicate that the hyperelliptic counterpart of
(1.7) is

WDy(L - 1)@ WDSP (M) = P(WDa(M) @ WDED(ar +1)).  (4.16)

In this way one could compute the partition functions of V(L, M) models on the
torus and genus two Riemann surfaces as 4- and 6- point functions of certain

conformal fields from W .Dy(M) models on the branched sphere.

Let us consider in more detail the relations between the fields V;,(L, M)
from the branching sectors. They are the images on the sphere of the fields
@rs(L, M)(a) on X, under the hyperelliptic map y* = z — a, with dimensions
[36]:

AL, M) = 2 Ar(L, M) + —=c(L, M),

16
According to (1.2) and (1.4), we find the following identities:
r+ s 2 €
AF(1, M) + Al(1, M +1) = AlT(2, M) + 4( - ) 3—2

(4.17)
{1 ifr—se2Z,
Ers =

0 ifr—se2Z+1.
In terms of the fields we get:

V;'ZT(2!M)V-1b (1 1) - be ('r+s)(1 M)V1 F(r+a),s (17M _§_1)1 T—38E 22:

Vi (2, MYV (1,1) = V5 1, M)V 1L,M+1), r—se2Z+1.

L (r+sZFl)( (r+sIF1) (

These constructions have a simple generalization for arbitrary level I coset model:
Vi (L, M)V (1, L~ 1) =
br
= Vot 5t) O MVE iy ey ol L = 1M +1),

where r —s € LZ £ 1. An important open problem is to construct the multipoint
correlation funtions of V¥ (L, M) in terms of the conformal blocks of the Virasoro
branching fields V.57 (1, M ) only. One can hope that there exists an appropriate
generalization of our recipe for the construction of the 4-point functions of the
V(L, M)-models to the 4- and 6-point functions of the fields from the branching
sector of the W.Dy(L, M) models. In that case following the methods of [36, 38]
one could find higher genus partition functions of the SU(2)-coset models.
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Chapter 5

RG- Flow in General SU(2)
Coset Models

With the solutions of the conformal coset models V(L, M) in hand, one can
study their off-critical behaviour perturbing the conformal action by adding cer-
tain fields. In the general case the most relevant operator is not unique, and one
can consider various (one- and multi-parameter) perturbations. As a simple ex-

ample, consider the product of two Virasoro models. There are two most relevant

fields with equal dimension A =1 — 3—([—%1 =1l—e
Br=gliel ™, B2=ol{elt
The perturbed theory

S=5+g f (I’ldzz + g2 / @2(122: (5.1)

will have a UV fixed point described by the conformal theory Sp. The conformal
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OPEs of ®; and &, have the form
€181 = Ci®1 +---,
©18y =C199®y + -+, : (5.2)
PPy = Con1®1 + Cap2®2 + -+ -

The corresponding G-functions can be computed in the perturbation theory:

1 1
B1=¢€g1 — Ec’mgf — ~2~C1225'§ +0(g%),
B2 = eg2 — Ca12g192 — 5022293 + O(g*).

It is obvious that (81, 8;) have two nontrivial fixed points in the vicinity of g; = 0,
g2 = 0. The first of them is given by g2 = 0 and the solution of the equation

B = €g1 + Cinig? = 0.

Since C411 = C(lMa-;(lls)(ls) it is obvious that this solution corresponds to the RG-

flow
VIM)QV(M +1) — V(M)® V(M), (5.4)

where V(M) ® V(M) model is equivalent to V{M) on the hyperelliptic surface.
The second nontrivial fixed point is described below and reduces effectively to

the fixed point of the one-parameter flow V(2,M) — V (2, M — 2) generated by

57 = g [(agllg¥* +boragaa)d’s, (5.5)

The integrand in (5.5) is in fact the second component of the NS field N3 in
V(2,M), which we will denote by ¢13(2, M), and the coefficients a and b are
such that

P13 X P13 =1+ Clagy(asysypis + -
Therefore (5.5) leads to the RG flow”
VIM@V(M+1)—- V(M -2)Q V(M ~1). (5.6)

Maybe the most interesting aspect of the two flows (5.4) and (5.6) is that the lat-

ter one preserves the supersymmetry in the projected part of the tensor product,

* Note that an RG-flow of a projected product of models implies such a flow for the product
of models itself. The reason is that an RG-flow to one loop is caused by the existence (and
precise value) of certain 3-point functions, and 3-point functions that exist in a projected
product certainly exist and have the same value also in the product itself.
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while the former one breaks the supersymmetry.

The general case can be studied inductively [49]. Let
¢13(L, M) = a(L, M)$11 p13(L — 1, M + 1) + b(L, M) ¢ss(L — 1, M +1).
In a similar way as above, the perturbation

§=S0+g [ $Me1a(D—1,M+1)+ g2 [ ¥6as( ~1,M +1)

gives the following scheme of RG-flows:
Vi, M)eV(L-1,M+1)

di1o1a(L—1,M+1) N p1a{ L, M)

V(M)@V(L—-1,M+2—I) VO,M -L)® V(L —1,M — L +1).

Now we want to prove the statement annonced above.Using our construction
one can obtain the fusion rules and the 4-point functions in the L-th series of
models.In doing this one has to follow the projection described above - only
the products of the type ¢,,1Pk, are permitted. This means that in computing
the four-point functions only the products of conformal blocks corresponding to
such products of flelds have to be taken into account. In this way the structure
constants needed for our purposes here can be obtained inductively as products
of the structure constants of the Virasoro models. In the case of the M(2,p)
models the structure constants obtained in this way exactly coincide with the

known ones [47,26].

We will perturb M(I,p) with the field ¢13(l,p) with the dimension A(l,p) =
1—¢(l,p), e(l,p) =2/(p+1) < 1. This field is the first descendant, with respect
to the additional currents of the theory, of the field &;3(I,p). We construct it in

terms of the fields from the lower levels:
¢’13(11P) = a(l,p)¢11(1,p)¢13(l —~1,p+ 1) + b(l7p)¢13(lap)¢’33(l - 1,p+ 1)7 (5'7)

where a{l,p) and b(l,p) are coefficients to be determined. We will also need
¢3s(l,p) = ¢33(1, p)pas{{ — 1,p +1). (5.8)

Before we proceed with the general argument, let us look at the concrete
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examples of | = 2 and I = 4. For the superconformal series M(2,p), the field
$13(2,p) has all the properties of the second component of the NS field N13(2, p).
Indeed, acting with the supercurrent G given by ((1.6)) on the first component

N13( ) = (,‘blg(l,p)qsgg( , P+ 1) we obtain

G2, 50) = 12 (2 S b1, pha(t,p+ 1

sy ,p)¢33(1,p+1))+c9() (5.9)

mw (2,9)(0) +-

Using ((5.9)) we reproduce the well-known result

N (2,p)NH(2,p) =1+ (p—4) G(p+ 1)NE{ (2,p) + -- (5.10)

2
p(p—2)

o= (22 (52 )

and 7(p) = T(p)/T(1 — p). The structure constants that appear in (5.9)and

where

(5.10)are square roots of the standard ones. The square root is due to the fact
that we are using the “asymmetric” second component G_, 12N13(2, p) instead of
the “symmetric” one @_1/2G_1/2N13(2,p) (see App. A for detailes). Similarly,
the other fields ¢13(l,p) in (5.7)are descendants with respect to the additional
currents of the theory. For example, in the spin 4/3 theory M(4, p) , [33], the field
¢13(4,p) is obtained by acting with the spin 4/3 current ¥ on the field D13(4, p)

P13(4,p) = ‘1’12/3(3)913(4:}")(9) + ‘pr/sDIa(‘i:P)(O)- (5.11)

Therefore, the structure constants C' appearing in our construction below (for
example in (14)) are square roots of the structure constants C corresponding to

the “symmetric” fields used to perturb the theory.

Using what we have learned about the superconformal series, we can rewrite

$13(4, p) in terms of the M(2,p) fields:
_|_
N11 (2,p)NH (2,p+2) + 1/3" N (2,p)Nas(2,p+2). (5.12)

¢13 7P

Since the M(2,p) structure constants are known [26,47], for the OPE of the field
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(5.10)with itself we obtain

$13(4,p)b13(4,p) = p_¢

Vip—2)p+2)

G(p+3)p1a(4,p) + -~ (5.13)

In closing with this example, note that there is one more slightly relevant
field in this theory; S15(4,p) with dimension Ai5(4,p) = 1 — 6/(p +4). It is
constructed as S15(4,p) = N1a(2,p)N35(2,p + 2) and has an OPE

Sis(4,)S15(4,2) = 222G @ers(hp) -+,

G'(p) = [’73 (H) 7 (p42r4) " (Pj“i) v (;—rz) ! (pi4)] ;5 14

With two slightly relevant fields, we can use a more general perturbation of the

CFT given by Hint = [ d2z(g1¢13 + 92515). Now we have two B-functions f; and

a system of equations for their zeros:

* ' 1
Pi(g1,92) = 191 ;(Cnlgfz + Ci2zg37) = 0, ((5.15)a)
* % 1
B2(91,92) = €295 — 5(202129';9;) =0, ((5.15)d)
2 6 1 1 V3 1
51=m, «‘-2“—“;)—_}-_-:1, 0111=$+@(§), 6’12226’21227—%@(5).

The obvious solution g5 = 0, g = 2+/3¢; coincides with the original case in

consideration and leads to the change in the central charge

192
A= ——— =r¢c,_4 — Cp.
P D p

Surprisingly, it turns out that this is the only nontrivial solution. Starting with

((5.15)b) we obtain g} = 2v/3¢1, which by ((5.15)a) gives g5 = 0.

Returning to the discussion for a general I, we demand that the following

OPEs be satisfied (supressing the obvious factors of z):

b13(l, p)(2)d13(1, p)(0) = 1 + Cagyasyasy (L 2) b3 (L, p)(0) + - -+, ((5.16)a)
$33(L, p)(2)@33(L, p)(0) = 1 + Claayanyusy (1 p)eas(l, p)(0)
+ Clsayss)(as)( Pyesa(l, p)(0) + -+ ({5.16)b)

By using (5.7)in ((5.16)a) we obtain the equations for the structure constants at

a level I in terms of the structure constants at the lower levels:
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a’(I,p)Cusyuayay( — Lp +1)
+ 6L, p)Cssyaayasn (I — L,p + 1) = a(l,p)Crsyasyasy (L p), (5.17)a
a*(1,p)Canyanya)(l — L,p + 1)
+b(1, ) Crasyasyaa)(1, P)Claayaayan) (! ~ Lp + 1) = Crasyasyasy (L p){(5-17)b
Similazly, using (5.8)in ((5.16)b) results in
0(33)(33)(13)(1 —Lp+1)= 0(1113)0(33)(33)(13)(I:P): (5.18)a
C(as)(33)(13)(1: P)Claay(as)(sn)(! — Lp + 1) = b(1, p)Casy(an)az) (L p), (5188
Casyasy(sa)(1, P)Casyanyas) (= 1,7 + 1) = Casyaz)asy (1 p)- (5.18)c

Finally, requiring that the two-point function of ¢13(l, p) be normalized to 1 gives

the final constraint
az(l,p) + bz(lap) =1, Vi, p. (5'19)

Prompted by the results for [ = 1,2 and 4, we claim that

| 2p—1-2)
Jip+1-2)(p~2)
QHmﬂmﬂhﬂZHQM@+JWQXP_QQ@+ZHU,SQMb

Glp+1-1 ,
Claaysayasy(l,p) = M%ﬁ, (5.20)c

ofl,p) = \J (l_}(_?f;;l“)"”, b(l,p) = 1{2?;’_ _1)2 (5.20)d

Note that (5.20)satisfies (5.18)and (5.19).

Glp+1—1), (5.20)a

Canasyas)l,p) =

The proof proceeds inductively: assume (5.20)for {—1, and then, using (5.17),
(6.18)and (5.19), derive (5.20)for I. From (5.17)and (5.19)follows a quadratic
equation for a®(l, p):

! (Lp)[(p+ 20— 3)*(p— 2) + (p — 3)2(1 — 1)(p + 1 — 2)]
+a'(Lp)[~2( - )(p+20-3)(p—~2)— (p—3)’ (L~ 1)(p + I — 2)]
+(I-1)%p-2)=0.

The discriminant is {(p — 3)(! — 1)(p + ! — 2)(p — 1)]? and one of the solutions is
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a*(l,p) = %‘iﬁl, in agreement with ((5.20)d). Using that result in ((5.17)b),
we verify ((5.20)a). Finally, ({(5.20)b) and {(5.20)c) follow from (5.18)and the
knowledge of a(l,p) and (, p).

For our present purposes of studying the RG-flow generated by ¢13({,p), the
crucial identity is ((5.20)a), from which we read off the structure constant at an

arbitrary level I:

C ! 2 4p—1-2)° ; .
(3)a3)3)(hp) = [Crazyasyas)(Lp)]l" = o+ =3 p_z){g(p+ - 1)I%

vadol
(5.21)

From (5.3)and (5.21), the fixed point is at g* = +/31/p, and the corresponding
Ac = ~121?/p3. Therefore, to the required accuracy,

Ac=c(l,p~1) - c(l,p),

thus proving the announced result.
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Appendix A

This appendix should clarify further the origin of the square roots of the
structure constants in 1D OPEs. As pointed out already in the discussion in
sec.1.3, they appear due to our representation of the currents like ¥ and G in
terms of the non-free fields like ¢4, #¥ (cf. (1.19)and (1.20)). We begin by
constructing explicitly the monodromy-invariant correlation functions of 1D fields
ike 9,(z) = qSﬁqbﬁH(z). In'particular, we will demonstrate that the structure
constants appearing in the limits of such 1D correlation functions are given by
the square roots of the usual 2D structure constants. The 1D correlation function
we will study first is

G = <f[ ¢ﬁ;¢£ﬂ+1(2i)> ,  1SpSM+2,
=1 :
where we will set p1 = p3, pp = ps for simplicity. Using the notation and

arguments explained in sec.2.1, we write

G =3 o, IM M) (A1)

1
We have to fix z; such that G is well-defined on the whole complex plane. The
intermediate fields that appear are
B ot pa—2i-01 P p it 1,1

with the dimension equal to
A%1+pg—2i+1 + Ag{i;z—ziﬁ,l = é(l"l + pg — 2i)%.
Since 3(p1 + p2 — 24)% — 2 —1)? - %(pg —1)? € Z each term in (A1) by itself

is already invariant under z — 2¢*™. To study the monodromy transformation
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(z—1) — (& — 1)e*™, we use the a-matrices, introduced and discussed in chap.

5. After the a-transformation, we have

G = Z 20l (M) (M + 1) (1 - )11 - 2).

But, due to (2.5) ¥; z;ia (p)(M)a;(kpl)(M + 1) « & if z; is proportional to
Xi(lp)(M) = E(Pl)(M + 1) [27. We conclude that G = EIXMI{EII#"'I 15 a
monodromy-invariant 1D correlation function. In a similar way one can show

that
£ M M+l M-A-L-1
— + - .
B <]-_-[ P1py Ppups " Po i1 (21)>
1=1
is a monodromy-invariant 1D correlation function.

Now it is easy to determine the structure constants. In the i-th channel we

have

M M+1
\/ XMyMyM+l _ v M Clip)ap)tptpa=2i+1) | Clpl)pa 1o +pa—2it1,1)
t 1z <711 1 th,f X{M_}l ?
1 1

= . /oM . oML )
(Ip1)(1p2){(1pr+p2—2041) (21 D){p2 1) p1$pa —2441,1)?
(A2)

where Vs are defined by
Ig-f( ) — NM 2Z*(1+ O(z)) as z— 0.

Note that the square roots in (A2) are due to the fact that the constants appearing
in the limits of the correlation functions are squares of the structure constants
appearing in the OPEs (i.e. X N? = C4pp for the correlation function {ABAB)),
and are therefore standard, both in 1D and 2D correlation functions. What is
specific to the 1D correlation functions is that under those square roots omne

obtains C as opposed to C? in the 2D case.

The next on our list are the “mixed” correlation functions of the currents
and fields like
H = (¢80 (21 )bmn(2, M)(22, Z2)d0 62 (23 )bmn(2, M)(24, 21))

= (B2 M (21 )hun(2, M) (22) 6 61 (25 e (2, M) (28 ) 7

(2o — 24 )28°
Similarly to the preceeding case, we have

H = Z IM+1 )
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This time, the intermediary fields are

qu qu—i-l
mpt 3 (mebn)=2i417 pp b (metn)-2it+1n

with the dimensions equal to

i
M M+1 _ . 2
A= Bt (mam)—2int T AR s mimy2ig1n = Smn(2 M) + 5(p — 204+ 1)%

The leading z-behaviour of the terms in H is given by z?, where
1 ) 1
b= E(p—2z+1)2—§(p—1)2 €L

2™ The discussion

Again, each of the terms separately is invariant under z — ze
of the (1 — z) — (1 — z)e*™* transformation mirrors the one for the pure current-
current correlator, and we again conclude that the structure constants appearing

in the 1D OPEs are the square roots of the usual ones.

One could push a present discussion a step further, and discuss a (formal)
definition of 1D OPEs even for some of the fields that have only 2D correlation
functions. The benefit from such a definition would be apparent in a calculation
where 1D OPEs would be significantly simpler. Given a well-defined one-to-one
relation between 2D OPEs and (formal) 1D ones, one could use the 1D ones and
go back to the 2D omnes only at the end of the calculation.

The definition of the “square root” of a 2D OPE that we propose is the
following: The square root of a 2D OPE is a 1D OPE such that by multiplying
such a 1D OPE in z with another such 1D OPE in Z one recovers the original
2D OPE. While multiplying the 1D OPEs one multiplies all z-terms and Z-terms
whose dimensions agree up to an integer. Note that for a 2D OPE to have a

square root, it is necessary that such terms appear as “complete squares.” For

example, a 2D OPE

#a(1,1) x 4(2,3) = Cupe $(2,2) 1

SPAAETE) + PR Cver. vy [Cabd¢d(2:2)

|21

4 Casee(2,3) + /Cora G ($a(2)8(3) + qse(zm(é))] ,
JAVS 3& Ad = Ae:

has as the square root the 1D OPE
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[+ 2 e
$a(1) x ¢p(2) = 4/ Cue Aq:-ﬁb) a; T C A ’}‘Ab""Ad + 4/ Cate A¢+z(n) Ar
2T

Such formal 1D OPEs were used in Chapter 5 (see also [49], eq. (14)}. Since
the lack of space prevented us from discussing that point at any lenght there, we

are going to give here some of the details of the arguments justifying their use.

If for simplicity we take L = 2, the eq. {14a) of [49] is

(agtio1a ™" + boligfi*) (=) (ool 10+ + bo11055H) (0) =
=1+ VO (apl{gls ™ +bolis3 ) (0) + -,

where a® 4+ 5% = 1 and the factors of z are surpressed. This statement makes

sense if one can prove that the 2D OPE is
#13(2,%) ¥ ¢13(0,0) = 1+ C3(0,0) + -+, (43)

where ¢{i(z,2) = (aqslquMH + bﬁb%ﬁf’:}gﬂ)(z) (a¢11¢M+1 + b ‘?5M+1)( )-

The eq. (A3) can be proved, and in the following we give some of the details
of the proof. One of the non-standard OPEs encountered while proving (A3) is

pl gt (1 )¢13¢M“( 1) x ¢i1 615 T (2)é1 413 T (2),

with one of the fields left-right asymmetric, even though scalar. This OPE can

be obtained as a limit of the correlation function

G = (MM (1)M M (1) M +1(2,3)
x iieli T (3)8l5 81 (B)ed 611 T (4,9)).

Using our expertise from sec.2.1, we write

G= 3 wlMH ().

i=1,2,3

One can check that each of the terms is invariant under z — ze?™*. Performing

an a-transformation, we get

G = Zm,aMH M+1IM+1(1 z)fff‘rﬂ(l—z).
Similarly to the discussion in sec.2.1, since aM*t = 90 5 differs from a1l =
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2a..a33 at most by an integer (and similarly for b and ¢), aM+1 - aM+1, and we
conclude that G is monodromy invariant if z; = X M+l — YM *1, The structure

constants are

\/XMHNMHNMH

\/0(13)(13)(1 T— 21)0?143_)}(133)(3,7-2:')'

This 2D OPE is consistent with the 1D square root OPEs
4!’11 ¢M+1(1) x ?5%‘?5%4-1(2 Z \/0(13)(13)(1 T— gt)qb ¢{b{7-t12i(2),

(Ad)

$11013 (1) x ¢ligeTH(2) = Z \/0(13)(33)(3 1—21y815 83,7 24(2).

(We keep writing the identity operator ¢{{ in (A4) to stress that it would not be
true with a different V (1, M) field in its place.)

In analogous fashion one can, starting from the correlation function

<H¢ B ()t M“(zx)):zjij‘fﬂrs““( TR,

=1

obtain the following 2D OPE

¢11¢M+1(1)¢%§¢M+1(1) x ¢ d1s T (2)p4 92 T(2) =

CM+1 CM+1
(13)(13)(1,7—24) (13)(13)(1 T—27) 7 (33)(33)(7—25,7—21)
J—

X ¢11¢f,{7+121(2)¢17 23@57 237 21(2):

whose “square roots” are the first eq. in (A4) and

4—"139'53”1(1) X 4513 ¢M+I( 2) =

- Z \/0(13)(13)(17 23) (33)(33)(7 24,7— 2;}‘3517 2J¢’7 217 2(2)-

Finally, the correlation function

(116151 (1)p1 pH (D) B 2+ (2) 4 M 41+ (2)
x $i16ls T (3)g1dns T (B)bls s T (4Bl 61 (D))
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gives the 2D OPE
$r101s T (Velids (1) x plids T (2)et b5 (2) =

= Z C 5y (s,m—20) P13 93 1 2:(2, 2),

whose “square roots” are obviously

45 M+1( 1) X ¢13 ¢M+1(2) =
= ¢lidys (1) x $i{ el (2) = Z\/ Ol aya,1—20) P18 1 2:(2).

With these ingredients in hand, it is now straightforward to complete the proof
that the 1D OPEs (with the structure constants equal to the square roots of the

standard, 2D, ones), used in sec.2.1, are well-defined.

Appendix B

In this appendix we want to prove eq. (1.23) explicitly. The hypergeometric

function F' is defined as
a(a +1)b(b +1) 2%
c{c+1) 2! ’

F(abcz)—-l—l—— +

o0 (B1)
aln(b), z

where (a)n, = a{a+1)---(a+n—1), (a)g = 1. One can check {1.23) for 2%, z and
z* directly using (B1). In the following we will show that the coefficient next to
z™, n > 3 on the LHS of (1.23) is zero.

It is straightforward to prove the following identities for 4 € Z:
(A+1-a)y=(~1)(a~ A - g,

(@)n—g = Pasla — A)n—g+4, (B2)
(“4‘ +1- G‘)Q(a‘)n—q = (_1)q(a —A- Q)n+A Pod,

where

Pad = (aw1)(a_é)...(a_A), if 4>0,
ala+1)---(a—A-1), HA<O,

Using (B2) one can write for the coefficient next to the z" in
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7 M 1 2 N M+6 1 2 _z)
M+3 M+3 M+3" M+3 M+3 M43
= Fla,b;c;2)F(—2 — a,—b; —¢; 2)

the following expression

= 1 (C")n—q(b)n—q (-2 - “)q(_b)q
260 @O Con
_a.(a+1(a,+2 Z( N a+3— q)n— 3(b+1-q)n.1
- = (n—g)lg{c+1— a1

Similarly, the coefficient next to the z™ in

FM+2 1 2M+44 \ (M+d 1 2M+8 ) _
M+3 M+3 M+3' M+3 M+3 M+3'")~

= Flu,v;w; 2) (2 —u, —v;4 — w; z)
v(w—1)(w - 2w —-3) & (1) (v — 1 — dmr1(v +1 — @)m—1
q‘Z‘; (m—a)lg{w —3—qJmss

Since
ala+1)(e+2)b  3M(M+6) v(w-—1)(w—2)(w—23)
c —4(M 1) (M +5) r—1

what remains to be proved is that

(1) (a+3—g)n-3(b+1— gl
g;) (n—g)lgic+1— g

Z( 1)qu—1—f1)n 1(v+1— g

n-- _Q)! ( _3_Q)n+1

(B3)

=0 forn > 3.

We will prove (B3) by showing that the LHS is equal to the sum of the residues
of a vanishing integral [54]. The integral is

c

n-i-l(c +1- S)n——l

where C is the circle of radius R around the origin. Clearly, I, is defined for
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n > 3 and, as B — oo, I, — 0. It has simple poles at s = 0,1,...,n and at
s=1+4+¢l+4+c+1,...,14+ ¢+ n—2. Therelore, the sum of residues is given by

(1) a+3 —gln-3(b+1— gl

g;z% (n— q)!q!(c +1=gq)a
()b ~c=gn1(a+2—c—g)n-
2 (ﬂ—2 g1 - c— gt

2 =0

Since a—e¢+2=v+4+1,b—c=u—1and —1—¢ = w— 3, we have proved (B3)and
thus (1.23).

Appendix C

Given the projected tensor product model

V)eV(e,M)=PVM)e V(M +1))

and the OPE algebra of the total stress-energy tensor T' = T7 + T5Y5Y and the

spin-3 current

. {3 1
W) =iyf2 (0060 - Soac(a), (1)
where 7 is the Ising model free fermion and G the supercurrent of V{2, M):
3 2
P(1)¢(2) = — + 2z12T7(2) + szBT‘T(Z) + 22 (-f-O-BzTI(z) + ;AI(2)) 4,
1 31
G(1)G(2) = 4+ =—T°(2) + 3 a75(2)+

279 €z 2c

9 gs 51
= L W
+z12(20c5 T (2)+2c(5c—|—22) s )) T

. 3 .
A; = (TH?: ——8*T* e
( ) 10 a ? i I‘J S!
c=c(2,M).
(C2)
For ¢ = 7/10 = ¢(2,1), T' and W close the Zamolodchikov W-algebra [29], and
the model V(1) ® V(2,1) with ¢ = 6/5 coincides with the second model of the
W-algebra minimal series of models. To see this, use the OPEs (C2) and derive
the corresponding OPEs of W:
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10c -7

14 2¢
6 10¢ =7

3(10c = 7) .o,
20(1 + 2¢)

W)W (2) = l{l + 2 2o+ 219t2(2)+

2e+1

*T(2) + 2(2)+

{20(1 + 2¢)
384
(17 30)(10c + 45) " (2)

+

+(10c - v)u(z)] n O(zfz)},

where

1 3
S L, = T?, - 3T
ty =T 2CT , A=T T

and 14 is a certain spin-4 field primary w.r.t. 7. For ¢ = 7/10 the fields ¢ and 4
disappear from the OPE (C3) and the OPE algebra of W and T coincides with
the Zamolodchikov W-algebra.
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