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Chaper 1
INTRODUCTION

In this work we report some of our results that have been achieved during the
second year of PhD. study in Trieste. Formally, the work is divided in two main

parts (chapters 2 and 3), followed by conclusions, given in chapter 4.

Chapter 2 deals mainly with what has become known as the ” Car-Parrinello
method”, i.e. the ab-initio total energy minimization and the ab-initio molecular
dynamics formulated in the density functional formalism in the local density ap-
proximation. However, unlike the original Car-Parrinello’s formulation, we are here
more interested in minimization, rather than dynamics, since there is a broad class
of physically interesting problems that can be formulated entirely as minimization
problems. One of those problems is the standard electronic structure problem for
fixed ionic positions. There is now a considerable current interest in solving this
problem by using methods that don’t require any matrix diagonalization. Our main
contribution in this part is in developing a new and efficient minimization method
for solving the standard electronic structure problem based on the conjugate gra-
dient strategy. Another important point tackled in this part concerns the ab-initio
calculation of forces on ions. We demonstrate and give also some explanation that
there is basically only one efficient way of calculating first-principle forces on ions

for use in dynamical simulations.

In chapter 3 we attempt at a topological analysis of models of amorphous and
liquid silicon generated by methods described in chapter 2. We stress the importance
of "oddness” in disordered media. In particular, we carried out a careful ring- and
dihedral angle-statistics. These results give the topological characteristics of our
models. For the liquid silicon we try to separate the packing and vibration effects
thus making a first step towards obtaining the inherent structure of liquid silicon.

Since this important aspect of random systems cannot, in principle, be directly



studied by experimental methods, we hope that our first-principle approach can

offer a new insight in this old, but not yet fully understood field.



Chaper 2
AB INITIO TOTAL ENERGY MINIMIZATION

This part is a relatively self-contained description of several methods that can
be used to calculate the ab-initio total energy minimization in condensed matter
systems. A number of our modifications and comments are given to make the

methods more powerful.

Within the Hohenberg-Kohn-Sham density functional (DF) formalism [1],[2]
the total energy of a solid for a given nuclear configuration is a unique functional of
the electronic density n(r). If we express n(r) in terms of occupied single-particle

orbitals, i.e.
oce

() = 3 () (21

then the total energy is given as the minimum with respect to {1:} of the functional
oce . 1
Bl @)=Y [ a3V U RY (220

where {R;} are the nuclear coordinates and the Kohn-Sham (KS) potential energy
U is given by

— ext 1 n(r)n( ) rdr wc ZrZy
Uw/{]v (r)n(r)dr+2/ A drds + ;lRI“‘RJI (2.25)

In (2.2b) V*** is the external potential felt by the electrons, £*°[n] is the exchange-

correlation energy, and Z; is the nuclear charge.

The global minimum of the functional (2.2) with respect to both nuclear and
electronic degrees of freedom gives the stable ground-state configuration of a con-
densed matter system. From the nature of this problem it is clear that one has to
optimize a function depending on a very large number of parameters. There are
two cases to be distinguished; namely the local minimum and the global minimum

optimization.



Kirkpatrik,Gelatt,and Vecchi [3] showed recently how the concept of simulated
annealing can be applied in the latter case. They found a deep connection between
statistical mechanics and combinatorial optimization, i.e. finding the minimum of
a given function -called objective or cost function f [{:}]- which depends on many
parameters {z;}. At the heart of the method is an analogy with thermodynamics,
specifically the way in which liquids freeze and crystallize (thus finding the minimum

energy state) or metals cool and anneal.

Metropolis Monte-Carlo (MC) [4] algorithm, whose acceptance probability for

a given configuration is defined as the Boltzmann probability distribution

p = exp ( ;BAf ) (2.3)

provides a simple algorithm for simulating the equilibrium configurations of atoms
in contact with a heat bath at temperature T. Using the cost function in place of the
energy the Metropolis procedure generates a population of configurations in a given
optimization problem at some effective temperature. This temperature serves as a
control parameter. In the simulated annealing process the system being optimized
is first "melted” at a high T, then the temperature is lowered slowly until for T— 0
the system ”freezes” in the minimum. If the cooling process is slow enough, the
minimum reached will be the global one. Otherwise, if f [{z:}] has several closely
spaced minima, one of these almost degenerate states will be reached. The gross
rearrangements in the objective function occur at high T, while small changes take
place at low T. This is so because at high T one samples much larger region of
the parameter space. The temperature keeps the algorithm from getting stuck in a

local minimum by permitting uphill moves.

It is possible to use the simulated annealing technique to minimize the DF
functional (2.2). Having the temperature of the system under control not only
enables the global minimization of (2.2), but by varying this temperature it is also
possible to let the system undergo various thermal treatments, such as annealing

and quenching. Since the nature of interactions involved in (2.2) is not short-ranged



and the KS orbitals {#:} are subject to holonomic orthogonality constraints

/mwmwmzw
Q

the molecular dynamics (MD), rather then MC method is better suited to minimize
the energy functional (2.2). Following Car and Parrinello’s formulation [5] one can

introduce a classical dynamical system defined by the Lagrangean:

L= / dr Y oM+ Y FMIRE~ B[}, (Re)] + Y A / dr il — &)
% ! K (2.4)
where {M;} are fictitious masses associated with the dynamics of the electronic
wavefunctions, {M;} are the physical ionic masses and A is an hermitian matrix of
Lagrangean multipliers imposing the orthogonality constraints on the KS orbitals

{#:}. In the dynamical system defined by (2.4) the KS functional plays the role of
the potential energy.

The Lagrange equations-of-motion

d { 6L 6L
EE (5¢:) = 5¢: (2.50,)
d [ oL oL
2 (LE)_ oL 5b
dt <8RI) oR; ’ . (25 )

generate the fictitious dynamics for {+:} and the real dynamics for {R;} through

the equations-of-motion:

. OF
Mo, (r, t) = *—W + Z At (r, t) (2'60’)
2\ k
Mifs = VB (260

The classical kinetic energy of the dynamical system is
1 . 1 .
K= Z M / dr|y;|* + EI: SMR? (2.7)

Its average is related to the temperature of the system. Reducing slowly this tem-
perature the equilibrium state of minimal E can be reached for T — 0. Thus one

obtains in the MD context the same objective of the simulated annealing, as in MC.



Eq. (2.6b) may also be used to generate ab-initio Born-Oppenheimer (BO)
dynamics of the ionic subsystem. The condition for the validity of the BO dynamics
is that the electronic wavefunctions are always in the ground-state pertinent to the
instantaneous ionic configuration. This constraint defines the many-body energy

surface ® [{ Rr}] to be sampled by (2.6b) via the condition

® [{R7}] = min B [{4:}, {R1)) (2.8

Eq. (2.8) can be approximately satisfied by the dynamics generated via eqs. (2.6)
if the electronic dynamics proceeds much faster compared to the ionic dynamics.
Then the evolution of (2.4) is adiabatic, with no energy transfer between ionic and
electronic subsystems. To set up such a regime requires the {M;} to be small com-
pared to {M;} and the {¢;} to be initially in the ground state. Small {M;} in turn
require a small time step in the numerical integration of the differential equations
(2.6), what means that the adiabatic dynamics may be costly. This raises the ques-
tion whether the dynamics described by (2.6) is the optimal one. An alternative
dynamics could be generated by decoupling the electronic and ionic motions and
using directly eq. (2.8) by performing a separate electronic minimization for any

time step. Both types of dynamics will be analyzed in detail in section 2.3 .

A different situation arises when one is interested only in mapping the system
onto a local minimum of a potential function in a downhill manner. This is the
case when one needs to speed up the convergence close to the desired minima or
for an efficient mapping of the system onto a nearby minimum ( like in calculation
of the inherent structure [49]) and in many other purely local minimization prob-
lems. Particularly relevant in this context is the problem of finding the electronic
ground-state for a fixed ionic configuration, as defined by (2.8). In fact, experience
has shown that for fixed ionic configuration the energy density functional, in the
approximations commonly used, has a single minimum [6],[7],[8],[9]. This makes
the use of minimization procedures tailored to handle the multiminimum problems,
such as simulated annealing, rather inconvenient. We have therefore explored the

possibility of applying more conventional minimization methods. The downhill min-




imization with respect to the electronic degrees of freedom is an efficient procedure,
provided we start from an initial electronic configuration having the right symmetry
and the initial and final states are not orthogonal. This point is in detail addressed

in section 2.1.

The most naive idea in this case is to replace the dynamical second-order

Newton’s egs. (2.6) by the corresponding first-order equations:

M,;‘(,Z',;(r,t) = 5¢f( + ZA,k‘lpk r t) (2.9(2)

MiR;=—-Vg E (2.9b)

Egs. (2.9) are equations of steepest descent (SD) type and define a mass weighted
SD trajectory on the E surface moving downhill to a nearby minimum. Egs. (2.9)
are equivalent to egs. (2.6) if the temperature T = 0 is kept in the MD equations
(no uphill moves are permitted). This can most easily be seen in discretized form.

Egs. (2.6) have the following general form:
Mz(t) = F(t) (2.10)

where M is the mass pertaining to the dynamical variable x, and F is the force
acting on x. Eq. (2.10) discretized according to the Verlet algorithm [10] reads

| : At?
z(t + At) = z(t) + Atz(t) + ——2—x(t) + -

= —z(t — At) + 2z(t) + %F(t) + O(At?) (2.11)

If the condition T = 0, and consequently also z = 0, is imposed, eq. (2.11) becomes

z(t + At) = z(t) + %t;F( ) (2.12)

which can be interpreted as a discretized form of the eq. of the type (2.9), once the
time step At is properly scaled.

We now briefly illustrate some minimization methods that will be used in the

following. Let us suppose that the function to be minimized is roughly approximated



as a quadratic form around some point P taken as the origin of the coordinate
system:

F(X) mc— (b, X) + =(X, AX) (2.13)

1
2
where

0% f

c=f(P) ; b=-Vflp ; Aij = 5ol

(2.14)

with a symmetric positive definite (SPD) N x N Hessian matrix A.

A broad class of minimization methods in multidimensions is based on se-
quences of one-dimensional line minimizations. They start from some point P and
some vector direction h in N-dimensional space, find the scalar A that minimizes
f(P + Ah) and replace P by P + Ah etc... Different methods differ only how, at
each stage, they chose the next direction h to try. Here we concentrate only on SD
"with adjustable steps” and conjugate gradient (CG) methods [11]. As far as we

know, the other methods don’t have any overwhelming advantages over CG.
The most natural choice for h is —Vf = F (the force) what leads in the ap-
proximation (2.13),(2.14) to:

Poy1=Po+ Aphn, n=0,1,2--- (2.15)

h, =b— AP,
where ., is chosen to minimize f(P,+1), i.e.

(hnshn)  (Fn, Fy)

M= T Ahy) (R AT

It is easily seen that (2.12) and (2.15) are equivalent apart from the factor multi-
plying the force in (2.12). Algorithm of type (2.15) will be referred to as SD "with
adjustable steps”.

The problem with SD is that the new gradient at the minimum point of any line
minimization is often nearly perpendicular to the direction just traversed. Therefore

SD will perform many small right-angled steps going downhill, what renders SD as

10



rather inefficient. SD is particularly inefficient when the minimum has a canyon-like

shape of the kind illustrated in fig.1.

Fig.1. A canyon-like minimum. The SD trajectory is far from the optimal one.

By chosing the direction vectors h wisely, one can reach the minimum in at
most N iterations in the absence of rounding errors. This is the case for the CQ

method. In the CG method one defines two sequences of vectors :
go = arbitrary hg = gg
In+1 = Gn — Ar7.44hre, y n = 0, 1,2"" (216)

hn+1 =Ggn+1+ "Ynhn

where A, v, are chosen to make (g,4+1,9,) =0 and (A, q, Ah,) =01ie

_ (gnagn> = (Gns hy)
" {(gny Ahy) (R Ahy)
= —SInt s Abn) _ (gnets gns)
" (hn, Ahy) (Gr> n)
Then Vm # n
(Grnsgm) =0  — orthogonality
(hpy, Ahp) =0 — conjugacy (2.17)

Thus (2.16), which is a kind of Gram-Schmidt bi-orthogonalization produces a se-

quence of g’s that are all mutually orthogonal and a sequence of h’s that are all

11




mutually conjugate. The calculation of A, required to construct the g’s can be
avoided using the following theorem: Let gn = —V f(P,) for some P, ,where f is of
the form (2.13). Then we proceed from P, along direction h,, to the local minimum
of f located at P,; and then set grnt+1 = —V f(Pnt1) . Then On+1 is the same as
that given by (2.16). Indeed, if f is of the form (2.13) we have g,, = b — AP, and

Ont+1 = b— A(Pn. + Anhn) = Ggn — )\nAhn

<gra.+1a hn) = (gn,hn> - An<hna Ahn)
At the minimum 4,,.Vf = ~hp.gnt+1 = 0 and

_ <gnahn)
™ (hyy Aby,)

and so g,+1 is identical to g, 41 from (2.16). Note that this proof explicitly uses the
fact that f is of the form (2.13) and that only the direction of h, not the orientation

is important in this proof.

Summing up, one finds the following CG algorithm

P,y =P, + A b, ; n=0,1,2---
_ ) 9n n=0
h,n. - {gn -+ ’Yn-—lhn—l n=1,2,3 --- (2.18)

9n =b— APy (=gn1 — Apdh,_y) n=0,1,2---(n=1,2,3--.)

We will specify this minimization technique to the case of the energy density
functional (2.2) in sections 2.1 and 2.2. In section 2.1 the ionic coordinates are kept
fixed, while in section 2.2 the more general problem of minimizing also with respect

to the ionic positions will be briefly discussed.

12



2.1 TOTAL ENERGY MINIMIZATION WITH RESPECT TO
ELECTRONIC DEGREES OF FREEDOM

In this section methods for solving the standard electronic structure prob-
lem for a fixed ionic configuration based on simulated annealing MD and iterative
downhill minimization will be introduced, discussed and compared with some non-
standard diagonalization techniques. This is an important point because there is
much current interest in methods that don’t involve straight matrix diagonalization.
Particular attention will be given to the extension of the CG method [12] to the

electronic minimization, since this method was found to be the most efficient. -

Here we suppose to deal with a periodic solid even though the periodicity may
be an artificial consequence of using the supercell method (the case of amorphous
solids, liquids, single defect, crystal surface calculations etc.). In this case Bloch
theorem holds and the wavefunctions can conveniently be expanded in a plane wave

basis set :

Yix(r) =D cixrcexp{i(k + G).r} (2.1.1)
G

where the G’s are the reciprocal lattice vectors, and k lies in the first Brillouin
zone (BZ). Although not strictly necessary, we find convenient to use the following
approximations. We suppose that the core electrons have been removed and the
strong ionic potential replaced by a weaker pseudopotential acting on the pseudo-
wavefunctions rather than the true valence functions. The pseudopotential approx-
imation not only largely reduces the number of states to be dealt with, but also
the number of plane waves, since the pseudopotential is much weaker than the true
ionic potential. We also suppose that the exchange and correlation is treated at the

local density approximation (LDA) [1] level.

In the standard approach one solves the KS equations

—%\72 + V() £ VE (1) + Voo () | hiae(r) = Aiatbi (1) (2.1.20)

13



Hipi x(r) = Aotk (r)
where V" is the ionic potential, A; ) are the KS eigenvalues, V¥ is the Hartree
potential, and V¢ is the exchange-correlation potential. The latter two quantities
‘depend on the electronic density and have to be determined self-consistently. In the
plane wave basis one solves for the expansion coefficients ¢; x4+ from eq. (2.1.1),
which are solutions to

1 2
H
§|k+G| Cixt+a + g Ve_grikrar + E Velatiktar
G’ G’

+ Z VI::?{-nG,k+G'Ci,k+ G = A kCik+a (2.1.2b)
G_I

The electronic density n(r) is given as

() =) /B Kl o) (2.1.3)

In semiconductors the sum over the BZ can be carried out very accurately by
summing only over few special k points [13]. Egs. (2.1.2b), (2.1.3) have to be

solved self-consistently.

Suppose now that N electronic states are expanded in M plane waves. The
standard diagonalization of the matrix H requires M operations for each k point
and has to be done I times to iterate to self-consistency. Thus the standard diago-

nalization techniques require on the order of JM3 operations.

If all the potentials in (2.1.2a) were correct the density (2.1.3) would be the
correct density that minimizes the true KS functional and the s would be the lower
bounds for the variational expectation values of H for any trial wavefunction ¢ . Let
A1 be the lowest energy eigenstate and %1 be a corresponding trial wavefunction.

Then
(1, Hep1) > Ay (2.1.4)

If 9; is expanded in some orthonormal basis set {®,}, (2.1.4) gives the following

condition :

> ehen(@m, HE,) > Ay (2.1.5)

7,72

14



subject to the normalization constraint

D lenlr=1 (2.1.6)

Thus by varying ¢, in (2.1.5), (2.1.6) and minimizing the left-hand-side of (2.1.5)
gives an upper bound to the lowest-energy value of H. The same procedure can be
repeated also for the higher eigenstates if one imposes the orthogonality to the lower
energy eigenfunctions. These eigenstates would be identical to those obtained by
standard diagonalization procedure and the electronic density calculated using these
eigenstates would minimize the KS functional E, and would give the corresponding
point on the BO surface defined in (2.8). There are several methods ( besides
standard diagonalization ) to find the combination of expansion coefficients that
minimizes the KS energy functional. Car and Parrinello’s original approach [5] was
formulated entirely in the language of MD and simulated annealing. The dynamical

egs. of motion for the KS orbital (2.6a) are :

Mith; w(r,t) = —Hepi i (r,1) + Z Aigctps(r,t) (2.1.7)

J

Equivalent formulation for the expansion coefficients in the plane wave basis set

gives :

1
. 2 H
M;é; xvra = "fz'lk + Gl%¢ xra — E Va_artixrar — § V&S aiCixrar
el G’

=2 VilextaCixrae + ) Ajxcivya (2.1.8q)
+C L+
Y P

Discretized according to the Verlet algorithm [10] this equation reads
ci,k-{—-G(t + At) = *Ci,k_*.g(t — At) + 26i1k+(;(t) + Atz.c',;,k_*_(;(t) + O(At4) (2.1.8b)

Verlet algorithm is a low order integration formula, that however has minimal stor-

age requirements on the coefficients c.

Since the starting wavefunctions are not the self-consistent KS orbitals, the

KS energy functional is not minimized and the system has some available potential

15




energy. On integration, the coefficients begin to move and a part of the potential en-
ergy will be converted to kinetic energy. Reducing the temperature will remove some
fictitious kinetic energy from the system. In an attempt to re-establish equipartition,
potential energy will be converted to kinetic energy until all the excess potential
energy is removed at T — 0. At equilibrium {'sz',k-{-c;} = 0 and the electronic states

become within a unitary transformation the self-consistent solutions to the KS egs.

Since the potential is updated at each step, the electronic states at the end
of the minimization process will automatically be eigenstates of the self-consistent
Hamiltonian H. The iterative improvement combined with automatical obtaining
of self-consistency is an important feature not present in standard diagonalization

techniques.

This procedure requires for each k point on the order of INM In M and IN2M
operations [5]. Since usually N < M, each step is significantly less computation-
ally demanding compared to traditional diagonalization techniques. However I , the
number of time steps necessary to converge the calculation in the MD method is
larger than the number of iterations necessary for self-consistency in matrix diag-
onalization methods. So the MD method in this form usually doesn’t provide a

significant improvement over the matrix diagonalization.

The number of iterations I is the key to make this class of methods efficient.
Since it appears that there is only a single minimum and no barriers to climb up
[6],[7],[8],[9], downhill minimization methods should do in this context a better job,

reducing I significantly.

If we specialize the SD eq. to the problem of electronic minimization we find

eq. (2.9a)
Mﬂ/)i,k(r, t) = ~H¢,;,k(r, t) + Z Aia"k'lﬁ]"k(r, t) (2.1.9&)
;
or in discretized form in the space of the plane wave coefficients
At?
c;,k+(;(t + At) = Ci,k+G(t) + TCi'k+G(t) (2.1.9b)

The number of operations required is as before M N In M and IN2M, however I

16



is now greatly reduced.

There was an attempt to reduce I by using a modified integration scheme for
egs. (2.1.7),(2.1.8). This method will be referred to as Payne, Joannopoulos,Allan,
Tetter, Vanderbilt (PJATV) algorithm [14]. On replacing A;;) by its diagonal part

As,x and separation the diagonal terms, the equation (2.1.8a) becomes

. 1
M;é; xya = — -z-lk + G +Vgi—g — )\i‘k} Cik+G — Z Vik+a,k+ca/¢i krar
eTYe]
(2.1.10)

If we identify :
1
w2 = -2—[k + Glz -+ VGI=G — )\i’kil M;-l

-1
R: Z Vk+G,k+G’Ci,k+G' Mz-
G'#£G

eq. (2.1.10) can be rewritten as
.C.i,k+G = ——wzci,k_;.c; - R (2.1.11)

Eq. (2.1.11) is basically an oscillator equation. An analytic integration of this

equation gives

cikra(t + At) = —cira(t — At) + 2cos(wAt)e; e (t) — 2[1 — cos(wAt)] Rw™2
(2.1.12)

A similar procedure can be followed also for the SD eq. [6],]7]- In such a case

the integration algorithm reads

C.;’k_‘_(;(t + At) = eXp(mngt)C,;,k_’_G(t) — Rw™? (2.1.13)

The usefulness of these two approaches can be explained as follows. If one uses
the Verlet algorithm to integrate the equations, the largest time step At is restricted
by the plane waves that have the highest kinetic energy ( because w increases with
G ) and are the least important contributions to the wavefunctions. This limitation

is partially alleviated by performing an analytic integration. In these approaches,

17



instead, the value of At is limited by the largest time step that can be taken before
updating R in (2.1.12),(2.1.13). This limitation will not be severe if the Hamiltonian
matrix is diagonally dominated and R is a relatively small perturbation. From our
numerical results it will be clear that this is not always the case and that the presence
of structural disorder plays an important role in performance of these methods. So

the PJATV doesn’t appear as an integration scheme which is generally convenient.

Rather than elaborating on a better integration scheme of SD type of equations
it seems better to adopt an altogether different minimization scheme. As already
anticipated, the CG might be a good choice [12]. However, the standard CQ method
cannot be used as it stands since our minimization problem is constrained by the
orthogonality requirement. We will show below how this constraint can be incorpo-
rated in a practical way into the CG scheme. There are two important ingredients
of CG as summarized in (2.18); namely the calculation of constrained forces and

the line minimization in the direction of h.

As is evident from (2.1.7) the forces acting on the KS orbitals have two compo-
nents: forces arising from action of the Hamiltonian and forces of constraint. These
forces of constraints must be taken into account when the line minimizations are
done. In order to avoid multiple reorthogonalizations let us now reformulate eq.
(2.1.7) in terms of linearly independent but not orthonormal orbitals {;}. The
orthonormal orbitals {1;} can be related to the {e;} via

[Xi

b= Sy (2.1.14)
F

where
S.,;j == <<,0j,(,0,;) (2,1.15)

is the overlap matrix.

All the principal quantities can be formulated in terms of the non-orthonormal

orbitals {¢;}, e.g. the particle density n(r) is given by :

oce oce ace

n(®) = Do) = Y s ter8 o) = 3 et ()S5 e, (r) (2.1.16)
[ ig

igl
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or the KS functional

ace oce

E = (¢u|H|¢r) Z/drs oi(r j%soj(r) = 85 Yei, Hp,) (2.1.17)
{ i

lig

Instead of minimizing the KS functional with respect to {¥:}, as in (2.1.7) we can

minimize it relative to {y;}

oce

M;(ﬁ,(r,t) - = I't Z §Og_ r, t H(PJ( )>
oce oce 68 --1
— 1355 Hey(x,1) +Z For D) (pi(r,t), Hp;(r,¢))| (2.1.18)
l
J

681t
In order to construct WE}LET we can take the derivative of the relation
I 1

Z Sk Sk_jl = by
k

thus finding

6Smk . 1 65
_omk - e ——2 | =0
2 |Fere s S ey
and
65 65
i s.-l—-_i"_’“_ = (r,t)S 2.1.19
607 (r,t) gﬂ; im S (r, t Z i O ( )

Inserting (2.1.19) into (2.1.18) gives

Mpi(r,t) = — Z S[;1H<p3~(r,t) - Z((p,;(r,t),Hgo_,-(r,t»Si:;S,;l(pm(r, £)
7

ijm
(2.1.20)
Eq. (2.1.20) is the equivalent of eq. (2.1.7) expressed in terms of non-orthonormal

orbitals {¢;}. From (2.1.20) it is evident that the constrained force acting on the |
th KS orbital is

Fy(r,t) = — ZS”lH(p,(r £+ > (0i(r,t), Hoi(r,0)) 5718 o (r,8) (2.1.21)

igm
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For initially orthonormal orbitals (2.1.21) reduces to
Fi=—Hoi+ Y (O, Hol)om (2.1.22)

It is advantageous to reorthogonalize the wavefunctions after each CG step. This
is a unitary transformation that doesn’t influence the results but enables to use

the simple formula (2.1.22) and guarantees that the overlap matrix is always well

defined.

The CG minimization procedure applied to the minimization of the KS energy

functional relative to the wavefunctions {©:} can be summarized as follows

(P,En-*-l) — (pgn) + )\nh,_('n) 3 n=0,1,2---
() ~
m =0 " 2.1.23
2 { g'i(n) + ’Yn,-—lh‘(n—-l) n:1’2’3' .. ( )
9§n) =F"™ = —Hsogn) + Z<¢’(‘7’:)9H(p§n)>¢£:) . n=0,1,2---

_ Zﬁ—J(gz(n)’gi(n))

21::1(91(”—1)’%(”_1)) !

A, must be chosen so as to minimize the KS energy functional along the direction

h:

n=1,2,3.-

M 3

E(a) =) (" (x), Bt )y st (w4 (2.1.24a)
i3

Since we deal with a self-consistent problem the Hamiltonian H should be up-
dated along the direction h. To keep things simple, we fix H in the line minimiza-
tion and update it only at the minimum of each direction h. This approximation
requires computation of the following matrices : (o, Hop), (0, Hh) + cc,(h, Hh),
(@, h) + cc,(h,h), and becomes progressively better when approaching the desired

minimum.

Again, as before eqs. (2.1.20)-(2.1.23) can be explicitly written in the plane

wave basis set in a manner parallel to egs. (2.1.8),(2.1.9).
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In the above formulation we have labeled the orbitals by a single index. How-
ever, in a solid the states are labeled by the band index and the k quantum number.
In this case the k label must be added to all the indices in (2.1.23) and (2.1.24)

reads as

({}‘n k} é dkz got(’;‘i'l) 1‘) Hp(n+1) (I‘)) 1 (n+1)

~ 2 2 e, He s Y (212a)

keBZ ij

The problem of line minimization can thus be decomposed in a number of line
minimizations, one for each k point used in the BZ sampling. The vectors ©,h,g
become supervectors of the form :
{Pix,} {hier {9: 3, }
¢ = : h = : g= : (2.1.25)
{ixwrt {Pixnr} {9ixnr}

respectively ( NK being the number of k points used in BZ sampling).

Let us estimate the computational burden of CG for electrons. The main in-
crease compared to SD comes from the necessity to compute not only the action of
the Hamiltonian on the wavefunction o but also on the direction vectors h. This
operations scale as IN2M. To perform the Fourier transforms requires INM In M
operations. To compute each of the above matrices requires TN2M operations.
NM operations are necessary to compute ~, and N3 operations to invert the over-
lap matrix S. Since N < M the number of operations in the CG scales as IN2M
with a prefactor slightly more than doubled compared to SD. However the num-
ber of iterations necessary to converge the calculation is reduced by one order of

magnitude, as will be evident from the numerical tests.

Let us now briefly comment on SD ”with adjustable steps”. Applying (2.15)

to the wavefunctions gives :
(pin-i-l) — @fn) + )\nFi(n)

. . W o 2.1.26
F™ = —Hpl™ + 3 (old), Hp{™)pl) (2:1:20)
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with A, minimizing the KS functional in the direction of forces {F;}. In this case,

however, the overlap matrix S reduces to
Sii(A) = (@5 + AF;, 0 + AF;) = (g, 0:) + X2 (F;, FY) (2.1.27)
since the orbitals are orthogonal to the forces. Indeed,

(on(®), Fi(r)) = =) S en, Hog) + Y {01, Hp;) 85157 S
-

ijm

== S Mem He)) + Y 57 Hpn, Hoy) = 0
j g
Since this method has obvious drawbacks compared to CG and requires basically
the same number of operations as CG we have done only a very limited number of
tests with this method. In particular we tested the quadratic approximation to the
inverse of the overlap matrix (2.1.27). Supposing orthonormality at the beginning
of each step gives

St ) 5 a2(p(®) Ry 4 o(pt
J 7\ g z n

tJ

Inserting this expression into the KS energy functional and mihimizing it relative

to A, gives

An = — Sl Hol™)

Zia’ [<F£(n) ’ HFagn)ﬁij - (Fi(n) ’ HF}n)HF,:(n) 5 F}n))]

This approximation turned out to be numerically unstable. This is probably due
to the fact that A,, may vary considerably and need not be a small quantity, as we

empirically found.

We now discuss some more conventional diagonalization methods. The con-
ventional diagonalization method has a slight advantage in providing automatically
also the unoccupied KS eigenstates and eigenvalues. Since only occupied states
appear in the K8 energy functional, the minimization techniques provide us with

occupied states only. It is often desirable to calculate the unoccupied states as well.
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However, the minimization techniques provide us also with the self-consistent po-
tential. Thus the unoccupied KS eigenstates and eigenvalues can be subsequently

obtained, if required.

Also within the conventional self-consistent approach there are methods that
avoid explicit diagonalization by exploiting the fact that typically only the lowest
few roots are needed. One of those methods is the Davidson iterative method (DI)
[15], which is widely used in particular by theoretical chemists. DI uses a first order

correction for the N desired states {1, } as follows

N
wgl) — Zcin(¢£0) + A¢50)) — t[)r(?’O) + A¢1(1,0)

=1
N —-—————(I—f B ) 4o (2.1.28)
En —'H

The corrections {Azﬁfo)} are then included as basis vectors. {1/),(7,1) } are the lowest N
roots resulting from diagonalization of a 2N X 2N Hamiltonian matrix in the basis
{«p}o) 1, {A%go)}. This iteration is repeated using progressively larger and larger
matrices until the convergence is reached for a given H. Then the density (2.1.3) is
updated and a new iteration cycle started until reaching the self-consistency. The

number of operations is not directly comparable to that of preceding methods but

scales as IN2M.

In order to illustrate and compare how the methods introduced above work
in practice, we present results for the ground-state electronic structure calcula-
tions of Si as follows *. A simple cubic supercell has been considered with eight
atoms subject to periodic boundary conditions. The value a = 10.26a.u., the ex-
perimentally observed lattice constant, was taken as the unit cell dimension. A
first-principle non-local norm-conserving pseudopotential [16] was used to represent
the electron-ion interaction. Exchange-correlation effects were described within the

LDA approximation in parametrized form [17]. An energy cut-off of 7.0 Ry was

* The collaboration with S. Baroni on comparative DI calculations is gratefully

acknowledged.
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used, corresponding to 341 plane waves at the I' point in the BZ. This model does
not give a realistic description of the charge density. It is used here only for il-
lustration purposes. Two types of structure have been tested. The first, in which
the atoms were fixed in perfect diamond lattice positions will be referred to as or-
dered. In the other, referred to as disordered, the atoms were randomly displaced
from their perfect lattice positions with maximum amplitude of 0.2 a.u. The initial
conditions for the electronic orbitals were fixed by filling the lowest states resulting
from diagonalization of a small 57 X 57 Hamiltonian matrix corresponding to an
energy cut-off of 2.0 Ry.

The results are summarized in table 1.
Structure\Method  gp  SD PJATV DI CG Degree of freedom

ordered 42 13 14 (4)Y 11 electrons
disordered 251 222% 34 (1)t 23 elecirons

Tab.1. Comparison of several tested methods in No. of steps. Only the I' point
was used in BZ sampling. Convergence in seven significant figures is assumed. For
SD Avtj = 0.16 and 0.63 for the ordered structure in SD PJATYV calculation. t- No.
of self-consistency cycles. I - This calculation was discontinued since the method

became unstable when the convergence in the last significant figure was attempted.

It is evident that the CG method can reduce the number of steps I by roughly
one order of magnitude with respect to SD (cf. the results for disordered structure).
Concerning the PJATYV algorithm, it is very efficient in the case of ordered structure.
On the contrary for the disordered structure the time step fixed had to be equal to
that of the SD method and the efficiency of PJATV algorithm becomes equivalent
to the SD. Moreover in this case the PJATV algorithm suffers from the deficiency of
being unstable when high precision is required . The instability appeared after the
iterative step 222. The CG method compares very well also to DI. The number of
steps is smaller. Although here the direct comparison of the CPU time is difficult,

the results indicate saving up to one half of CPU time compared to DL

To see the effect of a more careful BZ sampling on the CG minimization we

have carried out a calculation where the BZ integral in the electronic density (2.1.3)
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was approximated by summing over four special k points [13]. We considered the
disordered system as introduced above. The energy cut-offs were chosen as in the
previous calculation leading to 326 plane waves at the special k points and to 54
plane waves for the initial small matrix diagonalization. The results obtained using

SD, DI, and CG methods are summarized in table 2.

Structure\Method  gp DI CG Degree of freedom

disordered 292 107 (6)7 64 electrons

Tab.2. Comparison of SD, DI, and CG methods in No. of steps. Four special
k points were used in BZ sampling. Convergence in seven significant figures is

assumed. For SD —%}; = 0.16. T - No. of self-consistency cycles.

In the CG minimization with four special k points formula (2.1.24b) was used
and a separate line minimization for each k point was carried out. The results are

comparable to those obtained using the I' point only.

We carried out another crucial test of the CG minimization by calculating the
electronic structure of 2-d graphite. This system is known to be difficult to con-
verge [18]. The hexagonal structure of graphite has been described by considering
an orthorombic supercell with four atoms fixed in perfect lattice positions sub-
ject to periodic boundary conditions. The experimental unit cell dimensions with
a = 4.65a.u.,b = 8.05a.u. have been used. The potential used was similar to that
for Si [19]. We have carried out two calculations. One based on T' point only, the
other based on four special k points approximation to (2.1.3) [13]. An energy cut-off
of 18 Ry was used, corresponding to 581 plane waves at the I' point and roughly ~
240 plane waves for the four special k points. For both cases the initial conditions
were fixed in a way similar to that of Si (The energy cut-off for the initial small

matrix diagonalization was of 10 Ry).
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The results are shown in table 3.

Structure\Method SD CG Degree of freedom
2 —d Graphite(l k — point) 289 40 electrons
2 —d Graphite(4 k — points) 2764 104 electrons

Tab.3. Comparison of SD and CG methods in No. of steps. Convergence in seven

significant figures is assumed. For SD %}—? = 0.083.

The results confirm that the convergence of CG is very well also in this com-

putationally complicated system.
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2.2 TOTAL ENERGY (DOWNHILL) MINIMIZATION
WITH RESPECT TO IONIC POSITIONS

We want now to explore the more complicated problem of minimizing the KS
functional relative to the electronic and ionic degrees of freedom simultaneously. As
discussed in section 2, this can be done very effectively by the dynamical simulated
annealing strategy. However, one is often only interested in local minimization.
In such a case it can be more effective to use alternative strategies. As for the

electronic only case we discuss here the SD and CG methods.

The SD equation for ionic degrees of freedom reads

: OF 3
MiR; =Fr=—gp" = ~og; |

(U, HY) + Elrer] (2.2.1)

where ET7eP is the energy of interionic Coulomb repulsion. In (2.2.1) the forces
acting on ions have contributions from the electronic, as well as from the ionic
subsystems. As in the section 2, the forces on the right-hand-side of (2.2.1) will
have physical meaning only if the KS functional is close to its minimum value for
that ionic configuration. In principle, it is possible to minimize the KS functional
starting from arbitrary {¢,} and {R;}. However, in nontrivial cases we found very
difficult, if not impossible, to achieve convergence with a simultaneous electronic
and ionic SD or CG minimization which started from an arbitrary {¢;}. It is more
effective to minimize approximately the KS functional for a fixed initial {R}, and
then drive the system towards its local minimum by a combined electronic and ionic
SD or CG minimization. In such a case the ions will be moved in the directions of

forces that have to a good approximation their physical values.

We have tried to optimize the pure SD minimization by selecting appropriately

the integration step and the electronic mass. The ionic mass was kept fixed. This

is completely general since only the ratios -%—f; and %—; matter.
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The results are in fig.2

0.55 .
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Fig.2. Convergence of the total energy SD minimization for different choices

of parameters.

and indicate that the window of convergence within SD is extremely narrow
for the electronic parameters. The points on the left-hand side of the convergent
—‘%}; in the fig.2 did not converge because here the electronic optimization lagged
behind the ionic motion, resulting in incorrect forces on ions. The non-convergence
of the points on the right-hand side results from restrictions imposed by the largest
G vectors (cf. the comments on PJATV method). Although small, there is a finite
region of convergence. Within the narrow window of convergence no significant
gain was found with the change of %t—;. Generally, if one is only interested in
minimization, the errors in the BO forces are not particularly severe and can be
tolerated as long as they are smaller then the magnitudes of the forces. On the

other hand the smallest errors in the BO forces are disastrous for the dynamics of

the ionic subsystem as will be shown in the next section.

We have applied the CG algorithm (2.18) also to the ionic subsystem. The
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main steps can be summarized as follows :

RO =M a0 5 n=0,1,2--
h(n) e ( ) n=0
| ("’) +9perh®7Y n=1,23.
OH §EIren (2.2.2)
— : n=0,1,2--:
Ut R, "
ng (ﬂ-)
Z[ g}n 1)‘ }n-—l)

\,. must be chosen so as to minimize the following sum of energies along the direction

h

g™ = Fﬁr") =- [(‘I’

Tn—1 3 n:1,2,3--~

E(X,) = Efo™ + ET7e? (2.2.3)

This minimization procedure has been tested again for the disordered system. The

results are shown in table 4.

St7’uctu1"e\M‘“h"“Z SD CG Degree of freedom
disordered 50 12  initial electronic minimiz.
235 63 electrons + ions
285 75 - total

Tab.4. Comparison of SD and CG methods in No. of steps.

The two calculations have the same accuracy in the initial electronic mini-
mization, as well as in the final electronic + ionic minimization. The energy was
converged in six significant figures. Here the number of required iteration steps in
the CC method is less favourable than in the purely electronic minimization. This
may have two reasons. One may be that the use of a longer ionic displacement in
the CG method can lead to non-physical ionic forces. The other reason nr;ay be
inherent in the CG method itself, since it requires the Hessian matrix A to be SPD
in the vicinity of each iteration point. Because of complicated topography of the
energy surface this requirement is not valid generally, once the ions start to move.
The method is expected to be more efficient close to the minima. An additional

difficulty is the line minimization (2.2.3) which is a very time consuming procedure.
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We have also tried to combine the SD minimization for ions with the more
effective CG minimization for electrons, thus obtaining always the physically correct
forces. We found that the combined ionic SD - electronic CG minimization results
in a factor of 2 = 3 improvement compared to the case where the purely SD egs.
(2.9a,b) were used. This appears at present to be the most convenient approach

although all the possible alternatives have not yet been fully explored.
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2.3 DYNAMICAL SIMULATIONS OF THE IONIC SYSTEM

This section is devoted to the study of how the dynamical simulation of the ionic
system is affected by the errors in BO forces introduced by different approaches to
the electronic minimization. As already pointed out if the condition (2.8) is satisfied

the interionic forces coincide with the physical BO forces.

There are essentially two strategies for doing the dynamical simulation of the
ionic system using the BO forces on ions. One way, which will be referred to as
adiabatic, consists of solving the egs. (2.6a,b). Doing MD with the system defined
by the Lagrangean (2.4) will keep the total energy of this dynamical system

Bet = 302 M; [ drli? + 0 IMiRE 4 B (i}, (R (2.3.1)
z I

constant. In the instantaneous ground-state,when (2.8) is valid, the {zﬁ;} are zero

and effectAively the total energy of the ionic subsystem
1 .
ETot =% "“MRZ + & [{R 2.3.2
D GMRE + o () (23.2)

si kept constant. Only when (2.3.2) is a constant-of-motion, the ionic dynamics
will be correct. It means that the electronic configuration must have always enough
time to relax to the instantaneous ground-state of the simultaneously changing
ionic configuration. This poses a general question about whether the requirement
of adiabaticity of the evolution of (2.4) is a realistic one. To set up such a regime
requires {M;} to be small compared to {M;}. Small {M;}, in turn, require small
time step At in the integration of egs. (2.6). The accuracy of the BO forces can be
checked by monitoring the constantness of (2.3.2).

The other conceivable way of calculation the BO forces for the ionic dynam-
ics is based on complete decoupling of electronic and ionic dynamics by doing the
minimization indicated in (2.8) explicitly. Having developed an efficient minimiza-

tion technique to relax the electronic configuration gave us some hope to make this
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approach, referred to as decoupled dynamics, more efficient than the adiabatic one.
In particular, the decoupled dynamics should relax the requirement of keeping the
time step in the integration of the equations

MiR; = ~—5ﬁ; (2.3.3)

small.

To test how the two above mentioned methods work in practice we have excited
a phonon mode in the system consisting of eight Si atoms in diamond lattice sites.
The atoms were initially displaced from their equilibrium lattice positions in the
direction of the eigenmode er,,,, corresponding to the optical phonon mode at the
I’ point of the supercell BZ. This was the only point considered in the BZ sampling
leading to a rather poor representation of the electronic density n(r). The same
potential as before was used. The system with displaced ions was initially prepared

in ground-state, then the ions were left to move under the action of the BO forces.

The results obtained using the adiabatic dynamics are shown in fig.3. The
atoms perform oscillations with frequency f ~ 18THz. This fairly good result
confirms that the thickness of the BO surface, though finite, was adequate. We
performed also a series of calculations following the strategy of decoupled dynam-
ics. The time step At has been fixed to 3 + 4 times larger than that used in the
adiabatic dynamics. The CG minimization technique for the electronic degrees of
freedom was used. The result is shown in fig.4. The phonon is damped what means
that the forces on ions were not calculated correctly. It must be stressed that this

feature is present also using other minimization procedures, like SD.

Generally, this might have two reasons. Either the time step used was too
large or the system was not brought properly into its instantaneous ground-state.

By discretizing numerically the one-dimensional oscillator equation
MI.EI = ——ng (2.3.4)
with wg - being the optical phonon frequency, using the Verlet algorithm[10] we

checked that the time step used was adequate. To see how the precision of elec-
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tronic minimization influences the results we performed a series of calculations fix-
ing different precisions for the electronic minimization procedure. These results are
depicted in figs. 5+ 8. It is evident that unless the precision of electronic mini-
mization is very high the forces are badly calculated. Even the convergence in ten
significant figures, requiring roughly ten electronic CG steps for each ionic step, was
not sufficient. The necessity of very high precision in the electronic minimization
makes the adiabatic dynamics much more efficient and superior to the decoupled

dynamics.

This rather surprising behavior has the origin in a cancellation of errors pro-
duced by MD that is missing in the other approach [20],[21]. The MD equation-of-

motion for the electronic wavefunctions is
Mj; = F, | - (2.3.5)

stating the proportionality of the acceleration of the wavefunction to the force acting
on it. In the ground state the wavefunctions do not move, the forces are zero. When
the ions displace the forces on the wavefunctions become non-zero and proportional
to the ionic displacement. Thus the electronic wavefunctions will accelerate and
catch up thé delay until overtaking the ions when the forces begin to brake the
motion of the wavefunctions. The electronic oscillations make the ionic forces to
oscillate, causing the cancellation of errors. In other words the electronic and ionic

dynamics are correlated .

On the other hand in the decoupled dynamics the electronic wavefunctions

obey first order equations of the SD type

making the velocity of the wavefunctions proportional to the forces on orbitals,

leading to a systematic delay and error in the BO forces.

To bring the above reasoning on a firmer ground we have studied a simple model

consisting of two coupled (anharmonic) oscillators simulating the motion of a heavy
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Fig.3. The evolution of the potential energy in the ”adiabatic regime”; At and
M; were taken to be 7.0 and 300. a.u., respectively.
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Fig.4. The evolution of the potential energy in the ”decoupled regime”; At was
taken to be 30. a.u. Full line: one electronic CG step for each ionic step; dashed

line: two electronic CG steps for each ionic step.
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Fig.5. The evolution of the potential energy in the ”decoupled regime”; At
was taken to be 20. a.u. The electronic CG minimization for each ionic step was

converged in seven significant figures.
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Fig.6. The evolution of the potential energy in the ”decoupled regime”; At

was taken to be 20. a.u. The electronic CG minimization for each ionic step was

converged in eight significant figures.

35



-3085452.

1] v T v T v
: . /\ /\/ .
0.

2000. 4000.

[ne] g+710dg

Time [au]
Fig.7. The evolution of the potential energy in the ”decoupled regime”; At

was taken to be 20. a.u. The electronic CG minimization for each ionic step was

converged in nine significant figures.
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Fig.8. The evolution of the potential energy in the ”decoupled regime”; At

-3085548.

was taken to be 20. a.u. The electronic CG minimization for each ionic step was

converged in ten significant figures.
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particle (ion) coupled to a light particle (electron). The model has been studied
in both adiabatic and decoupled dynamics. In the adiabatic dynamics we found
slight oscillations of the total energy of the ionic subsystem, introducing, however,
no systematic shift in the constant-of-motion. The heavy particle oscillates slightly
around the exact position, causing the cancellation of errors in the forces. In the
deéoupled dynamics there was a systematic shift in the energy of the heavy particle
‘and— correspondingly a systematic error in the forces. A work on a more realistic

model is uriderway.
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Chapter 3
AMORPHOUS AND LIQUID STATES FROM
TOPOLOGICAL VIEWPOINT
AN APPLICATION TO AMORPHOUS AND LIQUID SILICON

In order to fix ideas for the following two sections we give in this part a review of
amorphous (a) and liquid (1) states based on a topological approach. The structural
constituents, the structure and symmetry, as well as the influence of the constituents
on the universal and specific properties of these systems are briefly discussed [22].

Particular attention is paid to the topological properties of a- and I- silicon.

Topology is particularly important in presence of structural disorder, found
in liquids and amorphous metals and in the case of topological disorder, found in
amorphous semiconductors. In the latter case the long-range-order is naturally
absent, whereas the short-range-order is maintained to a considerable extent. The

structure can be described by a regular graph.

In covalent systems, the vertices and the edges of the graph are atoms and
bonds, respectively and faces are rings. The atoms have fixed chemical valency,
so that the graph has a fixed vertex coordination z (z=4 for Si), and is said to be
regular. This graph is called a continuous random network (CRN). However, in real
systems there are also coordination defects violating the regularity of the graph.

These defects will be briefly discussed for a-Si.

In metallic systems, where the effects of covalency are absent, only vertices
(atoms) have a direct physical meaning, the edges are defined by ” Voronoi tessela-
tion”, the analogue of Wigner-Seitz cells or Brillouin zones encountered in crystals.
This new graph called Voronot froth is related to the original packing by duality

and is regular.

Voronoi froths and CRNs are locally topologically equivalent having the same
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low vertex coordination z=4. What distinguishes them topologically is the ring
statistics. In fact, amorphous materials, but also aggregates of metallurgical grains,
foams, soap bubble froths or photographic emulsions, etc... are all random cellular
structures. Although we will concentrate only on CRNs, there seems be a kind of
universality in all random cellular structures [22]. All of them have identical main

structural features.

The most immediately striking feature of CRNs which distinguishes them from
crystalline networks is the presence of rings containing an odd number of bonds
(odd-membered rings) *. Indeed, only rotations by 27/n,n = 2,3,4,6 are com-
patible with translational symmetry. The odd-membered ring can be imagined as
produced by a Volterra procedure by cutting through to the centre of a six-fold
ring, removing or adding a wedge-shaped piece and regluing. Thus the odd ring

can be thought of as surrounding the core of a disclination.

Odd rings are not found in isolation. In three dimensions they are threaded
through by continuous lines (disclination-, odd- or Rivier-lines) [25] which form
closed loops or terminate on the surface of the material. The geometric argument
relies on an observation about the allowed configuration of edges e and the number
of i-sided faces f; on a closed surface S. The incidence relation between edges and
faces, 2e = > if; implies that ), _,,¢f; = even, and because ¢f; and f; have the

same parity for ¢ odd

Z fi =even VS (3.1)

1 odd

i.e. also on the surface of a fundamental polyhedron of rings. This guarantees the
occurrence of odd rings by pairs. Eq. (3.1) can be regarded as the first topological

conservation law.

* There are also some models of random structures free of odd-membered rings,
called trivial (or flat). Examples of such models are Connell-Temkin model of CRN
[23] or Mattis model of spin glass [24].
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The second conservation law is the Euler’s relation
—c+f-et+v=0 (3.2)
for a three dimensional graph with ¢ cells, f faces, e edges, and v vertices.

The purely topological arguments also confirm that odd lines are structurally
stable universal constituents of random structures. The topological classification
scheme of possible structural defects used for ordered systems[26] and for more
general systems[27] can be extended also to random systems [25],(28]. The chief
conclusion of this analysis is that in three dimensions there is a one-to-one corre-
spondence between the group Z; -the group isomorphic to the integers modulo 2-
and the physical states of the amorphous solid. Rivier argues [25] that there is a
stable line defect, which is a discliﬁation whose intensity can be identified with the

oddness of the rings along the disclination line - both are defined modulo 2.

The Z5 group can be related to two possible transformations when a closed
path is described : a rotation by 47 is homotopic to identity, whereas a 27 rotation
is not. This can easily be visualized by considering for simplicity the case of a
spin glass with antiferromagnetic interactions on a topologically disordered lattice
which contains odd rings. An odd ring cannot accommodate a configuration of

spins minimizing the energy of all its bonds, see ﬁrg.l.

Fig.1. Frustrated odd ring containing antiferromagnetic interactions.

It is frustrated, the frustration being characterized by the group Z,.

The 2m-disclination is also the only structural constituent surviving the transi-
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tion from network to continuum [22]. The transition can be thought of as the result
of succesive decoration of the original network, adding new vertices and edges un-
til the ”continuum limit” is reached. It is easy to visualize the decoration in two

dimensions, where it consists of replacing each vertex of the network by a hexagon

(fig.2).

Fig.2. Decoration in two dimensions.

The odd rings are invariant, puncturing the random space. In three dimensions
each vertex is replaced by a truncated octahedron. These octahedra are joined by
four of their hexagonal faces, allowing for two limit configurations- staggered and

eclipsed and an infinite number of intermediate configurations in the CRN (fig.3).

Fig.3. Staggered (a) and eclipsed (b) configurations in CRN and in decorated

structure.

The mutual angle between tetrapods characterizing the configuration is called

the dihedral angle. The existence of dihedral angles which are neither of the eclipsed,
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nor the staggered type is symptomatic for frustrated systems characterized by the

group Zs.

Let us now very briefly come to the way in which the structural constituents
(odd lines) are believed to influence the universal properties of amorphous materials.

Most of them have a natural topological formulation.

The odd lines are suspected to cause the low energy tunneling modes in glasses.
These modes cause anomalous low temperature properties (~ 1K) [30]. It can be
shown theoretically, based on symmetry arguments only, that there are two classical
ground-state configurations per odd line [31],[32] referred to as |0) and |27). They
are related by a gauge transformation, a 27-rotation, and the system can tunnel

between them (this reflects the Z, structure of the odd line).

Similar topological analysis, based on calculation of entropy and energy of odd
lines [29], gives also some explanation of properties of amorphous systems at high
temperature. It leads to a formula that is identical to what is known as the empirical
Vogel-Fulcher law, thus yielding some argument that amorphous and liquid states
have the same kind of topological defects, but very different physical properties.
At high temperatures odd lines expand and shrink, while remaining uninterrupted.

They become frozen punctures at low temperature.

The odd lines are suspected to influence also the electronic structure of CRNs.
The main conclusion of the topological analysis of the electronic energy spectrum
(EDOS) is that a completely anti-bonding state is not realizable in a structure
containing odd rings. This causes the EDOS to be strongly suppressed near the
anti-bonding edge. Thus states near this edge are expected to be affected by the
topological disorder, in particular by the ring statistics. The schematic EDOS of
a topologically disordered system containing odd rings and no long-range-order is

shown in fig.4.
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Here a simple tight-binding Weaire-Thorpe Hamiltonian has been assumed

[33],[35].

I+1 |0

N N
3 T f E
"SEo“V Eo"v EF "SEo*'V E0+V

Fig.4. Schematic electronic energy spectrum (EDOS) of a-Si. Ej is the on site

and V is the intersite tight-binding parameter of the Weaire-Thorpe Hamiltonian.

The spectrum is skew near the band gap edges. This occurs because anti-
bonding wavefunctions cannot be accommodated in regions containing odd rings.
Another feature is related to the absence of long-range-order in amorphous systems.
If, for example, we considered a crystalline Hamiltonian, there would be two peaks
(Van Hove singularities) in its spectrum (called LII) and a delta function (called
III). If no long-range order is present, peaks I and II merge into one broad peak

(I+11), as illustrated in fig.4. This behaviour was observed also experimentally [36].

Topological analysis can account also for other anomalous properties, like vi-

bration modes, elastic energy or the Hall effect [22].

Real systems, however, can always contain also some coordination defects. Un-
til recently only undercoordination defects have been considered. Calculations show
that overcoordination defects may have comparable energies [37]. We shall consider
here three-fold T3 and five-fold Ty coordinated atoms. It is elementary to show
within simple models (like the Weaire-Thorpe) that these defects introduce states

lying in the gap .
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3.1 TOPOLOGICAL PROPERTIES OF a-Si

In this chapter we discuss the topological properties of models of a-Si as gen-
erated by an ab-initio MD [38],[39]. The method used is that described in section
2. Basically, a constant volume MD simulation with an FCC unit cell containing 54
atoms periodically repeated was carried out. The simulation was started from 1-Si.
The amorphous structure was prepared by a very rapid quenching from the melt to

a final temperature of 300K.

In section 3 the role of odd rings and lines was pointed out. Since the odd
rings are not a priori required in generating a CRN and their effects on the radial
distribution function are rather subtle, the only experimental evidence for the ex-
istence of odd-membered rings may come from observed differencies between the
XPS spectra of ¢- and a-Si (merging of peaks I and II [36] ). However, this pos-
sibility has recently been questioned [40] on the basis of experimental uncertainty.
Moreover, recent high-resolution transmission electron microscopy experiments on
a-Si gave some support to a submicrocrystalline model [41]. Thus the question of a
realistic model for a-Si and the role of topology remains open. Reliable theoretical
calculation, such as that of refs. [38],[39] and its isubsequent analysis [46] might help

to answer some of these questions.

The model analyzed here differs from many other existing models [23],[42]
in being an ab-initio model conformed to periodic boundary conditions. Periodic
boundary conditions enable surface effects to be avoided and long-range interactions
to be included in an easy way. No arbitrary assumption is made on the interaction
potential which is obtained as discussed in section 2 from accurate LDA calculation.
The most obvious disadvantage of the present model is the effect of small size of

the unit cell.



The radial distribution function for the generated model is presented in fig.5.
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Fig.5. Radial distribution function for a-Si [39]

The integral over the first peak gives a local coordination of four. The geometric
distortion is usually quantitatively measured by the rms bond-angle deviation. Our
model has a rms deviation of ~ 14°, a value slightly larger then the commonly

accepted value ~ 10°.

However, it is equally, or even more important, to have a measure of the topo-
logical distortion. This can be measured by ring statistics. Useful information could
provide also the odd-lines (cf. 3). Their study is prevented here by a small size of

the unit cell.

We have written a program enabling a complex structural and topological anal-
ysis of our models, including bond-, and dihedral angle analysis as well as ring
statistics. Our definition of the dihedral angle is that of ref. [43], and the defi-
nition of the ring statistics is based on a shortest paths analysis as suggested in
refs. [44],[45]. The shortest path analysis takes, in turn, each atom in the structure
as a starting point and connects each couple of bonds attached to it through the
structure in the shortest possible path. This definition of ring statistics has the

advantage of yielding a distribution for n-fold rings which is zero at high n.
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The results of ring statistics analysis [46] are in tab.1 and in fig.6

n: 3 4 5 6 7 8 9

R.=27A4 0111 0.222 2.128 2.382 0.728 0.317 0.061

Tab 1. Ring statistics for a-Si

25 T T T T T T T T

ans/sSury

0.0

N-fold ring

Fig.6. Ring statistics for a-Si

The neighbour was defined by a cut-off taken from the pair correlation function
as R, = 2.7A. The result is an average over 16 configurations generated by MD. At
this R, there were two T35 atoms. One of them annihilated continuously, creating a
Ts atom and vice-versa. This process triggered a small change in the ring statistics
affecting mainly the number of five-fold rings. The analysis has revealed a large
portion of odd rings dominated by five-fold rings. Furthermore we found that seven-
fold rings are rarely attached to five-fold rings. This renders the so-called hair-pin
configuration of disclinations, proposed as a mechanism of screening the stress due
to disclinations [29], as rather improbable. In our model only two atoms are not
members of any odd ring and no atom lies in a local diamond-structure environment.

Thus this model is a member of the purely amorphous class of structures.

Any frustration due to odd rings is accompanied by a broad distribution of the
dihedral angles (only staggered configuration-60°, and eclipsed configuration-0° are

permitted in crystals).
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The dihedral angle distribution for our model (again averaged over 16 config-
urations) is in fig.7

200
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Fig.7. Dihedral angle distribution for a-Si

The unusual feature of our model is the decrease in the distribution about
the staggered configuration, indicating once more no residual dia,fnond-like order
present. In the other existing models [42] the staggered configuration is usually
much more frequent than the eclipsed one. This may be the effect of small unit cell
size in our model, since the dihedral angle calculation involves the third neighbours.
The important point, however, is that the staggered configuration in crystals gives
rise to a third-neighbour peak at 4.74 which is absent in the experimental pair-
correlation function [45]. Moreover, the relative frequency of appearance of the
eclipsed and staggered configurations is associated with five-fold rings [23], which
are clearly dominating in our model. Thus it is not clear whether the unusual shape

of the dihedral angle distribution is to be regarded as a deficiency.

It is tempting to try to analyze the electronic density-of-states EDOS from the

viewpoint of topology (cf. section 3).
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The EDOS for our model is in fig.8.

-8 -4 0 4 3
Energy(eV)
Fig.8. Electronic density-of-states for a-Si [39]

Here the results are rather inconclusive. Though there are three well separated
peaks in the valence band, the separation of peaks I and II might occur as an effect
of small unit cell size, rather than for topological reasons. As a consequence of

coordination defects, there are gap states near Er.
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3.2 TOPOLOGICAL PROPERTIES OF 1-Si

This part deals with topological properties of 1-8i, generated again by the ab-
initio MD. The model, as before, consists of 54 atoms enclosed in an FCC unit cell

conformed to periodic boundary conditions [38].

In section 3 we have given arguments that the symmetry of high- and low- tem-
perature phases should be the same. The topological analysis of I-Si is interesting
also because, unlike for a-Si, there are very few realistic models of 1-Si. As far as
we know the best model generated so far uses the empirical Stillinger-Weber (Sw)
potential [47],[48]. Though 1-Si is operationally an important phase, very little has

been done both experimentally and theoretically.

The radial distribution function for our model is in fig.9.
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Fig.9. Radial distribution function for I-Si [38]

The average number of neighbours obtained by integrating over the first peak
of g(r) is 5.4, i.e. less than 6.4 obtained from experiment. The agreement with the
experiment is less satisfactory than for a-Si. Likely here the effect of small unit cell

is more pronounced.
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The results of ring statistics analysis [46] are in tab.2. and fig.10.
n: 3 4 5 6 7 8 9 10

R, = 3.044 1.711 1.920 3.359 2.550 0.746 0.043 0.002 —
n: 3 4 5 6 7 8 9 10

R, =2654 0.195 0.201 0.797 0.891 0.744 0.603 0.439 0.422
n: 3 4 5 6 7 8 9 10

R.=2.494 0.021 0.037 0.319 0.254 0.171 0.191 0.186 1.285
Tab.2. Ring statistics for 1-Si for different values of R,

35 ¥ ' : ! ! ! ! mr 1.0 Y T T T T T T T
=
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(a) 2 3% 4 5 6 T 8 9 10 1L b)
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P
s

0.0 : — . .
2 3 4 5 6 1 8 9 10 11 (¢)

N-fold ring

Fig.10. Ring statistics for 1-Si for different values of R. Ina) R, = 3.044, b)
R, =2654, and ¢) R, = 2.494.

Here we were faced an additional problem, namely the definition of neighbour.

The analysis has been carried out with three values of R,: 3.4,2.65,2.494. The
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results are averages over 10 configurations generated by MD. The result obtained
with the largest value of R, corresponds to the first minimum of g(r), while the
value R, = 2.65 is close to the value found in c-Si and to the value taken from the
inherent structure calculation, as will be shown in following. Compared to a-Si the
distribution is much broader especially on the high n side. The ratio of 6 : 7 fold

rings changes significantly from I- to a-Si.

The EDOS of our 1-Si is in fig.11.

Energy(eV)
Fig.11. Electronic density of states for I-Si [38],[39)

The behaviour is very much free-electron like, yielding a metal, as it should, but

as before, the topological analysis (cf. 3.) for our small model is rather inconclusive.

It is interesting to attempt a separation of packing and vibration effects for
a liquid [47],[49],(50]. The idea is based on partitioning of the multidimensional
potential energy surface ® for an N-atom system. The purpose is to assign any
configuration of atoms uniquely to one local minimum. The displacement of the
configuration from a minimum is simply regarded as a ”vibrational” displacement.
This separation is based on the following exact expression for the Helmholtz free

energy [49]

F = Fo(T) + N min{® + £,(¢,T) — ksTo(4)} (3.2.1)

where Fy is an additive part of F (irrelevant here), o is the logarithm of the density
of potential energy minima, and fv is the mean vibrational free energy for those

i‘egions whose minima lie at & = N¢. The principal result is that the snherent struc-
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ture of a liquid obtained after removing the ”vibrational” displacement is virtually

temperature-independent.

There is a simple procedure for partitioning the ® surface; Any configuration
is assigned to the minimum that is encountered when moving downhill from the

starting point into the local minimum (except for a zero measure manifold).

Although the atom arrangements which contribute to the inherent structure are
amorphous, the real a-Si will indoubtedly differ in properties depending on method

of preparation.

To sample the minima of the ® surface by a sequence of downhill minimizations
starting from configurations generated by MD for a liquid is a very demanding task
when using an ab-initio technique outlined in section 2. For this reason and because
the liquid is less satisfactorily described by the small model we have carried out only
a single minimization. The minimization was started by a purely 8D minimization,
followed by combined electronic CG- ionic SD minimization and ﬁna,.lly, very close to
the minimum, an electronic + ionic CG minimization was used. The corresponding

pair correlation function as well as that for the starting configuration are in fig.12

10, ——————————— s

10. v T v T i T

(18

r(A) (a) | r(ﬁ) S

Figl2. a) Radial distribution function for the initial configuration. b) Radial

distribution function after mapping onto the nearby minimum.
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This result is a very preliminary one. The g(r) resembles the main features
of the inherent g(r) for 1-Si as obtained using the SW potential and averaging over
several configurations [47]. The main difference is a less pronounced second peak

and an entirely separated first peak (fig.13.).

4

0 " I
0 1 2 a

r/o

Figl3. Radial distribution function for the inherent structure of 1-Si calculated

using the SW potential [47]. ¢ = 2.095A.

The well separated first peak dies out at R, = 2.734 in our calculation. This
suggests the use of this distance as the cut-off criterion for examination of ring
statistics for 1-Si, although alternative definitions are possible. The integral over
the first peak gives a running coordination number very close to four. The number
of coordination defects is larger than in a-Si. We found four T3 atoms and one T

atom.

As anticipated before the properties of this system may be very different from
a real a-8i. In particular, we have carried out the ring statistics analysis for this
system with R, = 2.73A. The result is in tab.3 and fig.14 and yields topological

properties very different from those of a-Si.
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n: 3 4 5 6 7 8 9 10
R,=21734 ~ 0.148 2.481 1.352 1.500 0.259 0.056 -

Tab.3. Ring statistics as obtained after mapping the system onto the nearby mini-

mum
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Fig.14. Ring statistics as obtained after mapping the system onto the nearby

minimum
The predominance of odd rings can, of course, be averaged out in a more careful

®-surface sampling, but there is some indication that this wiil not be the case.

We have calculated also EDOS for this system with result depicted in fig.15
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Fig.15. Electronic density of states as obtained after mapping the system onto
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the nearby minimum
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This EDOS resembles the main features of that of a-Si. Again, as before, the
resolution is insufficient to judge the influence of the ring statistics on the electronic

properties.
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Chaper 4
CONCLUSIONS

From our work we can draw the following conclusions:

There are several possible ways of minimizing the energy functional (2.2), de-
pending on the problem at hand. We have developed a new efficient and robust
method for solving the standard electronic structure problem for fixed ionic posi-
tions based on the conjugate gradient strategy. The performance of the method was
tested on several systems and compared with other methods, in particular with the
steepest descent, the Payne, Joannopoulos, Allan, Tetter, Vanderbilt method and
with the Davidson method. In all these cases our method was found better than
or at least comparable to all the other methods. The rate of convergence is not
strongly system-dependent. The method is general and works also in cases when
some of the other methods fail. We expect that this method, that falls into the class

- of non-diagonalization methods, will allow to treat still larger and more realistic sys-
tems that are now at or behind the present computational limits. The conjugate
gradient strategy was apphed also to the minimization of the energy functlonal (2.2)
with respect to ionic positions. However, here the situation is more complex and
the results less favourable. Last but not least, we have demonstrated that only the
so-called adiabatic dynamics is feasible in ab-initio dynamical simulations of the
ionic system. The reason of this behaviour was traced to the cancellation of errors
produced by molecular dynamics, that doesn’t arise when the second-order differ-
ential equations for the electronic orbitals is replaced by a first-order equations of

the steepest descent type.

In the other part we have carried out analysis of models of amorphous and
liquid silicon generated by methods described in the first part. A first step has been
done towards understanding the inherent structure of liquid silicon. Particular

attention was paid to the topological properties of these systems. They have been
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found topologically non-trivial, containing a large portion of odd rings. There is
some indication that the inherent structure of liquid silicon might be topologically
very interesting. The odd rings are expected to account for the unusual properties
of these systems. The study of our small model doesn’t allow to make any definite
conclusion about the correlation between the physical properties and the presence
of a large number of odd rings. A more certain answer is expected from study of

larger systems.

The work planned for the future emerges as a logical continuation of the work
already begun. We intend to extend this work to larger, more complicated and

more realistic systems.
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