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ABSTRACT

The notion of SuperVirasoro algebras are extended to
genus gA Riemann surfaces. These superalgebras and their
central extensions are realized in the framework of
superstring theory by providing a genus g operator
formalism. The corresponding BRST operators are
constructed, and they turn out to be nilpotent in ten
space-time dimensions.

The Sugawara contruction for a generalized Kac-Moody
algebra is carried out on a generic Riemann surface.

The operator formalism is applied to compute the
propagators for b-c systems with arbitrary integer or half
integer weight XA (in the Ramond and Neveu-Schwarz sectors).
Explicit expressions for the =zero modes and for the
Teichmuller deformations are given.

The Hamiltonian formulation for string theory on genus
g Riemann surface 1s provided. Scattering amplitudes are
defined in this operator context. These turn out to be the
natural extension of the g=0 scattering amplitudes.
Correlation functions involving the matter field are

computed, reobtaining the well known results.
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Preface

Nobody, absolutely nobody, will be entitled to say in
the far future that the "string Age" of physics was just a
regretful waste of time. Even though string theories did
not satisfy the éxpectatives of many people as a candidate
for unifying all the interaccions or failed in providing a
consistent theory of quantum gravity, even though they
were, rather than a realistic theory, the biggest lie in
the human history , the progress reached in these last 15
years in the field of theoretical physics would always be
relevant, and then the efforts of so many physicists and
mathematicians would not have been completely useless.

One will be perhaps entitled to say that string
theories did not deserve so much atention, and that the
number of people working on this theory was unjustified and
excessive, but he will also have to accept that otherwise
the rate at which the developement of string theory had
taken place would have been hopelessly much slower.

The fact 1is that nowadays string theory is being
investigated by thousands of ‘scientists; and it is anyway
possible (in spite of the skeptics) that the universe, and
therefore the world and everything, be made of strings.

I have tried, without much success, to be as clear as
possible. I have wanted to avoid speaking by "enigmas", as
some physicists do for not assuming responsibilities, so I
have explained everything in as much detail as time and the

volume of this thesis have allowed me.



These pages try to summarize the results of a long
yvear of work. As every summary, this work has the drawback
of having lost some information and clarity. As every
summary, this thesis emphasizes results but hides their
meaning.

I hope the réader knows how to forgive me for the many
mistakes which i could not find but are surely present in
this thesis. A scientific work is destinated to provide new
discoveries. Often, the only news of a scientific work are
errors. The number of errors of a work is quite larger than
the number of new true statements. The latter is a very

small number, in most of the cases between zero and one.

Trieste, September 1988.



Il N T R ODUCTI ON

The fundamental principles behind string theory [1]
are so far unknown, and there is a spread belief that they
might arise from a deeper understanding of string field
theory [2]. Most of the progress has centered around
studying perturbation theory on string backgrounds which
are classical solutions of string theory, mnamely the
conformal theories [3].

Conformal theories on Riemann surfaces have been
essentially developed along two lines: By wusing path
integral techniques [4], and by means of operator methods.
In the former, the g-loop contribution to a vacuum
expectation value (VEV) is given by the functional integral
over all geometries of a two-dimensional surface of genus g
and over quantum fields living 'on this surface. This
approach necessarily leads to complicated problems of the

algebraic geometry of Riemann surfaces. The second line of



work has been extensively studied at g=0, but the operator
formalism at Higher genus 1s thus far incomplete. Some
computations have been performed by using the genus zero
formalism and extending it to higher genus by unitarity
[5]. Other very ingenious approach 1is the one by
L.Alvarez-Gaume eﬁ al.[6]. It has the virtue of keeping the
simplicity of ﬁhe operator formalism on the plane and
simultaneously incorporates all the geometrical features
characteristic of surfaces with non-trivial topology; but
it has the drawback "that it is not manifestly global.
Results are obtained in a patch of local coordinates and
extended unambiguously to the rest of the surface. Recently
Krichever and Novikov [7,8] introduced a new formalism wich
may prove to be a very important tool in the study of
conformal theories on Riemann surfaces. This formalism
provides the mnecessary elements to construct a mnatural
operatorial formulation which allows one to easily reobtain
the results of the path integral approach [9,10,11]. The
purpose of this thesis is to apply the Krichever-Novikov
(KN) - formalism to the study of the conformal field
theories, and to construct an operator formalism at
arbitrary genus.

In ref.[7] Krichever and Novikov showed that 1t 1is
possible to explicitly provide bases for the spaces of
meromorphic tensors of weight X which are holomorphic
outside two distinguished points P+ and P_of the Riemann
surface . The construction of these kind of bases follows
as a simple application of the Riemann-Roch theorem [12].

In particular, for A=-1 one gets a set of vector fields

10



(eﬁ} which can be used to generate either
reparametrizations or Teichmuller deformations of the
Riemann surface. These vector fields obey an algebra
(called KN algebra) which is a generalization to higher
genus of the usual Virasoro algebra. Similarly, one can
extend the notioniof Kac-Moody algebra. If 42 denotes the
space of meromorphic functions on I having poles only at
the points P , by the multiplicative structure of Az, one
defines the algebra §Z= § x Az, for any semisimple algebra
§, which 1is the generalization to arbitrary Riemann
surfaces of the Kac-Moody algebra. In ref.[8] they apply
these results for constructing an operator formalism for
the bosonic string theory.

Chapter I 1is devoted to set up the notation and to
provide the necessary background that will be useful in the
reading of the next chapters. In chapter II we extend the
KN formalism to supersymmetric theories [13]. We construct,
in addition, a BRST operator and demonstrate that it is
nilpotent in d=10 (d=space-time dimension). In chapter III
we carry out the Sugawara construction [l4] for a generic
Riemann surface [15]. In chapter IV we compute the
correlation functions for b-c systems with arbitrary
integer or Thalf-integer weight (in the Ramond and
Neveu-Schwarz sectors). We also give explicit expressions
for the zero modes and for the Teichmuller deformations for
a generic Riemann surface [9]. In chapter V we provide a
Hamiltonian formulation for string theories and define
multiloop amplitudes in this operator context. These

matters are still wunder study [10,11,16]. Finally, in

11



chapter VI we draw some conclusions and analyse the
prospects of future work along these lines. In appendices A
and B we recall some basic facts about theta functions,

theta divisors and spin structures.

12



CHAPTER I

BACKGROUND
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I.1 Definition of "time"

A closed string is conventionally parametrized by an
angular coordinate ¢ and a time evolution parameter 7,
which is a sort of time coordinate for an observer sitting
at the position ¢ along the string. When it propagates in
space-time .(fig.I.la), it sweeps out a world sheet
described by specifying X"(o,7), the position of the string
at given values of ¢ and r. By going to euclidean time,
this world sheét can be conformally mapped to a Riemann
surface without twé points (fig.I.1lb). At g=0 this is

conformal to

T —» co
conformal map
P
\ t
o .
Fig, 113 ‘:‘3 It
Fig.I.la-When a string propagates in space-time it sweeps

out a two-dimensional manifold with boundaries.
Fig.I.1b-By going to euclidean time, this is conformal to a

Riemann surface without two points.

the complex plane without the points z=0 and z=w. In this

T+

case the parameters are usually defined by z=e , or

equivalently

z
Ty = Rej dz (1.4)
Zs
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z
and S@y= Im | 2 (1.9)

7

Ls

where z #0,o is an arbitrary point of the complex plane.
The integral in (I1.2) depends on the path from z,£ to
z. If we choose two different paths differing by a number n
of cycles around z=0, then the corresponding o are related
by ¢' = ¢ + 2an, which of course represent the same point z
of the complex plane.
The natural generalization of eqs.(I.1,1.2) to higher

genus is to define

P
Up. Re | & (1.3)

?
P
@) = Imj dle (1.4)

B

where dk is the differential of the third kind on % with
simple poles at the points B, and P with residues +1 and -1
respectively. By the Riemann-Roch theorem this fixes dk
univoquely wup to the adition of (holomorphic) abelian
differentials. A further requirement, namely, that the
integral in (I.3) do not depend on the path, determines

unambiguously

' ¢ LN A
de(m = o Log (ERN/ERRY] - sz Tn{ | (0 Y0y (1.5)
A

Lyt

where m are the g abelian differentials with the standard
normalization (see appendix A).

The integral (I.4), however, does depend on the path,
so in order to give sense to this definition of o one

should specify the path from B to P

15



By inserting (I.5) into (I.3), one obtains an explicit
expression for the time parameter r

. 3 R \; A 4 P .
C(P\ = Rﬁ Q,O% (E(P) A E(P‘,,P—)\) — 2Wi Z (1“"\{{11\} {KMQ 3 J ‘]3 (l 6)
il ®

E(p,e) E(R,P)

One can define a one-parameter family C. of contours

as follows
Ct= {(Qe = :»r(Q)=7, 7 € R )

For 1 — + o the contours C_are small circles around the
points Ri. These contours can be thought of as the string
propagating along the Riemann surface with splittings and

joinings if g>0 (fig.I.2).

T ~co
Ce
Fig I.2- It is possible to define a one-parameter family C
of contours so that for each T the corresponding contour
represents the string at time 7. In this way one gets a

of the string propagating along the Riemann surface.
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I.2 The Krichever-Novikov bhases

In conformal field theories on Riemann surfaces one
deals with fields which are sections of a certain line
bundle. An intrinsic feature of these theories is that the
equations of motion leads to a decomposition of the fields
in holomorphic and antiholomorphic parts. On-shell fields
must obey their corresponding equation of motion for any
point of the Riemann surface different from P+ . This fact
already happens at g=0, and the reason 1is that these
points correspond to times y« and must be excluded (if we
required the fields to be everywhere holomorphic, then the
space of solutions to the equations of motion would have
finite dimension (in some cases even zero or one). This
space would be generated by the =zero modes of the
corresponding operator).

We are thus interested in finding a basis for the
genetric space ﬁf meromorphic tensors of weight X which are
holomorphic outside the points P.. The Riemann-Roch theorem
guarantees for g>l the existence and uniqueness of tensors

of this type which in a neighborhood of P, have the

following form
(13 0@ CEAY ; (1.8)

A ‘\h’\e%er 0
4 )
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where S(M\)=g/2-x(g-1)
Tﬁe index j runs through integral or half-integral values,
for g even and odd respectively.

The case of half-integer A Will.be treated separately
below.

In the case of functions (A=0) we know from the
Noether "gap" theorem [12] that eq.(I.8) can not hold for
|il=g/2 *. In fact, in the caserof the funcions the basis
is constructed as follows. Let A [j]Zg/2+l be the unique
AL

functions AS S _» which in neighborhoods of P, have

the form

Az = 38 207 () Loy, et NIvy,  (T9)

(as before, j is integral or half integral, depending on
the parity of g). For j=-g/2,...,g/2-1 we denote by A€ A=
a function which, in neighborhoods of P, , has the form

Az = ab ZV%T (L Lo@) . dist je-g. (I.10)

a\it\: t i N L= )()‘ Z)"')%-:-i .
This behaviour actually determines the Ay up to the
addition of a constant, which is generated by the
remaining element of the basis Agh =1.

Also in the case of elliptic curves (g=1), eq.(I.8)

*

This is because P and P are supposed to be in general

position, i.e. they are not Weierstrass points.

18



needs to be slightly modified due to the Weilerstrass "gap"
theorem [12]. The change occurs for j=-1/2,1/2, for which

we define

QW‘ E3ENY

w= 9, (L+o@)(azy gzt (T.11)

&

S A _ : ..
L= @, & (rordeaY | 9, =t (1.7

The dual bases are defined through the following

duality relation

By T Oex

yA\S P
G

Now let us consider the case of half-integer A. We
shall look for sectioms of K with a given spin structure
[a,B]. We are interested in two kind of bases:

i) Basis for the space of meromorphic tensors of weight A
with the spin structure [a,B] which are holomorphic outside
P, and P. ("Ramond(R)-type" basis);

ii) Basis for the space of meromorphic tensors of weight A
with the spin structure [a,B8] which are holomorphic outside
P, and P. and a slit from P, to P. ("Neveu-Schwarz (NS) -
type" bases).

By Riemann-Roch theorem, there exists a unique section
fﬁ“ which in neighborhoods of P, have the form (if the spin
structure is odd, the following expression needs to be
modified for |[n|=1/2 in the NS sector, in the cases A=1/2

or g=1, see below)

19



(NI A n-O(
g‘\ (2 = (Ptm lt“ =)

- 0

(Ls0iz) 9%y (114)

where n takes integer wvalues in the Ramond case 1), and
half-integer values in the NS case ii).

Even though (I.14) looks like (I.8), there is a
difference due to the fact that the indices j or n run in
general over distinct wvalues. Throughout this section
indices 1i,j will be used to label the elements of the bases
for integer X, and m, 'n to label the elements of the bases
for half-integer A.

Let us now consider the NS sector with odd spin
structure. If n=t1/2 the generic formula (I.14) still
holds. When n=t1/2 a modification 1is needed for the
cases either X=1/2 or g=1. In these cases these sections
are given by eqgs. (I.11l) and (I.12).

This completes the presentation of the KN bases.

20



I.3 Krichever-Novikov algebra

Denote by L* the algebra of the wvector fields
generated by the basis {e;}. From eq. (I.8), one finds that
the wvector fields e; have the following behaviour in

[

neighborhoods of P,

e = £F IR (1 x0zy) st
By using the above equation, one easily finds that the
elements of the basis satisfy the following commutation
relation (g,=3g/2)

.
lec,e) = L Gy ey (1.15)
2 % v

]

where the structure constants can be found by integrating

eq.(T1.15) with the dual (A=2) basis (Q;) to the basis {e;}

C%:—L 3% e ) 2ivyn (1.16)
2m

Cq

Remark i). Insertion of the expansions of the e, around P,

into eq.(I.16) gives

) G <

ko (5-0 CGEL (i-)) ELéEg (1.9
' 6‘-‘%%

Thus one sees that at g=0 this algebra becomes the usual
Virasoro algebra.

Remark ii). We denote by ﬁ? the subspaces of LF, generated

21



by . the vector fields e, with Iindices *izg, +s, s€Z. It
follows from (I.15) that the subspaces L‘? With s>=-1 are
subalgebras of ¥ . In particular, L“; are the subalgebras
of wvector fields from IF which, at the points P,
respectively, are holomorphic.

Remark iii). The‘vector fields e, € L:\\ can be used to
generate reparametrizations of the Riemann surface, while
the e; € ¥ but ¢ L('t“ can be used to generate Teichmuller
deformations. The subspace generated for the latter has
dimension 3g-3, and can be naturally identified with the
Teichmuller space (the tangent space to the manifold of
moduli of curves of genus g).

There exists a unique "local” central extension of L7

and is given by the cocycle [7]

Xl &) = L i(ﬁi,e‘ﬂ T.18
) 24Tt §C: ( )

(9 -9"1) oz

where Y ( f@ %— >%(2‘)§—2 ) ';_7‘

(by "local" we mean flee)= o ‘(X \”«&\) 3% ) (L\C“
N

Central extensions L% of LZ, defined by the cocycle

(I.18), are the algebras generated by the elements e, and a

central element t with the following commutation relations:

{_@i)e,\'} Z Ciz €;+.\_,s + % X(&:ﬁﬂ

i

(1.20)
Le: ;tjj = 0

Remarks:

22



X(Euﬁg is not a one form, so (I.18) depend on the
choice of coordinate system . Under a reparametrization

z + w(z), it transforms as

>

|

- ‘ 3
g — Ji(d

p=3

G- dd §) w2 (il 2 0ld) {zufew (1)
H j dw i

e A’

Here S(z)={z,w)} is the Schwarzian derivative,

Sz jzwl= /4w -2 (4 /40) (1.20)
o d\Z/va & (dZ/";\‘JJY'

There are two ways to solve this problem:
a) Define a projective complex structure on X [12], which
implies that the only admissible local coordinate systems

are the ones with homographic transition function (i.e., of

the form wo 324b . 3,bc,d €€ ad-be=d
CZ+d

For this kind of transition functions the Schwarzian
derivative is =zero, as it can easily be seen from the
definition, and therefore the cocycle (I.18) 1is well
defined.

b) The cocycle may also be defined by providing on Z a
projective connection: It is said that on X is given a
holomorphic projective connection R if for an arbitrary local
system of coordinates z, (Q), defined in U C X is given a
holomorphic function R_(z_ ), such that in the intersection

of charts U, n U, the corresponding functions are related

by

Re(Zp) (32«» “32 = Ro(z) + S (4 (1.23)

23



It- follows that the difference between two holomorphic
projective connections is a quadratic differential. Now we

can redefine ﬁ(enfg as follows
2,
oL

ez 90y = (5= 19 - = (Fa-fghax (z.24)

As a result, i(ﬁ,&\ is a well defined one-form and
therefore (I.18) does not depend on the parametrization

chosen.

24



I.4 Operator formalism in string theory

The phase space for the classical closed bosonic
string theory at fixed 7 1is defined as the space of
functions X"(Q) and l-differentials P"(Q), with the Poisson

bracket

LP@, )@ = A es) ) Qe (1.25)

where Az(Q‘Q‘) is the "delta"-function over the contour C.
, i.e. for any continuously differentiable funcion f over

C. one has

T

flavs & f@y b, (@,0) (1.26)

S
Since the restriction of the KN basis over C, is dense in
the space of smooth tensors of the corresponding weight,
0. (Q,Q) can be written as follows

AZQQ\:Q‘W: A Z C\);(Q} Al((}‘) (12\_{\)
~ 2% i :

where {“’i} stands for the dual basis of {A}. The function
X" (Q) and the one-form P" (Q) can be thus respectively

expanded on a given C; in terms of the bases {Af\) and {w; },

7(“(&\: T_, A (1.28)

Prlay = L owr W@ 29

25



The coefficients of these expansions become, after

quantization, operators acting on a Fock space. So, let

x*(Q) and PM (Q') the operator -valued functions and
l-differentials , commuting if Q and Q' belong to two

different C, (i.e., at different times), and

L 2@, @) = i s @y a,e e ¢ (1.30)

It follows for xﬁ ,pf

\_Kr, PGU.X _ E\% quv éné (K:ﬁn

It is convenient to introduce the generalization of

the familiar operators « by

Ter rdX = ) A wi(@) (1.32)
3

By integrating (I1.32) with A;(Q) , one obtains

P T p* T oA yM - AN
cE TR o Lty g Bys L f%’Ai““\a (T.33)
2 m %
4
Therefore, the al* satisfy the following commutation
relation
B -—
Lo o] = By e (1.34)

which at g=0 reduces to the expected result: [a* ,a’ ]=n5-,N”
1 4 H-!

Similarly, one introduces o by

L T —}; X! 0;(Q) (1.35)
d

It is straightfoward to verify the rules

26
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The components of the energy-momentum tensor in string
theory are given by

-
3

it

i
jo %
a
!
=
-
—
o

T=

!

as
TQ) = Z L S (1.392)
T@ = 7, L @) (1.39%)

In order to give a sense to egs.(1.38), they must be normal
ordered. Due to the non-commutativity of o' and o} with
[i],13] < g/2 , there is a large number of non-equivalent
notions of possible choices of normal ordering.

In ref.[8] Krichever and Novikov introduced a normal

order product defined as

e s = et &, (I.40)

where 4% are arbitrary constants equal to zero for all
except a finite number of points of the half-plane i<j ;nd
equal to Ty for all except a finite number of points of
the half-plane i>j (a more general notion of normal product
is introduced in [111])

Using equations (I.38) and (1.39) one obtains a

formula for the L,, i‘ expressed in terms of the operators

27



\_nz _\"Z Lz’g 9‘1& P O(i'o(;\" (14\&\
L=t LT =g, (1.41 &)
where
oo

The explicit calculation of the commutator [L; ’Li ] gives

2o

- N A
LLJ,L&\E Lils—Lxla: 2;‘ C&i\q*va + D -X% (K..ASX
where X? depends on the normal ordering (simbolically
4

denoted by A) through trivial

cocycles. This is the operatorial realization of the KN

algebra (I.20).
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I.5 Fock and physical spaces

The operators o’ and &' , with i>g/2 will be called
annihilation operators; and the ones with i<g/2, creation
operator (the operator aal = p* is the center of mass
momentum. It commutes with every o" , so the representation
for this operator and X%& can be treated separately). As
standard, one can introduces a Fock space generated by the
states constructed from the action of creation operators on

a "vacuum" state, defined by the conditions

%Yoy = &y = 0 AT (T.44)

Similarly, the dual vacuum state is defined by
Lol a2 (o) & = o i<y, (1.a8)
The subspaces #, , generated by the A, with *i>g/2

are dense in the spaces of holomorphic functions in the
neighborhoods of P, , respectively. In consequence, the Fock
space that we have defined is the same as the usual Fock
space, constructed according to the Fourier expansions over
a small contour around P, .

The physical space 1is the space generated by the

states belonging to the Fock space satisfying

Loty = Lilpepy =° 1 iy,

I

Lo, 1Py = Lo, Pp) = 1oy

29



Similarly, the dual physical space is made of states

satisfying
<V\'\‘1\\\.L bl <‘?\’W}J\,\\—_k = 0 (("‘50
< pup) Lo = & (7l (147

o) Ly = B, (o

(We recall that in a neighborhood of P_ the field e_ga

behaves as e(3 . zd/38z).
“ae
The correspondence e; - L, allows one to construct
a representation for L, operators. The representation for

the e; is constructed by means of semiinfinite forms of

the type

e = ) ™ =
{ii’\ {:;1 AL A 4(»«..\ A {:m '\'g‘mx A

e
=1

AN
oo

—r

{‘<i2<'--< L‘h-\ {m

The e, acts on this semiinfinite wedge product by the
Leibnitz rule, and on each tensor as Lie derivative. One
can - verify that this provides a representation for the
central extended algebra [7].

Similarly the dual space can be represented by the

space generated by the forms

oA B (1.4

dn-t Ny
W<t <yamen

We define the scalar product between elements of these

spaces, by defining it on the basis elements

30



S A e N - T T [ 1.50)

™oy QM.'-\
and extending it to the rest by linearity.
The scalar product introduced above lest us define,

for any operator from the associated ring generated by the

operators L. , the concept of its mean
Clio Ly = Cvpl Lio o L Lok (L5

A representation for the algebra of the a! operators will
be given in chapter III. This will allow us to compute

correlation functions involving the fields X"(Q).
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CHAPTER II

GENERALTZING SUPER VIRASORO ALGEBRAS

TO GENUS g RIEMANN SURFACES
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II.I Generalized SuperVirasoro Algebra [13]

In the particular case of A=-1/2, equation (I.14)

takes the form

Giz= ad 27071 (ko) (a2 (&1

Denote by LL? the algebra of the vector fields generated by
the basis {e;) and the -1/2 differentials generated by the
basis (g,}, with the following binary operations:

ILie bracket

[ei :eé]
{g..8.) = g, 8.+ g.8, ,tensor product of sections
[e& ’g“] = LQ“ gn

By wusing the expansions around P, , one finds that the

elements of the bases satisfy the following relations

8- .
X_Ci,e‘;\ = Cié eq«)_&
5:-‘3g

K.e‘ 7%0_\ = —Z:\_, Hls\’\ %iwx-% (_\I . 2\

. 3
%%n)%‘mg = L B:m C\'\‘«M—P/l

The algebra LL® will be called the generalized
superVirasoro algebra.
Remark. The coefficients CS , HI B can be calculated

from the constants appearing in the expansions of e; and g,

near P. . For example, in the simplest cases, we have
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%o . 3o . . N
Gy = 4t R = N-L-3 +do Blm=2

Let us now move on the central extension of this
algebra. Beside the cocycle «(e,, eé)_introduced in section

I.3 of the last chapter, one introduces

Qlgnan) = L § Bl (m.3)
6M Ce

where Glgoy= 8§ o'dz (m.4)
and 9= 9(z) dz X &=cz).aL™  are two arbitrary -1/2
differentials belongirig to the space generated by (g,}.

It is immediate to see that they verify the following
properties:

(1) &(ei,ea-) = -/c<ed-,e,«) i ©(gnr8.) = ©(8,,8,)

(ii) They are independent of the coordinate system

(iii) They satisfy the following cocycle conditions

lg, tam) + Xla, i) Xt 53 =0 (T.5)
p (3,15, 0) _ @, 15,5)) + ¥ (f, 583)=0  (T.6)
where £, g, h are arbitrary vector fields belonging to the

space generated by the (e,}.

(iv) They are "local", in the sense that

Kle,e)= 0 foc Vix{)> 29 (T.%)

0 (90 Gm)=© loe Intmi>2g (II-8)

as follows from an elementary computation of the zeroes and
poles in Py .

Central extensions of LL® , defined by the cocycles
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(1.18) and (II.3), and denoted by LLZ , are the algebras

generated by the elements e, 8n o and a central element t

with the following relations
3‘ 5 r .
&ei)e';\: z C(ix 6\4\_5 1 Yv(ff'\“'t.ﬂ

Sz,
N

-

X Ci,%gx = Zi;

S= M%"

. ) R =P A
{%m%mx = /. Ene Cnney P )
P=-4

let) = 190,6)= o

Remarks

The cocycles x and ¢ are easily calculated in a few

cases. For example, for R=0

Yle ey )= L ( (190 = (i-n.y (T.\04)
10 4 3
, a2 (IL . '\ob)
(\O\ ?m) %2%‘,\\ = —__;_ N %\ 4+ ,\_.}Z
-When g=0, the algebras ii; reduce to the wusual

superVirasoro algebras, in either the R or NS sectors
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IT.2 Operator formalism in superstring theory

at genus g

The energy-momentum tensor t of superstring theory can
be decomposed ‘in a (right) Tholomorphic and (left)
antiholomorphic (outside P+ ) parts T and T respectively.
Throughout this chapter, we will only consider the right
part of the theory. All the results similarly apply for the
left part.

In terms of the basic fields, the energy-momentum

tensor takes the form

T = T TP (T.44)
where
T = LR 3K - L3V, (T .12)
2 7
THo cdb Lgdck -1¥3p _zapp  (T.13)
2

The supersymmetric current (right part) is

J =3+ gt (T 14)

where
% -y, 3 x” (T.15)
- 2cdpa 3dcp —db (m.1¢)

The field #* (Q) has weight X=1/2. The (commuting)
reparametrization ghosts b(Q) and c¢(Q) have weight 2 and -1
respectively; and the superghosts B(Q) and +(Q), weight
equal to 3/2 and -1/2 respectively.

The restriction of a KN basis of weight X to a contour
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C,. generates a space which is dense in the space of
(plece-wise) smooth tensors of weight A on the contour C .
This allows ome to expand the fields on any contour C by
using the corresponding KN basis.

Denoting by (h, )} the KN basis with A=1/2, and by (k)
the dual (A=3/2) basis to {g. }, the fields of superstring

theory can be expanded as follows

A=-1 oy = Z ¢ (@) (7. 17 3)
A=z0O X"@y = )L 9 A (L. 17 %)
ne g b= 7 b Q@) (.47 )
A=l TRY = Tty 4 (@13 4)
5
r= Yy Y@RY= Y dn @ W= b, (.11 e)
A= 32 P = Z Ba R3] (H.llﬁ
A= A PHa)y - Z Pt w4y (I.17 g)
A T AT (e (T .42 %)

Now let us introduce the Poisson brackets

L@y, Py}, = -inva, (@,q) Cadec  (18a)
&\V’*(&\, \\'"(Q‘Yﬂm_: s 4, (2,Q) (IL. 18 )
ic(Q\q E(Qﬂ%': ur D, (@,Q) (I .18¢)
3@, slaVl,, = 2 dy(a,Q) (T.84)
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where

AL (Q, Q) = é?l Z, A, () wila) (T.192)

§ (@,a) = L T hitaynn@) (T.19b)
N Toom W

D, a,a) = L 7, &ld) Qifay (@19 c)
A (S

dela,@) = L Y 9.(Q) leq (@) (M9 d)
Mmoo

These are the "delta"-functions over C, for smooth tensors

of weights 0,1/2,-1,-1/2, respectively (i.e. for any smooth

tensor F® on the C,, one has

a2 fif 7 (2,0 TN (@) . Qe (I90)
&

Q)
where é(Q,QW denotes the corresponding delta-function).

As a consequence of eqs.(II.17,18) we Thave the

following Poisson brackets for the coefficients of the

expansions

Cwe,owle i by

(L.213)
Lat, o 12 & (@ .21 b)
{an, anl= -k b (I.21¢)
3\3;’ c;‘&: -4 by (.21 d)
IR (bmﬁl = -1 dnm (.24 e)

38



Now let us consider L = L?\y + L¢ and G = G\' + G?‘
defined by
T@ = T L (L.22)
@y = T e k@ (I.23)
n
It follows
LYo o0 T 0, s 2 L) dade v (1L24)
TR e T o L T Tam '
¢ L nm
Qa Yo
A Ay - 3 A
L(; = Z_, Z C‘?‘, Cgbﬂg_u - E L Hin %o Piigos (H.-Zf))
& "\,:»‘ﬂuﬂ, n 5:'66’
and
g i n A 26
ST Zﬁ Am- % Dl 26)
N WoLT T w
VDY SO 20 A AP )
d S=l =t
where
\:;\wl\ = "\_ é (hmahg ~ho2ha) e
PAINS Cy
(1.28)
o~ A § W w3
n) M . §ooen
v

U—i,\—ﬂ = - z C&: \—ie&_s

5= Q

]
oo

g

(L, 60) = =8 ) W Gieoss (T, 28)

< .
Lz -4,

Y

( J . ‘}
L6 Onl = =) BY Lay,

t=-4
which is the operatorial realization of eq.(II.2) (apart

from the opposite sign in the first equation and the

factor -1i).

The next step 1s quantization. All the classical

quantities considered so far are promoted to operators
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acting on a Fock space. The Poisson brackets are replaced
by quantum commutators according to the recipe:

L 1 —}9.5' - "Lv\- i ]1ue.n'l.um
The normal ordering for the o! operators has been defined
in the previous chapter. For the other operators it is
defined by considering as annihilation operators b, for i>0
and c; for i_<_0,‘ d, and 7, for n<0 and B, for n>0, and as
creation operators the complementary onesT.

With this prescription one can calculate the algebra

of :L;: and :G,: and obtain

(_ sl , L{) o= L CG\ Lil‘\_g * X\Q
5:-13
['. Gn'.,". Li'.—x - \.‘\?\'\ - Gi'\‘(\-s" (H“‘j)o)
Sz-¢,
3 3 ¢ N
S\_'. Gawy @ Bm: L& = 2 B L“*'“'P/z: 4 (p%

This is the operator realization of eq.(II1.9). For the

central charges R"% and ¢ one has the following formulas:

. N b
Yy = V¥ o+ HC r DLt o+ }L?g'b (L. 34)

A . - :
where X"X was given in the previous chapter and

%a

b - N o n R
B2 LT Gk s @ (AT G G 8 (i)
\ . '_"'“'5’ 240 150
lﬂ: LiPEN

(L. 2a)

In the definition of normal ordering the discriminating
value could be chosen, for example, to be a constant"a"
instead of 0. This would amount to modifying the central

charges by trivial cocycles.
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X'\Pi'\ - -\— m-n n
- — ™
¢ 8 n§o,M>o ) ' '
RS ”—r\ < - z .
bR L ) (_ . 2 : N s oy
Moo= LR A e © (enee) s e
WAz-d,  Nfo
WA (4
A A RAY T
while O = D e + 0
with

a & s
L@‘k = kz - 2\ 2 Z (\_\E“B;m 6w,i+n-s éi Mm% * Em—»\m
- - )MAR =Py

where e=1 (0) in the R (NS) sector.

A\ and i O othecuing

B(XY s L p {0y1e A
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II.3 Construction of a BRST operator

The central charges %“& and k(’sm are antisymmetric
and symmetric resbpectively, and they satisfy the locality
conditions (II.7,8). So, by uniqueness of the cocycles,
they must be proportional to the cocycles k(e; ,ed) and
(g, . 8,) defined above. Therefore it is enough to calculate

them for a particular value of the indices in order to know

the proportionality constant. We have calculated i;'} for
i+j=3g and (bhm for ntm=2g and found
x?lw = L (280 g} AR (T.35a)
12
. : .25b
L (Rl (f YE ) L 28
0,18y o
v L (i-af & L (%) (L.35¢)
Xi,si-; 74 (i 0\ v
o N (ieag) [+ 2R (.35 4)
%(,l‘x—i = W=y - (=) (—Z ¢ <l
_gh \2 2 _a _. R a4 B .3
@F - s(agl s (B59-8) 5 Q= Ll epny (8 )

29w

A(A) and B(A) are coefficients which depend on the choice

of normal ordering for the «'. For instance, if we choose

. +
{ o= <>(‘A (\m)é N
= ‘3<"X = )
°(é o (L, e N
+ . . Y .o s ,
where A” are defined as follows : (i,j) € A" if i+j=s, i=cg,
, s=-g,...,8, where 0—‘3 ey 01 are real numbers, and (i,]j)
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€ A” otherwise, we obtain

ACAY = —b (Ve 3(2aS-aye s 2607 (T.372)
B(AV= -+ (& - ) (L r 91 (T.376)

We observe that at g=0 the usual expressions are obtained.
The anomaly cancels out , up to trivial cocycles, in
D=10. The trivial cocycles can be eliminated by making a
redefinition‘(analogous to L' = L,+ 1 corresponding to g=0,
in the bosonic string)’
Lh =L, +5,t ; N=-go,...,g°

Thus, up to trivial cocycles, one finds
fg= (30- ‘5> Kleg) o Qua= = (3D-15)0(gngm  (W:38)
The BRST operator on % is defined as

_%cap + Bd'b g (T .39)

or equivalently

Q- (T c@ + IMa t@ + Lol@{el, c(a\)

_p@ Letay @) - L §aa@y, @) b(@) ) (1. 40)
2 *

In terms of the expansion coefficients

%: ..
Q= 7, WY+ LG £ L LY G agh
. n YRogz-a,

l‘v\\‘-s

30 )
—_ z’ Z H:Y\ Q\'v(\ Py —
LN

Al
5'—'403 2 am q
! d

T

B:m }{\“Z{\m \Onw-\— P (D—_ . 4'&_\
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A
After quantization we have to consider Q = :Q:. One obtains

2 (A A a ~ )
d = ‘LO\V \ = 2:' lX‘)d ‘.C(C%: + Z B = '(‘“é\w\‘.
W .onm
So, it follows from eq.(II.38) that it is nilpotent in

D=10.
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CHAPTER  III

THE SUGAWARA CONSTRUCION

ON GENUS g RIEMANN SURFACES

45



IITI.1 The Kac-Moody algebras over a genus g Riemann

surface [15]

As outlined’in [7], a generalization of a Kac-Moody
algebra for a genus g Riemann surface is obtained by
considering the tensor product of a semisimple Lie algebra
§ and the algebra #% of meromorphic functions over %, given
by the multiplicative structure of this space. Let us
denote by T* a basis of § and set Ji= A ® T . We have

immediately the KN-Kac-Moody (KNKM) algebra xE

abe s < ’Qb

where

In eq.(III.1) we understand the summation over s which is
limited to a finite range (of width g+l) as it is easy to
verify from the definition (III1.2). From now on two
repeated lower and upper 1indices are understood to be
summed from -« to -+,

Let us now construct the l-differentials "fields"

) = I w@ ey (m.3)

a, - - s -
where now J. are to be considered as expansion coefficients

satisfying (III.1). Then
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(P, @) = A, ) @y - ARy (4

We would like to give an example of a realization of the
algebra (III.1l) or (III.4) in terms of fermionic currents.
Let 3%  be a multiplet of spin 1/2-fields holomorphic
outside P, transforming according to a real representation
of § and let‘ T denote the antisymmetric matrices
representing the generators of §. We start from the

anticommutation relations

L@, \WQ‘\% = by ola,@) Caaed  (I.5)

The field % is expanded, as in chapter II, in terms of the
basis {hL)' Now we construct

JHay = L@ TR vy
2

_b sy (T ey (- 6)
7

The normal ordering for the d; operators is chosen as in
the previous chapter. A simple calculation gives
[3HQ), @] = - Y@ (T T vy s 600,90

L (THTY) 2, Q) (@m-¥)

o)

where

D, Q) = (‘L - L) @bk laYh, @Y W@ (T8)

n<o n3o
™m0 m™meo

We will prove in section III.3 the remarkable identity

Na, @) = b, (T .9)

With this and the conventions
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T T w 0T 2 -k 6T @

where k is the index of the given representation, we can

write eq.(III1.7) as

[P, ) = 192 @ aea) - Lk £ aha, Q)

]

m. A1)
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III.2 The Sugawara construction on genus g Riemann

surfaces

Lets us start from equation (III.4) or, equivalently,
from equation (III.1l) with central charge k/2. We consider

the Sugawara energy-momentum tensor [l14]

T@ = -4 3@ (. 12)
Cytle

and its "momenta"

9T Ll B

Li= L §> T@ @) = -3 72 B3 - (. 13)
Ce

Here cy is the second Casimir of the adjoint representation

Cy éc."o . chﬁ\ _‘\gcd\

A

whereas the normal ordering is defined by

i P <N

NN 32: = * (. 14)
13 a
R P3N

where N is a fixed integer. Let us first compute [LL,J:]:

b 3 13 1)
{Ll ) JE-X = __E—V—-—- 9\?& 3l - h‘ 3,‘\( Jl km &5\
Cy +% C, +%
where 5& - _Jf § we € dA,
gm (Y_ﬂ'_ 1\6)
Q t
6“ - ( Z - Z 3 Q?f o(eh O(;lq
- (A (23] T
aeN 12n

In the next section we will prove the identity

(T - 0) @@ «gl@) A@) Ag(e) = data,a) (. 13)

LA LN
94N XA

49



As. it will turn out, eq.(III.17) is independent of N. It

follows
of, = - St (m. \8)
and
)= -8y (m . 19)

In the g=0 case this equation reduces to the well known one
i_\_\):)t\ = -% ]“"\'- (IL.20)

Using eq.(III.19) it is not difficult to find

lLoh) = K(Qi%f’:i‘q‘z% 5:2\‘3130‘:‘ 5w g MB\J

Cy + %
(W . 24\
where
" qr ¥ a
XF}): A K L - Z ) 5i‘? \)eg (\m Li\
7 Ty (28]
qen gyn

But using the definitions (I.42) and (III1.16) one easily

verifies that

i " ok PR S
lyy S~ L S = - G Liw

so equation (III.21) becomes

[\.'\)Lﬂ = C{E \_‘wg‘,,, tol diwd )Ca-6 (W.23)

R

It will be proven in the next section that £y coincides
with «(e, , e ) defined in chapter I. Equation (III.23)
completes our construction of a KN algebra over a Riemann

surface of genus g by means of the Sugawara Ansatz.

Finally we would like to remind that in the case of
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the bosonic string compactified over a group manifold the
target space 1is M4 x ¢ , where M* is a d-dimensional
Minkowski space. Then the generators of the KN algebra
relevant to this theory are the sum of the KN generators
for the usual bosonic string theory introduced in chapter I
and the L introduced in eq.(III.13). The central charge
cocycles corresponding to these two types of generators are
proportional since they are both proportional to m(ei,eé),
and the prbportionality constants are known from the
result of chapter II and the present chapter. Since the

ghost contribution to the central charge is unchanged it is

easy to deduce the equation

26 - a % ‘e, diW\ Q; (EIQM

Cytle

which characterizes the critical dimension.
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ITITI.3 Proof of the identities

Let us first consider the equation (IIT.17) with N=0.
In order to demonstrate it we construct a representation of
the central extended algebra 42 of meromorphic functions

generated by the (A;}, where the basis elements satisfy

\_AL\AQ\\: %kﬁt (TL.25)

This representation can be constructed with the use of
semi-infinite forms. We start from the highest weight

vector

NN R

(T0.26)

(_eo - C».)\/zr\ L«)B/z-\ ) Cé 004

The action of the A; on this form is defined by the

Leibnitz rule, where A, acts on each W, by multiplication
Acsy = o (0L.2%)

= e Pe

We obtain

AA) 6= (T - 7)) =6 ol @ ( .98)
1

o

=
N

0
R¢®

~
N

o

By computing eq. (III.28) in the particular case 1+j=g, one
finds that t=1. This prove eq.(III.1l7).
Eq.(III.9) can be proven along similar lines. We

define the highest weight vector
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Y, = ho Al AL - , R-sedor

(W .29)
WS~ Sedor
— \M/z,\ \,\5/1_,\‘ .. 3 :
We then calculate [A, , A§]¢ , the action of A over h“
being
M ~
A \’\n‘—' ’Ri\'\ \,\‘m ’ (m.SO)
. \
RN = - LE) A g W (. 24)
VA

Following the same procedure as before we find

% = ( T -7 ) R &0 (m.32)
™30 ™<o
n<o N 29

From this result, eq.(III.9) follows immediately.
The last part of this section will be devoted to

justify the statement made after eq.(III.23) that ”q‘ and

n(e(,%g) coincide up to trivial cocycles. To this end let
us calculate [e,, ed] on the highest weight semi-infinite
form-

(PN: ANI\AN,‘_\I\... (mﬁﬁ\

Using the wuniqueness of the cocycles satisfying the
"locality" condition mentioned in chapter I, one knows that
n(ei,eé) should be proportional up to trivial cocycles to mq
given by eq.(III.22). The proportionality constant can be
found by computing them for any particular values of i and

j. We have compute them for i+j=3g, and N=g/2 finding
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X-%}p S \('\—C&o\’é~ (i-an) = ¥ (22, ) (0. )
e 12 ﬁ

So the proportionality constant is 1. This completes the

proof of eq. (III.24).

54



CHAPTER Iv

- c SYSTEMS
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IV.1 Explicit construction of the KN bases [9]

In this chapter, we will make extensive use of the
definitions and properties given in appendices A and B.
Looking at (I.8), we observe that this behaviour is

correctly reproduced by using prime forms as follows

N G SARY
(L B " (V-4

£ (P) ?—\\)é{‘i(?ﬂ\

The correct weight in the P-variable is obtained by mean of

the o-differential

o BT g (1v.2)
YT B (e, eyt

Finally, we require fF\to be single-valued. To this purpose
q

we introduce a f-function

~ FNY -5y o
(@)= N ECRY T a@™ 9(ps en,)) (V. 3)
E(?‘D_\a{-su\ X
where

elni) = (7 SNR = ({ssmie + (-0 d

and the normalization constant 1s given by

(N re pY\
Na (R,P)= EiR,P)

£ 519 2(5—&nd+k\

a@ ™ e
o(p + e i)

Note that the #-function gives the zeroes of ?f\outside b .

As explained in chapter I, for g=1 and A=0 the
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expressions are slightly modified. From the expansions

given in section I.2, one can, similarly as above, derive

the following formulas

A' = AR 1\_\\\/3\, \Ju,"‘l!f\ A=D

A=0O \Q >%/’L 37

¢ A:"%/z)‘f'?%/z"

AP = W R EERT E(ra) ™ glereq)

E (P P \0* ‘:{2+1

(I . 4)
wherg
e = (\)“S/Z) (5+%/Z+1\P YRy FA 5
Pa e 20 acbilracy poril %, 5
N \ - Prantt 2(4-%q)
ana N (R B = BB ™) _“C(a\mj_\_(_m_\wm
o (P + em\em,m
a1
1=
x(.-“\:‘ - \\\-“" A\(\P\) C(P')M #A (U t:\
¢ b 4

wheee  A(PY is %idec\ ‘v‘7
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Case of half-integexr A

The explicit construction of these bases is made in
the same way as for integer A, but now we have to take into
account the spin structure. This is accomplished by
. . . . .. o
introducing #-functions with characteristics l(_ﬂ . We

quote the results below

) . QRN
(P (py = NP (R py E(PRYT

E(P ) \n-\-&(’é\
, P

SEP e |5 (Prethm)

(N.6)
w\'\ere
e(ramy= (n- S(M} P- (s st P + (1-22) & )
0 SUAY N
N(Rs ()= E(o, ®) g (e
o 3] (R +elnm)
In ‘Hf\g NS aedioe , odd apia Arudiure acnd ?\:\/2 ) dCLO(c\&(\q\ 4,
d’\é.vte\"f ) ‘g::\ (Qw 'MU’SL\ \32 o Cx_‘.(,:\.'i’c\_ gQV n = t%
SOA s . o -
*fx,:-\(ﬂ = N‘(',’l\ (9,2} olp) (7-™ 21
PRGN
() . - s
«C.lh () = Nf\’/‘: (p,,0) E(RE el7) (v+e \
E(P) P-\-) E (?,P.\
3 e Q- P, - v ’ Q . d('\ak"&carj Po‘\rﬁ & P‘;
wnece = .

(P, ™) QWJJ (Pae)

N S\ E (?,”v_‘\)G(R\ i NP Q) =
LA , LR E(7:,4) SR

o 15\
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IV.2 The operator formalism

let b and ¢ be tensors of weight X and 1-X
respectively. As 1is well known from conformal field

theories, they satisfy the equations of motion

D b(? =0 . vc®=0 (9.9)

As claimed in chapter I, these must hold everywhere except
possibly at the points P+ . If the equation still holds
even at these points, then we are dealing with the zero
modes. A discussion about zero modes will be given in the
last section of this chapter. Thus, the equation of moticn
implies that the tensors b and c belong to the space
generated by the KN bases {f?ﬁ and {f;“ﬂ} regpectively, and

therefore they can be written as

b= 7 b KT (L. 10)

P = T oo LN (v A1)

The summations run over the integers or half integers
depending on the case we are considering.

Upon quantization, b(P) and c(P) become operators and
satisfy canonical (anti-) commutation relations. From

these, it follows that the coefficients obey

(W\V.A2)



The Fock space is defined in the standard way. It is

convenient to choose the vacuum state as the one obeying

the conditions

Cloy = © , (< 9=
(W 13)

biloy = 0 IS

Similarly, the dual vacuum <0\ 1is defined by means of

<O\_ Ci= O ) {2 S01-3)
(v .A4)
Co\ oy = O , A< s0-A)
(an example of a different choice for Lol will be given
later).
We normalize the vacuum states by requiring
{ol\o) = | (Tl-‘5)
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IV.3 Propagators for b-c systems

Let wus first consider the g>1, X>1 case. The

propagator S(P,Q) is defined as
Sp, Q)= 0N T b clarflo)y =

o) o(® c(@\oy | Te>Tq
= (IV.16)

- 5

-0\ el bRy Ty T

where means the value of r at the point P. By inserting

P

(IV.10,11) into (IV.16) and using the definition of the

vacuum state, one obtains

[ 2ecd -

N e sy L

). Py b (e . Te vl

Bz S{1-)

5(p,QY) = (~. 17
s1-3)-1 "
Y (=™ N

-7 ETe Ty , Ta> T

Ll Y

We would like to compare these expressions with the well

known Szego kernel of the literature [6,17,18], namely

L@r0 (-1 2=t}
stpays A [E®™ SN g (Qob ru@) T
pAA A S (V. 18)

where
U = (230 (a-1) P+ 2a-1) A

A check that eq. (IV.18) and (IV.17) coincide 1is the

following. Consider the propagator to be a tensor F“JkQ) of
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weight 1-) depending on Q, at fixed P. Then it can be

expanded in terms of the basis {£%™)
T
(=) R (RN
F (Q) = Zl Ay Qk (Q) (T .19)

13

Multiplying by f&n and integrating over C, we obtain

-~} T - N

a = - = Q\f‘ (1¥.20)
W
T

Now we can use eq. (IV.18) and the explicit expressions for
fg“ in order to arrive to eq.(IV.17). In fact, solving the

integral (IV.20) we obtain

A SIAEEN
ke R T T
a, = . a< le
0 . v < 5“’A\
(W.21)
° . ko350
£ e s

in agreement with eq.(IV.17).

Another way to arrive to the same result consists in
looking at the behaviour of the sums (IV.17) in
neighborhoods of Py , and P=Q. After that, one uses the
Riemann-Roch theorem to prove the existence and uniqueness
of sections with such behaviours. The explicit
expression follows from a similar construction as in
section IV.1.

Consider now the case A=1. We have already seen that

the bases {AL)’ {wi) are slightly modified with respect to
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the generic ff\ . It is convenient to define the wvacuum

state in this case by the conditions

C'\\D> - O ) LS Ll/f:
(tv.22)
\O{\O> =0 ! L7 g/'l
So, the propagator is
Z w, (A A\‘(Q\ ) Ty Ta
LESTES!
-
K
— Z .'CO\‘U_") A\(Q\ . Taq7> Te
Y=~

The summations in (IV.23) can be performed by the two
methods explained above. We will not repeat the
computation, since it follows the same lines as before. We
just quote here the result which agrees with the well-known

Szego kernel for A=l [17]

SP,Q) = E(Q,R) 6(a-P-w) @ (P -0 -u) (. 24)
E(e,a) E(P,®) B(Y 9(a-R-W)

|

where u=g P - P, - A
Finally, let us consider the genus one case. The

vacuum state is defined by the conditions

Ciloy =0 C<

(W .25)
oy = o ) )

The propagator can be computed in much the same way as for

the previous cases, and we obtain

@a-1)
= o S ‘@\ (AP i) (\V.26)
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where u =P - P - A (2X-1)

Propagators_ for half-integer A

For half-integer case the only subtleties that arise
in the computation of S(P,Q) come from the presence of
branch points in the NS sector. These branches points are
absent in iﬁtegrals of the type (IV.20), due to the fact
that in the NS sector both F ‘' and ft“in eq.(IV.20) have
branch points in Py . Following the same lines as earlier,

we obtained the results given below:

g=2, NS sector, A=l/2

(20 (g .
Seay s (E&"_’E—JYMW {G(P\\m Vo 1%) (a-P s um)

E(R Q) £ (B TQ) %) (umy)

(w.27)

where u()) = -(2X-1)(g-1)P_ + (2x-1)A

g=2, R sector

ShQy= 4 lE (P2 }(2“-”(‘3-\\*‘/2 &E (¥, ?DE n {G(ﬂm-n el% | (a=P + U

E(?,Q) LE(Q,P) E(Q,R)) L@ o |%) (uway

(V. 28)

where u()\) = 1/2(P, - P.) - (2Xx-1)(g-1)P_ + (2Xx-1)A

In the X=1/2 case, formulas (IV.27,28) still hold,
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except when the spin structure is odd and the sector is NS,

for which we have

S(Pay= EMPIEW@RO {23 (Q~P & Pe-b (v .29)
E(P,Q) E(P,P) E(a,R) & [}) (7-R)

If g=1, and the spin structure is odd, the propagator

in the NS sector for any half-integer X is given by

3

- s Za-) an

sty L B E(aR) <%(%\ 5 15| (a-p rue)
- .

E(P,Q E(PR)  E(Q,P) \ S 1] (el

(\W. 30)

where u()) = P, - P_ + (2x-1)A

For any other case with g=1 the propagator is given by
eq.(IV.27,28).

N-points correlation function can be calculated by
using Wick;s theorem. The only non-vanishing correlation
functions are of the form <Q\_T% Q' QMQQ\CQQQ-\K\O7

List

The rule to calculate them is

. L@ T (Gl T L) claniloy)
R T \;—'\-Y (b(?\ C(Q\) 7 \07 _ a3 t=% t bl
COLTHT (ely clan){oy = , (1v.31)

N

TT (<o) Tielea c@)loy)

S iz

where o runs over all permutations.
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IV.4 Propagators computed by starting from other

vacuum states

In section iV.Z we have arbitrarily introduced vacuum
states defined by conditions (IV.13,14). One may wonder
whether this is the only possible choice, or what happens
if we define it by means of other conditions. One can
see that the only 'changes which will arise in the
propagators are poles in P_ rather than P, (or viceversa)
and so on. This is clearer in the path integral approach,
where the propagator is defined thfough

Co@ @y = JNMCW blz) . o(C(w..clwn by @y exp -5 o,c]

kS
Z
(IV.37)

vhere Z- j{o\b Ac Y (Z) ) € (). (W exp - E[b, €]

*N:number of zero modes of XA-differentials

M:number of zero modes of 1-A-differentials
From this, one immediately see that poles will arise
whenever P be equal to w, , or Q equal to z; . In the KN
formalism, all the poles are either in P, or P. . There
are no more arbitrary points.

As an example, consider the vacuum state defined from
the reqirement b(P)|0> , c(P)[0> finite in Ps , and
<0|b(P), <0|c(P) finite in P . This leads for X>1 and g>1

to
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(V.3
bi \0§: 0 ;b NEREFN
and
ol e¢=0 y L= SR
(v.24)
{0\ by =0 C g —ol

If we defined the propagator by
<b(P)c(Q)>=<0|T{b(P)c(Q)}|0>

then we would obtain a vanishing result. This is because
the vacuum defined above gives <0|{0>=0, as it can be seen
by using the algebra. This is analogous to what happens in
the path integral formalism.

We define a correlation function for this case as

follows

Lo®) .. bR C@...c@) =

Lol T { bZn... cld . bR .. c@y). .. 1o (\V.35‘)
<0\Ti\=(m-..c(w.,\~-§\o>

We will recover the results of the preceding section when
we identify the points z, with P_ and w, with P,
Let wus first consider the case X>1 for gz=2. The

propagator is

bl e (@) = o\ T iWﬂ ... blzy) b(P) c@i\o) (V. 36)

o\ Tz b § 10y
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wnere N= 25"y +4 .

By using the algebra one arrives to the following result

S, (2, ... S, D

24P Tz L a\KEM‘)
bPea@y = A a4 ‘ .39

del \\ Qi (Zd\\\i
3P ) - g0

S f‘r_sm

y m e ey

: +
where g, stands for f

By taking the lin;it z = P , for which S(z; ,Q)=0 we get

1im <b(P)c(Q)> = S(P,Q) (11.28)
Z,;-"P.

as asserted above.

Let us consider as another example the case X=1. We

obtain
@@= b« (V.39)
det{jwizpll
S(P,Q) - 9P, %) S, Q)-S@uwW) ... $(2,Q) - S(2q,%)
W, (P W, (7 L iy (2)
% de{ I ‘) ?‘é
W, () ayl(z) Wq (29)
in the limit z ~E , w»P, , we recover the expected result
lim <b(P>C(Q)> = S(P,Q) (‘qu‘)
L= P
\xl—-.vP.;.
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IV.5 Some remarks concerning =zero modes

It is interesting to note that the KN bases have among
their elements the zero modes for A-differentials, which
are by definition the holomorphic sections of K.

For example, we observe that from the explicit
expressions given in section IV.1l, the basis of meromorphic
vector fields has three zero modes for i=t1,0 when g=0, one
zero mode when g=1 (corresponding to i=1/2), and no zero
mode if g=2.

It is well known that the number of zero modes of
quadratic differentials coincides with the dimension of the

moduli space. In fact, for A=2 eq.(I.8) becomes

2y = “Q?t S (1 +otza)(dz] (\W.41)
This is a zero mode provided that |j|= g, -2 ; therefore
there are 3g-3 quadratic differentials for gz2 and no zero
modes for g=0.

If g=1 there is only one holomorphic section of K for
any A € Z (the one labeled by i=1/2 in eq.(IV.5).

On the other hand, we know that the number of =zero
modes of the 3/2 differentials plus the number of quadratic
differentials gives the dimension of the supermoduli space.
In fact, for A=3/2 we obtain

(3r2) (EA% by

G CAIC S S (RO AN E TN (V. 49)
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from where we observe the existence of 2g-2 zero modes.

The explicit global expressions of the zero modes can
be obtained from the formulas of section (IV.I). As an
example, let us write the basis of holomorphic quadratic

differentials

@ d+ 02
;P = N (e m) ELP B ;

sw 0P rey)) (W.43)
E(p ’ ?_\é‘%wz

where
e = (J+a.-0F = (}-%+2) B +32A
The dual to the QS form a basis for the Beltrami

differentials u'. They obey the duality relation

0. = 4.
- g mag = by (1V.44)

The vector fields e with |i|<g, -2 can be used to
generate Teichmuller deformations of the Riemann surface in
the following way. Divide the Riemann surface in two parts
D* and D containing P, and P. respectively such that D' be
a small disk whose center is P, and D'n D =A, where A is an
annulus. Take a local coordinate z on the disk. We can use
the vector field e to obtain a new Riemann surface as
follows. We deform A-~A' by

z—+z+¢€& ; zZ€A e€C (N'A‘S}
where e = & (z)3/8z. Now D is glued to the disk D by
identifying the new annulus with the previous collar on D*.
This new Riemann surface is not analytically equivalent to
the old one when e; has poles both in P, and P_ which
corresponds to |[i]|=g_ -2.

Under the infinitesimal deformation (IV.45) the metric
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transforms to

P(p) x \dz s e Azl (V. 46)
where
% &, L Per
pPY = ‘ (\NA?\
0 i Pe -k

Now we are ready to give the explicit expression for
the variation of the period matrix Q under Teichmuller
deformations. Under the deformation of the complex

structure given by (IV.47) we have

]
|
6‘2Q‘& = Bz Yh'\i Po = 7 ?Y\aq;eft ’ (. 48)

where the integration contour separates P, and P_. Then it
is easy to see that the wvariation 6kﬁyé vanishes 1if
|kjzg, -1. Now suppose v 1s a linear combination of
meromorphic vector fields e; of the KN basis. Then the most

general infinitesimal variation of the period matrix is

given by eq.(IV.48) with e replaced by (g>1)
%o' A

Ve T ye (1.49)

= '%o’l’&
where the explicit expression of the e, can be extracted

from the general formulas of section IV.1
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CHAPTER V

HAMILTONIAN FORMULATION OF STRING THEORY

AND SCATTERING AMPLITUDES
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V.1l HAMILTONIAN AND EQUATIONS OF MOTION [10]

The energy-momentum tensor is by definition

t= 2 8S LX) aqh o AGE ' W
\h\‘/’l [eha.\o .

where h=h_, do® ®do® is a metric on X and |h| 1is its
determinant.

Let us take as parameters for any chart o'=r, which
plays the role of (euclidean) time, and o*=c. We define the
Hamiltonian in the standard way as the integral of t,, over

Ct :

Hi)y = L § s t, :\Q:imc\.‘«i\; (V.2)

The momentum is similarly defined as

Pry= L b 46k (V.3)
A L

H and P are the generators of translation in 7 and o
respectively.

Taking into account the tracelessness and symmetry of
the energy-momentum tensor, eqs.(V.2,3) can also be written

as follows

Mty = - §> (tlee (V. 4)
AN Ce

Pl7) = ,\._§ (t1eQ) (V.5)
m

73



where e, , e  are the following vector fields

€. = €y 4 ex . e = (le-eg) (V. 6)

with e, e, the dual meromorphic wvector fields to dk and

dk respectively# ,1l.e

d\t_(ey_\ = (Ck\\ d\\&\ = 'l = QEI\ d‘E\

.

‘ (V.7)
de (ekg') = (el d“z\) =0 = (ﬁ;\d\ﬂ

Whenever dk has a zero (pole), e, must have a pole (zero)
for (V.7) to hold. Since by Riemann-Roch theorem dk has 2g
zeroes out of P, we conclude that e, has simple zeroes at P,
and 2g poles outside them. Of course, the same occurs for
its complex conjugate e, . At these 2g points one has
dr=0=do. These points correspond to the critical points
where the C. split or join.

Inserting eqgs.(I1.38) for the energy momentum tensor
into (V.2) (t=T+T) we obtain the Hamiltonian which takes
the form

wEy= L § (MX”“P\Z F (-8 e
4T

&

L L d () )
AN t,

Now we impose the equations of motion which follow from
this Hamiltonian. These are easily obtained by using the

Poisson bracket (I.25)

#We hope these vector fields not be confused with anyone of

the (e;} of the KN basis.
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Le Mz im0 = ent (Prie (v.9a)

¢ ow) e A
U AF S BT

where Le denotes the Lie derivative with respect to the
vector field e.

The first one tells us that P" =1/2x(8-3)X" , so
eqs.(I.38) become T=-1/28X.3X, T=-1/23X.3X .

By contracting with e the second equation in (V.9)

becomes

2ox = - X (VA0

which is the analogous to the g=0 equation of motion %+X=0.

Eq.(V.10) implies

35X =0 (V1Y)

The most general solution to this equation is

K@ = st + 5 (K An(@) + %o An(Q)) (V.12)
. “E 9l

The familiar coefficients af are introduced by the

following definition

axt= o r Pz ) o w, (V.12a)

= W —mmPr = ), & e (V.13%)

i

The next step 1s quantization of the theory: the
coefficients of these expansions become second quantized
operators acting on a Fock space, whose commutation rules

are to be derived from the canonical commutation relation
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Upre@y, X7 = a8y Q2 e (v4)

This leads to the following commutation rules for the of ,a!

U O
Loty om]= B U R )= Bl
| (v.15)
v VYY)
Lw'g,&‘;}:o 3 LF“;X}:”\
In terms of ok , &% the Hamiltonian and momentum
operators take the following form
RO = iQ. Zl (Qnm @ oty Nz + 1, (T2 R, & :) (v.lea)
M
P = L 7, Qom0 ottt = Tam(@) 2 %07 (V.16 0)
2 nm
where 0 . (V.1
Qv\vv\ (t\ = L % (Q\L\U-\h\)h)m = Mn(z\ : ;l)
mi Je
T
Remarks

i) At g=0 H and P reduce to the well known expressions

H: \—o ""T—.o ’ P:_- L(Lo "'T—-D\

ii) H(r) and P(r) depend on time. This is due to the 2g
poles of the vector fields e, , ey . The variation of 1, (7)
is however very simple. It is like a step funcion in the
sense that it remains constant until it reaches a splitting
or a joining of the C, (because the integrand picks a pole

from e, ), where it changes value by a discrete quantity.
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iii) If 7 is small enough (T<n , where 7, 1is the time at

which the first bifurcation of C, takes place), one
can verify that
W@ oy = o (V.18)
HG \tp )y = 2 | o) (V.A%)

(the definition bf the wvacuum state and Physical states is

as in chapter I). Similar considerations apply for r>r and
the dual states.

iv) Note that our definition of the coefficients Xﬁ and P)
is not the same as the used by KN, given in chapter I.

There, X"(Q) and P?Q) are expanded at fixed 7 in terms of
the bases ({A[) and {w; } respectively. In consequence, the

coefficients of these expansions depend on time. It is easy

to obtain the relation between both sets of coefficients,

M@ = K+ 7 L XL nxe (V.20a)
Lk -1 )
= B - ) T, Br (V.20%)
M,
where -
Qm,\ (t\ = —L- § Wy AW\
A\ o

The time dependence of these variables follows from the

equation of motion derived from the Hamiltonian

ey = (R, @) . Py [R@, R (V. 21)

v) Ghost system
It is straightforward to repeat all these steps for

the ghost system. We are now particularly interested in the
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anticommuting reparametrization ghosts (bc) of the bosonic
string theory, with weights =2 and A=-1 respectively.

Their contribution to the energy-momentum tensor is

1,“\(‘; cdb + 29 + E%E + '}.6‘;5{; (\/22\’
So, the ghost Hamiltonian is given by
%-\I\ — ( / ~, -~ ' i - N
HE D) = ‘—‘—fy ccleob +200h + 336 #2383 (v.13)
A

which allows, by wusing the canonical anticommutation
relations between b and c, to obtain the equations of

motion

le,c = LW cp= -t e (V.244)

Le,b= [Ryoi= —iled (V.94 )

are

clay= ) & €W \ (N.954)

L(Q) = Z by 2.0a) (V.15 b)

t

and similarly for the complex conjugates b, C.
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V.2 Vertex operators and scattering amplitudes

Let AM[E] denote the M-particle scattering amplitude
of a process performed on an equivalence class of Riemann
surfaces [Z]. In order to obtain the total scattering
amplitude, one has to sum over all equivalence classes and
over all topologies. This is done in [11l]. Here we shall be
mainly concerned with the definition of A=),

In string theory, a scattering amplitude for M

particles is given by the vacuum expactation value of a

product of suitable vertex operators ({V; , i=1,...,M}
representing the external particles
AT = {o\ T 9,\}‘.4.\/‘,\7\)\@ (V.26)

Now we would like to find the right definition of the
vertex operators within the present formalism . A vertex
operator for an on-shell string state of momentum p* is
some local field W(Q;p") with the correct Lorentz number of
the represented particle. Moreover, it must change the
momentum of any state by p*, so it must carry a factor
exp(ip.X(Q)). Finally, because the vertex must be invariant
under reparametrization, one requires W(Q,p* ) to have

dimension (1,1), so that

v - wa, ™) S (v
T
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be invariant. The tachyon vertex at g=0 has the following

form

P
——
~
}A:s

V= | dt eV (v.29)

Up to the addition of holomorphic terms, Riemann-Roch
theorem guarantees that the only one differential which has
this behaviour in a neighborhood of P, , and which has no
other poles anywhere on the Riemann surface is dk; and
similarly for dk. Thus we are led to define the tachyon

vertex operator as

Note from the definitions that

dendz = AGradC 20
Therefore the tachyon can also be written in the form

" AG o‘\?'x
LA e

VA 2
\/{adf\ - J X J (\\J.-S rﬂ
C

where £,, (p) is a symmetric tensor obeying the conditions

18

QW p = 0, ££’=O, and p2 =0, in such a way there is mno

‘\:f)(

- -, ip.X
anomaly in the products (ax?ax”). e , ax" .5%" and eP

respectively. When EPV is an antisymmetric tensor, this
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vertex represents the antisymmetric particle, present in
the massless level of the spectrum of the string.
Finally we find the "dilaton", represented by the

vertex operator

Vy = j d3kn o 2 (.29

A generic vertex vertex representing a nth level state

will have the form

where the polarization tensor has to satisfy the
constraints that follow from the requirement that W..» have
the right conformal dimension. Eq.(V.33) can be written

simbolically as

n Wa L Ty . p N
Ve = £ lenwel (oK (v.24)

This is not however the most general vertex operator yet.
It is also possible to include X" -factors with higher
derivatives. General expressions for vertex operators, with
the proper trace and transversality conditions for the
polarization tensors, are given in [19].

In ref.[ll], vertex operators have been defined in
this context with the use of an arbitrary metric. The
choice made here for the measure has the virtue of making
apparent the factorization property in holomorphic: and

antiholomorphic  parts, and arise as the natural
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generalization of the g=0 expressions.

Computation of [L; V]

We require the vertex operators W to have conformal

dimension (1,1) in the following sense

[Ln )W‘X= \"v-en R &En 7\“_3: LE,, " (\].55\)

These are the generalizations of the requirements at g=0.
The physical reason 'of conditions (V.35) is unitarity:
unitarity requires that only physical states, and not
negative norm states, contribute as poles in the amplitude

(V.26). This amount to say that the state

VAT Vi L2 L0

when it is on-shell, be annihilated by the Lﬂ,for g
This is indeed the case provided W has dimension (1,1). In
fact; b¥ acting with L, on this state and commuting it with

the vertices on the left one arrives to the following state

V(T - - Ly (T oy

plus states containing a commutator placed between two
vertex operators. It turns out that these terms vanishes
because of conditions (V.35), and what remains gives zero

if n>g, and 1 if n=g, (for details, see ref.[10]).

82



V.3 Computation of correlation functions

Consider first the correlation function

<8x" (P)8X’ (Q)>. By definition it is given by

oV Tlax @ ax’@floy = A% ) 0 (t-m) +

+ AU}A ( Q)P\‘ 9 (TQ":P) (‘\"/ 3’0\’
where

A (2Q) = (ol ax™p ax’(a) oY

By using the expansions, we have

A™ (P,QY = L £0\ ath X 19y WalP) 0, (3] (V.23
[alaal

Now, from the vacuum definition given in chapter I, and the

commutation rules of the o« one finds

e QY= AL (RA) xR (R, Q)+ AY(RR) (v.39)

where

By

\ (.P,Qs\ = T\W 7_; \6\;'1 ) (®) (")}AQQ\
N L

,'cl
C:<%/l
Auzu (P,O:) = Z FARATE A OJQ‘;(Q\ ; I= \-21!2){"/2)
(el ¢
a<7th
3 -‘ <" " N -
A By = ) € o (7) wyl@y
el ¥

As we will see later there is no need to calculate the
constants Cﬁ =<O{afa?|0> because Ai(P,Q) is holomorphic in
P and Q (they are computed anyway in ref.[10]). A"'(P,Q) is

nothing but
A‘:U (¥ 703) = ’SQ = (7 Qs (V-SQA
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where S(P,Q) is the propagator for a b-c system of A=0. Now
we would like to compare these results with the propagator
that one finds in the literature [18]. The latter is the

unique exact meromorphic one-form G(z,w) in bpth z and w

variables which satisfies

3. G(z,w) = To, 02w (V.404)

ot

TR, 5 (2 -w) (V.40 L)

Uniqueness is seen as follows: if G(z,w) obeys the above
equations, then it is determined up to the addition of a

holomorphic tensor in z and w, i.e.

Gz, w) = Glzw) + )L a @)l (v.41)

ot
\‘A-L

Now the requirement of "exactness" completely determines
it. In fact, if G and G' are both exact, then for the «
cycles we get 0=Z a1, which implies a=0.

“w

‘One easily verifies that our propagator satisfies the

above differential equations. Indeed

v i N _ N . | .
CH A (zw) = ozo, Sl =} Bw6(2~w\ (J-AZ}

and similarly for the other differential equation. Since by
construction our propagator is exact, from uniqueness it
follows that it is equal to the well-known propagator

quoted in the literature, namely

() By "exact" we mean § G(z,w)=0 , with v any cycle.
¢
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Integration of this correlation function allows one to
calculate <X(P)X(Q)> wup to the addition of functions
depending only on P or on Q . These terms are however
irrelevant in the computation of a' scattering amplitude.
They can be, anyway, determined from the differential
equation which the propagator <XX> must satisfy. The latter
involves the metric. This establishes, I guess, a
connection between the metric and the representation of the

algebra of the operators of.
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CONCLUSIONS AND DISCUSSION

We have introduced an elegant operator formalism for
theories defined on arbitrary Riemann surfaces. We have
seen many applications of this formalism. We have recovered
standard results, as propagators, and found new results, as
the Sugawara construction at arbitrary genus g oOr the
Hamiltonian, and scattering amplitudes in this context.

Unlike other attempts [6] to develop operator
techniques on Riemann surfaces, this formalism has the
virtue of being manifestly global. And it is certainly
natural, because is constructed in the same way as the
standard operator formalism of field theories. As a
drawback , one could mention that much of the information
of the original theory has been lost. Here one starts with
the gauge already fixed. As a result, everything looks "too
much"” holomorphic and antiholomorphic, and factors, as
determinants, must be included ad hoc in the total
scattering amplitude.

Chapter II is an open door to many problems; e.g. the
classification of the unitary representations of the
supersymmetric KN algebra, or the application to the
heterotic string theory, the study of Ward identities by
using the g-loop BRST operator defined there, etc.

The Sugawara construction performed on chapter III may

be the basic element to begin with a perturbative study of
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string theories on group manifolds. It remains to make the
super Sugawara construction in this framework.

In chapter IV there is-no new result (with the dubious
exception of the propagators in the R-sector) which have
not been already found by path integral methods.
Nevertheless, this chapter constitutes the first sign that
by this formalism one can get the same results as the
Polyakov approach.

In chapter V the necessary tools for computing any
correlation function (in particular, scattering amplitudes)
in string theories are provided. Although one (formally)
already knows the results by the path integral approach, it
is of interest to reobtain them in this context, not with
the hope of avoiding difficulties (because this 1is quite
improbable), but rather with the certainty of getting a
closer approach to conformal field theories.

Drawing conclusions from something which 1is not
already concluded, is not an easy task at all. Guessing the
result of computations which have not been performed yet,
is a job worthy of a prophet, rather than a physicist.

I hope that these last two pages have succeed 1in
their modest purpose. Namely, transmitting an idea on what
might be waiting in the future for this interesting

formalism.

87



ACKNOWLEDGMENTS

I wish to thank especially Loreano Bonora, for so
many useful discussions and advices. I also thank to all
the people who, more or less, helped me along this year in
understanding the subject of this thesis. They are, with I
hope no omission, D. Amati, M. Bonini, G. Falqui, F.
Ferrari, R. Iengo, A. Lugo, M.Matone, C. Reina,M. Rinaldi

and K. Wu.

88



Appendix A

Here we summarize the notation about theta functions
[20]. Given the g holomorphic differentials m; with the
standard normalization around the basis of homology of the

Riemann surface Z

§ N, = é% ) § N = Ly ,ImQ) v 0 (A4
%

the 6-function with characteristics \%\ associated to 2 is

9\?7\(2\ = Z exp (iw (N ‘ﬂt Q (Nre) 4 20 (Na)t (2480)

wez®
= exp ((Tetflar 4 (2nat (2rpl) 0 (2405 2%) (A.2)
) @
glzy= 95| @ Jzegt o p e R

The Jacobian torus is defined by J(2)=C* /T(Z) where the

period lattice I'(Z) 1is

N R
V(Z\: (Ive vz nrem {(n,») € Z‘{fg

The set @ = {z:6(z)=0) is a variety of complex codimension
one in J(Z) called ©-divisor.

When the characteristics «,, B; are 0 or 1/2, the
corresponding §-function (A.2), known as first order theta
function, is even or odd depending on the parity of 4atp.
The theta function is the unique holomorphic section of a
holomorphic line bundle on J(2), called ¢-line bundle,

defined by the transition functions

9 \Tﬁv‘i(umﬂm\) = ep (-iTmiam — otz i (atn —E) B (5] @) (A.3)
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The Jacobi map I:3+C? is defined by

v

1™ = 3 il , %, 7 5 L {A.4)

s

where P, is an arbitrary reference point on 2.

An important property of the Jacobi map is that it
maps divisor classes to J(=) (Abel's theorem), that 1is,
given a divisor D= % B - T Q, 1(D)=5 I(2)-3 1(Q,), then
T(D)=I([D])mod.T(Z) where [D] is the divisor class defined
by the equivalence relation: D, = D, if (D, -D ) is the
divisor of a meromorphic function. In the text we denote
for compactness I(D) by D itself.

A fundamental theorem in @-function theory is the
Riemann vanishing theorem. It states that the function

TPz @ (IW - 2 T(ea+ 1)) (A.5)
either wvanishes identi;ally' or it has exactly g-simple
zeros in P=P , i=1,...,8. A=(Ak) is the Riemann divisor

class defined by

W S 4oy (h.6
1t Dy = 17 -1 Qu Yo/, :f Y\‘l\‘}?} j (\l S )
Q#{l 3, ¥

2

As a useful corollary of this theorem, we have

q-1
=

TOT(RN s T = 0 ¥Re L (A1)

=Y !

o (-

The prime form E(P,Q) is a multivalued
-1/2-differential without poles in both variables P and Q

with a unique simple zero for Q=P

£(ray= 2Lk 282 o wae
wiey RiQ)
£ 2 P-Q an AwP (A.8)
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() h,(7) is the holomorphic section

™ 2
—

where KPy =

B[
w0

5|

i

of the spin bundle corresponding to a nmnonsingular
(3,2151000£0)  odd spin structure (%) . E(P,Q) is
independent of the particular choice of Laﬁ‘x . For cycles
winding around P, it transforms as

Pinaimb .

E(P, Q) —— axp (~iTrbam —i2l m (1F) ~1(a))

R (AL9)

Finally, we introduce the o-differential

D

- . -
3; (9 WEa, 9 (A.L0)
&

S(e) = @xXp ('A

6=

b

It is a g/2-differential defined on a covering of Z without

zeroes and poles. Its transformation property is

Pina ¥mbp

Sy — 2XP ((n(a_&‘) Wi — (2nmt T(A) - <%—‘i’"; 1(9) \\‘) G (P)

g

A

—
g
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Appendix B

In this appendix we illustrate some useful properties
of the ©-divisor. Let k be a degree (g-1)-line bundle. It
has a holomorphic section if in 1its corresponding divisor

3.1

class [x] there is a positive divisor i% P. . By the

Riemann-Roch theorem, such a divisor exists if and only if
V 3
K ® £  has a divisor of the form X Q . Let D(M be a spin
3 d
bundle (i.e., 2[D(uﬁ]=[K]), then the set

A
a

T €
'lz:; Di - D(d@\ \?L Vv 'vPﬂA-\ 2 () c

e
S(“p\ = &kl ( ~ o )
is a symmetric subset with respect to the origin of J(Z),

that is

3= - . N

- ( \ kg —bh’f(ﬁ)\ = 1 ( ¢ % - 1{)“"&\\) < 5{?{@

iz

From the vanishing theorem, as the points P, sweep out zZ we

recover @

Ty - FTUEA LR R fRE =0

Therefore

5(9(@ = \@(up,\ - @ 7 ZE”P-‘\ = S— ( AR D("Wﬂ\ (%&\)

Since © and awﬂ are both symmetric subsets with respect to

the origin of J(Z), we have

O 28, = ) (% 2)

This means that 9(Z+23%m)/Wz) is a constant on the compact
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space J(Z), therefore 27(@ e T'(Z¥), that is, each Vg is one
of the 27% points of order two. Being 2** also the numbef
of spin structures, it follows from Abel’s theorem that for
each half-points of J(Z) there is a different D(,(ﬂ and

viceversa. Since we can write B\(um: F#rQa then

— 1 z . _')\.c;'\\ (—{\: Q (. o @ A “é\(d[q

J

; X;,{Bi & “"\O?('/l"x

’@m'u
j—-( D(O«(S\» = L(‘D\ -P - Lot (B-zﬂ

Noting that

a.

iﬂ(?—;\ﬂ—b(m\ VR, By 6\2-};: © (6.4)
and that 8 is independent of P, we see that Dy, depends
only on the homology basis chosen. From (B.4) it follows
that there is a one-to one correspondence between degree
(g-1) line bundles for which 5& has a zero mode and points
in ©. Moreover, it turns out that K (2,s) equals the
multiplicity of the zero of §(z) at 2Z = Ieay- 108y |

For odd characteristics |}},0€8,, so that there is at

least a set of points P& s s P“ such that

g -

I(% R - ) = O (8:5)

(=1

therefore D(ﬂp’\ has at least a holomorphic section with zeroes
at z=P ,i=1,...,g-1. In the case of even theta functions
there are certain wvalues of 0 for which 0 € 9(%); for
example , for g=2 this happens when the period matrix 1is

diagonal.
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