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Introduction

Historically, the first reason which motivated the interest of physicists in quantum
group theory was the powerful tools that quantum groups provide to solve the (quan-
tum) Yang Baxter equations [(Q)YBE’s]. On the other hand, one can invert the terms
of the problem and look for physical applications of quantum groups, which become
the algebraic structure giving new meaning to QYBE’s. A significant example of
the context in which this philosophy can be verified is represented by the conformal
field theory (CFT) and one of the aim of the present Thesis is to review some recent
results on this subject. On the other hand, many problems remain still open, as
those concerning the theory of quantum group representations, when the deforma-
tion parameter is a root of unity. From a physical point of view, the most interesting
question is probably how all the different fields, in which YBE’s play an important
role, can be connected by means of the abstract language of quantum groups.

Indeed, during the last few decades, YBE’s appear more and more frequently,
in their classical and quantum version, as the condition for the solvability of physical
problems in many different fields, from the classical and quantum field theory mod-
els in 1+1 dimension, to the two-dimensional lattice models of classical statistical
mechanics.

In the literature, YBE’s firstly manifested themselves in the works of McGuire
in 1964 [24] and Yang in 1967 [35]. They considered a particular quantum mechanical
many-body problem, and, exploiting a technique, known as the Bethe’s Ansatz, to
built exact wavefunctions, showed that the scattering matrix factorized to that of the
two-body one. Thus, they was able to solve exactly the problem. In this context,
YBE arose as the consistency condition for the factorization.

In statistical mechanics, the research of solvable lattice models, actively pursued
since Onsager [28] proposed in 1944 his solution of Ising model and culminated in
Baxter’s solution of the eight vertex model in 1972 [4], find unifying criterion in the
exactly solvable vertex model construction, where the Boltzman weights satisfy the
QYBE’s. Another line of development was the theory of factorized §-matriz in two-
dimensional quantum field theory. Zamolodchicov [37] pointed out that the algebraic
mechanism working here is the same as that in Baxter’s and others’ works.

A first attempt to point out a common feature was represented by the quantum
inverse scattering method, proposed by Faddeev, Sklyanin and Takhtajan in 1978-79
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[9,10] as a unification of the classical inverse scattering method (soliton theory, Toda
lattices) and the quantum integrable models mentioned above. In their theory, the
basic commutation relations of operators is described by a solution of YBE’s. Here-
after YBE’s became a mathematical tool which allowed the classification of exactly
solvable models and their study as an abstract subject led to the idea of introducing
certain deformations of groups or Lie algebras, called quantum groups by Drinfel’d
8].

At about the same time a new link invariant was discovered [21], and, subse-
quently, the aspect of YBE’s as the characterizing relations of braid groups has been
brought to attention. Closely related structures have also been revealed in CFT [34]
[27], introducing the problem of a hidden quantum group symmetry. An alternative

approach, based on the Toda field theory [14], led to the same results in a more direct
way.

Therefore, the general tendency of recent developments seems more and more
to attribute a significant physical role to quantum groups. It is the purpose of
the present Thesis to provide a tentative analysis of limits and possibilities in this
direction, as far as CFT is concerned.

The work is organized in three chapters. Chapter 1 is devoted to provide an
introductory discussion about the axioms defining (quasi) triangular Hopf algebras
and their connection with braid statistics. Furthermore, quantum group represen-
tation theory will be presented in a categorial frame, in the attempt to make the
philosophy of physical applications more comprehensible. The properties of CFT
and, in particular, the Coulomb gas representation of minimal models will be the
arguments of Chapter 2. This will constitutes the ground on which, in Chapter 3,
the connection between the non-local statistics of conformal blocks and a quantum
internal symmetry will be investigated.



Chapter 1

Quantum groups

A quantum group is a Hopf algebra which is neither commutative nor cocommutative.
An alternative definition, which clarifies the relation with groups, could be given
taking into consideration the algebra K(G) of functions defined on a group G and
valued in a field K. Then a quantum group is obtained as a deformation of K(G),
more precisely a deformation depending on a parameter ¢ € K such as to retrieve
K(G) when ¢ = 1. This means that, introducing the parameter ¢, a commutative
algebra is turned into a noncommutative one. To make this idea more concrete,
let us consider a simple Lie group G and denote g the complexification of its Lie
algebra. One defines the universal enveloping algebra U(g), as the tensor algebra on
C generated by 1 and elements of g modulo the relations

£1Q& — L ®& = [£1,&] (1.1)

Y¢1,€2 € g. In order to construct the quantum version of this algebra, let us fix some
notations. Hence, {ai;j}ij=1,.,, where 7 is the rank of g, will be the Cartan matrix
of the Lie algebra, while {o;};=;, ., will denote a basis of simple roots. One calls
quanium universal envelopmg algebra U,(sk) the tensor algebra generated by 1 and
the indeterminates {ki, e;, fi}i=1,..» modulo the relations

kiki' =1 =k 1k, kik; = k;k:,

kieskit = e, hifikt = ¢y,
kI —k?
le:, f5] = bij———T5, (1.2)
qi — q;

T n 1-— Q5 l—-aij~n n . .
> (-1) e Mejel =0 for i
. qi

2 (—1)”[1“n“if} FThE =0 for i,
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Here ¢; = ¢{™*)/2 (..} being the invariant inner product on the root system & Ca;,
with (e, o) € Z, and

~ m - _ (qm _ q—m) (qm—l _ q——(m-—l)) . (qm—n+1 . q—-(m—n—{-l)) for s 0
n (=g )(¢?—g?)---(g"—¢q™) ’
7:: =1 for n =0 or m = n. (1.3)

- q

As the notation suggests (Rosso [31] has shown that this analogy can be rigorously
justified), one can see in the e; and f; generators the quantum correspondents of the
elements of the Weyl basis of g, while &; and k7, due to eqs.(1.2), should be related
with the Cartan subalgebra. This idea makes more intuitive how the deformation
acts on the “classical” U(g). Indeed, let us consider the simplest case, g = sk(C),
and denote ¢/, E*, ¢~#/2 the indeterminates which generate U,(sl). The defining
relations of this quantum universal enveloping algebra

qu/Zq:FH/Z — 1 ,

HPEESHR = HpE
H —-H
+ -1 qg —4q
[ET,E7] = = (1.4)
can be easily interpreted as the deformation of the usual commutatioﬁ relations
[H,E*] = +2E*
[E+,E“] = H. (1.5)

for the Weyl basis { E*, H}.

Notice that in this example the beginning algebra is already noncommutative
and what one loses in the deformation is the cocommutativity of the enveloping
algebra U(g), in a dual way with respect to the deformation of the algebra K(G).
In fact U(sly) is essentially dual to C(SL;). But, to make this introduction more
exhaustive, some further definitions are needed.

1.1 Hopf algebras

In order to introduce the concept of Hopf algebra, a detailed definition of algebra can
be useful.

Definition 1 An algebra with unit (4, +, -, 7; K) is a vector space (4, +; K) to-
gether with the linear functions - : AQ A — A and n: K — C (7 is related to the
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usual unit 14 by the equation n(A) = Al4). The product - must fulfill the associativity
property
co(id®-) = -o(-®1d) (1.8)

while for the unit it is required that

co(id®n) = o (n®id) (1.7)

O

The dual concept of the algebra structure is the coalgebra structure, described by
the following

Definition 2 A coalgebra with counit (C, +, A, ¢ K) is a vector space (C, +; K)
together with the linear functions A : C - C ® C and ¢ : ¢ — K. The coproduct A
must fulfill the coassociativity property

(d®A)o A = (A®id)o A (1.8)
while for the counit it is required that
(id®€e)oA = (e®id)o A , (1.9)

O

The duality between algebras and coalgebras are easily established. In fact, if the
coalgebra C is finite dimensional as a vector space, C* is its dual space and (,) the
pairing relation defined as (¢, c) = ¢(c) Vc € C, V¢ € C*, then one defines an induced
algebra structure in C* with the relations

(¢,c) = (¢®@%,A(c))
(1gr,e) = €(c). (1.10)

The finite dimensional condition is needed because only in that case the pairing (,)
induces an isomorphism between C' and C**, otherwise one has just an inclusion
¢ — (O, Nevertheless, here and in the following these results can be generalized if
a suitable topology is introduced.

The most natural generalization of the last definitions consists in introducing
“self-dual” structures.

Definition 3 A bialgebra (B, +, -, A, 7, ¢; K) is both an algebra and a coalgebra,
such that the two structures are compatible. The compatibility condition consists in
imposing A and € to be algebra maps. a
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An example of bialgebra could be the gquantum matrices ;M,(C). It is the temsor
algebra generated by 1 and the indeterminates a, b, c,d modulo the relation

ac = qlca, bd=q'dh, ad—da= g 'cb—qbec. (1.11)
The coproduct and the counit are

A(uij) = 3 v, ®u, e(uij) = & (1.12)

ke=1,2

To make the meaning of this structure less obscure, let us note that M,( C) can
be constructed as the product of the quantum plane with the quantum super plane,
exactly as, for a finite dimensional vector space V, End(V) = V ® V*. Remember
that the quantum plane Cglo is the tensor algebra on C? together with the relation

zy = ¢ tyz, relations pp (1.13)

while the quantum super plane Cglz is defined by

(6 =0, mm=20, &n=-—qnt, relations pg (1.14)
where {z,y} and {¢,7} are two bases of C*. Notice that C:]O is, indeed, the algebra
generated by the relations of quantum mechanics, [P,Q] = —if, in exponentiated

form ¢ = ', y = €9, for ¢ = e”**. The duality between Czlo and Cglz follows
if one supposes that {£,n} is the dual basis of {z,y}. This means that, due to
this hypothesis, the relations p; can be obtained in the form p; = ¢(ps), where
b =¢r1 RE+ ¢l @1+ 30 ® € + ¢pan ® n. If, now, one identifies {a =z ® {,b =
z®n,c=y®¢&,d=y®n}, then py and p; induces the relations (1.11), which define
the quantum matrices (M,( C).

A second interesting “self-dual” structure is
Definition 4 A Hopf algebra is a bialgebra (H, +, -, A, 1, €, S; K) equipped with a
linear antipode map S : H — H obeying
-o(id® S)o A =noe = -0(S@id)o A (1.15)

O

A straightforward calculation shows that S must be a antialgebra and anticoalgebra
map, while in general it is not true that S? = id. Moreover, taking into account
what has been said about duality between algebras and coalgebras, one concludes
that for each finite dimensional Hopf algebra there exists a dual one, with product,
unit, coproduct and counit defined as eq.(1.10) suggests and with the antipode map
which obeys the obvious condition

(S4,h) = (¢,Sh), heH,pecH" (1.16)
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As before, the dimensional limitation can be avoided.

On these grounds, one can consider again the example of (quantum) universal
enveloping algebra of a Lie algebra. In fact, remember that, U,(g), obtained as a
deformation of U(g), according to the first definition of quantum group must be a
neither commutative nor cocommutative Hopf algebra, where U(g) is a cocommu-
tative Hopf algebra (that is, the coproduct obeys the relation 7 o A = A, where
7: HQ H — H @ H such that h; ® hy — hy ® hy). This can be shown just re-
porting the expressions of coproduct, counit and antipode map that make U(g) a
cocommutative Hopf algebra

Af) = E@1+1®¢, e6) =0, S()=—-€£, fortcg  (1.17)
and their deformation in U,(g)
A = K © B,
Ale;) = &, @ k7' + ki ® e,
A(fi) = i@k +k ® fi, (1.18)
or, in the particular case g = sh(C),

A(g*E/?) = ¢*HI2 @ g+l

A(Ei) = Efg qH/z + q—H/z ® E*,
(1.19)
e(gti/?) = 1 S(gFH/?) = gFH/
(EX) =0, S(E¥) = —g¢*E*,

where coproducts and counits are extended to the tensor producted elements as
algebra maps, and the antipodes as antialgebra maps. It is easy to verify the axioms
and the noncommutativity of U,(sl) is evident, being 7 0 A(E*) # A(E*). Notice
that, for the U(g)-antipode, the usual condition S? = id is satisfied, while this is not
true in general for the quantum antipode. It is also interesting to note how the last
equations reduce to U(g)-ones when ¢ — 1.

An important class of the Hopf algebras are the quasitriangular Hopf algebras.
They are in general noncommutative and noncocommutative, but the lack of cocom-
mutation is, in some sense, under control. This restriction make possible to extend
a lot of properties that are proper of the cocommutative case.

Definition 5 A gquasitriangular Hopf algebra is a pair (H, R) where H is a Hopf
algebra and R € H @ H is invertible and obeys

(A ® zd)f)‘{ = 9:{13%23 3 ('Ld ® A)% - 9’{139%12 (120)
ToAh = R(ARR™', Vhe H (1.21)
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where, writing ‘R = TR @ R, the notation used is
9%-1-—_—Zl@l@...@%ﬂ@...@fﬂ(?)@...@1’ | (1.22)

the element of H® H® ---® H which is R in the i'th and j’th factors. In particular,
(H,9R) is called triangular if, in addition

(R = R , (1.23)

R is called universal R-mairic. ]

Drinfel’d [8] has demonstrated that every quaﬁtum enveloping algebra is quasitrian-
gular. As an example, R for U,(sh) is

oo —2\n
R = qH®H/2 Z (1 E ]q : ) (qH/2E+ ® q—H/zE—)nqn(n—-l)/Z . (124)
=t nlg!
Here, coherently with the definition (1.3),
i
[n]y = pp (1.25)

and [n],! = [n]g - [n — 1]g---[1];. Notice that, if ¢ is the p'* root of unity, this
quantity vanishes for n proportional to p, and singularities might be present in the
expression (1.24). On the other hand, due to the second of the defining eqs.(1.4),
if p is even, then (E*)P/? vanish too. Furthermore, strictly speaking R is not an
element of U,(sk) ® U,(sk), because this contains only finitely many strings in the
generators, but the problem is easily solvable thinking, in a topological context, to
some completion. However, this consideration can be avoided if finite dimensional
representation of H are considered, as it is made clearer in the sequel.

The meaning of the axiom (1.20) becomes clear if ] is regarded as a function
R: H* — H such that ¢ — 9‘{(1)¢(‘ﬁ(2)). Indeed, almost in the finite dimensional

case, this axiom is equivalent to impose that % as a map is coalgebric and antialgebric.

The same defining eq.(1.20) implies also some other important relations in-
volving R

(e®@id)R =1 = (1d ® )R (1.26)

(S®id)R = R, (id® SR = R (1.27)

Moreover, due to the first part of the eq.(1.20) and eq.(1.21), %R fulfills the
so-called abstract Quantum Yang Bazter Equations (QYBE’s)

Ri2R13Re3 = Ra3Ri3Ny (1.28)

If, remembering its defining equations, one interprets M as the “structure constants”
of the (quasi)triangular Hopf algebra, these equations become nothing else that the
corresponding “Jacobi Identity”. But one can go further in this analogy. In fact,
it is possible to develop from each matrix solution of the QYBE’s a quasitriangular
Hopf algebra and its dual, just as one can characterized a Lie algebra on the ground
of the structure constants c;;* such that [£;,¢;] = ¢;;¥€k. In the next section, matrix
solutions of the QYBE’s will be studied in different contexts.
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1.2 R-matrix

‘Given a vector space V, one can construct the associated symmetric algebra S(V) as
the tensor algebra generated by 1 and the elements of ¥V modulo the relations

V1 QU2 = V2 Qv (1.29)

For finite dimensional V, such an algebra is equivalent to polynomial functions on V.
The definition of S(V') can be given, alternatively, referring to the permutation groups
Sx. In fact, notice that the twist map7: V@V — V@V, v; ®vy, — v, ® v1 generates
a representation of Sy on the spaces V. These representations are constructed
factorizing each permutation o into transpositions, o = (i171)(¢272) ... (txJx), and
relating each transposition to a twist map acting on V¥. Then, the operator which
represents the action of ¢ on the space Sy(V) is Ti,; Tisj + -« Tigjs Where 735 is the
twist map acting in the 7t and j** terms of V¥. On these grounds, the symmetric
algebra S(V) can be thought as the tensor algebra constructed on V, modulo such
an action of Sy. This new definition allows to generalize such a construction, when
an arbitrary representation is taken into account.

Let us consider the assignment (i171)(3272) - (ixdn) —— Biyji Bisia - - - Binins
where the statistical matriz B € End(V) ® End(V) C End(V ® V). This defines an
action of the permutation group Sy on the space V¥ if and only if B is an unitary
solution (B% = 1) of the equations

Bi3By3Biy = By3B13Bss3. (1.30)

Then, symmetric algebras can be generalized substituting the quotient relations
(1.29) with
7.71®'Ug = B'U2®'U1 (131)

The new algebras so obtained is said B-symmetric algebra and denoted S3(V'). The
simplest non trivial example of B-symmetric algebra is the exterior algebra A(V)
defined as the tensor algebra constructed on V, with the relations v,vs = —vovq
(understanding the tensor product symbol). Analogously to the symmetric case,
this algebra can be thought as that of functions on a super-vector space. How this
considerations are connected to the argument of this section becomes evident if one
puts B = 7 o R: indeed, in such a way, the eqs.(1.30) reduce to the matrix QYBE’s.

The unitarity condition in terms of the R-matrix, means that Ry; = R;, . Re-
moving this requirement, one finds a further generalization of B-symmetric algebras
in which the role of the permutation group is played by the braid group, described
in the following

Definition 6 Let M be a manifold of dimension d > 2 and D(M™) the subspace of
MN
D(M™) = {(p1,p2y-++1pn): Pi € M, pi #pj if 1# 7} (1.32)
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(P50 (p2,0)  (p%0) (P20 p? pS p? pd pd, pe

- J g
( ) TS e

a) b)

Figure 1.1: a) A geometric braid representing an element of B3. b) The elementary braids.

The fundamental group m D(M™) of the space D(MY) is the pure braid group (or
monodromy group) for N strings of the manifold M, denoted Py(M). Let D(M™) be
the space D(M™) modulo permutations. The fundamental group w1 D(M™) of the
space D(M") is called the full braid group or, more simply, the braid group of M,
denoted By(M). O

When the manifold is the euclidean plane E?, one speaks of the classical braid
group By. In this case, an alternatively graphical definition is possible. In fact, any
element in By(M) = m D(E?)") is represented by a loop

F: 00,1 — DB,  f(0) = f(1) = §° (1.33)
which lifts uniquely to a path
f:100,1] — D(Ez)N7 f(0) = P, (1.34)

where p° is an element of the permutation class p°. The graph 8 of this path in the
E? x [0,1] is called a geometric braid or, more simply, a braid, while the graph of a
single component f; is called the i* braid string. An example of braid is given in
figure (1.1). In order that § is a representative of class in the fundamental group
By, one must identify two braids 8 ~ 8’ if the paths f and f which define them are
homotopic relative to the base point (p?,p3,...,p%) in the space D((E?)¥). Never-
theless, this equivalence relation can be reformulated in the context of the graphical
representation, regarding B and § as subsets of E? x [0,1]. Thus, two braids can be
identified if they can be “regularly” deformed one into the other. It follows that, for
example, the braids in figure (1.2) are equivalent to the trivial braid. In the sequel,
this criterion will be used to prove some important properties of By.

Geometric intuition suggests that, as for Sy, an arbitrary braid is equivalent
to a product of elementary braids 8 and 87 (= (8)7!), represented graphically in
figure (1.1). In the example of figure (1.1)

BY = BB BBy (1.35)
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Figure 1.2: Examples of braids equivalent to the trivial one. The braid b) provides a
graphical representation of the second of the egs.(1.37) (QYBE)

This means that 8] ,57,...,58:_, generate the group By!. The following relations
hold

ﬁfﬁj““ = ﬂ;’ﬂj’ for 1<3,75<n—1,4 [i—7>2 (1.36)

BB BF = BB B, forl<i<n-2. (1.37)

The path deformations which establish the relations 857 = 1 and (1.37) are called
Reidemeister moves of type II and I1I. Eqs.(1.36) and (1.37) provide an alternative
algebric definition of the classical braid groups By. If one considers different two-
dimensional manifold, some additional relations arise. For example, the generator of
the braid group on the sphere §% must satisfy the further conditions

By - BiaBr B iBi - B =0, (1.38)

(BB .. B )" = 1. (1.39)

As in the case of the permutation groups, if one looks at the representations of By
as statistical matrices B¥ acting on V¥, then the eqs.(1.37) result equivalent to the
matrix QYBE’s.

1.3 Construction of quasitriangular Hopf algebras

Here we will face the question, already brought out at the end of §1.1 in order to
emphasize the role of the R-matrix, of the construction of a quasitriangular Hopf
algebra from the knowledge of a regular invertible solution R € M, (C) ® M,(C) of
the matrix QYBE’s

Ri2Ri3Ra3 = RysRisBRis. (1.40)

!For a rigorous proof of this statement, see Birman [6]
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After what has been explained about R-matrices and their statistical and physi-
cal meaning, this result represents an important progress, since, consequently, each
problem which involves R-matrices or, that is the same, braid group representations,
should exhibit a hidden quantum group symmetry.

Let A(R) be the tensor algebra generated by 1 and n? indeterminates uij, 1,] =
1,...n modulo the relations

Rin};’ nu"} uy = uknuim ";? (1.41)

where R} kl are the matrix elements of 3 R(l) : ®R(2) , being otimes a matrix tensor

product, [ see eq.(1.22)], and understanding the tensor product among the generators

u* j.z The same equations can be written using a more compact notation

Ru®l)(l®u)—(1®u)(u®l)R =0 (1.42)

where u € Ma(A(R)) ® M,(A(R)) is the matrix of the indeterminates u';. Notice
that R € M.(A(R)) ® M,(A(R)) because C C A(R) through the unit. It is possible
to verify that the coproduct and the counit

=Y uikukj, e(uij) = 5ij (1.43)
k

(extended as algebra maps), together with the usual algebra structure, make A(R)
a bialgebra. In particular, when R = 1 ® 1 one finds the bialgebra of functions on
the semigroup M,(C). A more significant example is the bialgebra associated to the
R-matrix

g0 0 0
12| 001 g— gt 0
R =g¢q 00 1 0 (1.44)
0 0 0 q
where R must be viewed as an element of M(2, M (2,C)) and ¢ € C — {0}. It is easy
to verify that, in such a case, A(R) = ¢M3(C), the quantum matrices defined by the

relations (1.11).

Analogously, one defines the bialgebraU(R) as the tensor algebra generated
by 1 and the 2n? indeterminates [* and [~ modulo the relations

(FRD(1I®F)R-RAIF)(*®l) =0 (1.45)

("@1)(1®IME-R1&IM)(I"@1) =0 (1.46)
where [* € M,(U(R)) ® M,(U(R)), as explained. The coalgebra structure will be

the usual one.

2Hereafter in this section the ® will be explicitly indicated only when the matrix tensor product is
involved, omitting it when represents multlphcatlon among the generators of the algebra, so that for

instance, the generic string u“ ® ugi ® -8 u ? will be denoted u11 u;Z .. u;".
7
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Both in the case of A(R) and in that of U(R) the R-matrix as fundamental
representation of these bialgebras in M,(C). More precisely one can show that the
algebra maps

P+ : A(R) — M.(C) : P+(“ij)kz = Rijku
p~ : A(R) — M,(C) : *(ulj)kz = (Rnl)kzzj,
l+ ;)kl — lekl

p
p: U(R) — M,(C) : { (1.47)

A(

p(I7 5% = (BTN
are well-defined representations of A(R) and U(R) , respectively. This means that
they are compatible with the quotient relations (1.42) and (1.46), property which is
strictly connected to the QYBE’s.

Another important consequence of the QYBE’s is that A(R) and U(R) are
paired by bialgebra map

<u,l+> = RT, <u,l‘> - R~ (1.48)

being Rt = R, R~ = 7(R™!). Indeed, this can be interpreted simply as a different
way of casting the previously defined fundamental representations, u + (u,[*),
I — (u,l*). Although, generally, this pairing is degenerate (for instance, if R is
unitary then R* = R~ and [T — [~ has zero pairing with every element of A(R)),
dividing both A(R) and U(R) by further relations, one obtains two “essentially”
dual Hopf algebras (her and in the sequel the attribute “essentially” is to remember
the problems which arise due to the infinite dimensional space involved). The main
features which allows this construction are two:

i) the kernels of the pairing (,) (null subspaces) are bi-ideals, so that the bialgebra
structure is preserved in the quotient,

i) the relations

(S(),1*) = (u, (")) = R, (1.49)

(S@),17) = {(u,507)) = 7(R) (1.50)

define antipodes on the quotient algebras 4(R) and U(R), when extended as
antialgebra maps.

Finally, a quasitriangular structure can be introduced in U(R) defining the
antialgebra and coalgebra map

R: AR) — U(R) : uw— IT. (1.51)

In fact, as explained in §1.1 , the existence of an element in (the completion of)
U(R) ® U(R) which satisfies the property (1.20) is related to the existence of an
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antialgebra and coalgebra map U(R)* — U(R), i.e., essentially, A(R) — U(R). It
remains to be checked that R fulfills the second property (1.21) and is well-defined,
i.e. it respects the quotient relations (null relations included). The proof is based,

again, on the QYBE’s.

A possible example of this prescription could regard the well-known bialgebra
oM>(C). Let us summarize briefly the results.

e The null relations, mimicking the classical case, are
dety(u) = u'u?, — ¢ tulu’ =1 (1.52)
or, in the notation of §1.1, |
ad —q tbhe = 1. (1.53)
To support this statement, one can easily verify that
p*(dety(u) — 1), = (dety(u) — 1,1 %) = 0. (1.54)

It is possible to show that this is also a sufficient condition. Moreover, that
ad — g~ bc is central and that the coproduct

Aad — g7 'be) = ad — ¢t be® ad — g7 be (1.55)

is group-like, confirms the consistency of this relation with the bialgebra struc-
ture. Hence, A(R) _ AR _ o M(0)

dety(u)—1 ~  dety(u)-1"

e The antipode

u?) —quy
S(u) = , (1.56)
gl 1

Uy
makes A(R) a Hopf algebra denoted ,SL,(C). It is easy to verify the re-
quired properties for 3, e.g. <u,5(l+ 21)> =(R7) 2 =¢"? (¢ - q)< 8 é )::
<'u,—ql+ 21> so that S(E*) = —q EV etc.

o The essentially dual Hopf algebra is U(R) = U,(sk). This derives from the

identifications
D , (1.57)
gV q— g EY  gH

g B ¢ gt —q)E~
I~ = , (1.58)
/2

0 qH
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incorporating the corresponding null relations
Hloo0=1%, Fl-lonq,
217t =1, detl* =1 (1.59)

Indeed, the nondegeneracy of the pairing (1.48) can be proven [30]. Notice
that egs.(1.59), together with the remaining relations in U(R) (coming from
the quotient relations in U(R)) comprehend those of the deformed algebra of
U,(sk). In particular, each one of the last three null relations indifferently
implies the condition ¢/2¢~#/2, while

lf’l;R = lelf‘
= qH/ZE:tq—H/Z — q:i:E:f: (160)
ITI; R = RI;IT

g — g

IfR= RIfl; = [E",E7] = (1.61)

g—gq7!
Finally, due to the nondegeneracy of the pairing between A(R) and U(R), the

quasitriangular structure induced by the map (1.51) coincides with that defined
through the universal R-matrix (1.24).

1.4 Representation theory of quasitriangular Hopf
algebras

Hopf algebras can act on other structures in a variety of way, depending on which
part of H is involved, the algebra or the coalgebra one. Nevertheless, due to the
duality properties of Hopf algebras, these different kinds of representations are re-
lated, for example to each left H-action corresponds a right H*-coaction, etc. Hence,
conventionally, one can choose to consider only one of these.

Definition 7 Let H be an algebra and V a vector space, one says that H acts on V
through the linear mapa: HQV — V if

ao(-®1d) = ao(a®id) (1.62)

This condition becomes more explicit using the module notation, h.v = a(h ® v), so
that eq.(1.62) can be rewritten as

(hg).v = h.(g.v). (1.63)

Then the pair (@, V) is said an algebra representation or, more simply, a representation

of the algebra H and V a left H-module. 0
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The representations of a Hopf algebra have many properties similar to those of group
representations, and this analogy is more evident in the case of quasitriangular and
triangular Hopf algebras. In particular, the studies carried out independently by
Lusztig [23] and Rosso [31] on the quantum universal enveloping algebra U,(g), lead
to the conclusion that, for a generic value of the deformation parameter ¢ different
from a root of unit and being g a complex simple Lie algebra, finite dimensional U,(g)-
modules can be obtained as deformations of those of the “classical” U(g). Entering
into details, Rosso shows in his paper that, given a representation (a, V') of U,(g) in
a finite dimensional space V,

i) «ofe;) and «(f;) are nilpotent and, if « is irreducible, then the opera-
tors a(k;) are simultaneously diagonalizable and V = @ V), where, for u =

(ll'luuh L uu'r)’
Veo={veV/Vi=1,...,r, alk)v=pv}. (1.64)
This lemma allows to speak about weights of the representation.

i) For each finite dimensional representation (o, V'), there is at least a highest
weight vector, 1.e. a vector vy € V — {0} which fulfills the properties

a(k)vy = \vy, ae)vy =0 Vi=1,...,7, (1.65)

being A = (A, Az,..., ;) € (C7) its highest weight. If (a,V) is irreducible
then its module V is spanned by v, and the non-zero vectors of the form
a(fix)a(fiz) e a(fip)vh (ih R 77:1-7 - 1’2) .. 'T)1 of Weight ® = (/’1'13,"'2) e ,,LL,-),

being pr = Ax qk_gz“ ¥ Such representations are said highest weight repre-
sentations.

#i) If (a,V) is a finite dimensional irreducible representation with highest weight
A, then A = w - qi/z, where w € {1,-1,7,—1}" and ) is a dominant weight of
g. On the other hand, any character of this form, defined on the subgroup
of invertible elements generated by the k;’s, is the highest weight of a finite
dimensional irreducible representation.

iv) Every finite dimensional representation of U,(g) is completely reducible.

To clarify these points and to make more evident the similarity with groups,
an example could be useful. The quantum universal enveloping algebra of g = s,(C),
beside being the simplest non trivial case in which the previous statements can be
verified, is also a complete example. Indeed, as for the “classical” group, all the results
concerning the classification of the quantum group irreducible representations [see
point (ii7)] can be proved by virtue of the theory of the U,(sl;)-modules. Therefore,
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it is easy to check that, setting

0 [zj]q[l]q 0 . 0
0 0 (25 — 1)a[2le
By ="a(E7) = | : ; ,  (1.66)
[11a[271q
0 0 0
qij 0 o 0
0 ¢ ... 0
o(g*H?) = : (1.67)
0 0 - gF

where j € %ZZO, one obtains the quantum deformation of the (2j + 1)-dimensional
irreducible representation of sh(C)%. Remember that the notation [n]y, already in-
troduced in the expression of the universal R matrix, denotes

qn _ q—n
njg = ———. 1.25
e = L=k | (1.25)

A general important feature of the Hopf algebra representations, which makes
even deeper the connection with the group case, consists in the possibility to define
a tensor product between the representations. Such a product structure on g1 can
be expressed in the language of category theory as follows.

1.4.1 Hopf algebra representations as a category

A category € is a collection of objects Ob(C) together with a set Mor(X,Y") for
each pair X,Y € Ob(¢). The elements of the latter sets are called morphisms and
Mor(X,,Y1), Mor(X1,Y,) are disjoint unless X; = X, and ¥; = Y5. They should
have properties analogous to those of maps from X to ¥ which respect the structure
of X and Y. Thus, if ¢ € Mor(X,Z), ¢2 € Mor(Z,Y) then there should be an
element, denoted ¢ o ¢; in Mor(X,Y) and for any three elements for which o is
defined, ¢y 0 (30 s = (¢p10¢3) 0 d3. Further, every set Mor(X, X) should contain an
identity element idy such that ¢;0idx = ¢1, idx 03 = @3 for any morphism for which
o is defined. A morphism ¢ € Mor(X,Y) is called an isomorphism if there exists a
morphism ¢! € Mor(Y, X) such that gog™ € Mor(Y,Y ) and ¢~1 oo € Mor(X, X)

are identity morphisms.

3Hereafter the degeneracy introduced by w € {1, —1,%, —i}” will be neglected.
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A map between categories F' : € — &, is called a covariant functor if to
each object X € Ob(¢;) it assigns an object F(X) € Ob(¢,) and to each morphism
¢ € Mor(X,Y )it assigns a morphism F(¢) € Mor(F(X),F(Y))in a way compatible

with o, namely such that

F(¢10¢2) = F(1) 0 F(¢2) (1.68)

A contravariant functor F': € — €, also assigns an object F(X) € Ob(¢&;)to each
object X € Ob(¢;) X € Ob(<,), but assigns an element F(¢) € Mor(F(X),F(Y))
for each ¢ € Mor(X,Y ) such that F(¢; 0 @) = F(¢1) 0 F(¢s).

A natural transformation ® : F; — F; between two covariant functor Fy, Fj :
¢; — C,, is a map that assigns to each object X € Ob(¢;) a morphism &y €
Mor(F\(X), F5(X)) such that for any morphism ¢ € Mor(X,Y ) in &

B, 0 Fi(¢) = Fo(e)o ®y. (1.69)

There is a similar formula if F;, F, are contravariant. A natural transformation ® is
called a natural equivalence of functors if each map ® is an isomorphism. The maps
®4 in this case are also said to be functorial isomorphism.

A category (€, ®,1) is called monoidal if it has a product functor @ : €x¢€ — ¢
and a unit 1 € Ob(<) obeying the conditions

i) the two functors ®(®),(®)® : € x € x € — € are naturally equivalent
(associativity). I.e there are functorial isomorphisms

Prvz: X@(Y@Z) - (X®Y)®Z . (1.70)
il) the natural equivalence ® obeys the pentagon identity

XQ(YB(ZOW)) —— (X@Y)R(ZEW) —— ((X@Y)BZ)EW
lid@@ 2Qid (1.71)

~ & ~

XQ((Y®Z)QW) (XR(Y®Z))QW

iii) the functors X X®1 and X — 1®X from ¢ to itself are naturally
equivalent to the identity functor.

On these grounds, one can show that the representations of any Hopf algebra H
forms a monoidal category, gIN.

An object in the category g9is a representation (a, V'), while the morphisms
in Mor((a1,V1),(as,V2)) are the intertwiners, i.e. the maps ¢ € Link(Vi, Va) such
that

a2(¢(v)) = ¢(ea(v)) (1.72)
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or, using the module notation,
h.p(v) = ¢(h.v) (1.73)

The product functor ® defined by Vi®V; = Vi ® V3 as vector spaces,
h(vi®v2) = hayni®hyva,  (Ah=huy®hp),  Vui®uv, € i@V, (1.74)

as regards the category objects and $1@¢s = ¢1 ® ¢2, and the unit defined by the
trivial representation on the field K, make g9 a monoidal category. The role of
the Hopf algebra structure of H, already evident in the defining eq.(1.74), becomes
determinant to show the consistency of the above definitions. For example, one
should prove that ® is a functor. To this end, the first step is to check that a;®as is
a well defined representation, that is, it verifies the condition (1.62) or, equivalently,
(1.63). But, by the fact that A is an algebra map,

(hg)v1®vs = (hg)1)vi®(hg)@).v2 product definition
= (h(l)g(l)).vl@(h(g)g(z)).vz A is an algebra map
(1.75)
= h(l).(g(l).vl)®h(2).(g(2).v2) Vi, Vy are H-module

= h(g-(118v2))

Moreover, it is easy to see that ¢; ® ¢, is an intertwiner and that this assignment is
compatible with the composition o. Then the product functor is well defined. In a
similar way, due to the Hopf algebra properties, one can show that ® functor obeys
the associativity condition and the pentagon identity and that also the requirements
for the unit object 1 are fulfilled. In particular, due to the coassociativity of A, one
can identify the functorial isomorphisms of eq.(1.70) with the standard vector space

isomorphisms V1 @(V,@V3) = (Vi @V,)®Vs.

1.4.2 'Tensor and quasitensor categories

If (H,R) is a quasitriangular or triangular Hopf algebra, then the “algebra-like”
structure in the category g9t acquires many further analogies with the case of group
representations. The first one concerns the order in the product of representations,
irrelevant for group representations. The situation is exactly the same when the Hopf
algebra is triangular and one speaks of tensor category (g9, ®,®,¥,1). This is a
monoidal category such that

i) the two functors (X,Y) — X®Y and (X,Y) — YQ®X from € x ¢ to € are
naturally equivalent, 7.e. there exists functorial isomorphisms ¥, , : X®Y —

YRX.

ii) it iS \I’va 0] \IIX,Y = 'Ld.
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iii) the natural equivalences ® and ¥ obey the hexagon identity.
e = 2 .= ¥ .-
X®YQZ) — (XQY)®Z —— ZQ(AQ®Y)
Jidéw J’<I> (1.76)

- - @ - - 1d@¥ - -
X@(ZOY) —— (XQZ)QY) — (ZOX)RY

One can show that once the pentagon and the hexagon axioms have been satisfied,
then all the other obvious compatibility checks between ® and ¥ corresponding to dif-
ferent bracketting and ordering also hold (MacLane’s theorem). To be more precise,
this means that, constructing from ® and ¥ any map of the form X;®X; - - - @ Xyy—

X5(1)®X3(2) e ®X,3(N), one finds a representation of the permutation group Sy.

For the triangular Hopf algebra representation category g1 the natural equiv-
alence U is generated by the functorial isomorphisms

Ty, v, 0 ViQVy — Va®W (1.77)

\DVI.VZ('Ulé'Uz) = m(z).vz®m(1).vg (178)

(R = %Y @RP®), understanding the sum indicated explicitly in eq.(1.22)) makes g1
into a tensor category.

Notice that the twist map 7: V;®Vy, — Vo ®V; is not an intertwiner unless H
is cocommutative. In particular, the property Yo¥ = id is related to the requirement
that R is unitary (7(9R7') = R). Hence, in the quasitriangular case this requirement
cannot be fulfilled, but the natural equivalence ¥ obeys a second hezagon identity

- - -1 - - ¥ - -
(XeY)®Z —— XQ(Y®Z) — (YRZ)®X
l\lléid . J@—l (1.79)

1

- - o - - id@T - -
(YRX)®Z —— YRX®Z) — Y®(Z®X)

and (g9, ®,®,¥,1) becomes a so-called quasitensor category. As in the tensor
category case, due to the pentagon and the two hexagon identities, there are no
further natural constrains between ® and U arising from brackets and ordering, but
now the maps of the form X;®X, - - ®Xy —E—,\Xﬁ(l)@)Xﬁ(g) e ®X/3(N), constructed
from @, @' and ¥, ¥~!, constitute a representation of the braid group By. The
coherence for quasitensor categories is then that any diagram corresponding to a

closed path in any By commutes. The functorial isomorphisms

X_ Y X_ Y
- s NG -
T: ® ®, LA ®
Y/\X Y/\X (1.80)

are, hence, the braiding operator and its inverse, respectively.
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1.4.3 Rigid monoidal categories

Another property that one would also like to generalize is duality. This is expressed
in the axioms of rigidity.

A rigid monoidal category is essentially a monoidal category for which there
exists an “internal hom” object which fulfills particular finiteness or reflexivity con-
ditions. Before describing them, note that, if € is any category, the sets of mor-
phisms Mor(X,Y ), X,Y € € can be regarded as the objects of another category
(the category Set of sets, for which morphisms are maps and o is the composition of
maps). Thus one can construct the respectively covariant and contravariant functors
Y — Mor(X,Y) and X — J\/Ior(X, Y), from € to Set. Then one says that a functor
to Set is representable if it is naturally equivalent to a functor of this form, and X
is the representing object. Hence, a monoidal category has an internal hom if the
contravariant functors Fyx y = Mor(®X,Y) are each representable. In this case the
representing object, the internal hom, is denoted Hom(X,Y).

Thus, for each X,Y € Ob(€) one needs a third object Hom(X,Y) € € such
that
Mor(Z®X,Y) = Mor(Z,Hom(X,Y)) (1.81)
by functorial isomorphisms. Setting Z = Hom(X,Y), the identity morphism on the
right correspond to a morphism evy y : Hom(X,Y)®X — Y, called the evaluation
map. One can image that Hom(X,Y') is like “linear maps from X to Y” and evy, v
“applies” this to an element of X to obtain an element of ¥. Moreover, given an
internal hom one also define a duality functor * : € — € by X* = Hom(X,1). One
can check that the properties of such functor justify this definition.

For a monoidal category with internal hom to be rigid the functorial morphisms
Hom(Xl,iﬁ)®Hom(X2,Y2) — Hom(X1®X2,Y1®Y2) (1.82)

X — X, (1.83)
induced by the properties of the internal hom, must be isomorphisms.

If Cis the category of the finite dimensional algebra representations of a Hopf
algebra H, denoted g’ the internal hom is defined by

Hom(Vi,V,) = Link(Vi,Vs) (1.84)

and the functorial isomorphism (1.81) relates a morphism ¥ € Mor(Va®@Vi, V) to
¥ € Mor(Vs, Hom(V1,V2)) given by

~

(P(vs))(v1) = P(v3®v:) (1.85)

Finally, the module structure in Hom(V1,Vs) (the internal hom is an object of the
category) is

(h.f)(v1) = h(l)-(f(Sh(z)-“Ul)), (1.86)
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Vhe H, f € Hom(V,,V,), v1 € Vi. Thisis just the action on Link(V1, V2) = Va@V,

that is the tensor product of the action on V; with the adjoint of the action on V;.

The z91"4 internal hom, for H a (quasi)triangular Hopf algebra with bijective
antipode, satisfies the axioms of rigidity. In particular, the functorial isomorphism
V 2 V** is obtained constructing the morphism corresponding to ¥ = evy; 0 ¥y - :
V®V* — 1 through the functorial isomorphism (1.81). In fact, this is exactly the
desired map ¥ : V — Hom(V*,1) =V*.

1.4.4 Tensor product ‘“algebra” in g

The rich structure found, as shown in the previous sections, in the category gIm,
particularly if H is a triangular or quasitriangular Hopf algebra, can be made more
interesting if one introduces the possibility to decompose the algebra representations
of H into the “direct sum” of any basis of irreducible representations. To translate
this in the category language, one needs to define in this context an addition structure
d: ¢ x¢— ¢ with distributive properties with respect to ® and which admits a
zero object 0 € Ob(€) (some further technical assumptions are required). In g1 this
structure is realized by the usual direct sum of modules and by the zero dimensional
representation {0}. If now one supposes that every object V in g9 can be decom-
posed into a direct sum of irreducible objects V;, for example restricting oneself to
consider only the finite dimensional representations, then the tensor algebra of this
category is characterized by the relations '

112

Vi@V 2@ N,V (1.87)
J

The factors lejzj are the multiplicities of V; in the decomposition of the tensor
product of V; and V. In an analogous way one can decompose the functorial
isomorphisms corresponding to ® and ¥. To make this evident, it is convenient to

rewrite eq.(1.87) abstractly as

X

Vi®V, = @ I/lejzj ® Vi, (1.88)
j

where T/lejzj is a module constitutes by lejzj
1. Moreover, thus functorial isomorphisms are intertwiners, z.e. commute with
the action of H, they are block diagonal in the direct sum decomposition. This

means that, referring to the eq.(1.88), ;5.5 : Va®(V,0V,,) — (V;,®V,)®V;, and
V.. ViV, — V,,®V; can be written as

copies of the trivial representation

CL I
q)JlJst - @ @jljzja ®id

J
Vi = @ ¥y, &id. (1.89)
J
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This is called the spectral decomposition. Using eq.(1.88) for the tensor producted
modules on which these functorial isomorphism are applied, one finds

S . da3 S 2 G g
¢JIJ2J3 ) @ WJlJza ® VVJst - @ VVJlJZ ® WJqu
J23 Ji2

g, + W.o? = W, .7, (1.90)

J1Jz J2d1

To establish the first of these last equations one has used the fact that, due to unit
axioms, WQ®V = V®W by functorial isomorphisms whenever H acts trivially on W.

Obviously, the pentagon and the two hexagon identities impose some con-
ditions on the spectral decomposition components of the functorial isomorphisms
corresponding to ® and ¥. These appear more explicitly if one refers to bases of the
irreducible modules V;. Thus, in terms of these bases {eZ }, the general decomposition

(1.88) takes the form

e BN LT .
J,m

where l: iz ] e W, 7 are called the generalized Clebsh Gordan Coefficients
m; ms; m

(CGC’s) and the superfix (1%2) on the vectors e, is to remind that they are being

viewed in V}, ®V}, according to the isomorphism implicit in the decomposition (1.88).

Thus, the generalized CGC’s transform the basis {ef{#1%)} into the standard one

{el, ®el, } of V,®V,.

The two hexagon identities are reflected, in this context, by equations involving
the generalized CGC’s, which characterize the representations of a given quasitrian-
gular Hopf algebra. To show how these relations arise, considered, first, the action
of ¥} ;, on an element of the standard basis of V;, ®V;,

Win(eh, Bek,) = X (BRI (e, §et) (192
' mymy
where (B772)71 72 are the matrix elements of ¥;,;,. From the definition of the natural
equivalence ¥ in the Hopf algebra case (§1.2.2), B/*%2 has the form

B#? = 10 (g ® ap)(R) = TR (1.93)

where «j,, «j, are the actions of H on V}, and V},, respectively. Decomposing both
sides according to the eqs.(1.88) and (1.89), one obtains

v, ([ oy D Z (B )i [ m. m} : (1.94)
My
On the other hand, as the maps ®; ;; are just the usual vector space isomor-

phisms V;, ®(V,,®V;,) = (V;,®V;,)®V;,, one can identify the bases {e ®(e2 ®ek )},
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{(eﬁléeﬁz)éefﬁ‘u} so that ®; ;,; become the identity matrices, and hence the first
hexagon identity takes the form

Tinis((ehh, @ €l2,) @ €R,) = (L, ®1d) 0 (1d® Uy )(efs, ® (e, R eln))  (1.95)
Thus, applying eq.(1.94), this relation becomes

1 J2 jiaymom, _ Ji J2 j' j1d3 Pizda \mymymy

S E R e - x| BB e reyizn 0
my,m,

which is exactly the matrix version of the equation (A ® td)?® = Hy3Ms3. In an

analogous way, the second hexagon identity, needed when H is only quasitriangular,

is the matrix corresponding of the equation (id ® A)R = P;3R2, and therefore is

given by a similar formula,

j2 j3 ] _71‘7 j2 j3 j j1j3 j1]2 m, M,

ol A L D Ol R A [C L D
mz,ms

As the axioms (1 20) these last two equations imply that R obeys the QYBE’s on a

basis el ®ed ,®e

Ji1j2 pIrds pi2ds . pI2ds piids piida
RIZ R13 R23 - R23 R13 R12 . : (198)

Analogously to the hexagon identities, also the pentagon can be cast in a
matricial form and in such a form it becomes a condition on the 6-5 symbols. To make
this result explicit, consider, firstly, the decompositions for Vj,);,; = V;,®(V;,®V,)
and Vj,;,1; = (V;,®V;,)®V;,, which respectively are

L@l @el) = Y [ s J ][ ds g 3233(3113243)
jjas. LT T2z M | | T2 Mg M3 | ™
m,ma3
(e ®612)®e.‘i3 — Z Jiz Js ] Ji J2 Ji2 g123(3172133)
ma/CTms T L miz Mz m| | mp mp; mp | " ’
(1.99)

where the superfixes (1125) and (122172) indicate in which of the two spaces Vj|;;,
or Vj ;15 the vectors e/ and €127 are being viewed via the isomorphisms in the
decomposition (1.88). This to emphasize that these vectors must be regarded as

new bases of their respective spaces. Therefore, due to the isomorphism between
the two modules V} |;,;, and V; induced by ®, {ef12i(17218)} and {eizeiiilizi)}

J1dz2lds
must be related. The pentagon identity will be a constraint on the matrix of such
a transformation. In the case of si(C) representations the elements of the matrix
connecting these bases are called the Racah- Wigner 6-j symbols. Referring to the

canonical basis in the tensor products Vj,);,;, and Vj ;,1;,

elej(jljzljS) — Z { .7:1 J2 Ji2 }ejzsj(j1|j2j3)_ (]_]_00)
m J3 J Jws ) ™

J23
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Hence, the pentagon identity for ® will coincides with the Biedenharn- Elliot identity
for the 6-j symbols.

In the study of these identities, diagrammatic methods can be applied, dis-
closing the topological context of such relations. This graphical representation is
constructed on the fundamental diagrams associated with the R-matrix elements

and the generalized CGC’s,

’ '
My M, my M,

D = (BT, > = (R Eymm (1.101)
mae Ty ™me M
my 2
; mi Mg M )
m

ls hexagon
identity

(1.103)

2nd  hexagon
identity

(1.104)
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and the 6-j symbols can be defined by the diagrammatic equation

(1.105)

1.4.5 U,(sh)-modules

Here the results obtained in the previous sections will be illustrated with the help of
an example, the quantum enveloping algebra U,(sl). In addition to the opportunity
of an exemplification of the general theory, another motivation for this choice lies in
the applications of the theory of quantum group which will be studied in the sequel.
The main features of the representation theory of U,(sh;) have been already discussed,
but let us remember again some essential points. It has been already stressed that the
Uy(sh)-modules can be viewed as a deformation of the classical counterpart. It follows
that the finite dimensional irreducible representations are labeled by the integer or
half integer number j and have dimension 25 + 1. Choosing in the module V; the
basis {el } ..z defined by the relations

Im|<j
a.ﬁ(Ei)'ejn = ([.7 q:m]KI[J Tt m+ I]Q)l/zejn:tli a.‘il(H)'ein = 2m e'jnv (1106)

the non zero entries of the matrix a; ® aj;(R) are

7
. ' ' _ A2\m,—my
(RJlJz m;m; __ 5"‘1 +m, (1 g ) !

mima my+ma [mll _ml] 1 X
q*

. ' . . [ . 2
([.71 + my o1 — mule!liz = molollsz + m2]q!) 5 qmlm;+mzmi

(71 — mll]q![jl + malg![jz + m;]q![j2 — mal!
(1.107)

for m; > m,. As regards the g-analog of the CGC’s, they can be cast in the form

m; My M m1 My M

[.’11 J2 J] :[]1 J2 .712} 8(51527) 6rmy 4 (1.108)
q
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where . .
71— Jd2l £ 7 L J1+72

0 otherwise

1
§(j1727) = { (1.109)
Eq.(1.108) shows that the tensor product “algebra” exhibits sk-like selection rules.
The analogy with the “classical” case is, so, extended to the properties of the CGC’s.
Indeed, one can also generalize to U,(sl;) the orthogonality conditions

T i i J1 Je JJ, N:5..,5 . (1.110)
my Mg M g my TNy MM q 33 “mm ) .

my ey

fmif <4
IR PO A I TR PO
< ! 1 — ' ' .
%; - |:m1 mo mL [ml M, m}q 6m1m1 5m2m2 (]. 111)
|m| < .

Using these relations,one obtains an expression of the g-analog of the 6 — 7 symbols
in terms of the CGOQU'’s, ‘

. } . - . .oq-1 . . .
J‘1 .7? J_12 _ Jv o J23 Z Ji1 J2 Je3 %
Ja ] J2s3 My T2z M _— T Mgz M3
q L 4q 12 q
ma+my = m-—1m

v, Ji2 J3 ] [Jl J2 112} (1.112)

_mlz ma m_q M Mg T2

from which follows their explicit dependence on their 6 arguments

a b e (BW)
{ dc f } = A(abe) Aacf) Alcef) A(dbS) x

q

X

(DG + U {li—a-b—ellli—a—c— fldx
i€l
x [i=b—d—fllli—d—c—elllatb+ectd—il x

x [a+d+e+f—illb+ctetr f+1—i I,
(1.113)

where I is the set of those integer values of ¢ which give rise to non negative argu-
ments in the ¢-deformed factorial [-]. The superfix (BW) denotes the Racah-Wigner

normalization

) . . (RW) _ . .
{ 7 Ja Jn } = (—1)fimizh=2he (95, + 1] 255 + 1)) x
q

Jz J J23
o Jage L
Js J J23 q

(1.114)
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while A is the function

_a+b+C]q![a—b+C]q![a+b—C]q!)l/z . (1.115)

_
Alabe) = ( [a 4+ b+ c+ 1],



Chapter 2

Conformal field theory

Already in the first years of the special theory of relativity physicist knew the possi-
bility to extend to the conformal one the group of space-time transformations which
leave the Maxwell equations (in vacuum) invariant. But a revival of interest in the
subject arose with the work of Wilson [36] on renormalization group approach to
critical systems, which are, as well-known, conformally invariant.

Even if the peculiarity of the two-dimensional case was known (in particular,
the intuition that the stress-energy temsor of conformal invariant two-dimensional
quantum field theory (QFT) models generates the Virasoro algebra came about in the
early 1970%), a deeper understanding of the representation theory of Virasoro algebra
was needed before further developments. In fact, these mathematical progresses
constituted the essential basis for the paper by Belavin, Polyakov and Zamolodchikov
(BPZ) [5] in which the authors, working out the bootstrap program proposed in
the previous work of Polyakov [29], use the Kac determinant for the highest weight
representations of the Virasoro algebra in their studies of massless, two-dimensional,
interacting field theories. In the sequel, many attempts have been devoted to bring
to an end Polyakov’s idea and to formulate the theory in some more general frame,
which might have suggest a criterion for the classification of two-dimension conformal
field theory (CFT), at least in the rational case. The purpose of this chapter is, more
simply, to summarize the main features of the BPZ’s approach and remember briefly
the properties of the Dotzenko-Fateev (DF) models, which, in the physical limit,
reduces to the minimal ones.

2.1 Conformal invariance

The conformal (i.e. angle-preserving) group C on a manifold M of dimension d is
the group of the coordinate transformations

& — n%(¢), a=20,...,d—-1 (2.1)
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which leave invariant the ratio

déa(P)déa(Q) (2.2)
|d¢(P)|dE(Q)]
This corresponds to the metric tensor transformation law
gas = Van® Vin' gury = F(€)gab (2:3)
where f is a function of coordinates. For an infinitesimal transformation
n*(€) = & +€*(£), (2.4)
one therefore obtains the condition
Vaey + Viea = h(g)gab) (25)

where h(£) = f(£)—1. Considering the case of a flat metric and taking the derivative
of both sides of eqs.(2.5), one finds
(d—2)0.6,h(&) = 0
00,6, = 3(d—2)0.h(£). (2.6)
Thus, the conclusion is that, if d > 2, then h({) must be at most linear in { and,

consequently, ¢*(£) must be at most quadratic in £. The general solution that satisfies
these constraints is

€@ = aa+A£a+wab€b+(2/8_é-ga_ﬂagZ), wab — __wba.. (27)

Consequently, for d > 2, the conformal group has finite dimension (dimension 15 for
d = 4) and includes the following finite transformations:

translations n* = €+ a?, h(§) =0
Lorentz transformations n* = A®(w)&, h(€) =0
o N (2.8)
dilatations n* = e*¢?, h(&) = 2A
special conformal transformations 1% = 1—55_—%%%? , h(¢) =4p-€.
The situation is completely different for d = 2. In this case the condition (2.5)

becomes simply an analyticity requirement on the infinitesimal variations e*: deriving
the terms of these equations no more constraints are obtained. This means that the
conformal group C in a two-dimensional flat space is the infinite-dimensional group of
the analytic reparametrization £* — n* = n*(¢), a = 0,1. Moreover, if one consider
the space-time (&o,¢1) as a proper section of the complex space C? with coordinates

z = €O+El z = 60“61 (29)



§2.1. Conformal invariance 33

and having the metric

ds® = dzdz, (2.10)
then, due to the condition (2.5), C factorizes into the product
C=rIeT, (2.11)

where the groups I' = {z — w = w(2)} and I = {# — @ = w(Z)} are the inde-
pendent, respectively, holomorphic and antiholomorphic component. Consequently,
an identical factorization holds for the Lie algebra of C, that split in the direct sum
of a holomorphic and an antiholomorphic component, and for its representations.
Being the space § of state of a conformal invariant two-dimensional QFT model a
suitable representation space of this algebra, it will have the form § = §® 3, and an
analogous decomposition holds (up to completion) also for the operators acting on
§. This property permits, in the sequel, to forget about the antiholomorphic part T.

The generators of the group T,

d
I, = 2" — nel, (2.12)
dz
satisfy the Witt or classical Virasoro algebra V,
lnylm] = (n—m) L - (2.13)

It 1s important now to emphasize that only a particular class of representations of
this algebra will be taken into account. In order to characterize such a class, notice
firstly, that, generally, they shall be projective representations or, that is the same,
representations of the central extension of the Witt algebra, the Virasoro algebra
Vir = Vo & Cé,

~ ~

[Zn,lm] = (n - m) ntm + 11;'3'6 (n3 - n) bntm
[[n,éd] = 0. (2.14)

Indeed, this is a typical physical requirement: properly, the states of a QFT model
are not vectors in a certain space, but rays, t.e. vectors defined up to a phases.
To support this statement, a more cogent argument comes from the study of the
commutation rules fulfilled by the stress-energy tensor Ty, of a quantum conformal
field theories (QCFT)'. At the same time, this will clarify the physical meaning
of the central element é. The crucial point is that, as in the case of the Poincaré
group, the generators of the extended algebra are represented by the components
of the stress-energy tensor. A model independent proof of this statement, based
on Wightman-type general axioms, was originally given by Lischer and Mack [22].
They showed that, in a dilatation invariant local relativistic two-dimensional QFT,
the holomorphic component of the stress-energy tensor T'(z) obeys the commutation
relation

i

[T(z), T(w)] = 5(z,w)T’(w) — 26’(z,w) T(w) — FHcb (z,w), (2.15)

IThe theory is assumed to be free of Weyl anomalies, i.e. T% = 0.
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being c is a positive real constant. Here the function § is defined by the relation

5§ dw f()8(z,w) = £ ‘ (2.16)

for any analytic function f. Here, the integration contour C, surround the point z.
It is straightforward to verify that a possible representation of § is -

§(z,w) =) z”'q)—"_l . (2.17)

neZ

By expanding, now, the holomorphic component of the stress-energy tensor in the

two-form basis {z7""%(dz)? Fnezs

T(z) = S Lnz™%dz)?, Lo = —— 4 dez"'T(z),  (2.18)

nel 2w Jo,

one finds that the components L,, together with the positive real constant ¢, consti-
tute a representation of the Virasoro algebra (2.14). In addition, notice that equation
(2.15) correspond to the finite transformation law

T(z) — (w' ) T(2) + &c{w,z} (2.19)

for a finite change of coordinates z — w = w(z). Here

m

3 (w

{w,2} = %— - <;—U—>2 (2.20)

is known as the Schwarzian derivative. Hence, a non-zero central charge ¢ implies
that the stress-energy tensor T'(z) is not properly a quadratic differential, i.e. a
precise geometrical object.

Another restriction on the class of physical representations arises imposing the
positive energy condition. But to understand which is the constrain and how it is
originated, one must come back to a real space. In particular, one must consider the
real section of the complex space C?, with coordinates 7 and o, related to z and z
through the formulae

z = ™t P =" D<o <. (2.21)

Notice that this space can be regarded just as the euclidean real section z = & + i¢1,
z = {o — i1, with & and {; real numbers, with compactified space coordinate. Since,
with respect to 7, the time translation generator is

= d
in order to find a positive de_ﬁned Hamiltonian H, the only acceptable representations
are those in which Ly and Lo are bounded from below. This correspond to say that
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v

they must be decomposable into representations such that there exists a vector [¢pa)
with the properties

Lo |¢a) = A ¢a)
L, |pa) = 0 for n>0

¢lga) = cléa), (2:23)

and each vector has the form

(Lo Y™ (Lo Y™t o (D)™ @) O0<ki<hky<---<k,. (2.24)

Here A is a positive real number and only the holomorphic part of the algebra
Vir @ Vir has been taken into account. In fact, it is clear from their commutation
relations that the generators L, for n > 0 lower the eigenvalue of Lo by 7, and, on
the contrary, increase it by the same amount when n < 0, so that the spectrum of L,
has a minimum, A. Relations (2.23) define a so-called highest weight representations
(hwr) of the Virasoro algebra, corresponding to highest weight A and central charge
¢, while the space of the vectors (2.24) is the Verma module Vo generated by the
vector |@a).

Once the properties that characterize a physical representation of the Virasoro
(or of the Witt) algebra are established , the identification of the vectors in the module
V with the states of a conformal invariant model can be made possible by introducing
the notion of scalar product and a proper defined vacuum state. To this end, let us
consider a “dual” (right) module V1 associated to the states at infinity, in the same
way as V is associated to the states generated at the origin?, and, hence, a bilinear
form (| ): VI x V — C. Moreover, let |0) ({0]) be the in (out) vacuum state of the
model, which generates V (V1) when the algebra of the model at z = 0 (z = o) is
applied on it. Some constraints arise when one requires that the stress-energy tensor
is a regular, hermitean operator. In particular, in order that the vacuum expectation
value of the stress-energy tensor is regular function of z in the origin, one must impose
the condition

L, |0) =0 for n>-1 (-n-2<0), (2.25)
while, for the regularity at infinity, it is needed that
(0] L, =0 for n <1 (n—2<0). (2.26)

This can be easily derived when one refers to the expansion (2.18). Furthermore,
equation (2.18) allows to find the unitarity condition

Ll = L_,, (2.27)

that guarantees the hermiticity of T'(z). Among the consequences of equation (2.27),
it can be stressed that each one of the eqs.(2.25) and (2.26) implies the other. Another

%origin and infinity in the (7, o) plane correspond to z = 0 and z = oo, respectively.
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possible observation is that, since Lo is self-adjoint, its eigenspaces (levels of the
representation) are orthogonal. More generally, the unitarity condition, by defining
the coaction of the Virasoro algebra on the dual space of V,

(Li¢!|¢) = (&' |Ln9) , (2.28)

determines completely the bilinear form ( | ) (up to a normalization constant). To
obtain a unitary representation one still needs to require the positivity of the norm
induced by (| ). About it, the above observations allow to anticipate two results:

1. one will need to impose the norm positivity condition at each level, and

2. it should generate constrains on the highest weight and on the central charge
of the Verma module.

As will be pointed out in the sequel, for a particular range of value of the central
charge, the conditions imposed by unitarity give rise to very peculiar properties of
the corresponding Virasoro algebra representations and, consequently, sharply char-
acterize a physical theory whose space of states coincides with one of such modules.

2.2 Correlation functions

Till now, we have faced the problem to pick out the properties fulfilled by the space
of states when the physical model exhibits conformal invariance. The conclusion
drawn in the previous section has been that the states of such a model should be
vectors in a module of a unitary representation of the Virasoro algebra, but, likely,
many further informations can be achieved. The next question might regard how
conformal invariance contributes to the solution of such a model. Since this latter is
characterized by the values of the correlation functions

(162...¢n) = (0] $1(21,21)82(22, 22) - - - (20, 21) [0) (2.29)

it is on these quantities that one should concentrate his attention. Therefore, a
more detailed description of the algebra of a QCFT becomes an even more necessary
introduction.

Among the elements of a conformal invariant operator algebra, one can distin-
guish those fields which transform as a tensor

$(z,2)(dz)(d2)% = $(w,®)(dw)(dw)®, (2.30)

where w = w(z) and @ = w(Z) are arbitrary holomorphic and antiholomorphic
reparametrization, while A + A and A — A are said, respectively, the conformal
weight and the spin of ¢. In connection with conformal invariance, the peculiarity of



§2.3. Correlation functions 37

these fields, that are called primary field, becomes evident when their infinitesimal
(holomorphic) variation

8e9(z,2) = e(z) gz—cﬁ(z,f) + A€'(z) ¢(2, %) for z — w(z) = z+€(z) (2.31)

is considered. In fact, choosing e(z) = ez"*!, the last equation can be cast in the
form

Loy 8(22)] = 2 8(2,2) + B (0 1) °6(5,7) (232)

Since these commutation relations determine completely the properties of the state
created by the primary field, one can study its transformation under the action of the
generators of the Virasoro algebra. Omitting the Z-dependence, the result for n = 0
1s

Lo|9) = lim Lod(z) [0) = lim (Lo,d(=)] [0) = AJ0), (2.3
while, for n > 0,

Lo |6) = lim Ln@(z) [0) = Lim [Ln,4(2)] [0) = 0. (2:34)

Such equations express precisely the defining properties of a highest weight vector of
weight A (the central charge cis here just a number and, hence, acts multiplicatively).
Accordingly, the algebra associated to the Verma module V5 contains, besides the
stress-energy tensor, at least the primary field of weight® A and those fields which
appear in their operator product expansion (OPE). For example

T(w)$(z,2) = f:? (w — 2)7*¢(M(z, 2), (235)
T(w)¢""")(z,2) = fe(w—2) 72 (k] ~ k1)d(z, 2)

ky
+ (w — z)”l—z(l -+ kl)gé(l'k‘)(z, Z)

o~

[~]8 L

T (w - g) gk ), (2.36)

ky=0

(one does not find any new contribution to the field algebra in the expansion of the
product of the type ¢p(~*)).

Analogous considerations hold for the antiholomorphic part of the conformal
algebra, that is, the primary field ¢, with the transformation law (2.30), generates
the highest weight vector of the Verma module Va and expansions similar to (2.35)
and 2.36), but involving the antiholomorphic component T(Z) of the stress-energy
tensor, can be performed. In this way, one finds an infinite set of fields qb{k}{’;},

3More exactly this is the holomorphic contribution to the conformal weight of the primary field,
which coincides with the highest weight of the state associated to the primary field. Throughout we
will use the word weight or dimension, understanding this ambiguity.
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where {k} = (—ki1,...,~ky) and {k} = (—ky,...,—ky), which constitute the family
of secondary field or descendants generated by ¢(z,%z), denoted usually [#]. As
particular cases

o
$(z2,2) = Ag(z,7), oUN(z,2) = —a-;—¢(z,i). (2.37)

from which one deduces that T'(z) is a secondary field belonging to the family (1],
being 1 the unit of the operator algebra and T'(z) = 1(-1)(z).

A deeper insight shows that the family [¢] constitutes the whole contribution
to field content of the theory associated to the Verma module Va ® V5. Indeed, by
substituting in eqs. (2.35) and (2.36) the expansion (2.18) of the stress-energy tensor,
one realizes that

¢ 2,2) = L4 (2) ... Loy (2)Ig, (2) .. L g, (2, 2) $(2, 2) . (2.38)

Here, the operator introduced in the previous equation are

Loi(z) = 571; ji dw(—JT_—(iz"-%c—_T, (2.39)

being C, is a contour of integration surrounding the point z. (The same expres-
sion holds for the antiholomorphic L(z)). Thus, remembering eq.(2.24), one, thus,
concludes that the descendants create all and only the states of the Verma module
associated to the corresponding primary field. On the other hand, the initial values
of primary and secondary fields determines them uniquely. This permits, finally, to
establish a one to one correspondence between primary fields and Verma modules,
so that it is exactly equivalent to formulate the theory in terms of highest weight
representations or in those of conformal families. In particular, as the first ones are
characterized by their highest weight vectors, in the same way, one can show that all
the informations about the QCFT are contained in the correlation functions of pri-
mary fields. From another point of view, the operator product algebra of the model
is generated by the primary fields.

In order to verify these statements in details, notice that, from the expansion
(2.35) and the expression (2.37) of the coefficients of its singular part, one achieves
the relation

(T(2)$1(21,51) -+ $nl2n, 50)) =

ZZ”: ((zfi)ﬁ - -6—)<¢1(z1,fl>---¢n(szn>>, (2.40)

z— z; 0z

being ¢, (1 = 1,...,n), primary fields. Due to this equation, the previous state-
ment is then essentially proved. Indeed, secondary fields are defined precisely as the
coeflicients of OPE’s like (2.35) and (2.36). In the simplest case,

R (z2,2) = L_y(2) d(z,2) = 5%_—2— jg, dw —T(E:—iz—%%’_?, (2.41)



§2.3. Correlation functions 39

where the operators L_;(z) are defined in eq.(2.39). Therefore, deforming C'; into a
set of contours C; around the points z;, the correlation function reads

(#79(2,2)$1(21,21) - - Bl 50)) =

1 & 1 A 1 9
T om Z_: fc-dw (w — z)k1 ((w—zi)2 i W — z; 531') x

X (p(z,2)¢1(21, 1) - - Az, Z:) . - - $1(2n, Zn)) =
— . (k — 1) A 1 o
- i; ( (zi— 2 (m—2)t 52) 8

X (2, 2)1(21,21) - (20, Zi) oo - 0120, Zn)) =
= L i(z,21,.-,2n) (#(2,2)p1(z1,%1) - - #(2n, Zn)) - (2.42)

With successive applications of the differential operators L_x, one can computes the
correlation functions for the descendant fields,

<¢§kl}(zl, 21)¢§k2}(z27 EZ) T ¢;{zkn}(zn7 5”)> ’ (2'43)
once those relevant to primary fields are known.

As it has been suggested at the beginning of this section, conformal symmetry
imposes severe restrictions on the correlators (¢1,¢z...¢$n). The first conditions
derive from the projective invariance of the vacuum

L,|0) =0
for s = —1,0,1 (2.44)
(0| Ly = 0.
Indeed, since
%dz 2T (T(2)1(21,21) - - D20y Zn)) = 0 for s = —1,0,1,
(2.45)

due to egs. (2.40), the correlation functions among primary fields should fulfills the
conditions

LG

Z B (d1(z1,71) - @iz, %) - Pulzn, 20)) = 0

n B ~ _

Z (ZI aZi +A1> <¢1(~17"1) ¢ (ziyzi) n(/‘n)zn» =0

= s 0 _ _ _

Z: (Z:—a—;; +22i Az> <¢)1(Zl,zl)...¢1(~1,Zi)...¢n(zn,zn)> = O,

(2.46)
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whose more general solution has the form
(#1(21, Z1)P2(22, 22) - . . Pn(20, Z0)) =
=[] (= — 2)" (2 — ;)% f(z5,25). (2.47)
i<

Here the notation is

i) v;; and 7; are the solutions of the systems of equations

Z")/ij:2A,; i:1,2,...,n

b

> A = 24 i=1,2,...,n (2.48)
i

where v;; = v;; and ¥;; = ¥;i,

it) f is an arbitrary function depending on the 2(n — 3) harmonic quotient

ko _ (z—zi)(z — 21) ki _ (B 7)(5 — &)
T (z—a)(ak — ) Y (E-a)(E - ) (249)

In the particular cases n = 2,3 the correlation functions of pmmary fields results,
thus, completely determined and one achieves

(8ul21,2) (20, 22)) = b D (21— 22) 20 (31 — 5) 2% (2.50)

[
i
il

X

<¢n(zla El)¢m(z27 22)¢P(Z37 23)) =

— C’nmp (zl - zz)"ZAm.;p.n.(Z2 - 23)—2A1n1».71.(21 . 22)“2511.111.1:(52 . 53>‘25111.]:.11.

where Apmp = Ap + A — A, and Anm,p =A,+ A, — [lp. Notice that the highest
weight vectors [n) and |m), associated with the fields ¢, and ¢, can be always chosen
orthonormal, as they are Ly eigenvectors, so that it is D, = 1. With this normaliza-
tion, the coeflicients C,,,, becomes symmetric in the indices n,m,p. Furthermore,
from eq.(2.50) one derives the definition of the out state created by a primary field
as

(Al = lim (0] ga(z) =", (2.52)

Z — OO

having understood the zZ-dependence.

Another important constrain (see appendix C of ref. [5]), arises as the conse-
quence of the associativity assumption for-the operator product algebra

010y = Y. Cf 0k, (2.53)
K
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where O is a generic field, the index I combining the space-time dependence and
the label of the operator. Consequently, the associativity condition is expressed by
the equation

> CfiCkL =2 CixClp (2.54)
K K

which can be graphically represented as

Sk >—K—< =ZKJE

(2.55)

Here the “propagator” and the “vertex” coincide with the two-point correlation func-
tion,

r 7 = Di; = (0105) ,

(2.56)

and with the three-point one,

= Cyg = Yx Dgx CjKJ, = (0;04;0k) ,

(2.57)

respectively. Therefore, eq.(2.54) acquires the meaning of a crossing symmetry con-
dition for the four-point correlation function (O;0;0xOr). A more explicit notation
is recovered denoting

G¥ (2,2) = (k| di(1,1)¢n(z,2)|m) , (2.58)

which represents the most general form of the four-point correlation function includ-
ing the constraints imposed by modular invariance. Therefore, the crossing symmetry
condition reads

Gl (2,7) = G -21-2) = 642 (2,3) - (2.50)

-~
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This equation can be cast in a more useful way if one performs the OPE

(]5 ( qsm O 0 Z Z Cz;,ik}{;}z —Anm.,p +E: ki Z_"ETLTIL,]I “I“E; ]—C“ ¢£k}{i€:}(0, 0) (2.60)
P {kHE}

in the correlation functions G!¢ . Indeed, due to conformal invariance, the numerical

nm'*

coeflicients C’P'{’“}{k} split into CZ_ Bk} ﬂ,{lk}, where ,3{""} and ﬂ{k} are expressed un-
ambiguously in terms of the Welghts An, D, O, and Ay A, A, Tespectively, and
gt =1 = ,BT{L?T% so that the coefficients C?Z c01nc1de with those of the three-point
correlation function (2.51). Therefore, by inserting this result in the definition (2.58),
one obtains

G-l:m(z7‘z—) = Z Ogm CklP ‘F-rlLI:n(p| )flk ( ] ) (261)
P

In the above equation the generally many-valued functions Fi*, (.7:”‘ ) are called
conformal block functions and depend on A, A, Ak, A A, (Any A, Ag, Ay A,),

as it appears evident from their expression

k 1,1)L .L
ka “ (plz) = 2= By Z /Hp{k} T; ki (k| ¢1(1,1)Ly, - k. |P)

2 O R

[the same expression, with the substitution z — Z, Apmp — Anmp, peikt . geik}
holds for F* (p|z)]. Notice that (2.62) are generally many-valued, even if the cor-
relators G e (2, %) are single-valued meromorphic functions. The crossing symmetry
condition in terms of such conformal block functions reads

2 2 Cutp Fri(pl2) Fila(p12) = 35 Cf kg Fri*(pl1 — 2) F1*(pI1 — 2) . (2.63)
P q

These are the fundamental equations of the Polyakov’s bootstrap program, whose
aim is the computation of the constants C!_ and the dimensions A,, A,, the most
important dynamical characteristics of the QCFT. Indeed, once the conformal block
functions are known, eq. (2.63) yields a system of equations which are sufficient to
determine these numerical parameters. Notice that the problem can be formulated
in a slight different way, pointing out the role of local assumption. Indeed, the
constants C?_, constrained by the requirement of locality, z.e. of single-valuedness

of the physical correlation functions, shall be such that the combination (2.61) will
be monodromy invariant.

The expression (2.61) is an explicit example of the factorization of the operator
algebra into a holomorphic and an antiholomorphic component and can be obviously
generalized to the n-point correlation functions, by the introduction of the n-point
conformal block functions Fh (5|21, 23,.. ., z,), where p = (p1, P2, - -, Pn-1). Such
quantities, in fact, allow to write the physical correlators as the monodromy invariant
combination

Gt (2, By 2y Bn) = 3 By FU (B2, 20y 20 ) FRR R (B By B,

-l

pp
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with the invariant matrix hzy built out of the constants CZ . This enables to state
that the same decomposition holds at the operator level

¢’71 Z Z Z ‘Dnmspnm ®(10nm(5) (265)

where ©P  are many valued conformal fields of weight A,, whose action and coaction
are non-zero only on the Verma modules V,,, and V,, respectively. In addition, if one
imposes the normalization condition

(plptm(1)m) =1 (2.66)

Io.d

then the conformal block functions F'i!2!» are the vacuum expectation values of the

product of such conformal fields
Flllzmln(ﬁlzly Z29 .- 7zn) - <(p?1pl (zl)spilpz( ) 905):0_1(“”» ’ (267)

Here, 0 denote the vacuum representation. Therefore, ©? _ are said conformal block
operators or, more simply, conformal blocks. The possibility to describe QCFT by
focusing the attention on conformal blocks, rather than directly on local primary
fields, will be investigated in the next chapter, where locality arguments will become
the main ingredients of the discussion.

Although Polyakov’s idea can be applied to any conformal invariant model,
it has to be stressed that the explicit expression of conformal block functions, in
principle completely determined by conformal symmetry, is not known for a general
Virasoro algebra representation. Nevertheless, in the next section it will be shown
that there exists a particular class of such representations, the so-called degener-
ate representations, in which conformal block functions are the solutions of partial
differential equations.

2.3 Unitarity condition and minimal models

Let us remember that a representation of the Virasoro algebra is said to be uni-
tary when a scalar product structure has been introduced in it, coherently with the
unitarity condition '

LI = L_,. (2.27)
On the other hand, in order for the bilinear form ( | ), introduced at the end of §2.1,
to fulfill the positivity condition, <¢,T|¢,> € R>o, =0 < [|¢) = 0, some restrictions
are needed on the possible values of the central Charge ¢ and the weight A. As an
example, consider the states L_, |¢a), with m > 0. In this case, if one imposes the
positivity of the quantity

I Lon |¢a) [ = (¢al LnL-n [4a)
= (¢al [Ln, L-n] |a)

— |2nA+ i%n(n2 N (2.68)
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(with the choice of the normalization || [¢a) ||= 1), for n =1 and then n — oo, one
finds that
A>0 and c>0 (2.69)

represents a necessary requirement for an irreducible highest weight representation
to be unitary. '

The general analysis is based on the explicit expression, due to Kac [19,20], of
the determinant of the matrix associated to the quadratic form || [#) ||*= (¢|¢). As
already hinted, since any representation is Lo-graded, that is, can be decomposed in
the direct sum of orthogonal finite-dimensional Lo-eigenspaces (levels of the repre-
sentation), Kac’s formula can be given at each level NV [i.e., the level of those vectors

such that Lo |¢) = (A + N) |#)] and reads

det My(c,A) = ﬁ I (A=A ()™ ™. (2.70)

k=1

!
nn

1
nn=k

In eq.(2.70) (V) is the dimension of the level N, whose value can be derived from
the formula

ﬁ 1-¢)" = i m(N)q". (2.71)

N=1 N=0

Moreover, the functions
1 1 2 2 ! "
Ay o(e) = (§a+ n+ zo_ n) — g n,n € Lso, (2.72)
are expressed in terms of the quantities

0 = &1-0)

oy = \/1—05_2_{25~c (2.73)

and give, for each value of the central charge c, the highest weight of the reducible
Verma module. Indeed, since det My(c, A, (c)) = 0 for N > n'n, the respective

Verma module Vs = Vs, should contains at the level n'n a so-called null or

n o, n

singular vector |x), with zero norm and orthogonal to any state in V,

{(x|x) =0

(dlx) =0 Vi) € Vi (2.74)
From the above relations, it follows that |x) satisfies the equations

Lo [x) = (A, +7n) |x)

L.lx) =0 for m > 0, (2.75)
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that are characteristic of the highest weight vectors. Therefore, to achieve an irre-
ducible representation from V,; , it is sufficient to factor out the submodule gener-
ated by |x),

Vo=V /Vu _, (2.76)

ka3

(notice that Ay, + n'n = A, _,). Indeed, due to egqs. (2.74) I./n',n turns out to be
a well-defined module, corresponding to the so-called degenerate representations.

As for the unitarity property, Kac’s formula allows to state that the quadratic
form || |4) ||? or, equivalently, the matrix M(c, A) = Dy My(c,A), is positive semi-
definite if ¢ > 1 (strictly positive definite if ¢ > 1), with no further assumption for
the weight A, besides A > 0. In this range of values, in fact, either the functions
A, (c) are complex (1 < ¢ < 25) or they become negative for sufficiently large n
and n' (¢ > 25)%. In the remaining region, 0 < ¢ < 1, the matrices My(c,A) are
always negative semi-definite and one can establish that

6
c=1— with p = 2,3, 4, ...
p(p+1) d T
yn—pn']?—1 =1,2...,p—
A=Ay (p) = Pt —pn] wih T 2Pl
' dp(p + 1) s =1,2,...,r
(2.77)

are the only acceptable values (see ref.’s [15] and [16]). Notice that the cases n' > n
have been excluded only because A = A1 pn- Moreover, for n > p and
n' > p+ 1 the series repeats itself exactly, in accordance with the rule

Ay, =A

n p+14n p4n

(2.78)

In particular, for p = 2, one retrieves the trivial representation ¢ = 0, L, = 0 Vn € Z.
The conformal invariant models associated to the irreducible Virasoro algebra repre-
sentations Vnr’n are called unitary minimal models and belong to a wider class, the
rational conformal field theory (RCFT), characterized by a space of states consist-
ing in a finite direct sum of irreducible highest weight representations of Vir @ Vir,
or, equivalently, by an operator algebra which involves a finite number of confor-
mal families. A common feature of these models is the possibility to compute the
conformal block functions as the solutions of some partial differential equations. In
the case of the minimal models they arise because of the reducibility of the Verma
modules into consideration. Indeed, let x(z) be the primary field corresponding to

the Verma module V; _ =V, .., submodule of V' oo Coherently with the

reduction (2.76), any correlation function of the form (X@1...bn_1) vanishes. But,
since this quantity can be expressed through a differential operator in terms of the

correlators of the corresponding primary field Yo' 0 [s€€ €q.(2.42)], the presence in

*One can show that, for ¢ > 1, a complete operator algebra containing one of the primary field

¥, , of weight A, , must comprehend all of them.
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V. . of a null vector and hence the reducibility of such a representation, is reflected
into the partial differential equations

Ly(z,215- 5 2n-1) <¢n’,n(z)¢1(zl)---¢n(zn—1)> =0. (2.79)

Here the omission of the Z-dependence is justified, only the holomorphic component of
the correlation functions being involved in the condition. Therefore, more precisely,
conformal block functions are the arguments of eqs.(2.79),

L. (221,20, .., 22) Fn n(Pl2z, 21, oy 201) = 0. (2.80)

The differential operator £, has maximal order of derivatives n'n, and can be ob-
tained as a combination of the differential operators £_,, defined in equation (2.42),
exactly in the same way as the primary field x(z) is a combination of descendants
belonging to the family [, ]

The simplest non trivial example of unitary degenerate representation is that
associated to A = Ay, (the value of the central charge is left arbitrary). The null
state of the Verma module V; , is

x) = <L~2 - ‘2—(‘2‘5‘1?%2—:1‘51;2_1) Ix) (2.81)

as one can easily show, equating to zero the norm of the generic second level vec-
tor (a Loy 4+ bL%;)|Az2). Due to the relation (2.42), the desired partial differential
eqs.(2.79) is achieved simply by substituting to the Virasoro generators in the ex-
pression (2.81) the corresponding differential operators £_j. The result is

3 H? 5": A; N
2(2A12+1) 022 = (z—z)?
"i; o 8zi) Fra(Flz 2,0y 2n1) = 0, (2.82)
where A, A,, ..., A, are the dimensions of the primary fields ¢, ¢2, ..., ¢n. If

0 < ¢ < 1 and the theory is unitary, 7.e. in the case of unitary minimal models,
every field belongs to a degenerate family (the conformal families corresponding to
degenerate representations) and, consequently, every conformal block function must
satisfy similar equation. Notice that if one consider, in particular, the four-point
correlation functions

-71,2(512,21732,33); (2-83)

due to projective invariance of the vacuum, the partial differential eqs.(2.79) reduce
to ordinary ones and, more precisely, to the Riemann ordinary differential equation

3 & N i 1 d A; .
212012+ 1) dz?2 T \z—zidz (2 — z)?

1

Ayp+ Ak - _
+.Z,- (z—zi)(z——zj)}Fl’z(p[z’zl’zz’z3) = 0. (2.84)
J<i
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Therefore, for the cases (n',n) = (1,2) or (n',n) = (2,1), the conformal block func-
tions f{flzzh (P'|z, 21, 22, 23) can be expressed in terms of the hypergeometric functions.

Since correlation functions and OPE of primary fields are strictly related, im-
portant constrains on the latter arise naturally in the degenerate case, due to differ-
ential equations of the type (2.80). In the simplest case, when OPE involves 11,9 O
12,1, one can easily verify that (2.82) implies the symbolic formulae

bt = (bt o] + [P ]
Yo, 1%, = [¢n'—1,n] + [¢n'+1,n] ) (2.85)

where the square brackets denote here the contribution of the corresponding confor-
mal families to the OPE. Therefore, the degenerate conformal fields 1,2 and 1y ¢
acts as a sort of shift operator with respect to the OPE algebra. The relations ex-
pressed by eq.(2.85), which represent the simplest example of fusion rules in minimal
models, must be understood with the limitation that no negative labels n', n arise
in the expansion, otherwise the series results truncated. The general fusion rules for
degenerate fields has the form

t

k k

¢n',n¢m',m = Z Z wl',l ) (286)

U=In'—m/[+11=|n-m|+1

where k() = min(n()+m() -1, 2p0) —n()—m)—1) and n)+mV =1V —1 = 0 mod 2.

2.4 Coulomb gas representation

Although the question of the computation of conformal block functions would seem
to be solved, as explained in the previous section, the problem is only shifted, since
the expression of such differential equations is not known in general. A different
approach was proposed by Dotzenko and Fateev [7] and consists in a representation
of the conformal blocks of minimal models in terms of the correlators of Coulomb gas
vertex operators, the so-called Feigin-Fuks integral representation [11]. Furthermore,
this interpretation allows to formalize the construction of the space of physical states
in the case of degenerate representations, with the introduction of a BRST charge.
Henceforth, only the holomorphic component of the operator algebra will be con-
sidered and the terminology proper of QCFT (primary fields, correlation functions,
etc.) shall be understood by taking into account this restriction.

The DF model is constructed on a direct sum of “charged” bosonic Fock spaces
Baa, Of charge o, which a Verma module structure is given to, with central charge
c¢=1—240}. To enter in more details, Se,ap 18 the module of the Heisenberg algebra

[Gny am] = 26, _m n,m € 71, (2.87)



48 Chapter 2. CONFORMAL FIELD THEORY

built upon a vector |e), (ground state of the Fock space §, q,) With the properties

an |a),, = 0forn >0andao |@), =2« |a), , by acting with the creation operators,

Bocy = @ @ Capy vvlm, |0«<)0‘0 . (2.88)
k=0 =

MY LTy

1<n; L...<ny

In the spaces § one can introduce a Virasoro structure whose generators are

&,

represented by

L, =3 Z G ke O —ao(ﬁ—}-l)an, n #0
k=-—c0

Lo = % Z a_pap — %a§~a0 ag . (2.89)
k=1

One can easily verify that these operators obey the Virasoro commutation relations
with central charge 1 — 24af. Moreover, |a), is the highest weight state of the
Verma module §, ,,, with highest weight a? — 2aaq. Actually, to show that F, ,, is
isomorphic to such a Verma module, a further necessary condition is that subspaces
of Verma modules and of charged Fock spaces with fixed degree in the Lo-gradation
have the same dimension, as can be easily checked. The dual space SL’QO, defined by
the coaction LI = L_, on the space

£

o = é (Boomo), » (2.90)

k=0
coherently with the unitarity condition, has a Fock space structure whose Heisenberg
generators are a,‘; = 409 6p0 — a_n. Therefore, SL,O‘U is isomorphic as a Verma module
t0 Baap—a,aqr @ fact that suggest a physical interpretation of the parameter g as the
“charge at infinity”. This can be made clearer if one consider the example of the
vacuum module §; ,, and the respective dual Saao & Soao.eo (€€ Tefl[T]).

For the purpose of this section, the interesting values of the charges o and aq

are
Y
a(z) — (p /p)
dp'p
a=ay,=LY1-n)a_+11-n)ay. (2.91)

Here p and p are positive coprime integer with the restriction p' > p, whilen', n € Z
have to fulfill the condition n' # 0 modp, n' # 0 modyp , and ax = o + (1 + a?)/?
are the same function of the central charge ¢ = 1 — 24a? introduced in equation
(2.72). Thus, the weights of the Verma modules are

— 2 —
An',n = an,'n ——zoﬁnl,nao et

2
S 1 2
= [§n o + Enoq_] -y =

H(n' ~ 1) ad(n'n — 1)+ 3(n? ~ 1) ol , (2.92)
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v

Figure 2.1: Contours of integration in the definition of screened vertex operators (2.94).

so that, when p = p+ 1 and 1 < n() < pU') — 1, one recovers, after the needed
factorization, the unitary degenerate representations listed in the previous section.
However, since also when such a unitary case is not considered the recursive formula

(2.93)

Cn'in = Op'in’ pin

holds, one obtains, for each value of p and P (i.e. of the corresponding central
charge), a finite complete set of Virasoro algebra representations. For this reason,
the corresponding physical models (comprehending unitary and non-unitary minimal
models) can still be count among the RCFT ones.

In this frame, the primary fields associated to the Verma modules 3, , are
represented, in their most general form, by the so-called screened vertez operators

(SVO’s)

VT:,/”;(z) = ?4 V"‘n’.u(z)v"‘*(ul) e V() Vo (v1) oo o Vi (vr) H du; H dv; ,

i=1 j=1
(2.94)
where the contours of integration, C; of u; and C; of v;, are depicted in figure (2.1).
The vertex operators T/;n, i and V,, introduced in eq.(2.94) are Wick-ordered expo-

nential of the free fields of the type

Vo = Ty z*exp (a > aunz") exp <—a > (—Z—n—z"”) . (2.95)
n

n=1 n n=1

Here T, the U(1)-charge generator, [a,,Ts] = 26n00Ta. In the sequel, SVO V"
will be recognized as the conformal blocks of the primary field of weight A s  [see
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eq.(2.65)]. To support this statement, let us remember the expression of the vertex
operator correlation functions

s (2i — z;)% if Yo =0

x 1l
(N Vai(21) Vag (22) - - Voo (22)2) =
0 otherwise
(2.96)

where the vacuum state |Q) and its dual are the highest weight vectors of the Verma
modules §, ,, and Sé,azo = S2aq,a90 TeSPectively. Moreover, being the correlators (2.96)
generally many-valued, one chooses |z1| > |z3] > ... > |z.|. Therefore, the matrix

element of the primary field of weight A s between the ground states ‘al/,l> and
Iam m> is
Lm0’ —1' 1), L(mtn—1~
A M (2.97)

the only possible choice to fulfill the neutrality condition }; a; = 0. Indeed, V,,,
which do not contribute to the weight of the screen vertex operator, as it has di-
mension one, nevertheless contribute to its charge. Therefore, one can easily verify
that V,'" maps the states in the Fock space §,,/ , to those in §/,/_5_; a1

The analogy with conformal blocks becomes, so, ev1dent if one 1nterprets ol asa
homomorphism between V,,, and Vj,.

It remains to clarify the motivation of that particular choice of integration
contours in the definition (2.94). Notice, firstly, that, although the integrand is
many-valued, the contour C; and C; are chosen so to be contained in a region where

such a product of vertex operators is well-defined, namely |z] > |us| > ... > |v,|, and
one can fix conventionally its matrix elements between two highest weight states to be
real when the variable are ordered on the positive real axis (z > u; > ... > v, > 0).

The value of (2.94) is then unambiguously defined if one gives a path of analytic

continuation in C™" 1 — Ua<s {2« = 25}, as shown in figure (2.1) (dashed lines). Of
course, due to the divergence of the product of vertex operators as their arguments
approach, the integrals in eq.(2.94) have to be regularized somehow. A possibility is
to evaluate the matrix elements of a SVO as analytic continuation from a region of
the complex o? plane (with a2 = 1/a?) where the integral converge. Such region is
given by

1 2
3 < Real <0 (2.98)

and, hence, does not contain any real point. However, one can observe that every
other choice of the integration contours is allowable, provided that they surround
the point z. Indeed, they become completely equivalent when expectation values are
considered. Nevertheless, the present definition has the advantage to enable a direct
identification of conformal blocks with screened vertex operators, already at operator
level, instead that only at the level of correlators.

The analysis brought out in the previous section led to the conclusion that
the Verma modules Vs | contain irreducible maximal proper submodules of weight
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n

Ay, + n'n. Since the Fock spaces 8.’ n are isomorphic to Vs , rather than to the

irreducible quotient modules an]n, they cannot be identified with minimal models
before decoupling physical from unphysical states. A BRST cohomology of Fock
spaces can be the tool to realize this program. In order to find a good candidate as

BRST charge, let us consider the operators

m-1

1
Q. = — ]f Vi, (0) - - - Vs (0mer) [ i (2.99)
m 1=0
mapping the states in §,,s ,, to those in § s _ . Here the integration contours for
V1, ..., Um—1 are those chosen for the SVO’s, while vy is integrate over the unit circle.
This operator has some crucial properties. ‘

i) The operators (2.99) can be viewed as the charge corresponding to the currents

1 0m-—1
Im(z) = — 10 (=) (2.100)
Since J,.(2) are single-valued weight-one operators, the respective charges Qr,
preserve the Virasoro algebra structure, z.e.

[@my Le] = 0 Vk € Z, (2.101)

which allows to state that Q.. are injective homomorphisms of §, ., into
B’ —m» Provided that one can prove the suflicient condition Qm ’amf,m> # 0.
It has been shown (see appendix in ref.[12]) that this requirement is fulfilled
when m' < 0and 1 <m < p—1. Since A . = A _ — m'm, for these
values of m' and m, the state Q.. ‘am:,m> has to be a non-zero singular vector

of Sm/,_m.
ii) Let us consider the charges

Q]’-—Tn Qm,
T 5 (2.102)

3771',21.7—m "VUm ,m '15m',m
with 1 < m() < p{') — 1. In this sequence Q,_,, maps 3
into Sm:_pl’m_p = 'Sm:'m.
the condition under which the charges @,, are injection of Verma modules, one
can verify the BRST property

m’, 2p—m = 15.m'—pl,p—m
Due to what has been said in the previous point about

QmQp-m = 0. (2.103)
i11) The spaces of BRST states (cohomology group)
B = Ker Qun/ImQpp (2.104)

are isomorphic, as a Virasoro modules, to the irreducible highest weight modules
V. m- Notice that a complete analysis would require computing the BRST
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cohomology in the case where m() # 0 mod p(). For this it would be necessary
to consider the more complicated BRST complex C\ = = @jcz Sm' n-2; D

@jez S_m! ,m-—237

Qvn Q]l-—'m. Qm. QI"‘"’- ~ Q'nL

..———-——>{§mr’_m+2p———>{§m/|m—-———>{§m/,_m~—————>1§'m m—gp - (2.105)

However, the conclusions would not change. Indeed, if one denotes Q%) the
BRST charge Qm : S/ .m-2jp — Sm',—m—2jp 20d Q?9) the BRST charge
Qp-m * B! —me2jp ~ B! m2(j+1)p? the BRST property QZ)NQ-1) = 0 is
again fulfilled. Furthermore, the only non-vanishing cohomology group among
those defined as

H(Co ) = Ker Q9 [Im Q31 (2.106)

m o ,m

is H°, the space of BRST states already introduced.

The last important result is the BRST-invariance of SVO’s, i.e., the statement that,

on Sp' ms

Qm+n_21-~1V:r:;(z) _ e21rwc ' a+(m+n 2r— 1)V1~ n—r— 1( )me (2107)

where the phase factor is generated by the “braiding” of the vertex operators V,,
with V, , . Eq.(2.107) is illustrated by the (up to a phase commutative®) diagram

1

VT, T (2)

!
n,n

Bm',m : %m’+n'—2r’—1,m+n—2r—1

lQ‘m JQnL-{-n-—ZT——l (2.108)

VT,’, n—T=1 (z)
n,n
————————————————
Sm',-—-m g1n'-1;-n.’—21"—-1,—-'rn—n—i-21'—|—1

The physical meaning of the commutation (2.107) is that SVO’s are well-defined on
the BRST states and maps BRST states to BRST states. The interpretation of these
propertles in the context of Virasoro modules leads to 1dentify, up to a constant the

SVO’s V,'" and the conformal blocks go o, with 1 = n) 4 ml) — 2700 — 1,
An exact c01nc1dence arises if SVQ’s are normalized by imposing

!
N,, ' :<all
n,nm,m

Moreover, Ni,’ln . can be computed explicitly (see [12] and reference therein) and

]

v m,m> =1. (2.109)

n,Wn

from their expression one achieves the conditions under which V','" # 0. Indeed

®The phase could be eliminated by rescaling SVO’s.



§2.4. Coulomb gas representation 53

the vanishing of normalization constants implies the vanishing of the corresponding
SVO’s themselves on the BRST states, since all their matrix elements can be ex-

pressed in terms of N'/! ., using the conformal properties of SVO’s. Therefore,

n,nm,
I

'
\omo,m

requiring Ni,’ # 0, one gets the constraints
n)—m+1 <10 < min(n(,) +m =1, 2p7 — () — () 1), (2.110)

while further conditions® arise from the global projective invariance of the three-point
correlators. For this reason the allowable values restrict to

n) —mO+1 <10 < min(n) +m() -1, 2p0) — n) — () 1). (2.111)
This, together with the neutrality condition
n) 4+ m — 1)1 = 0 mod2, (2.112)

is in agreement with the fusion rules of conformal families reported in equation (2.86).

%One has to require that N';' ,  do not vanish for every permutation of the indices (nl, n),

(m', m) and (I', 1)
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Chapter 3

Quantum group structure in
minimal models

Although till now quantum group theory and QCFT are described separately, some
similarity can be already stressed. In sections §1.2 and §1.3 QYBE’s established a
deep connection between quantum groups and braid group representations. On the
other hand, the decomposition (2.64) of any correlators into many-valued factors [the
conformal block functions Fh'24=(5|2y, z,,. .., 2,)] leads straightforwardly to the in-
troduction of a braid statistics. Indeed, to define block functions one has to choose
a particular ordering of their arguments (for example |z;| > |z2] > ... > |z,]) and
then, via analytic continuation, extend their definition to different domains. Hence,
the symmetry of single-valued correlation functions with respect to the permutation
of their arguments, is replaced by the invariance under braiding of paths of analytic
continuation. Evidently, the importance of the role played by braid groups in both
these fields is not accidental. In a local QFT on a space-time of dimension d > 3,
a symmetry is described by a group of unitary transformations which act on the
field algebra (or, equivalently, on the tensor product algebra of observable algebra
representations) by automorphisms commuting with the permutation of the factors
in a product of space-like separated fields. However, if d = 2, i.e. on such space-
times where the space-like complement of a point is not connected, the possibility to
find fields with statistics determined by a representation of a braid group cannot be
excluded. Therefore, in order to describe their symmetry a more general algebraic
structure is needed. The idea that this structure can be identified with quantum
groups is supported by the properties of the category of quasitriangular Hopf alge-
bra representations, whose main characteristics were summarized in section §1.4. The
crucial point is that such a deformation of a “classical” group transforms a cocommu-
tative structure, linked to “local” permutation statistics, into a non-cocommutative
one, with some “structure constants” (the universal $3-matrix) which constrain the
cocommutation relations.

In the sequel, minimal models will provide an example of such physical ap-
plication of quantum groups. After having pointed out some features which seem

%3]
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to suggest a U,(sl) hidden symmetry, the attempts till now produced to construct
an explicit quantum group action on the chiral field algebra of the theory will be
briefly described. The limits of the argumentations given in the sequel are due ex-
pecially to the inadequate comprehension of quantum group representation theory
when the parameter of deformation is a root of unity!, ¢ = €. Indeed, this is
precisely the case of those U,(sl;) representations related to minimal models and,
more generally, to RCFT, as one can argue from the explicit expression of the mon-
odromy matrices. The basic problem arising when ¢ = €*™/? is that (E+)? = 0 and
this generates null vectors in some representations. Therefore, the results achieved
in Chapter 1, according to which the representation theory of U,(sk) for ¢ generic
is obtained as a deformation of the Borel-Weyl construction for “classical” groups,
can be extended straightforwardly to the present case only in some favorable cir-
cumstances. Generally, the tensor product of irreducible representations might not
be completely reducible, which means that some of the representation appearing in
this decomposition might be reducible, but not fully reducible. The problem can
be eluded if one imposes particular conditions on what representation can be consid-
ered “integrable” and modifies the definition of the tensor product of representations.
More precisely, the requirements are that in the tensor product of fundamental rep-
resentations [spin } representations of U,(sk)] one only keeps those highest weight
vectors annihilated by E, and, at the same time, not in the image of (E;)?~!. This
restricts the possible representations to those with spin smaller or equal to (p—2)/2.
As a consequence, in all the relations reported in §1.4.5 involving summations on
the allowable representations, the series will result truncated at this value of j. It
must be again stressed that this is an ad hoc construction and a conclusive theory on
quantum group representations when q is a root of unity has not yet been formulated.

3.1 Chiral vertex operators

On the ground of what already said in the previous chapter, minimal models are
characterized by a local chiral algebra A, the enveloping algebra of the Virasoro
algebra Vir, and by a space of states

N,Nel,

being §, an irreducible degenerate highest weight module of A, acting on it as L, ®
1. Analogously, 3 is an irreducible degenerate highest weight module of A, the
antiholomorphic copy of the chiral algebra A, acting on it as 1 ® L,,. The index N
is an abbreviate notation for (n', n) and I, is a finite set of allowable values related
to the central charge ¢ < 1. The algebra A can be constructed by imposing some
locality assumptions as the holomorphic operator algebra which generates the vacuum

module §, = §,;) (remind that A, ; = 0).

!Throughout, the deformation parameter will be the square of that considered in Chapter 1.
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In this context, in the attempt to give a precise meaning to conformal blocks
and conformal block functions, the concept of chiral vertex operators must be intro-
duced. With this purpose, let us consider three representations of the chiral algebra
A, labelled by j;, j, and j. Furthermore, suppose that the respective modules are
localized at the points z;, 2z, and co. Then, a chiral vertex operator (CVO) of type

( i ) is defined as an intertwiner operator

J172

( ’ ) P e - & (3.2)
Z1,2Z2

The intertwining property is expressed by the relation

J1 J2

700 (] ) (v (1) © 0% (22)) =

_ ( . ) P ® 17 (D (0)) (09 (21) @05 (), (3.3)

where v71(z;) € {fg-f‘), v2(2,) € J-:"’) and O, is the n'* mode of an operator O(z)
belonging to the chiral algebra A of dimension A, O(z) = 32, O,z ""2. Moreover,
p*, p2 and p represent the actions on the modules 82-:1), Sg;fz) and Sg-m), respectively.
In addition, CVO’s must satisfy the equation of motion
2L ) wimer)={ .7 | Cav)ed0). (34
dz \ J1 J2 20 12 ).,
In defining the tensor product action p ®p%, the coproduct A., ., has been intro-
duced. With z, identified to the origin, contour deformation allows to write

= A-1
A:o(0n) = ) ( nr . ) AR D A ®141Q 0, (3.5)
k=0

being O(z) € A an operator of given dimension A. Following Moore and Seiberg [27],
one can observe that eq.(3.5) does not define a coassociative coproduct, while the role
of this property in the case of Hopf algebras had been stressed in Chapter 1. However,
admitting the possibility for the functorial isomorphisms &y v, : XY ®Z) —
(X®Y)®Z to be no longer trivial, the coproduct (3.5) still allows to introduce a
tensor product algebra in the category of representations of the chiral algebra A. As
a particular case of the definition (3.5),

ML +2"(n+ VDLo+--+L)®1+1Q L,  for n > —1
Azo(Ln) =

("L +2Mn+ D+ )@1+1Q 1L, for n < —1.
(3.6)
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The requirement that CVOQ’s obey eq.(3.3), together with the intertwining condition
(3.4), implies that the map ;¢% (z) : Sgg) —r {§§-°°), defined as
Yo

i97.(2) = ( 7. ) (vd(2) ®-), (3.7)
Yo J1 J2 2,0
is a primary field of weight A;, whenever 'vg’ is the highest weight vector of § .
Indeed, by definition, for n > 1,
Ino i#5,()0%) = 193, () L) + 167 IO CONED)

MLy 4 (n 1)L 4 -

so that, if Lovd! = Ajl'vgl and L,vd' = 0 for n > 0, then
(L 385,)] = (79 £+ (4 005 ) 0. (39)
0 Y

Consequently, conformal blocks can be identified with the operators in eq.(3.7) and
conformal block functions with the vacuum expectation values of products of such
operators,

(028 (22) 87 (22) - pucs B (20)) (3.10)

Furthermore, since a module §; is completely characterized by the corresponding
primary field, every conformal block determines its associated CVO.

The introduction of CVO’s allows to formulate the bootstrap program in a
different language. Indeed, one can show that the vector space spanned by the CVO’s

of type ( i ) and denoted VJ’l j,» provides a representation of the centralizer of the

chiral algebra A acting on the tensor product §; ®3;,. In order to better explain
this statement, consider the centralizer C'(A4, V) of an algebra A in End(V®¥), i.e.
those linear maps V& — V8 that commute with the action of A%. It is easy to see
that, then, C(4,V®) coincides with Mor(V®¥,Ve¥) the set of intertwiners from
Ve¥ to V¥ In addition, note that using the decomposition of V@V [see eq.(1.88)]
repeatedly, one obtains V&N = éj WiQV;, where W7 is a vector space on which
A acts trivially. Consequently, every intertwiner ¢ € Mor(V®¥,VeY), admitting a
spectral decomposition ¢ = éj $’®id (it commutes with the action of A), can be
uniquely associated to the endomorphism ¢? € End(W7). This defines an action of
the centralizer on WJ. On the other hand it is evident the relation between W7 and
the space of the intetwiners Mor(V ®¥,V;), thought as an A-module®. Hence, once
the space V7 . is identified with the set of intertwiners Mor(g;, ®3J-2 ,3;), the previous

172
statment results clarified. On these grounds BPZ axioms can be expressed in terms

*Such a definition understand that the A-modules can be tensor producted, or in a categorial
language, that 491is a monoidal category.

3Actually, what can be generally pointed out is the existence of an homomorphism between
Mor(VeN V;)* and W7, In the context of the following discussion these two space are assumed
to be identified.
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of operations on the spaces ‘/iijz and their content amount to the existence of maps B

and F' (the braiding and fusion moves) between the Vfl ;,'s which obey identities such
that the representations of the chiral algebra .4 form some kind of rigid Abelian tensor
category. Hence, the bootstrap program can be viewed as a reconstruction problem.

This idea was developed by More and Seiberg [26,27] and by Alvarez-Gaumé, Gémez
and Sierra [1,2,3]. They consider the basic transformations

1 P =, ( 71 ) ( 9 ) (3.11)
J2P ), o\ I8¢ ) 5 J29 ) ,0\J374 /4
; L — . T (3.12)
J2P [0\ T804 )0 974 /o \J2I8 ] .0

The equations fulfilled by such maps follow as a consequence of associativity of the
OPE algebra discussed in §2.2. Indeed, the role of the conformal block functions
F¥ (p|z) is here played by the corresponding CVO'’s.

A further possibility disclosed by this kind of approach consists in interpreting
the equation satisfied by the maps B and F as a consequence of a hidden quantum
group symmetry. Indeed, as it will be shown in the next section, the explicit ex-
pression of braiding and fusing matrices, representing the moves B and F, seems to
indicate a connection with the quantum group U,(sl;) where ¢ is a root of unity. The
natural procedure to make such a symmetry manifest involves the introduction of an
internal degree of freedom, characterized by a new quantum number, m, on which
the quantum group generators will act. This can be realized by associating to each
conformal block operator ¢ ;;(z) a suitable U,-vertez operator (U,-covariant field).
Then the aim of this construction is to find that more information about the two-
dimensional CFT can be coded in a chiral (say right movers) model when the quantum
group symmetry is required. In particular, pairing conformal block operators with
U,-vertex operators should the action of the braid group on the correlation functions
of Us-invariant fields (see ref.[33] [25] for more details). A different approach will be
explain in §3.3, where, following Gémez and Sierra [17,18], the quantum number m
arises in a more natural way, rather than from an ad hoc prescription.

3.2 Monodromy matrices

The aim of this section is to outline the computation of the monodromy matrices,
describing the analytic continuation properties of conformal blocks in minimal mod-
els. The knowledge of the explicit expression of such monodromy matrices will pro-
vide significant indication on the connection with the quantum group U,(sk). This
is only an example among many other “phenomenological” observations about the
close relation between RCFT and quantum groups. The possibility to construct knot
invariants and their role in both these fields, the coincidence between the monodromy
matrices of level £ SU(2)-WZW model and the Racah 6-j symbol of the quantum
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group U,(sl) for ¢ = efﬁ, might be two further examples. Even if in the next section
an attempt to give a theoretical explanation on the subject (limited to the case of
minimal models) will be described, and in the previous section different attempt has
been mentioned, a satisfactory solution of the problem has not been yet found.

Following Felder, Frolich and Keller [13], we will use the Coulomb gas repre-
sentation of minimal models, whose main feature are discussed in §2.4. Although
here such a representation will be exploited only as a computational method, the
next section will show its peculiarity in making possible the definition of a quantum
group action on the operator algebra. In this context, conformal block operators
are identified with the SVO’s of eq.(2.94). In order to simplify the expression of the
final result, it is convenient to introduce a phase in the definition given in eq.(2.94).
Accordingly,

l’l
10( 1) 1

Vit (2) = € 0OtV () (313)

denotes an operator which maps BRST states in g, ,, to BRST states in §y ;, being
1O = n0) £ m — 2() — 1, due to neutrality condition (see §2.4 for a detailed

discussion). Here the phase Gg,’ lr)l)(m, m) is

@y
(', n)(m ,m)
™ 1 ' 1, t [
= 5{(277, +1)r+2n+1)r}— walr (r —m)— Wai'r(r —-m). (3.14)
The monodromy matrices are defined by the equation

Vits(2)Vig(w) = %: B(A,M,N,C)sp Vip(w)Viro(2), (3.15)

where the abbreviate notation M = (m’, m), N = (n', n), etc. has been introduced.
The Lh.s. of eq.(3.15), valid for |w| > |z| and 0 < arg z, arg w < 27 along a path
such that z circumvents w counterclockwise. From the OPE of primary fields and,
in particular, of degenerate primary fields, one obtains the basic results which enable
to perform the calculation. They are the braiding-commuting relations for vertex
operators,

Va(2)Va(w) = e Vs(w)Va(2), (3.16)

with the same convention as in eq.(3.15), and the fusion relations

V(l,‘l) (z) =

(n'-}-l,n)(m',m)

1 ! !
— (_1\5(ntm=I-1) 12 _ \"2empe g ¢, (T£1,0)
= (=1)2 )whﬂlz(w z) T V(z,1)(z'ﬂ:1{z)(w)1/(n’,h)(m',m)(z)’

v (2) =

(nl,n+1)(m’,m)

L am —1' —1) 1 —2aj2a U e
= (=1 T (w — 2) NV @)V ()
(3.17)
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Here the value of o? (= a3?) is such to make the limit for w — 2z convergent [see
eq.(2.98)]. The crucial point in the derivation of eq.(3.17) is that the contours over
which the screening operators Jy(z) (i.e., the vertex operators with charge o or ay)
are integrated can be interchanged without affecting the value of the SVO (see [13]).

Consequently, monodromy matrices can be computed recursively in terms of
the “elementary” monodromy matrices, related to the vertex operators V;(z) and
V1,2(z). Indeed, it easy to deduce from eq.(3.15) the relations

B(A, M +(1,0), N, C)zp =

= (ml)%(a—b+c—d) Z B(A, (2,1), N, Dl)Al DB(Al, M, N, C)BD;
Dy

B(A7 M+(O71)3 N, C')BD =

- (_1)%(a,_bl+c,_d,)z B(A7 (172)) N7 Dl)A1 DB(AI, NI) N, C)BD1

D,
B(A7 M> N+ (170), C')BD -

= (_1)%(a-b+c—d) Z B(A, Ma (2,1)7 DI)A1 DB(AI) M) N, C)BD1
Ay

B(A, M, N+(0,1), C)BD ==

— (=)= S B4 M, (1,2), Di)a 0B(A1, M, N, C)sp, -
4
(3.18)

Hence, the problem reduces to the computation of the matrices B(L', (2,1), (2,1), L),
B(L', (2,1), (1,2), L), B(L', (1,2), (2,1), L) and B(L', (1,2), (1,2), L) that will be
outlined in the following, taking a® as an arbitrary complex parameter (the more
interesting case of rational o, will be discuss in the sequel).

1. B(L, (2,1), (2, 1), L). Consider the product of two SVO’s of weight A, ; map-
ping §; to /. Due to the fusion rules expressed in eq.(2.86), the possible
values for L' are L +(2,0), L, and L —(2,0) (provided that none of these labels
becomes zero). In the first case these SVO’s coincide with the vertex opera-
tors themselves, with no screening charge, and the monodromy matrix is just
a phase,

B(L', (2,1), (2,1), L)z+(0)04(10) = €™°/2. (3.19)

In the second case there is a screening operator, that may be attached to either
of the two fields. By deforming the contour integration one can write both sides
of eq.(3.15) in terms of the integrals

Lpo(z,w) = Ve 1 (0)T_(4)Va, . (2) du, (3.20)

1,2
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A A
4
—

Py

Figure 3.1: Integration contours in eq.(3.20).

where «; o are the contours drawn in figure (1). Then one obtains

L+, T
V(§,1),L+(1,o)(z)v(zj)(11;0)("”) = —1g * * (Q—-Il +q_ Iz)

- oo =l ey
V(g,1),L—(1,o)(z)V(12;,1)(11;'0)(w) = —iq.° (41—2 IL +q.° Iz)
e TN
(2.1), L+(10)(“’) (2,1)L (2) (O A S o e 6

Vi) o-a.0(®)V, 51)11; Nz) = ~iq T (L+ 1), (3.21)

where ¢_ = ™2 The elimination of I; and I, from the above equations gives

the braid matrix

C %
~t¥5 9 —4q-
B(L’ (2’1)a (271)’ L)L:t(l,o),L:l:(l,o) = %:q_‘ ¥ _17_—

9= —4q-
ey e
-1 q_2 q_ 2
B(L7 (271)7 (2,1), L)L:l:(l,o),L:;:(l,o) = Fq_ 7 7 (3.22)
¢z —g-"

The same analysis may be carried out in third case, L' = L — (2,0), where one

has two contours of integration, to be split into parts as above. The simple
result is

B(L —(2,0), (2,1), (2,1), L)1_(1.0),1-(1.0) = €"*=/%. (3.23)

2. B(L', (2,1), (1,2), L). Because of the interchangeability of the contours on
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which the screening operators J_(z) and J;(z) are integrated and

yf Jo(2)Vay 1dz = 0 = }40 J_(2)Vay odz, (3.24)

due to the regularity of the operator product expansion, one gets no contribu-
tions from screening operators and one is left with the phase e?™@21%1,2 = -1,

Thus,
B(L ’ (2,1)7 (112)7 L)AB =1, (3.25)
3. B(L', (1,2), (2,1), L). From an analogous discussion as at point 2, one finds
B(L', (2,1), (1,2), L)ap = i7". (3.26)

4. B(L', (1,2), (1,2), L). The computatidﬁ repeats that at point 1 and, there-
fore, the result has the same expression as in eq.(3.22), without primes and
substituting ¢ with ¢, = e?miel

All the above results can be cast in a more concise form if one observes that the
monodromy matrices of SVO’s have the almost factorized expression

B(A7 M7 N7 CV)BD =

_ i-(m’—1)(n_1)-(n’—1)(m-1)(_1)%(a~b+c~d)(n’+m’)+%(a’-b'+c’_d’)(n+m) %

xb_(a,m', n, ¢y 2bila, myn, c)pa. (3.27)

This is the consequence of the existence in the ¢ < 1 theory of two closed subalge-
bras, the so-called thermal subalgebras, corresponding to the weights Ay, or A 4,
respectively. From the above calculation one finds that the non-vanishing matrix
elements of the “elementary” b, -matrix are

bi(a,1,m, c)ge = by(a,m, 1, ¢)eq =1
1
bi(1£2,2,2, Dizrian = ¢f

bi(1, 2,2, Diz1121 = F4q4 [N

bi(l, 2,2, Diz1i;1 = ¢4 i , (3.28)
+

L1 .
where [l]. = ¢Z — ¢g.2. The other b, -matrices can be determined by the recursive
relations

b+(a, m+1, n, C)bd = Z b+(a7 2, n, dl)th db+(a'7 m, n, C)bdl

dy >1

b+(a‘7 m, n+1, C)bd = Z b+(a'7 m, 2, cl)bdlb-{-(dla m, n, C)dea (3'29)

d; >1
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for any choice of a; and ¢; compatible with the fusion rules. The b_-matrices are
given by the same formulas with primes and the replacement ¢, — ¢, [ ]+ —
[ ]-. considering now the rational case a®> = p/p, one can objects that, when o?
takes rational values, divergent matrix elements might appear, as it evident from
eq.(3.28). For instance, even if in the discrete series of minimal models the labels
(n', n) belong to the family K = {1 <n' <p-1,1<n<p- 1}, the braiding of
two SVO’s with weight A, ; or A4, generates SVO’s V(§,1),M and szl—‘,z),M with M € K

and L € K = {0<n'<p,0<n<p}or M € K and L € K. On the other
hand, consistency requires that the braiding of primary fields of the family K does
not generates different fields. However, as it is pointed out in ref.[13], the BRST
cohomology of Fock spaces F; vanishes for L € K — K. Therefore, the same happens
for BRST invariant operators mapping from or to J;, as ’Vé"l),M and V(Jz‘{l)’L, etc.
are, when such operators are applied on BRST states. This is sufficient to conclude
that no divergences arise for the “elementary” monodromy matrices and, due to the
recursive formulas (3.18), such an argument answers to the objection also in the
general case.

Such explicit expressions of the b, and b._-matrices allow Felder, Frolich and
Keller to point out their coincidences, up to irrelevant constants, with the Boltzmann
weights of critical SOS models in a special limit of the spectral parameter. These
weights are proportional to the generalized 6-j symbols of the quantum group U,(sh).
This result can be justified reminding the pentagon identity of eq.(1.105), where the
role of the generalized CG coefficients is played by SVO’s.

3.3 A quantum group symmetry in minimal mod-
els

As already hinted, in principle one can try to reconstruct the quantum group acting
on CVO’s from the knowledge of the monodromy matrices. However, the solution
of this problem may not be so simple and, moreover, such a construction does not
clarify the relation of the quantum group generators with the chiral algebra. A
different approach is that proposed by Gémez and Sierra [18], who developed an
ideas already expressed in previous works [1,2,3]. They based their derivation on
the Coulomb gas version of minimal models. Indeed, such a representation of the
chiral operator algebra allows them to define a suitable space of SVO’s associated to
a given primary field, on which the action of a quantum group Q can be naturally
built. Due to a different choice of the integration paths, the physical meaning of this
new kind of SVQ’s does not coincides with that of the operators introduced in §2.4,
where their identification with conformal blocks was shown. The main characteristic
of the SVO’s considered by Gémez and Sierra consists in their non-locality (as the
authors observe, they remind in some formal sense Mandelstam’s operators of gauge
theories). The importance of this properties becomes evident when one ponders on
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Figure 3.2: Integration contours in the definition of the non-local screened vertex operators
(3.30).

the non-locality of the braid statistics. The consequent conclusion is that quantum
group generators should be non-local functionals in the chiral algebra of the theory.
In the sequel, entering in more details about the idea of Gémez and Sierra, this
supposition will be confirmed by the identification of the e and f generators of the
quantum group with contour creation and annihilation operators, respectively.

In defining SVO’s [see eq.(2.94)], the integration contours were chosen so to
make possible, already at the operator level, their interpretation as conformal blocks.
However, the monodromy properties of the integrand seem to suggest the choice
depicted in figure (3.2), where the contours surround the cut (dashed line) going
from z to ico. Therefore, associated to these paths of integration, one define the
non-local screened vertez operators (SVO™’s)

e . = / T (wr) o T (s )Ty (01) .. T (vr, YVal2) ﬁdu,- ﬁdvj. (3.30)

Referring to the discussion made about SVQ’s, note that the integrals in eq.(3.30)
must be viewed as an analytic continuation from that region in the a? plane where
they converge. If one neglects in eq.(3.30) the contributions of the integrals around
the point z, SVO*’s can be cast in the form

ry—1

T 1 , i 3
& r(2) = [r-lolrale, ! T (L —e™memgl) [ (L —e™e g )er | (2), (3.31)
r 0

! r=0
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where g3 = e?™°% | lqs are the g-integer introduced in eq.(1.25) and

& L (z) =P /w T_(ta) « o Tty VT4 (01) . T (vr, ) Va(2) ﬁdu,- ﬁdv,-. (3.32)

Here, P denotes the ordering |u;| > ... > |u,_| > |vi] > ... > |v..| > |2z]. The
g-factorials in eq.(3.31) are due to the the P-ordering, while the other factors come
from the braiding between the screening operators Ji(z) among themselves, as well
as with the vertex V,. From the expression (3.31), it is easy to conclude that when

a belongs to the minimal series, & = a, ,, the corresponding SVO™’s vanish if
r_ =n' or ry = n. Furthermore, for o = p/p, that is in the rational theory, the
g-factorials [ri],,! are equal to zero if 7_ = p or r, = p. Notice that this last result

was to be expected on the ground of the condition for the vanishing of those SVO’s
considered in §2.4. Indeed, the vacuum expectation value of any kind of screened
vertex operators is not influenced by the choice of jntegration contours. As regards
the conformal properties of the operators in eq.(3.30), they can be easily determined
reminding that the screening vertex operators Jy(z) fulfill the commutation relations

d n
[Lny Ta(2)] = — ("1 7x(2)) - (3.33)
Hence, one obtains

Lner ., (2) = e, (LnVa(2)) +

- t]ingo tn+1J+(t)[7’+]q+(1 — efmaet q:_+_1)ef_,,+_1(z) +

— D PO, (1 - e Nes (), (334)
where e | (LnVa(z)) denotes the SVO™ associated to the vertex L,Va(z). There-
fore, albeit the operators ey , (z) seem to be fields of well defined conformal di-
mension, due to the choice of integration contours, boundary terms erase, altering
their conformal behaviour. Gémez and Sierra interpret this phenomenon as a “co-
variantization” in the presence of internal quantum numbers. Indeed, if one believes
that quantum group generators act as contour creation and annihilation operators,
it is evident that the boundary terms must be related to the e or f generators of the
quantum group.

On the ground of this definition, the idea of Gémez and Sierra consists in
associating to each vertex operator V,(z) a space V* spanned by the SVO*’s g
which should be the finite dimensional representation space of a quantum group to

be identified. In order to realize such a program, it is necessary to show that:

i) the “representation spaces” generated by the e* | , s for a given a are finite
dimensional;
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i) the braiding matrices B*® for the tensor product V*®V# are related to the
universal 2R-matrix of a quantum group, according to eq.(1.93);

iii) the representations of e, f and k generators satisfy the right commutation rela-
tions;

iv) the quantum group action implements a symmetry of the theory, that is, it
commutes with the chiral algebra.

From the previous description of SVO®’s, one obtains that the requirement (7) is
fulfilled if

a=qay,=Hl- n)e + 3(1 —n)ay (3.35)
and, in such a case, e:‘_’_‘:r’; is different form zero provided that 1 < r_ < n' —1 and
1 <7y < n. Therefore, the dimension* of the space V% n is n'n. Moreover, a further
constraint on the dlmensmn V®’s comes when the rational case is con51dered and,
hence, 1 < n() < p(), Notice that the “representations” (p', n) and (n', p) can be
ruled out on the basis of unitarity considerations. Indeed, in the Coulomb gas rep-
resentation, the scalar product is determined by the pairing between the Fock space
S and its dual §y,,_o. In the case n = p, one has 200 — a3, = a . Consequently,
the space V"0, having dimension n'n = 0, can be consistently 1dent1ﬁed with {0}.
Thus, the requirement of a positive well-defined scalar product imposes to truncate
the minimal series in the usual way, 7.e. 1 < n{) < p() — 1. Assuming the analysis
summarized in the introduction of this chapter about the representations of U,(sl)
for ¢ a root of unity, one can already note some connection with quantum groups.
This becomes even more clear if one focus on the thermal operators V3 » (or V ;)
which constitute a closed subalgebra of the ¢ < 1 theory. Indeed, in the rational case,
one has ¢ = 1, a feature which, together with the unitarity condition, produces the
constraint 1 < n < p—1. This result seems to establish a one to one correspondence
with the modified tensor product of quantum group representations, defined when
the deformation parameter is the p** root of unity. In this frame, the operator €5 p
can be interpreted as the null vector arising in U,(sk)-modules, when its dimension
is greater then p — 1.

A more cogent argument in favour of a quantum group symmetry is related to
the capability to verify point (¢7). In order to make more immediate the connection
Wlth the quantum %—matrlx, consider again the thermal operators ey’ »yy Where ay, =

2o, . Defining the “spin” j as j = 22! and the “momenta” m = j — r,, one notes
that the dimension of the space V*1» is 25 — 1 and m = 7,..., —j. The braiding-
commutation relation for the SVO*®’s &l (z) = eO '™ can be written as

! !’
e - . s\ Ty M,
e @ = § : e @ el (Rn]z) : (3.36)
B ’ my ma
m1|m2

*Notice that the order of the screening operators in the expression of the SVO*®’s is uninfluent.
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where the tensor product ® is just the product of SVO®. Gémez and Sierra compute
the matrix R/ for arbitrary values of j; and j,, and show that it coincides with
the U,(sk) universal R-matrix in the representation a; ®ca;,. An analogous result

holds for the thermal operators eraf:’ol. Therefore, the quantum group ¢ acting on
the representation spaces V"»'.» seems to consist in the “combination” of two copies
of U,y(sk). To understand how the computation can be worked out, it is convenient
to consider the operators & [r = (r_, r})] introduced in eq.(3.31), rather than the
corresponding SVO*’s. This allows to avoid many technical complications, simpli-
fying the needed contour manipulations. On the other hand, their braiding matrix
R can be easily related to the desired result. Then, the general relation

R Y@y _, Y@y (3.37)

can be graphycally represented as

CI Cl C1 Cl
(3.38)

Here, C; and C; denote the family of contours involved in the definition of el?llé)e;";,

which becomes C; and C, for R2 (e ®eg?). Expressing the mapping (3.37) in
component is equivalent to decompose the r.h.s. of eq.(3.38) in a summation of
terms analogous to the L.h.s. This can be realized through two basic deformation of

the contours:

D1. splitting the contours ; into paths joining the family C; and paths going from
Z3 to z1, that will be denoted Cj,

c o

C, ¢ C, o
7 fend I Cﬂ + 7
2} 7y 23

D2. opening the contours Cy; into paths joining the family C; or the family C,,
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Motivated by such a result, Gémez and Sierra develop their program with
the explicit construction of the quantum group generators. To this end, they define
the contour creation operators Fy and F_, acting on the space V* according to the
equation

Frer . (2) = [ T(0)er

Foer (2) = [ I pnr,, (3.39)

where the contour C surrounds the whole SVO®. Such a definition can be naturally
extended to the action of Fy on the tensor product representation V¥ @V, if one
replace C' with a suitable contour AC surrounding the operator e?‘f@e?‘;’. Thus, with
contour deformations not different from those described about the computation of
the 9-matrix, one achieves the expression of the coproduct of the “generators” Fl,

AFe(e} (21)®er; (22)) =
Fy(ef! (z1))ef? (zg) + ePmiosloatCohomtlohes) i (2) Fy (52 () (3.40)

or
AF; = f: @1+ kL@ F.. (3.41)

The phase factor of the second term in eq.(3.40) arises from the braiding between
the screening operators Ji and eg?, necessary for Fy to be applied on eg?, and has
been identified in eq.(3.41) with the action of the operators

R(e5,(2)) = cop(amios f 96) e, (2) = emsrretna g () (3.49)
Analogously one finds the coproduct of k4,
Aky = ki @ ks . (3.43)
It easy to verify that F. and k4 fulfill the relati‘ons
[Fiey Fo] = 0 = [hy, k]
keFy = ¢if* Fiky
ki Fy = —Frky . (3.44)
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However, denoting B_ the algebra generated by {F4, k+}, the coproduct just defined
together with the counit

e(ky) =1 e(Fe) =0 (3.45)
and the antipode map
S(ks) = k3 S(Fy) = —kI*Fy, (3.46)

mduce an Hopf algebra structure in B_. Finally, if one labels the SVO°°’s with the
spin j* and the momenta m* glven by jT =231, 57 = "T“l and m* = j* — r;, then
the action of B_ on the space V"»'.» reads

- ~lm*
kieinjm'*‘( ) = ¢’ ™ emimT L’m+(Z)

+

() =€ M (z). (3.47)

m—,mt-~1

Foei o(z) = e (z)  Fpel?

mm'*"

Therefore, the conclusion of this analysis is that B_ represents the Borel subalgebra
b- of a quantum group @ which reduces to U,, (sk) (U,_(sk)), when only the thermal
representations V. (V%'.1) are considered. More precisely, one identifies

ky = q;%HiewiH;/z

Fy = fagi™/%. (3.48)
Indeed, one recovers, in this way, the usual coproduct

Afy = f @kI' + ks ® fi (3.49)

and antipode
S(fe) = —gi'*fs. (3.50)
As regards the contour annihilation operators, it was already stressed that they have

to appear in what Gémez and Sierra call the “covariantization” of the conformal
properties of SVO*’s. Hence, these authors write eq.(3.34) in the form

beey . (2) = €7, (8¢ Va(2))
—(1 = g7")é(c0) Jy(c0) EreX | (2)

~(1 = ¢7)¢(00) J-(00) B_el, (), (3.51)

where £(z) is the vector field that generates the conformal transformation and E.
are two contours destroying operators, defined as

1 ry—1
1— e41rtaa+ q++

E+€$_'r+(2:) = [T+]‘I+ ef_,r+—1(z)

1——q4“_1

1 r——1
1— 647”0"1_(]__

er 1,0, (%) (3.52)

1—g7t
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Studying the conformal transformation of the (tensor) product eg?(z;)ef?(22), one
easily find the coproduct of the operators F., while the definition of counit and an-
tipode can be extended to the contour annihilation, so that the algebra generated
by ky+ and E., denoted B,, becomes an Hopf algebra. Hence, it is straightforward
to recognize in B, the Borel subalgebra b, of the quantum group ¢}, that has been
already described. Therefore, if one restricts to the thermal subalgebra ay,» (o, ;),
{K+,E;, F.} generate the quantum group Uy, (sk) (U,_(sk)). This is in agreement
with the conclusion achieved about the braiding matrices of tensor product represen-
tations.

Finally, one can observe that, due to the definition of the generators E., their
commutation relations with Fl can be interpreted as commutation relations between
F; and the virasoro algebra. Therefore one obtains

(66, Fele = —&(00) J4(c0) (1 — ki)ey, (3.53)

a result which seems to differ from the requirement (iv). Gdémez and Sierra solve
this apparent contradiction showing that conformal block functions can be identified
with invariant tensors of the corresponding quantum groups . In the language of
§3.1, this means that CVOQ’s are strictly related to the ¢-CG coeflicients of ). More

precisely, they demonstrate that

a bt (=287 az asz
( ) VardVar) = 3 K20 e (Vi (21))e (Var(22)), (354)

Qq Oy T172

where with K21220 the denote the (inverse of) ¢-CG coefficients. This allows then to

Ti1Tag
prove that the actions of the quantum group @ and of the chiral algebra .4 commute

when applied on the space of invariants,
[A(Q), ADYA) Inw (V2&...8VE) = 0. (3.55)

Hence, in this sense, also the condition (:v) seems to be fulfilled.
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Conclusions

The present Thesis would represent an attempt to point out the importance of the
role that quantum groups can play in many physical context. Pursuing this aim,
in Chapter 1 we tried to present the axioms of (quasi) triangular Hopf algebras in
a form such to emphasize their physical meaning and their analogy with the well-
known “classical” group theory. Hence, the purpose of Chapter 3 is to develop
the suggestions of Chapter 1 in the specific case of the CFT. In particular, In §3.3
we have shown how the Coulomb gas representation of minimal models provides a
natural framework to define an explicit realization of the underlying quantum group
structure. If this construction clarifies the interplay between the chiral algebra and
the quantum group, however, a better understanding of the quantum group symmetry
in the CFT probably requires a totally different approach. Indeed, one can face the
problem starting from a conformal invariant context in which the quantum group
structure is already evident and trying to deduce the correlation functions. This is
precisely the philosophy of the Toda field theory. In same sense, it can be considered
a generalization of the Coulomb gas representation. It is our belief that this program
will contribute significantly to introduce the quantum groups and the CFT in a more
general frame.
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