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Chapter 1

Introduction

In recent years, with the increasing availability of powerful computers, it has
been frequently demostrared that numeﬁcal methods play a very important role
in condensed matter physics. One of the most successful applications of com-
putes to the study of many—particle systems has been molecular dynamics. Based
on the existence of a model that, given the atomic positions, allows to calculate
the forces acting on them as a result of the mutual interactions, the molecular
dynamics method uses a computer to integrate the Newton’s equations and fol-
low the time evolutin of the system. This allows td Astudy structural, dynamical
and thermodynamical properties of many—particle systems even in low-symmetry
configurations, which is of course impossible to achieve by analytical methods.

The most crucial ingredient in molecualr dynamics is the force model. In
fact, forces on the atoms are the result of very complex, many body interactions
between all the electrons and the nuclei in the system. Almost invariably, force
models attempt to circumvent the complexity of the real world by using some
cleverly chosen empirical or semiempirical analytic form. This form tries to mimick
the potential energy surface in configuration space of the real system by dealing
’only with the atomic coordinates. However, for certain classes of materials such as
'm;eta,ls or semiconductors, choosing a realistic force model is certainly a non-trivial
task.

Recently, aleap forward in this direction has been made by the Car—Parrinello

method[!!, based on the combination of the DFT with molecular dynamics simu-
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lation. This method gives the chance to describe the dynamics of the ions ( still
treated as classical particles) under the action of forces generated directly from the
ground state electron energy according to the Born—Oppenheimer approximation.
In other words, with this approach the structure and dynamical properties at finite
temperature become accessible by first principle calculations. Despite the great
improvement obtained over empirical methods, it remains practically impossible
to treat more complex systems, involving a large number of particles, as required
to simulate e.g. molecular beam epitaxy or solid phase crystal growth of amor-
phous interfaces because of the huge amount of computer resources that would be
necessary. Therefore, research in empirical pott;ntia,ls is still ﬁofth to be pursued,

since they are likely to coexist with first—principle schemes, at least for some time.

Semiconductors are perhapsl the most widely studied materials, due to their
key position in technological applications. But they are also among the most
difficult to model with a classical potential. The tetravalent character gives rise
to the diamond structure, which requires the presence of at least 3-body terms to
be accounted for. Early approaches in this direction, reviewed in the firts chapter,
were somewhat unsatisfactory, in that only some physical properties could be
reproduced correctly, while others (such as SW potential doesnot reproduced the

the structural phase transition) turned out to be difficult to obtain.

More recently, Tersoffl?! introduced a many-body term which greatly improves
the physical description, and produced a family of potentials based on this for-
‘mulation. In particular, Tersoff poptentials are available for Sil®!, Gel?l, G4l and
'mﬁlticomponent[z] systems such as SiC and SiGe.

In this thesis, I discuss the implementation of these potentials in a molecular

dynamics program, and present some results obtained. The work is organized in

the following way:



In the second chapter you find a general description of semiempirical potentials
for semiconductors, focusing on the role played by bond order and a description
of Tersoff potential.

In the thirst chapter we make a presentation of the crystal properties cal-
culated, using the Tersoff potential, namely cohesion energy, lattice parameter,
elastic constants, bulk modulus, crystal stability, phonon and density of states.
Our results are compared with previous calculations in the local density approxi-
mation.

In the last two chapters we present the results of static calculations on point
defects such as vacancy, split vacancy, and two interstitial point defects ( in tetra-
hedral and in hexagonal sites), and an anlysis of the migration of a vacancy. We

also study the surface structure of the (100) and (111) surfaces of Si,Ge and C.



Chapter 2

Tersoff Potential

The knowledge of the total energy of a system of atoms as a function of the
atomic coordinates is very important in the study of a lot of problems in physics,
chemistry and material science. In fact, an analytical or an easily evaluable nu-
merical expression of the total energy allows the application to large systems of
methods which provide a,r; Aaccurate description of both static and dynamic prop-
erties. Among these methods we find molecular dynamics and global search for
the energy minimum. These are purely classical methods and permit to study a
lot of problems such as melting, surface reconstruction, crystal growth, amorphous
structures, diffusion barrier and atomic clusters.

Furthermore, the knowledge of the potential V(R) allows us to evaluate both
the total energy F of a set of N particles as function of the particles coordinates
{R;} ¢t = 1,...,N, and to calculate the force acting on the particles in any
configuration. If the calculation of this function does not present any difficulties
and if it provides a sufficiently accurate description of the physics of the system,
realistic calculations of the properties of quite large systems and even of statistical
ensembles are possible. This kind of approach provides a description of the system
‘which is obviously less accurate than that of the modern ab—initio calculations,

but it is in principle simpler to apply.



a.) Classical Interatomic Potentials

Most of the empirical interatomic potentials fall into two simple groups. One
group consists of pair potentials, among these we cite the “famous” Lennard-Jones
6-12 and the exponential Morse potentials. However, for covalent materials, such
as semiconductors, the pair potentials alone are inadequate, as an example the
equilibrium diamond lattice is unstable relatively to close packed structures in
absence of three body interaction.

The other group of potentials is constructed expanding the potential energy
of a system in terms of the atomic displacements around some reference struc-
ture (in the case of semiconductors the diamond structure is often chosen). In
this class for example the potential found by Keating has had a great success
in describing local distortions and phononsl®l. However, they fail in describing
the energy of structures which differ qualitatively from the reference one. Thése
type of potentialsl® are of perturbational nature, therefore cannot be applied in
a préper way to systems where the “difference” with the reference is not “small”,
such as systems with defects, surfaces and systems near the melting.

Of these two approaches, the pair potential takes advantage of a somewhat
differentiation expansion.

Let us consider a system containing N atoms, then the potential energy E
may be separated into terms depending on the coordinates of individual atoms,
_pairs, triplets,...:

E=) Vi(R)+ Y > Va(Ro,R)+>. Y Y Va(Ri,Rj,Ri)+.. (2.1)

7 T g>i i j>t k>i>jg
where R, is the position of n-th particle and the function V,, represents the
so called “m-body potential”. The first (one body) term, Vi(R;), expresses the

effects of an external potential on the system. The remaining terms represent
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particular interactions. In the second term, the pair potential V3 depends only
on the magnitude of pair separation R;; = |R; — R;|, so that it may be written
as Va(R;;). Then the V3 term involves triplets of atoms and so on for the other
terms. Within the purpc;se of overcoming the inadequacy of pairwise (two body)
potentials in the description of covalent systems, it is natural to retain terms up
to the third in the expansion (2.1). The additional term permits to stabilize open
structures with respect to close-packed ones, for example for semiconductors by

favoring bond angles corresponding to those of the diamond structure.

The first attempt in such a direction was made by Person, Takai, et al.
(PTHT)!). They used the nonseparable Acilrod—Teller three-body potentiall®!
which is based on the generalization of Vann der Waals fluctuating-dipole forces
for three particles. The latter potential is long ranged (decaying as Vs = 75)-
The parameters in this potential were obtained through an average fit to the bond

lengths and cohesive energies of bulk diamond Si and molecular Si,.

The PTHT potential does not predict reasonable elastic properties for bulk
silicon or its high-pressure polymorphous structure, but it fits small clusters fairly
well and fits the experimental phase transition from the diamond structure to the

B—tin structure quite well.

On the contrary, Stillinger and Weber!® (SW) proposed a new empirical inter-
atomic potential, incorporating a two and a three body interaction, and used it in
Amolecular—dynamics simulations of molten silicon. They used the Lennard-Jones
pairwise potential and included a ferm in the three body potential which favours
vth‘e ideal tetragonal structure. A particular aspect of the model is that it is a
short-range one, confined to two neighbour shells where the angular variation of
the three body potential has a Keating type form. Studies using the SW potential

have indicated that it reproduces the elastic properties of bulk silicon, but that
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it does not handle some surface structures, low-coordinate number geometries, or

1], Other physical aspects studied are the

high-pressures polymorphous properlyl
melting point of silicon®), faceting at the (100) crystal melt interfacel!], and the
stability of coherently strains SiGe layer on an Si(111) substratel!?l. Biswas and

Hamann('®] have criticized this potential, noting that it does not describe even

qualitatively the behaviour of non—tetragonal polytypes of silicon.

An improved class of empirical pofentials for silicon and other covalently
bonded semiconductors is based loosely on ideas from quantum chemistry and ob-
servations concerning the universality of mechanical behaviour of solids(!415], The

[16] is that the bonding can be properly

essential idea here, introduced first by Abell
described by pairwise interactions (for which a Morse-type potential is a reason-
able approximation), but whose strength is influenced by the local environment,
e.g., by many-body interference terms. This picture of covalent bonding was, ap-
parently independently, developed and implemented by Biswas and Hamann who

constructed two different potentials for silicon!*®17]. The two classical interatomic
potentials express the environment near the pair bond by expansion in Legen-
dre polynomials, which are then used to modify a generalized Morse potential.
The three body potential is then fit to the density-functional theory structural

data base for silicon!8!.

One potential models bulk energies, high-pressure and
simple structure properties very well, the other one is more appropriated for prop-
erties of the tetrahedral structure and useful in molecular-dynamics simulation

of amorphous-Si structures and crystal growth processes such as molecular beam

-ep:ita}cial[”] or the solid phase epitaxial growth of a crystal amorphous interface.

Biswas and Hamann suggest that a three body potential is not adequate for
describing accurately the cohesive energy of silicon over a wide range of bond-

ing geometry and coordination. This is a motivation for Tersoff to develop a new
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potential, not taking into consideration the idea of the N-body potential and devel-
oping a pairwise potential including the many body terms in it. The new potential
is made for C, Si, Ge, SiC and SiGe. With this type of potential he studied elastic
constants, cooi‘dination numbers, bulk properties for Sil®¥!, C[¢, SiCl? and alloys
with SiGel2%, also the liquid and amorphous Sil?!l, Cl*l. Dadson modified the

initial potential stabilizing the diamond structure for the silicon[??],

Bolding and Andersen!?®! developed an interatomic potential for silicon where
the potential has the general form developed by Tersoffl?] with the interaction be-
tween a pair of atoms being dependent on the environment around them. The
atom—atom potenfia.l energy function is expressed as a sum of m and ¢ bonding
terms, each independently influenced by the environment. This potential is con-
fined within a two neighbour shell. This potential gives a very good description of

the structural phase transition, phonons, surface reconstructions and clusters!?3],

Other types of models of potentials have been proposed: The thermal classi-
cal force field (CFF)proposed by Chelikowsky, Phillips, Kamal, Straus (CPKM)24
and Wang,Messmer!?’]. In some cases these agree with the ab — initio geometries
for the cluster but do not reproduce the energetic very well. The CPKM thermo-
dynamic interatomic force field seems the most promising of these and has recently

[26]

been applied to silicon clusters!®®!. It has not been tested for surface properties or

crystal defects.
Khor and Das Sarmal?”] have developed a flexible analytic potential for silicon
that seems promising. Unfortunately it uses a slightly different functional form

and parameter set modeling the surface and bulk behaviour.

Baskes(?®] proposed a potential based upon a modification of the embedded-

29]

atom method(?®). This resulted to be extremely powerful in modelingFCC metals

but how will it represent covalent systems has yet to be determined.
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The panorama of the classical potentials for semiconductors is wonderful and
open to further studies. In fact for instance extremely good results were obtained
in the field of metals where the empirical potential permitted to get to precise de-
scription of the physical pfoperties. But if we think about semiconductors they are
different because the deep links between the various elements and their diversity
represented an obstacle for reaching efficient results. That is why it is necessary
to go on developing the properties and possibilities of empirical potentials in order
to obtain results which are closer to the reality and as much precise as possible.
In a few words, a lot has been done but the possibilities still totally unexploited,

are enormnious.

b.) Modeling the chemical bonding

Which considerations are important for the construction of a classical interatomic
potential? How can we express the energy of each atom in terms of the positions
of the other atoms? The most important property is the nature of the bonds
between atoms, which is of prime importance to understand the differences in file

gross structure and the characteristics of different solids.

To model the chemical bonding, one important variable to consider is the
number of neighbour atoms close enough to form bonds,i.e. the number of coor-
‘dination. We remember in fact that for different materials or structures the local
atomic coordination changes. For example in molecular bonding the interaction
among very few atoms is extremely strong. It also important to consider the close-
ness of the atoms. As a matter of fact it is known that the influence of an atom
far from the one we are studying is very small. An other aspect to be underlined

is that the more neighbours the atom has, the weaker the bond to each neighbour
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will be. In addition for covalent materials between bonds also play a crucial role.

All these considerations lead to the conclusion that the geometry is the key
element for determining the bond strength. In practially all cases except perhaps
rare gases, the pair potential alone is clearly inadequate. Therefore one has to
include many-body interaction terms in the total potential energy. In this way
it is possible to stabilize more open structures,such as the diamond structure for
covalent materials, not possible to obtain by pairwise potentials. In the following

section, some model Hamiltonians for semiconductors are presented.

c.) Tersoff Potential for Semiconductors

First of all it is necessary to remember the extreme importance of the bond
order in the field of semiconductors and the role it plays. Biswas and Hamann!!7]
suggested the addition of a three-body term to the two body potential. But for
covalent materials no good results were obtained and the final descriptions were
not sufficiently precise. The proposition also of a four- or five-body potential
for the calculation would probably have proved intractable. Tersoff had instead a

brilliant new idea: the inclusion of a many-body terms into a two—body potential.

In the Tersoffi?l scheme, it is assumed that the total potential energy E of
interaction among a collection of N atoms could be written as a sum of environment

-dependent pair potentials:

B=Y 5= NE | (2.2)

7]

The interatomic potential between two atoms is taken to be of the form
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Vij = fo(Ri;)[fr(Rij) + bij fa(Rij)] (2.3)

where fr and fa represent the repulsive and attractive parts of the potential
energy, fc is a cutoff function for the interaction and b;; is a many body term
that includes the effect of the environment on the (7,j) bond. For fr and f4
Tersoff uses the two exponential terms in a Morse potential, which have the very
desirable feature of leading automatically to the ”universal” behaviour discussed

by Ferrante, Smith and Rosel'*, The form of these functions is given as:
fr(Rij) = Aijexp(—Ai;Rij) (2.4.0)

fa(Rij) = —Bjjexp(—pij Rij) (2.4.5)

and the cutoff function fo as

1, it Ry; <rij
fe(Rij) = % + %COS[W(RU —1i;)/(Ss; —rij)], i ri; < Rij < Sij; (2.4.¢)
Oa if Rij > Sij;

which has continuous values together with its derivative for all R, and goes from 0
to 1 smoothly. The value of the parameter .S;; is chosen by limiting the interactions
to the first neighbour shell only, reflecting the short-range character of forces in
semiconductors, where 7,7 represents particular components.

For the environment term b;;, Tersoff chooses
bij = xi5 (1 + BF ¢l ) M/ (2.4.d)

where (;; is a function of the environment of atom ¢. As a consequence, b;; is a

function of the environment of the 77 bond. The function (;; is given by:

Gj = Z fo(Rik)wijg(0ijx) (2.5.a)

k#1,j

11



where

2

C c
0,0) =1+ 2 —
9(Bisk) =1+ d? 4 (h; — cos 8;51)?

T

AN ]

(2.5.b)

where 6;;; is the bond angle between bonds 2; and ik. g(8;jx) models the
many-body interactions about one s pecified particle 7. w;; was taken to be
ezp(—A3(Ri; — Rix)?) in the first versions of the potential®, where A; is a new
parameter, and 1, J, k are diferent between them. While w;; = 1 is chosen in the
most recent ones!?l. For simple materials like silicon, germanium, carbon, all pa-
rameters in the potential are chosen primarily by fitting the cohesive energy and
bulk modulus in diamond structure. The values of these parameters for simple
elements are given in the table 1.1. For multicomponent systems such as SiC and
SiGe the new parameters for these mixtures are presented as follows, where a new

constant x given in the stoichometric relation of the mixture appears:
Mg =(a+0)/20 = (i pg)/2, Ay = (Ai4)),
Bij = (BiB)'?, vy =(rir)'?, Sy = (5:55)17

In these parameters, the subscript ¢,j depend only on the type of atom (C,Si or
Ge).

12



TAB. 1.1: Parameters for carbon, silicon and germanium to be used in eq.(2).

C Si Ge

A(eV) 1.3936x10° 1.8308x10° 1.769x10°
B(eV) 3.467x10? 4.7118x10? 4.1923x10?
A(A) 3.4879 2.4799 2.4451
1(A4) 2.2119 1.7322 1.7047

g 1.5724x107" 1.10x10~¢ 9.0166x10~"

n 7.2751x107" 7.8734x1071 7.5627x 1071

c 3.8049x10* 1.0039x10° 1.0643x10°

d 4.384x10° 1.617x10? 1.5652x 10"

h -5.7058x107* -5.9825x107! -4.3884x107?
r(4) 1.8 2.7 2.8
S(4) 2.1 3.0 3.1

Xxsic = 0.9776

Xsice = 1.00061

13




Chapter 3

Crystal Properties

a.) Static Structural Properties

The static structural properties such as lattice constant, cohesion energy, bulk
modulus and elastic constants can be obtained from the calculated total energy as
a function of volume for the observed crystal structure.

Any undistorted crystal structure can be defined as an arrangement of N cells,

each containing n atoms, by

R; =R;+df (3.1)

where k runs from 1 to n and R} expresses the vector position of each atom in
the solid in terms of the primitive real-space Bravais lattice vectr R, specifying its
cell, and the vector position d* of the atoms inside the cell. These two vectors,

expressed on the basis vector a;, are
Rl = Zlal + lgaz -+ l3a3 (32&)

dk = Ti1a1 + T2a5 -+ T3a3 (32[))

where 0 < z; < 1.
It is experimentally known that the most stable structure of semiconductors

at conditions of low temperature and pressures is the diamond structure (when
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mixed is called zinc-blende). To calculate the equilibrium lattice parameter and
the cohesion energy for this structure it is necessary to evaluate the energy at
different values of vectors positions RF in order to find the configuration with
minimum energy. At this value the energy is called the cohesion energy and its
correspondent distance in the Bravais lattice is the equilibrium lattice parameter.

The bulk modulus is given by:

p=-n(2) —a(2E) 3)

but we can write the second derivative as

E 2N E(Q)
a0z =~

(3.4)

where AE(Q) = E(2) — E(Q,) and this value is easy to calculate directly from
the energy as function of the volume {2.

From the theory of elasticity[®®!, we know that a macroscopic vector R joining
two points in a unstressed solid is carried under stress to a nearby vector R’ so
that

R-R =% R (3.5)

where by definition ® is the (constant) strain tensor, if the deformation.is homo-
geneous. By writing

R = llal + lgaz + l3a3 (36@)
R’ = lla'l + lga'g -+ lgalg (366)

where [; are integers and a'; are the primitive translation vectors in the strain solid

and substituting R and R' in the equation (3.5), this takes the following form:

ai——a'i:i)-ai i:1,...,3 (37)
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This equation means that the unit cell undergoes exactly the same (fractional)
deformation as does the whole crystal. Translational invariance, which defines the
crystalline state, requires a homogeneous deformation to be retained down to the
smallest lattice vector.

The elastic constants are defined with respect to a cartesian coordinate system
oriented in some conventional way with respect to the crystal axes. Hence equation
(3.7), although independent from the coordinate system, enables the calculation
of the axes (in length and direction) of the deformed crystal from those of the

undeformed crystal and from the usual cartesian strain tensor
€= €1,€2,..., €6
where the indexes are conventionally defined, to simplify the notation, by
zz — 1,yy — 2,2z — 3,yz — 4,zz — 5,zy — 6.

The increase § E in energy per unit cell is related to the elastic constants C;

(at 0°K) via the general equation
§E 1<
—Q_ = ;2" Z ij€i€5 (38)
ij

where § is the unit cell volume. These are as many linearly independent equa-
‘tions as there are elastic moduli, and they constitute a set of conditions on the
parameters of the potential energy function.

It is also required that the unstrained crystal shall be in equilibrium under

any assumed potential function at the observed crystal structure. Formally this is

<%§)O =0 (3.9)
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where e denotes any strain and the derivatives are to be evaluated in the state of
zero strain. The elements of the strain tensor are of the form (0v;/0z;), where the

v; are the components of the displacements and the z; are cartesian coordinates.

Knowing the potential-energy function for a specific crystal, its elastic con-
stants are easily computed[®!]. By suitably choosing the nonvanishing strains, only
a few (in some case just one) of the C;;, remain the right-hand side of equation
(3.8). For such choice, at a number of equally spaced small strains, the deformed a}
are computed from equation (3.7) knowing the lattice parameter of this structure.
If the second differences of the potential energies are constant, then the strains are
within the Hooke’s law range and the combination of elastic constants is simply
proportional to the second difference. Moreover the necessity that strains equiv-

alent in symmetry should present identical potential energies, permits to perform

additional checks with the purpose of obtaining a more preciser computation.

With this method it is possible to determine every elastic constant. For
instance, if we choose e; = e and all the other values of the strain tensor equal to
zero, it is possible to establish C1;. If we choose ey = e and the others equal to
zero, we can calculate Cyq, and for e; = e and ey = e, it is possible to determine
C'11+ C12. This set of equation gives us the possibility of calculating all the elastic

constants for a cubic crystal.

In our case to compute the elastic constants of semiconductors, a strain region
from 0 to 0.04 A was chosen, where the relation is kept linear according to the law
‘of Hooke.

The results for these elements are given in table I, where we compare the
results predicted by the Tersoff potential with experimental measurements. The
agreement is particularly good in the case of simple elements. For mixtures such

as SiC the concordance is good for cohesion energy, lattice parameter and bulk
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modulus but rather poor for the elastic constant Cs4, whose value is almost twice

the experimental one.

TAB. 2.1: Comparison of calculated lattice constants a(4), cohesive energies Eon(eV) per

atom, bulk moduli B(Mbar) and elastic constants (Mbar) of C, Si, Ge, SiC and SiGe with

experimental data given in parenthesis.

C Si Ge Sic SiGe
a 3.56 (3.56) 5.43 (5.43) 5.65 (5.65) 4.32 (4.36) 5.54 (5.57)
Eeon| 17.37(7.37) 4.63 (4.63) 3.85 (3.85) 6.18 (6.34) 4.23 (4.35)
B | 4.55(4.00) 0.78 (0.99) 0.55 (0.77) 2.24 (2.2) 1.33
Ci1 | 10.9(10.8) 1.3 (1.7) 2 (1.3) 4.2 (3.6) 1.8
Cir | 1.22(1.3) 0.52 (0.6) 0.21 (0.48) 1.2 (1.5) 1.1
Cas 6.4(5.8) 0.99 (0.8) 0.82 (0.67) 2.6 (1.5) 1.02
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b.) Crystal Stability

The presence of an absolute minimum of the total free energy in a certain config-
uration constitutes both a necessary and a sufficient condition for the stability of
this configuration in the dynamical sense. However, other local minima of the free
energy surface could also exist, corresponding to different, metastable structures.
The difference in free energy between the various structures depends in general
upon thermodynamical variables such as temperature and pressure. Therefore,
phase transitions between different structures can be induced by changes in the
thermodynamical condictions. For instance in semiconductors the diamond struc-
ture is known to be the most stable at low temperature and pressure. However,
for example, silicon at a pressure of ~ 125 Kbar transforms to the metallic body-

centered tetragonal f-tin structurel®?!

, and for germanium the f-tin phase has
also been observed at pressures of ~ 100 Kbar[®3],
While studing the effect of temperature requires a full treatment of the free

energy, which often requires a major effort to be carried out, the effect of pressure

at T' = 0 can be investigated by simple static calculations.

TAB. 2.2: Packing fraction (c/a) for the S~tin structure, the packing fraction for C was chose
as the value of the tin at room temperature. The packing fractions of Si and Ge are chosen from

_experimental data.

Packing fraction

C 0.5462
Si 0.5516
Ge 0.5512
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In order to compare the different structures we have carried out calculations
on the diamond, B—tin, bcc, fcc and simple cubic(sc) structures for Si, Ge, C, and
on the zinc blende and rocksalt structures for SiC and SiGe. The packing fraction

is given in the table 2.2 for the §-tin structure.

To compare our calculation with results from density functional theory in
the local density approximation, we calculated the energy of each phase at its

minimum energy lattice spacing, relative to that of the diamond phase:

AF = Epha.se Edw.mond (310)

min min
The results are given in tables 2.3 and 2.4, and show that, as expected, the dia-

mond(or zinc-blende) structure is the most favoured at zero pressure.

TAB. 2.3: Relative energy A FE of various crystal phases at their minimum in energy for carbon,

silicon and germanium. The values in parenthesis are the density functional theory results.

C Si | Ge
diamond 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
8 — tin 2.91 (2.82) 0.36 (0.27) 0.35 (0.25)
Simple Cubic | 2.90 (2.66) 0.32 (1.1) 0.33 (0.31)
fec 4.34 (4.59) 0.76 (1.25) 0.53 (0.46)
bee 3.69 (4.28) 0.43 (1.12) 5 (0.44)

In figures 3.1-3.3 we present the energy as a function of the atomic volume
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TAB. 2.4: Relative energy AFE of various crystal phases at their minimum in energy for SiC

and SiGe (the stable stucture is zinc blende).

SiC SiGe

zinc blend 0.00 0.00
rocksalt 2.36 0.25
fee 1.29 0.83
bee 2.49 0.39

also the Enthalpy H = E + PQ as a function of Pressure (P) for these phases for
C, Si, Ge . From these figures and the results of table 2.3, we can observe that
this potential does not predict a pressure-induced transition from the diamond to
the S~tin structure, only predicts a transition to a bcc structure for‘ Si and Ge at
high pressure. For C the diamond structure is always the most stable structure.
Furthermore, these calculations show that the simple metallic phases of C have
small cohesive energies and relatively large equilibrium volumes as compared with

diamond, in agreement with experimental studies.

For SiC, in metallic structures like the rocksalt (rs) one there is a good
agreement with the theoretical calculations performed using LDA by Chang and
Cohenl®¥, with respect at lattice parameter. Forl®8] SiGe this potential predict a

transition from the zinc blende to the bee(si-ge) structure.
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c.) Phonon Energy and Phonon Density of States

Let us consider a small displacement U} of the atoms in the crystal defined in

the following way
Rf =R;+d* + U} (3.11)

The theory of the lattice dynamics in the harmonic and adiabatic approximation

is formulated in terms of the dynamical matrix[3938], which in direct space is given

by:

i

Dglg = (mkmk’) ? tpﬁlg (R;—Ry) (3.12)

where my 1s the mass of the k-th atom in the unit cell and

' 0’FE \
kk
= | ——— 3.13
Yep (av{;avﬁﬁ) (3.13)
0
are the force constants, and E is the total energy, a and [ are the cartesian
directions and (...)o indicates that the derivative has to be evaluated with the
atoms in their perfect crystal positions.
Phonon frequencies and polarizations can be calculated directly from the
eigenvalues and eigenvectors of the dynamical matrix in reciprocal space
kk/ kk! —iq-(Ri+d*—d*’
Da,B (q) = Z Daﬁ (Rl)exp fa (Bt ) (314)
R,
through the eigenvalue equation
w¥(a)es(@) =) Dis(aes () (3.15)
k'3
Solving this equation we obtain w?, where w = 27v and v is the phonon frequency.

For example, in the special case of the diamond structure there are two atoms

per unit cell and therefore we have to diagonalize a 6 x 6 matrix.
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The analytical evaluation of the second derivatives of the Tersoff potential is
very complicated. For this reason we have calculated them by numerical differ-
entiation of the first derivative of the energy, e.g. as the first derivative of the

force

0FE

FF =
lx aUlka

(3.16)

An important quantity is the frequency distribution function or frequency
spectrum g(w) of vibrations, which gives the number g(w)dw of vibrations with
frequencies between w and w+dw. This number is, of course, different for different
branches éf the spectrum.

g(w)dw is given by the q space volume divided by (27)® that lies between two
infinitesimally close surfaces of constant frequency w(q) = const. The distance
between two such surfaces (measured along the ségment of the normal between
them) is F%Uﬂ and multiplying this term by the area dS of the constant-frequencies
surface element and integrating over the whole surface, one obtains tle well-know

formula

‘ Q ds ‘
9) = Gy 2. Lo T (919
where the integral is taken over the surface of constant frequency w, and j are the
branches of the spectrum.
In order to calculate this expression, Jepsen and Andersen®”) propose the
so—called “tetrahedron method”, where one divides the irreducible wedge of the

‘Brillouin zone into tetrahedra and the integral (2) is then evaluated as the sum
0 217
g(w) = (271‘)3 ]Zzgjl(w) (311)

where g;;(w) is the partial number of states and also the volume of that part of

the i-th tetrahedron in which 'wj(k) is less than w.
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Applying this method[®*®] in the irreducible wedge of the Brillouin zone and
evaluating the frequency in 80 points, we obtain the phonon density of states.

In order to calculate the frequencies, it is necessary to find the regime where
the force as a function of the displacement is linear in any direction. We have
found that this occurs when the displacement is between 0.0 and 0.044. For our
calculation we have chosen a displacement of 0.024. With the aim of limiting errors
due to the presence of anharmonic terms, we took into account the displacements
in both the negative and positive sense obtaining a greater accuracy. In the figures
3.4~ 3.8 we present the dispersion curves and bulk DOS predicted by the Tersoff
potential for the elements and compounds studied. Some numerical values at high-
symmetry points I'; X and L are also reportéd in table 2.5 in comparison with
experimental data.

For simple semiconductors, we observe from the dispersion curves and table
2.5 that the width of the spectrum is slightly larger than that obtained exper-
imentally. The transverse acustic mode frequencies are overestimated. In ﬁhe

optical mode and near the zone boudary the frequencies of the phonon spectri’im

there is good agreement in the acustic mode, which simply reflects the fact that

the potential is fitted to the elastic constants.
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TAB. 2.5: Phonon frequencies [cm"‘

for five components. Experimental data are in parenthesis.

1] calculated at the high-symmetry points I', X and L

ce Si® Ge* SiC SiGe

T, | 1570 (1326) 536 (517) | 330 (304) | 949 423
Lo | 1570 (1326) 536 (517) | 330 (304) 949 423
X..| 1006 (797) 230 (150) 156 (80) 523 192
X,,| 1255 (1071) 407 (410) 253 (241) 715 318
X,.| 1301 (1194) 497 (463) | 282 (276) 797 327
X,, | 1301 (1194) 497 (410) | 282 (241) 821 375
L., | 704(636) | 156 (114) 111 (63) 362 134
L,,| 1138 (1069) 377 (378) | 245 (222) 713 306
Ly, | 1418 (1234) 514 (487) | 307 (290) 884 399
L,,| 1402 (1277) 439 (417) | 246 (245) 788 329

a experimental data from Ref.

(39]

b experimental data from Ref.[40]

¢ experimental data from Ref.[41]
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Chapter 4

Point Defects

In order to study the energetics of point defects this chapter and surface recon-
structions (chapter 4), it is necessary to find the minimum energy of a system with
low symmetry and many degrees of freedom. Several relaxation techniques could
be used to this purpose.

In this thesis, we have made extensive use of molecular dynamics, which is

a well-known method to obtain the motion of a given number of atoms governed
by their mutual interatomic interactions by numerical integration of the Newton’s

equations of motion

F,=— (4.1)

OR;
where 7 is the particular index.

In our case, we have used F; as resulting from using the Tersoff potential
(see Appendix 1). The computer code uses a fifth—order predector—corrector
algoritmol*?, and Verlet neighbour-lists constructed by a variant of the cell
method(*?]. The time step (At) used was (0.002ps) for silicon, which is a small
fraction of the silicon-optical phonon period (0.0638ps). A similar (At) has been
chosen for the other materials studied.

This type of approach is naturally aimed at studying finite temperature prop-
erties, but it can also be effectively used as an energy minimization tool. This is
obtained by gradually removing kinetic energy from the system, until the particles
have come to an equilibriumn position. Two methods were used to this purpose:

1.) “ quenching ”, which consists in driving the system, by a direct cooling
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towards the nearest (or one of the nearest) energy local minimum. To this purpose,
all the velocities are scaled by a factor @ < 1 at each time step of the simulation.

2.) “simulated annealing” which consists of thermally annealing the system
at finite temperature and then cooling it gradually down to T=0.

We want to make a general consideration about these two methods and about
their positive or negative aspects. The quenching procedure is faster, however
the danger of remaining trapped in a local energy minimum is very high. On the
other hand, the computer time required for simulated annealing is much longer, but
energy barriers can be eliminated and the real energy minimum can be reached, if it
is deep enough and in spite of the fact that the initial conditions were very far from
this minimum. Therefore, the use of simulated annealing for energy minimization
presents a clear advantage over traditional methods in ”complex” optimization
problems, that is when several local minima are present and an exhaustive search

is too expensive to perform.

a.) Point Defects

One interesting and technologically important problem in condensed matter
physics is understanding point defects, particularly in semiconductors. In de-
termining the mechanism and rate of diffusion in solids, formation and migration
energies of point defects are extremely important quantities that are widely studied
experimentally and theoretically.

We want here to investigate the Tersoff potential’s ability to model defects in
the diamond lattice. We recall that atoms located in noncrystallographic atomic
positions in the crystal of a determined element are called self-interstitials, and

the lack of one atom in this type of structure is called vacancy.
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We have investigated two different types of self-interstitials. Tetrahedral site
(T) and hexagonal site (H) interstitials are located respectively at (a/2,a/2,a/2)
and (5a/8,5a/8,5a/8) in the diamond unit cell, where a is the lattice parameter

of the crystal. We have also studied the vacancy and the split-vacancy. All these

points defects are represented in the below figure

FIG. 4.1: Representation of the point defects in the unit cell. (a) Tetrahedral site interstitial,

“(b) Hexagonal site interstitial and (c) split vacancy.

The vacancy formation energy (E}/) in a N-atoms cell is defined as:

N -1

E}/ =EY - Eyui (4.2)
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where EV is the total energy per supercell containing the vacancy and Ey,; is the
total energy per supercell of a perfect crystal. Analogously the formation energy

of an interstitial, (E; ) is given by:

Ef: =F - By (4.3)

N

where ET is the total energy per supercell containing an interstitial point defect.

These formation energies provide a.direct information on the concentration
of defects as a function of temperature (i.e.,~ exp(—Es/K_T)). However, they
cannot say anything about the migration rate of defects, which is the other crucial
ingredient determining the diffusion coeflicient. In fact, migration is controlled by
energy barriers that the defect has to cross in order to jump from a lattice site to
an adjacent one, or to some intermediate metastable configuration. In the vacancy
case, we have made a study of the height and shape of this barrier, reported in

the next section.

b.) Computational Method

While the determination of T' = 0 formation energies is relatively straightforward-
being sufficient to relax the system using one of the procedures outlined in the
previous section-studying the shape of the energy barrier to migration is slightly
‘more complicate. In fact, relaxation should always be allowed to occur to study
realisticaﬂy the potential energy surface. However, the system is stable only when
the jumping atom is in a lattice site (and the vacancy in another), or halfway
between two lattice sites (split vacancy). For all other positions, a constraint has
to be imposed to prevent the atom from falling back in the equilibrium position

during the relaxation. This is done by keeping fixed the “reaction coordinate” (¢),
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defined as[*%

| =

f:

2

(R; —R,)-J (4.4)

where R, is the coordinate of the jumping atom, and R; those of the neighboring
atoms. J is a unit vector indicating the direction of the jump. The number 6
appears because there are 6 neighbours around the vacancy. ¢ takes values from
—d/2 to d/2, where d represents the bond length. Two characteristic points are
& = 0, which corresponds to the split vacancy, and £ = +0.5 corresponding to the

simple vacancy.

For interstitial point defects both hexagonal and tetrahedral all the coordi-
nates close to the interstitial are considered. For the hexagonal side they are at
the number of 6, while for tetrahedral one they are 4. We have found the position
of interstitial atom at every step taking into. consideration its neighboring atoms

and positioning the interstitial atom in its ideal interstitial position.

In our simulation we considered a system containg 215 atoms for the vacancy
case and 217 for the interstitial case, using periodic boundary conditions. We
have tested that ths number of atoms is large enough to keep small size effects
arising from the interaction of the defect with its images in the neighbouring
supercells. In all the cases, the starting point was a configuration where the
atoms occupy lattice sites and the velocities are zero. When the simmulation has
‘started, atoms begin to move towards the equilibrium positions, and they gain a
kinetic energy. At each time step, part of the kinetic energy is removed by velocity
scaling, driving the system towards the energy minimum. When the kinetic energy
becomes neglectable, the defect energy is obtained by (4.1) or (4.2). In figure 4.2,
we show the kinetic and potential energy as a function of time for Germanium in

the point at £ = 0 (split vacancy) and a velocity scaling factor o = 0.95. The
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system reaches an almost complete rest state after about 300 MD time steps.
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FIG. 4.2: Kinetic and potential energy as a function of time for Ge, including a split vacancy

(¢ = 0). The system is quenched using a velocity scaling factor (Oc = 0.95),
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c.) Results

The results for the energetics of point defects using the Tersoff potential are
presented in table 4.1 (C, Si, Ge) and table 4.2 (SiC, SiGe), in comparison with
DFT-LDA calculations results (experimental data on defect energies are few and
have usually rather large error bars). In table 4.2, V; means a vacancy of element
7 and Jr; means a J atom in a tetrahedral interstitial position surrounded by i
atoms.

All the calculated defect energies in table 4.1 and table 4.2 are positive, which
is of course consistent with the experimental fact that the diamond lattice is the

most stable crystal structure for these semiconductors.

TAB. 4.1: Point defects energies (eV) in the diamond crystal phase of C, Si, Ge. Results of

previous LDA calculations, when available, are given in brackets.

Defects Ce Sib Ge

vac 4.24 (7.20) 3.84 (4-5) 3.61

split vac|  9.89 (9.0) 3.57 (4-5) 3.63

int(T) | 19.74 (23.6) | 3.62 (5-6) 8.9

int(H) 20.9 14.5 (15-16) | 5.78
@ referencel*’]
[46]

b
reference

42



TAB. 4.2: Calculated point defects energies {¢V) in the diamond crystal phase of SiC, SiGe
using the stoichiometric defect combination. Results of previous LDA calculations[47], when

available, are given in brackets.

defects : sic

V. + Vg, 7.4 (12.7)
Sipe + Crsi | 21.31 (23.3)
Sipe +Cro | 22.13 (26.0)
Cre — Crs: | 2.76 (2.4)

Defects SiGe

V., + V.. 7.40
Sips. + Gegs, | 7.60
Sip,, + Gega, | 7.42
Gepy, — Geps, | 0.63

We also calculated the vacancy energy for different values of the reaction co-
ordinate in order to investigate the shape of the energy barrier felt by the jumping
atom, and in particular estimate the maximum energy, corresponding to a saddle

point in the potential energy surface. The migration energy is then defined as the
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height of the barrier:

EM9 — B(S) - E(V) (4.5)

where E(S) is the energy at the saddle point and F(V) is the energy with the

vacancy in the equilibrium position.

In figures (4.3 a,b,c), we present the vacancy energy as a function of the reac-
tion coordinate for Si, Ge and C. The corresponding migration energies, obtained
by (4.5), are shown in table 4.3. Note that for Si the energy is referred to the split
vacancy goemetry, which is the equilibrium configuration for this potential. The
migration energy appears to be in qualitative agreement with LDA calculations

»

in the case of C[*®! while LDA calculations for Si suggest a much lower value of

~ 0.3eV[49],

TAB. 4.3: Vacancy migration energies (eV), obtained as difference of the saddle point and

equilibrium energies (maximum and minimum in Fig. 4.3).

C Si Ge
EM 5.8 2.8

[Sw]
[\]
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The square points are calculated by this theoretical model and the line is given by interpolation.
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Chapter 5
Surface Properties

It is known from experimental results that in several materials the structure of
the surface atomic layer differs from that of bulk layer with the same orientation.
This phenomenon is called surface reconstruction, and usually gives rise to new
strange surface periodicities, often temperature-dependent. Moreover, an atomic
rearrangement also takes place along the surface normal in the first, or in the first
few layers. In particular, reconstruction are quite commonly observed on semicon-
ductors surfaces, which are studied rather intensively due to their technological
importance.

Surfaces are often a stringent and critical test for empirical potentials. In
fact, potentials are usually constructed by fitting to bulk properties, but a surface
atom experiences a local environment with a low coordination number which can
be rather different from that of a bulk atom. Reconstructing surfaces are even
more demanding, since they require that energy differences often very tiny should
have a difined sign.

For this reason, the modeling of surface reconstructions for Si, Ge and C is
an important test for the Tersoff potential. With this potential, we have studied
‘the (100) and (111) surfaces of these materials.
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a.) Reconstruction of (100) Surface

The (100) surfaces of elemental semiconductors (C, Si, Ge) are known to exhibit
a 2 x 1 reconstruction!®®). This means, that the surface periodicity is twice as long
as expected along the surface direction [110], while it remains regular along the
orthogonal [110] direction. The Si(100) and Ge(100) surfaces have been studied
through a large number of techniques, including low—energy electron diffraction!51],
angle-resolved photoemission!®?!, multiple-reflection infrared spectroscopy(®?], all
indicating a 2 x 1 ( or 4 x 2) surface unit cell.

The Si(100) surface reconstruction is the subject of some controversy. Using
total-energy calculations, Yin and Cohen!®*! have found that buckled dimers are
the lowest—energy configurations, while Pandey!®], using a more extended version
of their method, has concluded that the symmetric dimer is favored. Pandey has
also proposed an alternative reconstruction mechanism, a m—bonded defect struc-
ture, where a surface dimer is removed and the subsurface atoms below it are
dimerized. A still different surface reconstruction, the dimer—plus—chain model,
has recently been suggested by Northrup!®®l. In recent experiments using the
scanning tunneling microscope, Hamers, Tromp and Demuth®"] report the pres-
ence of buckled dimers, symmetric dimers, and the defect structure of Pandey on

the same Si(100) surface. They do not see the dimer plus—chain reconstructionl5¢].
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b.) Computational Method and Results

The (100) surface is modeled by a slab containiﬁg 8 layers, each including 64
atoms. We choose the z axis along the [110] direction, the y axis along the [110]
direction, and the z axis along the surface normal [001]. Periodic boundary condi-
tions are imposed in the lateral (z,y) directions. The lowest three layers are held
fixed, to simulate a semiinfinite crystal. For a given configuration, the surface

energy o is calculated as
_Es—NE¢

S (5.1)

a

where Es is the total energy, E¢c is the cohesion energy per atom in the bulk, NV
is the number of atoms and A is the slab area.

Initially, all the atoms are placed in a structure corresponding to a perfect
crystal, and the surface energy is that of a perfect unreconstructed surface. Then
the surface atoms, which are linked to atoms below the bulk by bonds in the y — z
plane, are dimerized by displacing pairs towards one another in the z direction,
creating a 2 x 1 surface. Random velocities are given to the atoms (extracted from
a Maxwellian distribution at 7' = 100°K’) and they are allowed to move under MD.
The temperature is steadily reduced by quenching, permitting them to relax to the
minimum energy state. A simple relaxation started from a 7' = 0°K sample leads
to the same final state. On the other hand, run started from a perfect surface, that
is without the initial preparation of an ordered superstructure of dimers, result in
a rather disordered arrangement of dimers with a slightly higher energy.

We list the results in table 5.1 where we report for Si(100), Ge(100), C(100)
2 x 1 the relaxation energy per dimer, defined by the energy of the perfect unre-
constructed surface minus the energy of the 2 x 1 structure, divided by the number

of dimers. Rgimer is the separation of the dimer in the equilibrium structure. In
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the figures 5.1 and 5.2 we show the final configuration of Silicon surface (the same
configuration are obtained to Ge and C). Shifts from the ideal lattice positions in
the above cases occur in the z and 2 directions only. In table 5.3 we show these

shifts Az and Az for the atoms in the first two layers.

TAB. 5.1: Relaxation energy per dimer E'g (eV) predicted by the Tersoff potential and

dimer

compared with the theoretical predictions of Yin and Cohen (YC)[M], and Pandey[ssl.

Method | Riimer | Er
Si
Present | 2.30 1.52
YC 2.25 1.70
Pandey | 2.22 2.06
Ge
Present | 2.50 1.17
C
Present | 1.54 1.03

dimer
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TAB. 5.2: Surface energy (eV/]lz) predicted by the Tersoff potential for the 2 X 1 and the

unrelaxed (100) surface.

E]'ement Eloonnrel E3urf2x1

Si 0.14 0.093
Ge 0.29 0.081

C 048 | 0.40

TAB. 5.3: Shifts (in A) from the ideal lattice positions for the reconstructed (100) surface.
The values in parenthesis are the results of Yin and Cohen?4, They represent the mean value

of their calculations.

layer 1 layer II

Az | 0.74 (0.81) |0.06 (0.10)
Az |-0.19 (0.31) | 0.02 (0.01)

Ge
Az 0.75 0.09
Az -0.14 0.02
C
Az 0.49 0.03
Az -0.17 0.01
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FIG. 5.1: The final configurations of the atoms in the top most layer of Si(100). We can observe

the 2 X 1 reconstruction predicted by this model.
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c.) Reconstruction of (111) Surface

The (111) surfaces of semiconductors have been investigated by a large number of
experimental studies[®®]. Most of the experiments have shown that these surfaces
exhibit either a 2 x 1 or a 7 x T superlattice structure, corresponding respectively
to a metastable and a stable arrangement. Si(111) is reconstructed in the thermo-
dynamically stable 7 x 7 structure at temperatures above 300°C. when heated to
800°C' and then thermally quenched, a 1 x 1 phase appears, which transforms to

2 x 1 when the temperature is further decreased.

For Ge(111), it was experimentally observed!®® that at low temperatures (less
than 300°K) a 2 x1 reconstruction takes place. It was also found that a 1 x'1
reconstruction is stable against heating or cooling of the cleaved crystal in the
whole range 10 — 300°K.

Si and Ge present the same chemical properties and it is believed that their
(111) surfaces should have the same atomic structure, at least for the 2 x 1 and
1 x 1 cases. Nevertheless, the models presented till now for the 2 x 1 structure are

still controversial.

d.) Results

Different types of models are available to explain the 2 x 1 structure. A widely
‘accepted model for this reconstructio;l is the m—bond chain model proposed by
'Péndey[sgl. We have tested the stability of the Pandey model using the Tersoff
potential, using a molecular—-dynamics based on quenching strategy similar to that

used for the (100) surfaces and discussed previously.

In our simulation, we have 8 layers each containing 72 atoms. The last 3 layers
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are kept fixed, and periodic boundary conditions are used in the (z,y) plane. The
atoms in the top two layers of the free surface of the slab were initially moved
to positions close to those predicted by the m—bonded-chain model of Pandey.
The relaxation procedure was subsequently performed, using a velocity factor a =
0.99 and permitting the top five layers to relax. The system settled into a local
minimum with the structure shown in figures 5.3 and 5.4 for C. Very similar
pictures were obtained for Si and Ge. The surface energies of these slabs are given

in table 5.4 together with the surface energy of the unrecontructed surface.

TAB. 5.4: Surface energy for the unrecontructed surface (Eyppec), the 2 X 1 m—chain model
(Er—chain) and the unreconstructed but relaxed (111) surface energy E(lll) of 8i, Ge and C,
in (eV/A?‘). R hain is the distance between the atoms in the m~bonded chain running along

the top of the surface.

element Eunrec E(lll) Eﬂ'-—chain Rdimer

Si 0.080 |0.074 0.13 2.25
Ge 0.070 |0.066 0.13 2.01
C 0.251 |0.178 0.12 1.46

The results obtained using this potential show that for Si and Ge the m—
bonded—chain model for the 2 x 1 reconstruction corresponds to a metastable local
.minimum, but is not the most stable structure. On the other hand for C (figs. 5.3

and 5.4) the Pandey model corresponds to stable configuration.

55



O O O O O O

O~0~0-~0

CoP0C0Cn0n

O

O~0

e rserge

O~0 O

O~0

OO0

O~0~0~0-~0

CoP0C0000%q

OO0

O~0~0-~0-~0

CoC0C0000q

OO0

O~0

OOOOOO

O~70~"070

O O O O O O

the

observe

C(111). We can

of the atoms on

FIG. 5.3: Top view of the final configuration

struction predicted by Pandey.

T~bonded—chain model recon

56



O OO OO OO OO OO OO OO OO OO OO OO O
O 0% 09 0% 60 0° 00 P 0 © O L
0 90 0 % P O O On On On On Of O

02 02 0% 0P 02 © 60 O © O L ©

FIG. 5.4: Lateral view of the final configuration for the atoms on C(111).

57



Chapter 6

Conclusions

The modelling of semiconductor materials, whose main feature is the strongly di-

rectional character of covalent bonding, represents a well-known challenge for solid
state physicists. In spite of recent developments of ab-initio methods for computer
simulation of semiconductors, schemes based on empirical, classical potentials are
still of interest when the necessity arises to study phenomena involving relatively
large number of particles (e.g., N > 100), or long simulation times. This is the
case for many problems of scientific and technological interest such as, for exam-
ple, surface reconstruction, crystal growth, self-diffusion. The purpose of this work
was to investigate the behaviour of a family of state-of-the-art classical potentials
for semiconductors (C, Si, Ge and their mixtures), made by Tersoff.

First of all, bulk properties have been considered. A study of the energy as
a function of the atomic volume for various crystalline structures shows that, as
expected, the diamond structure is the mdst stable at low pressures. However, Si
and Ge are found to transform at high pressure to the b.c.c. phase, instead of the
(-tin structure as experimentally observed.

A study of the bulk phonon spectrum in the diamond structure shows a
good agreement with experimental data as far as the longitudinal acoustic modes
are concerned, while the frequencies of optical and transverse acoustic modes are
slightly overestimated.

In order to proceed with the study of the structure and energetics of defects

and surfaces, a molecular dynamics program with forces derived by Tersoff poten-
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tials has been implemented. Although used here primarily as a tool for energy
minimization, this program constitutes a valid and general instrument for studies
at finite temperature and in low-symmetry conditions, which may constitute the

subject of future work.

Formation energies of defects and interstitials are found to be in fair agreement
with the more accurate results obtained‘ from DFT-LDA calculations. However,
in Si and Ge the vacancy migration energy is far too high, and therefore the self-
diffusion coefficient is severely underestimated. The potential for C appears to be

more realistic with respect to point defect properties.

An application of Tersoff potentials to the structure of low-index surfaces,
known to reconstruct in semiconductors, shows a quite acceptable description of
~the 2 x 1 reconstruction of (100) surfaces. On the other hand, with again the
notable exception of the C potential, the Pandey model for the 2 x 1 reconstruction
of (111) surfaces appears to be higher in energy than the non-reconstructed surface,
quite in contrast with the most recent suggestions and experiments on the structure

of Si(111).

Even if somewhat inaccurate in some areas, these potentials constitute a clear
advance in semiconductor modelling. Their analytical form, based on a many-
body term where coordination plays a key role, is certainly closer to the physics
of semiconductors than the simple three-body terms typical of the potentials of
the previous generation. Moreover, their applicability to mixtures as well as to
the pure elements, exploited in some of the calculations presented in this thesis,
is a clear advantage. It is therefore likely that future, more refined potentials for
semiconductors, hopefully able to overcome the weaknesses found and described

here, will naturally evolve from Tersoft’s work.
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Appendix A
Calculation of the force

The force is given by equation (4.1). Here we use the same variable names that
we use in the text. |

The Tersoff potential depends on two sets of variables {R;;} and {cos(0;;%)}
where the subindices represent all the particles in the system. Therefore, with the

application of the chain rule, we obtain

oF 1 Vim OR;; 1 OVim acos(ﬁi]‘k)
=12 st 2 2 - (4.1)
OR, 4 sl OR;; OR, 4 Prw Ocos(6;;,) OR.,

the factor % in the first term of equation (A.1) is due to the fact in the
summation it is counted two times as it does not distinguish ¢ — Jand 7 — ¢
also to I,m. In the second term of the equation the factor % is counted two times
because the potential occupies a preferential position in i and the changes from
J — k and £ — 7 oblige to count it double (it is considered implicitly the factor
% because it doesnot distinguish between the change of [,m in the potential). We
want to underline that in this notation about equation (A.1) the sums run over

all values of 7,7, k everyone different from each other.
The derivatives of R;; and cos(6;;1) with respect to R, are
OR;; Ry

s &
R, ~ R, (6in — é5n) (A.2)
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and

ij R;;+Rix Ry -R; Rir - Ry;
—-____—8603(9 jt) = i ik i 3 kRij - —“LTlRik bin+
IR, R;; Ry R, R, Ri; R,

R R R R - Ry R,
YR, — Sin ———l‘lRi - 2 Skn A,
( leR?] J R‘L]le> J + ( k . ) k ( 3)

where §;,, 1s the Kroneker delta deﬁned as

5m={L1“=m (A.4)

0, otherwise.

Through the calculation of the simple derivations of the potential, cancelling the
summations by deltas of Kroneker and having in mind that the b;; in the equa-

tion 2.4, is asymmetric (b;; # b;;) in the equation (A.1), we obtain the following

expressions
OF .
= oS folBug) RFa(Rug) + falbes + i)+
" j#n
Fo(Res) [2F0(Bng) + FalRi)(bos + b)) 223 4 (4.5.0)
nj

5 S JolRe) falBae) folBudg(cos(Bn)) Ane -+

JFk#En

&

Fa(Bj) fo(Rik)g(cos(0ink)) Aje] R:: +(4.5.5)
Z fo(Bnj) fo(Rnk)g(cos(Onjr)) [fa(Rns)An +
2 jhien
Fa(BRnk)Ank] (1 - R”’“Jf'{;n’“) RinRjnk + (A.5.¢)
= Z fo(Rni)fo(Rir)i(cos(Bink)) [fa(Fni)As +

z;élcr,én

61



Rin.Rix 1
fa(Rir)Air)] (_“E;—’Rin - Rik) Rofn (A.5.d)

these expressions can be simplified taking into account that the vectors R, can

be written as

Rt =R, + Ry
and

R.:r.Rnr = szj + an-Rjk

Then, we have the following equality:

_ Ry Rue _ Ry Ry,

1 —
an

= cos(&ink)
so equations (5.c) and (5.d) become

1 Z fo(Bni) fo(Rnk)d(cos(8nir)) [fa(Rnj)Anj +
2

J#k#En
fA(Rnk)Ank)]}cos(Gjnk)%%R ) (A.6.q)
-—i—jz;#n P (R icos(Bina)) (o) A +
fa(Bjk)Ajk)] <003(9jkn)% + %j—:)} (A.6.5)

where in all the equations the sum runs over all values of 2 and k different from n
and different among themselves, i.e :

i#kFEn itk k#n
and f(z) represents the derivation of the function with respect to the argument =

: %. The new function A4;,, that appears in these calculations is defined as

l mny . —1/2n;— ng Ang—
Ay = =25 (L P Ga) M B
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The set of equations (5.a),(5.5),(6.a) and (6.b) gives the solution of the equation
(A.1) and by changing the sign we obtain the value of the vector force for a specified
particle.

It is known that for the calculation of the force in molecular dynamics pro-
grams a very long time is required, because this force is necessary for the move-
ments of all the particles of the system. In this way this force must be minimized,
which means using less time as possible in the calculation of each particle. With
this purpose for Tersoff potential in our program we employed one loop for each
particle. So we could avoid calculating two times or three times the same functions.
All the functions are computed explicitly in the calculation of the force. Moreover
bij, Aim, and { were previously calculated in the possible range of values they can
have. The values of the cos(8;;1) were calculated only once explicitly in the force.
At the begining of this program, all the parameters which specified the particular
component or multicomponents, like C, Si, Ge, SiC and SiGe were calculated in
order to avoid calculating the square root for the evaluation of every function.

It was in this way that it was possible to com?ute the force of each particle
with this type of potential spending a minimum time and optimizing this pro-
gram of molecular dynamics valid for simple component like C, Si, and Ge or
multicomponents like SiC and SiGe because it makes a distinction for every single

particle.
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