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1 Introduction

In his works ! Witten has given the general framework for calculating
correlation functions in two dimensional topological sigma models (TSM). Tt
turned out that on K&hler manifolds all the calculations can be performed
from the axioms without needing to resort to any explicit form of the action.
The observables of a topological sigma model are in 1-1 correspondence with
the De Rham cohomology classes of the target space of the model, but this
correspondence is only a morphism of vector spaces (actually of groups) and
violates the ring structures.

More explicitly to each cohomology class 4; of the target space T it cor-
responds an observable O, (z) but for the purpose of calculating correlation

functions as

< O‘.ll(iﬂl),...,O‘_ln(irn) > (1)

(the subscript indicates the genus of the world-sheet - in this thesis we re-
strict our attention to genus 0) we have to take account of all the "instanton
corrections”.

In other words the contribution to (1) due to topologically trivial instantons

(i.e. to constant maps) is given by:

< 0141(331), ...,O‘u\n(ibn) >= ﬁTl ﬂ ..... an (2)

where T; is the Poincare’ dual of A; and the intersection has to be taken in
the target manifold 7', but the contribution due to topologically non trivial
instantons has the same form as (2) where the intersection has to be taken
in a suitable moduli space.

The idea is to define the classes A; on the moduli space of the maps of fixed
degree from the world-sheet to the target by pull-back and then take the
intersections there. When the dimension of the moduli space is the same as

the degree of the form:

'E. Witten, Commun. Math. Phys. 117 (88) 353, ibid 118 (88) 411, Nucl. Phys. B340
(90) 281




we have a contribution to the correlation function.

It is a general feature of these models * that in this way we obtain a
"correction” of the ring structure of the cohomology of the target space.
In particular the new ring has the structure of a "Frobenius algebra” * and
so is endowed with a non degenerate metric.

What we are going to do now is to see an easy example where all the

construction works very well.
2 Topological sigma model on P!

Let us consider a topological sigma model on the Riemann sphere.
The moduli space My of instantons of winding number d has (complex) di-
mension 2d + 1, as follows from the general form of a degree d map of the

complex plane:

(3)

which is defined by the position of its d + 1 poles and zeros and by a normal-
isation term.
To do intersection theory, we should really have a compact space, My, for
the instanton moduli space.
It is instructive to see how the compactification arises in the case of single
coverings of the rational curve.

As they correspond to reparametrization of P' they are represented by
elements of SL(2) which naturally compactifies to P* .

In other words for single coverings (3) becomes

ar + b
cx +d

w(z) = (4)

where the complex parameters can be chosen to satisfy the equation:

ad —bc=1

’R. Dijgkgraaf, E. Witten Nucl. Phys B342 (90) 486; D. Gepner Commun. Math.
Phys. 141 (91) 381; K. Intriligator HUPT-91/A041
SB. A. Dubrovin Commun. Math. Phys. 145 (92) 195




The space of parameters compactifies to P' and the "compactification divi-

sor” is isomorphic to the variety P! x P! defined by the quadric

ad —bc=0

In general the compactification of My is P24+,
If w is the unique non trivial homology class of P! (the hyperplane class)

then its pull-back under the "universal instanton”
ig: My — —— — P! i(w) = w(0)

(which obviously is only a rational map defined on M, ) gives a linear relation
between the coefficients of w(z) (see(3)).
In other words the pull-back of the hyperplane class of P! is the hyperplane
class of M, = P2+
Finally the correction to the correlation function (1) due to instantons of
degree d

<0404, >4 (5)

is non zero if and only if n = 2d + 1 and in this case is equal to one.

Summarizing, what we have found is the following:

1 fn=2d+1
0 otherwise

(6)

It is clear now that all the instanton corrections (6) can be encoded in the
relation w® = 1 which can be viewed as a deformation (the "quantum cor-
rection”) of the defining relation of the cohomology ring of the target.

But it is also clear which is the geometrical meaning of w? = 1 . To under-
stand this point let us return to the example of single coverings of P!. The
definition of w (4) shows that the the instantons which belong to the com-
pactification divisor are constant functions which map P! into the point of
the target defined by the ratio between the vectors (a,b) and (c, d). Moreover
to give a point on P! x P! we have to specify not only a constant map but
also the point of the world-sheet where w(z) is not defined. If we constrain

this point to be the origin of P!, then we have to put b = d = 0 and the




constant instantons obtained in this way are in 1-1 correspondence with the
points of the target. Finally this locus of constant maps into the moduli
space M is exactly the cycle w? where w is the hyperplane class, so we can
read the quantum correction as the relation which allows us to go from M),

to M, when we calculate a correlation function:

< P(W)(—U2 >,’\[l:< P(LU) >/\[(_1

More generally w” is the locus of the moduli space M,_, into A,.
In the rest of this thesis we describe how this construction generalizes to

sigma models on Grassmannians.

3 Topological sigma models on Grassmann
manifolds and the quot scheme

In the example of the P1-TSM we have seen that the quantum correction
describe how instantons of degree d ”live” in the moduli space of instan-
tons of degree d + 1. It turned out that the maps of lower degree (counted
with multiplicity) generate all the compactification locus of the moduli space
and the quantum correction isolate into this a cycle in such a way that the
multiplicity of of the maps of lower degree is eliminated.

Now it is clear that to generalize this framework to a Grassmann sigma
mode] we have first to compactify the moduli space of rational maps into the
Grassmannian.

A nice compactification of this space is described in *.
In what follows we recall some definitions and properties of the Stromme
construction.

The datum of a morphism

m: Pl — G(5,V)

*S. Stromme in: Space curves, F. Ghione et al. (Eds.), Springer LNM (87)




1s equivalent to the datum of a locally free quotient of 7V of rank r and de-

gree d, which is defined by pulling back the tautological sequence on G(s,V):

0—S—V-—0—10

T

This means that compactify the variety Hom,(P!,G) is equivalent to
compactify the space of all free quotients of the trivial bundle V on P! of
rank r and degree d.

There is a general construction due to Grothendieck ® which provides such a
compactifications.

It is a general fact that a family of locally free quotients of a trivial
bundle can occasionally degenerate into quotients which are not longer locally
free. The idea is to add such degenerate quotients if they have the same
"asymptotic behaviour” under twists of the general member of the family to
which they belong.

The right notion which encode this behaviour is the Hilbert polynomial H(m):

Ho(m) = x(P',Q(m)) = (m + 1)r + 1

where @ is a quotient on P!, Q(m) = Q ® O(m) and 7 and d are by definition
the rank and the degree of Q.

The compactification of Homy(P?!, @) is obtained by adding all the de-
generate quotients which belong to families whose general member is a locally
free quotient of rank 7 and degree d and where all the members of the family
have the same rank and degree (in a word: all the degenerate quotients of
flat families °).

It is a general fact that in such a way we find a compactification Ry of
Homy(P!, G) and that it is equipped with a ”universal short exact sequence”
on P! x Ry

0— AV _—B—0 (1)

which has the following property: for any variety T, the set of morphisms s:

s: T — Ry

°A. Grothendieck : Sem. Bourbaki 221 (60-61)
®R. Hartshorne: Algebraic Geometry GTM




is in 1-1 correspondence to the set of short exact sequences on P! x T of the

form of (7) where the Hilbert polynomial on the fibres of the projection
P x T — T
is fixed and equals those of the fibres of
TR, : P x Ry — Ry

This framework provides us with a projective variety Ry of dimension
nd + 7(n — r) which is irreducible, rational and non singular °.

Moreover when we fix a point on P we get a rational map
g Ry —— — G(s,V)

which define, by closure, the pull-back of the cycles of G(s, V).

In what follows we will see how a suitable intersection of such cycles select
into R4 alocus birational to Ry, as predicted by the quantum correction of
the Grassmanniann cohomology ring which we are going to describe in the

next section.

4 The quantum correction of the
grassmannian ring

We rapidly recall the structure of the cohomology ring of a Grassmann
manifold.

On G(s,n) is defined the tautological sequence:
0—S5—>V-—50Q—0

which gives the the obvious relation between the total Chern classes of S and
Q:
sc=1 (8)

"Stromme cit.




where

and s; are called the Segre classes and ¢; the Chern classes of G(s,n).

The cohomology ring H*(G) of G(s,n) is generated by the Chern classes and
s0 is isomorphic to a quotient of the polynomial ring which they generate
modulo a suitable ideal.

It is easy to verify the following relation:

where the s; are defined formally by:

: 1
Zsitl = thi (10)

In particular it is clear from (8) that
c 85, =0

The quantum correction of the Grassmannian ring says that the last equation

must be corrected as follows &:

8 =1

In the paper ° we show that the actual reason of this correction of the coho-
mology ring of the Grassmannian has the same origin as in the P'-TSM.

What we have proved is the following:

Proposition: if we define the cycles t7 and m;
t; = pu(T(Vig (7))

m; = p(Tig' ()"
where the closure has to be taken in Ry X G, I is the graph of iy and p is the

projection on the first factor, then

8Intriligator cit.
9D. Franco, C. Reina in preparation




the locus ¢;(\m; in Ry, similarly to what happens in the P! model, is
birationally equivalent to R,_,.

In other words the intersection ¢ () m isolate into the compactification locus
of Ry an unique degenerate quotient of degree d for any instanton of degree
d—1.

Here we give a sketch of the proof referring to '“ for more details.

The locus where the map 74 is not defined can be seen as a determinantal
variety ''. Indeed when we restrict the defining sequence (7) to {0} x Ry we
get a quotient sheaf B on R, which fails to be a bundle exactly where the
injection 7 has rank strictly lower then s (as a bundle map).

It is clear that to those points does not correspond any well defined point in
G(s,n).

It is also clear that to a point p of Ry where j has exactly rank s — 1 we can
associate a couple (H,, f,) where f, is a map in Homgy_;(P',G) and H, is
an hyperplane into f,(0) ( H, is the image in V of the bundle A on the point
(0,p) € P x Ry).

It can be easily seen '* that for any point p as before we have:
POp} x G(s,m)) = PT = {A| B, C A} (11)

so that PT can be viewed as the ”"image” under iy of the point p into the
Grassmannian.
Now the Poincare’ dual of the classes ¢, and s, into a Grassmann manifold

have the following descriptions '*;

cc={A|veA} (12)

ss={A|AcCH)

(where H is an hyperplane and v a point of V).
In particular it is clear from (11) that ¢Z ) s7 = 0 and so ¢y m] is contained

into the determinantal locus above (naturally we are taking the set theoretical

'9D. Franco, C. Reina in preparation

"E. Arbarello, M. Cornalba, P. Griffiths, J. Harris: The geometry of algebraic curves
Springer Verlag; W. Fulton Intersection Theory Springer Verlag

2D. Franco, C. Reina cit

'3P. Griffiths, J. Harris Principles of algebraic geometry J. Wiley and Sons




intersection which however correspond to the Chow one because, as it will
become clear in the following, the cycles intersect transversally). Moreover
a couple (H,, f,,) belongs to t:Nm  if and only if H, C H in fact it is clear
that in this case the PT image of (H,, f,) into G(s,n) intersects both ¢7 and
5.
But now we have found the embedding of R,_, into Ry indeed to a map
f € R4y we can associate the degenerate point of R, corresponding to the
couple (f(0)N H, f). This construction fails when f(0) C H namely in a
closed subvariety of Ry, so what we have found is only a rational map

from R,_, into R; but this does not influence the intersections in maximal

codimension (see '*) O .

5 The Frobenius algebra of the
Grassmann model

In their works '° Intriligator and Vafa conjectured that the quantum cor-
rection of the Grassmannian cohomology ring that arises in topological sigma
models on Grassmannians can be described in terms of a suitable topological
Landau-Ginzburg model 1° .

The starting point is the simple observation that the defining ideal of the
Grassmannian cohomology ring (9) can be "integrate” in a generating func-
tion.

Following '7, we define:
W(t) = —logc(—t) = Z Wit where c(t) = Z c;t!

Since our ideal is generated by the derivatives of W.

If we write

r

ot) =101+ q)

1

MD. Franco, C. Reina cit

Intriligator cit. ; C. Vafa Mod. Phys Lett. A6 (91) 337
6Vafa cit.

"Gepner cit.




it can be seen that:
r n+1

L‘I/—Yl+l = Z X

n+1

(the g¢’s can be seen as the Chern classes of the line bundles associates via
splitting principle to the quotient bundle of the Grassmannian '* ).

The content of the conjecture of Vafa can be summarized in the require-
ment that the quantum correction of the cohomology rting of G(s,n) is the

ring associated to the following potential:
Z = vVn+1 -+ (—'1),‘(31 (13)

Moreover as this potential can be seen as the defining one for a topological
Landau-Ginzburg model, it turns out that all the correlation function (1) can
be calculated with the methods of the paper '° and that from the topological
observables we can construct a Frobenius algebra 2.

What we are going to do now is to describe the topological Landau-

Ginzburg ring as it arises from the detailed analysis of Intriligator *! and
then see how that ring can be recovered from the geometrical point of view
of the last section. ‘
Firstly it is necessary a more precise description of the cohomology ring of
the Grassmannian. The elements of this ring are in 1-1 correspondence with
Young tableaux with at most s columns of at most r boxes. If p is any such
a tableau, n(u) the number of its columns and a; the length of the i-th one,
we can define

¢, = {al, ..... ,CLn(u)] = 1<i%3&(“) Ca;+i-j (14)

It turns out ** that these classes generate H*(G) as a vector space.

The ring structure of H*(G) is encoded in the Pieri equation :

cilaty oy ag] = > '[bl, ..... , bs) (15)

18Griffiths, Harris cit.
YVafa cit.
20Dubrovin cit.

2eit

22Griffiths, Harris cit.
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As it arises from the analysis of ** the quantum deformation of the Grass-
mannian cohomology ring due to the extraterm ¢, in the perturbed potential
(13) is encoded in a Pieri-like formula very similar to the last one.

The major difference between the two rings lies in the different action of
the class ¢, (s,) on the elements of the form (14). Indeed when n(y) < s
(n(p*) < 7, where p~ is the dual tableau of 1 ) then the action of is the

same both in the classical and quantum case:
crlary ey aj] = [ag, oeeaj, ) (16 — a)

sglary eyaj] = [ar + 1, e + 1] (16 — b)

but when n(p) = s (n(p™) = r) the action of ¢, (s,) is equivalent to "deleting”

the first row (the last column) of the tableau corresponding to ®,:
crlar, ey as) = lay — 1, .iay — 1] (17 — a)

55(a1y ey @] = [ar, conajy] (17 —b)

Following ** the cohomology elements of the deformed ring can grouped into
orbits under the action of s,. In each orbit we can pick a convenient repre-

sentative, the other elements of the orbit being of the form

The more convenient choice for the orbit representative [u] is the element
without length s rows in the corresponding tableau.

Now the product of two representatives is described in %° :

3

(ﬁﬂl @uz = z Nﬁf,ug‘% @us (18)
H3

where r(p) is is the number of boxes of yx and N%* are determinate by the

following deformed Pieri formula:

cilary ey ay) = > (b1, eveey by

ai<bi<aipriy ) bi=) . ai+i

*3Intriligator cit.
Hntriligator cit.
“>Gepner cit.
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where now b; = 7 is the same as b, = 0 %,
Summarizing the fundamental difference between the two rings lives in the
different action of the class ¢, on the elements of the form (14).

Now we give a short geometrical explanation of the formulae (16-18)
following the lines of the proof of the proposition of the last section.

Firstly we recall the definition of the Poincare’ dual of the class &, :

B, = (a1, 0] = {A € G(s,n) | dimA () Vigicar_,, 21} (19)

n
where Vi CVyiC ... CV, =C" (20)

1s a complete flag of C".
When n(g) = s then a; # 0 and

dimAﬂ Vica, 2 s = ACV,,

so that ¢; N ®}, = 0.
Defining

¢, = p-(T[)i7'(2}))
1t is clear that

m:ﬂ(bZ C Rg1 C Ry

where the second inclusion has the meaning said in the proof of the proposi-
tion of the last section section.

Now it is easy to see that the intersection m; (¢ into Ry is exactly
the cycle ¢7 where p; is the tableau obtained by p deleting the first row.
Indeed if the flag (20) is given by a basis {e,...,e,} where ¢, is the vector v
in the definition of m (see the proposition), then a couple (H,, f,) € Rq_1 is
in m; (1 ¢;, if and only if the projection from e, on V,_y = H of f,(0) belongs
to ®7:

e, (fp(0)) C &},

but the last inclusion is precisely equivalent to to the following conditions;

d'l,mfp(O) m ‘71"+1+i‘a7-_(+1 Z 1’

26Qepner cit.

12




(I_f] = span{en,,81{---751‘—1})

which says that f,(0) belongs to ¢, .
The proof of (17-b) is similar; if n(p*) = r then a,(,) = r and (19) says
that A D e.

Again we have:
s7( 1@, =0 and ()¢, C Ry-y C Rd

Moreover if we define
Vi=H ﬂ Viai

then it is clear that
dimV; () span{H,,e,} > 1 & dimV NH,>i—1

= dimV_ [ f(0)>i-1

but this is equivalent to the requirement that f(0) belongs to ¢, where p,
is obtained from g deleting the last column.

More subtle is the reason of the equivalence (16) between the classical
and the quantum case.
Let us see (16-a): a simple way to prove it would be to see that m> @7, has
not components into the compactification locus. Unfortunately this is not
true in general. The reason why we can neglect such components lies im the
fact that they do not contribute to the correlation functions. Indeed, as it
is clearly seen from the definition (19), when a couple (H,, f,) belongs to
m; ¢, and n(u) < s, differently to what happens if n(u) = s, then H, is
not determined. In other words there is a subspace P into the P” defined
n (11) such that:

K CP — (K f,) e m: ()4

This shows that these components cannot contribute to the calculus of corre-
lation functions because they do not give dimension 0 cycles when we make
intersections with other ¢7.

In a similar way it can be shown that:

SS[CH, ..... ,(J,j]:[al‘i‘]w """ a1+1]

13




c,'[a[, ..... ,(1:,,] = Z [b], ..... ,bg}

6 Conclusions

A general feature of the models considered until now is that there is a

"stratification” of the moduli spaces:
M, C M, C ..... C My C ll[d-u -

where M is the target and where every A, is equipped with a rational map
to M, which can be used to pull-back cohomology classes of the Chow ring.
In this way we have a representative ®;,; in My for every class ®,4 in M,
and we can take intersections of such classes in every moduli space.

Then projecting to the maximal codimension component of the Chow ring,

we get "expectation values” on every M,:

< Oq>“ ..... 5 O(pn >q= ﬂ{@l m ..... ﬂ(I)n}

if codim®, + ..... + codim®,, = dim(M,)

otherwise. Moreover we have a total expectation value for every ”word”

composed with the classes @ ’s:

Then we can define the quantum correction of the Chow ring of the target

as the ring generated by the ® ’s modulo the following equivalence relation:
P(®;) ~ Q(®:) &< P(3,)H(®,) >=< Q(®.)H(3,) > vH

14




where P,Q,H are polynomials.

In the examples considered here the cohomology rings have a nice expres-
sion as a free ring on the generators modulo defining ideals and the quantum
correction may be seen as a deformation of such ideals. Moreover we have
an integrate version of both the classical and deformed ideals.

What we hope to do in the future is to generalize what we have done until
now for Grassmann manifolds to more general sigma models. For example
we think it should be relatively easy to take a flag manifold as target.

The first step of the job, i.e. compactfying moduli spaces, it is easily
made. Indeed as for Grassmann targets, a map from P! into a flag manifold
F(Ny,....,N,; N) is a set of locally free quotients (here we have to specify n

non decreasing degrees):
O——)Ai-——»CN—>Qi—>o

suitably filtered:

0— A, — A

In other words the datum of a map from P! into F(N,.., N,; N) (of multi-
degree (dy,..,d,)) is equivalent to the datum of a diagram as the following

on Pl:
0— Ay, — CY — Qun, —0

T I T
0 _ ANn—1 — CN — Q]\rn_L — 0
1 | i
! I 1
0— ANI i CN — QNL — 0

(where Q; has degree d; on P1).
Like for Grassmannians, where the compactification of the moduli space
can be seen as the zero locus of the morphism py 0 j 0 74_; in the following

sequence:
td—1 dn
0 —  Sesie — Ce — Qa1 — 0

13

0 — SyexC2 — CtxC? 24 QuexC? — 0

15




where G = Gy_; x Gg and G; = G((v + 1)r + d,(z + 1)n), both the first and
the second rows are tautological and j is a canonical map, the compactified
family of instantons of multidegree (d,,..,d,) is the zero locus of the same
morphism in the sequence on F' = Fy; _; x F,, , where F;, = F((1 + 1)N, +
diyery 0+ 1)N, +dp, (i + 1)N):

0 — 5 % ... x S, =S CriN QXX Qy — 0
Ly
0 — 5] X ..x 8 xC? — C2nldt)y 2,0« xQ,xC—0

From this description of the compactification we can guess that for a flag

sigma model there should be several quantum corrections due to the fact
that a family of instantons of fixed multidegree can occasionally degenerate
into instantons of different multidegrees.
But if on one hand it should be relatively easy to isolate the degenerate loci
in a cohomological way as we made for the Grassmannians, on the other
hand it seems very difficult write explicitly the deformed ideal which encode
the quantum correction because yet in the classical case the ideal defining
the cohomology ring of a flag manifold is much more complicate and there is
not (or at least we do not know if there is) an integrated version of it as for
the Grassmannian.

Also more complicate is the topological sigma model on targets as G/P,
where G is an algebraic group and P is a parabolic subgroup of G. Here we
have the same difficulties of the last example plus an embarrassing indeter-
mination in the choice of the compactification scheme.

Indeed a possible choice is relate to the fact that G/P is an algebraic va-
riety ( a projective one) so we can canonically ask for a compactification
which "stabilizes” the Hilbert polynomial of a rational curve into it. But
this polynomial "feels” only the total degree of the curve. So a more precise
compactification should arises if we were able to embed G/P in a suitable
product of projective spaces (as for the flag manifolds) but we do not know
how to do it.

Finally a different approach to the compactification arises when we consider
a rational curve into G/P as a bundle on P! with "extra structures” and so

we may ask for a compactification which preserve such a structure.
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