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Introduction

In systems which exhibit phase transitions, distinct thermodynamic phases are spatially
separated by interfaces, i.e. sharp transition regions where the order parameter changes
very rapidly from one phase to the other. It is obviously of great interest to understand
the dynamical behavior of these interfaces. In particular, in nonequilibrium statistical
mechanics, it is a very fascinating problem the derivation of the interface dynamics from
the “microscopic evolutions” of the system.

Actually this aim is very close to the derivation of hydrodynamics. A fluid is locally in
equilibrium and the hydrodynamic parameters vary on a macroscopic scale. Similarly, an
interface is extremely flat on the microscopic scale, when averaged with the local equilib-
rium distribution of the order parameter. In both cases the derivation of the dynamics is
based on the separation of space-time scales.

The phenomenological theory of interface motion has been established since a long time
(see for example [28] and references there). On the contrary, noticeable results on the
derivation from microscopic models are very recent. Moreover, a coherent picture, in a
general enough framework and with the standard of rigour of the equilibrium statistical
mechanics, is still missing.

We restrict now our attention to the simplest case of interface dynamics. We consider
systems whose equilibria are characterized only by the temperature and the order pa-
rameter, and with a bulk dynamics that does not conserve the latter. According to the
phenomenological theory the picture is as follows (see [25,27,28,29]). First of all, on the
macroscopic scale, the transition region is infinitely thin so that one can represent the
interface by a smooth surface ¥ embedded in R¢, where d is the physical dimension. One

introduces the surface tension o, so that the surface free energy is given by

F= /E df o(h)

where 7 is the local normal to ¥ in df. It is postulated that the interface velocity along

the local normal is given by

oF
>
where p is called the mobility of the interface.

(0.1)

v =

Now we further assume that the system is isotropic. In this case, both the surface

tension o and the mobility u are independent on the local orientation 7 of the interface,




so that eq. (0.1) becomes
0
= —7 0.2
v= o (0.2)
where 1/R is equal to (d — 1) times the local mean curvature of X. According to (0.1), the
“transport coefficient” # should be related to the linear transport coefficient p and to the

thermodynamic quantity ¢ by the “Einstein relation”
0 = po (0.3)

The sign of the mean curvature in (0.2) is chosen such that the velocity v is directed toward
the local concavity of the interface. We refer to (0.2) as the mean curvature equation.

By the general theory of parabolic equations it is known that eq. (0.2) develops singu-
larities in a finite time. Obviously, for & complete description of the interface dynamics, one
has to describe the behavior of the underlying physical system also past the appearance
of the singularities. For example, a convex cluster that shrinks to a single point, actually
disappears after the shrinking time.

A prototypical microscopic model, corresponding to the previous phenomenological the-
ory, is the ferromagnetic Ising spin system at phase coexistence with a stochastic spin-flip
dynamics. This model exhibits phase transition at sufficiently low temperature and with
external field A = 0. Its equilibria are then described by the temperature and by the order
parameter, which is, in this case, the magnetization. Moreover, the Glauber dynamics
does not conserve the magnetization so that, by the isotropy of the model, the interfaces
should move by the mean curvature flow. We finally recall that the dynamics obeys to the
condition of “detailed balance”, so that it is reversible with respect to the (equilibrium)
Gibbs measure.

One still lacks a derivation of the interface motion by mean curvature from spin systems
with spin-flip dynamics and finite range interaction (with the exception of the results in
[28] obtained for particular spin models).

Here we consider an Ising spin system with Kac potentials and in the limit of Lebowitz

and Penrose. This means that the spin-flip dynamics is governed by a potential J.,, where

1

7 is a small parameter. The dependence of J, on « is such that its range diverges as v7~,

while the total interaction energy of any spin with all the others remains finite. All the
scaling limits of the model are obtained by scaling space and time with functions of v, in
the limit v — 0. '

In the context of equilibrium statistical mechanics, the idea of scaling the interaction was
introduced by M. Kac, [21], and it was generalized and made precise by J. Lebowitz and

O. Penrose (see [15,23,24]). By scaling space with the same parameter as the interaction,



they proved that the limiting theory explains the nature of the Van der Waals theory of
phase transitions and the origin of the Maxwell rule. Despite of its success, the theory is
“dangerously” close to the mean field theory: phase transitions occur independently of the
dimension.

Recently, non equilibrium properties for systems with Kac potentials have been studied.
In particular, the systematic analysis of Ising spin systems with Glauber dynamics and
Kac potentials has been developed in a series of papers ([9,10,11,12,13,14]).

First of all, in [9], it is analyzed the so called mesoscopic limit, when the space is scaled
with the same parameter v and the time is not scaled. It is shown that the limiting

magnetization density m(r,t¢) solves the deterministic equation

om

S5 =™ + tanh{8(J xm + h)} | (0.4)

where “x” denotes convolution, A is the external magnetic field and 3 the inverse temper-
ature. More precisely, it is proved that the block spin variable of microscopic size v~ %,
with @ < 1 and centered in a “mesoscopic” point » € RY, converges in probability to
m(r,t) when v — 0. This deterministic behavior is due to a “mean field effect”. Each
spin undergoes in a time unit a finite number of random flips. On the other hand, in
the limit v — 0, the infinitely many spins in the block variable feel essentially the same
potential. Then, due to a law of large numbers that dampens the fluctuations, the block
spin variables evolve deterministically.

In order to see the full effect of the stochastic interaction, one has to perform the “macro-
scopic limits”, when also the time is scaled with 4. Then, each spin variable undergoes, in
a time unit, many flips (infinitely many when v — 0), so that it reaches a local equilibrium
distribution.

There are interesting properties of the system, occurring only on the macroscopic scales,
that can be predicted by the long time behavior of the “mesoscopic equation” (0.4). This
is the case for the interface dynamics. By scaling diffusively the solution of eq. (0.4) with
h = 0 and below the critical temperature, one obtains the convergence to a motion by
mean curvature, up to the times when the motion is regular (see [12]). It has been also
proved that in the bidimensional case the convergence holds at all times (see [5]). On the
contrary, there are effects due to the full stochastic interaction that cannot be predicted
by eq. (0.4). This is the case of the escape from the nonequilibrium and the successive
separation of phases, which occur after quenching a state from high temperature down
below the critical value (see [11]). This is also the case when the fluctuations become

important, for example in critical phenomenain relation to stochastic quantization (see [2]
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and [10]) or, below the critical temperature, when the curvature of the clusters becomes
too small.

In this thesis we analyze some questions on the derivation of the interface dynamics
from the long time behavior of the mesoscopic equation. More precisely, we complete the
derivation of the phenomenological theory by proving the validity of the relation (0.3) for
this model. Then we prove the convergence of the solution of (0.4) to the motion by mean
curvature at all times in the 2-dimensional case. Since in this case the only singularity
is the shrinking to a point of a closed curve, we verify that the curve actually disappears
past the singularity.

The thesis is organized as follows. In the next section we introduce the model and some
preliminary results on the mesoscopic limit (we refer to [9] for details). In the second section
we briefly discuss the derivation of the convergence to the motion by mean curvature and
the validity of (0.3) (we refer to [12] and [4]). Finally, in the last section, we prove the

convergence at all times in the 2D-case (we refer to [5]).



1. Main definitions and the mesoscopic limit

We have divided this section in two subsection. In the first one, we introduce the
microscopic model and give its main properties. In the second one, we define the mesoscopic

limit and give the main theorem. For details we refer to [9].

1.1 The microscopic model.

As just said, we consider an Ising spin system. Let Z? be the unit square lattice of
dimension d. A spin configuration o is an element of {—1, 1}Zd. Given a subset A in Z¢,
we denote by o the restriction of the configuration o to A, i.e. an element of {—1,1}=.
Finally, we denote by o(z) the value of o in ¢ € Z%.

A Kac potential for the spin system is a function J,(z,y), 0 <y <1, z and y in Z?, of

the form
Iy(2,y) =1 T (7|2 — yl) (1.1)

We assume J(r) =0 for all » > 1 and J(r) in C? when 7 is in (0,1).
Given a magnetic fleld A € R and a spin configuration o, we define the energy of o in

A as
Hy(oa) =~k Y o(e) =5 Y Jy(zv)o(z)o() (12)

TEA THYEA

The energy of o in A plus the interaction energy with the spins in the complement, A€,

of A, is

Hy(oaloae) = Hy(on) — Z Jy(z,y)o(z)o(y) (1.3)
TEA,YEA

In the general definition of a Kac potential, the only requirement on J is that it is in
L(dr,R9).

We define now the Glauber dynamics. Let > 0 be the “inverse temperature”, then for
any v > 0 the Glauber dynamics is the unique Markov process with state space {—1, 1}Zd
and generator L., where L, is the unique extension of the operator which acts on the

cylinder functions f as

Lyf(o) = ) esl@,0)[f(c7) = f(o)] (1.4)

€74




In (1.4) we denote by o the spin configuration obtained from o by flipping the spin at z,

le.
o(y) if y#e
o'(y) = { , (1.5)
—o(z) if y==
while the “flip rate” c-(z, o) of the spin at « in the configuration o is given by
e—Bhy(z)o(z)
¢+(2:9) = 5 T e Bha(z) (1.62)
hy(z) =h+ (Jy00)(z),  (Jy00)(2) =) J4(z,y)o(y) (1.6b)

y#T
The existence and the uniqueness of the above Markov process is proved in [26]. The
canonical space of realizations of this process is the Skorohod space of cadlag trajectories
D(R.;., {-1, 1}Zd ) We denote by o; the spin configuration at time ¢ of the process whose
value in z, o(z,t) = o¢(z), is then a random variable.

By our choice (1.6), the flip rate c,(z, o) verify the so called “detailed balance” condition

cy(2,0%) _ —BUH, (o) 2)~Hy (00)] (1.7)

cy(z, o)
where A is any set that contains ¢ and such that the spin at = does not interact with those
in A°. This condition implies that the Glauber evolution is reversible with respect to any
Gibbs measure pg 4, with Kac potential J,, magnetic field A and inverse temperature
B. Then L, is a self-adjoint operator in the probability space (/.L‘g’h1—7,{—'1,1}zd) and,
consequently, g 5 4 is an invariant probability with respect to the Glauber evolution. We
recall that a Gibbs measure pg 1, is any measure on {—1,1}Zd which satisfies the DLR
equations: namely, for all z € Z% and spin configuration o, one has

oBhoy(2)o(2)
#ﬂ,h,y(a(m)){a(y),y # :c}) = ) e 13 h,y — almost surely  (1.8)

where pg . 4(-|{o(y),y # z}) is the conditional probability on the o-algebra generated by
the stochastic variables {o(y) : y # =} |

We point out that (1.6a) is not the unique possible choice for the flip rate such that
(1.7) is satisfied. As a consequence, there are different evolutions that can be equally used
to describe the approach to the equilibrium of the system. The choice (1.6a) leads to a

simpler mesoscopic equation.

1.2 Mesoscopic limit and propagation of chaos.

In this subsection we briefly describe the behavior of the Ising spin system in the meso-

scopic limit. The microscopic points ¢ € Z? are represented in the mesoscopic space R? by
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the lattice yZ? while the time is unchanged (that is (z,t) — (r,t) = (yz,t)). As mentioned
in the introduction, for small 4’s, the Glauber dynamics in the mesoscopic representation
is almost deterministic, with the evolution described by eq. (0.4). The convergence of the
Glauber dynamics to a deterministic evolution, as ¥ — 0, holds in a very strong sense.
Actually, one can prove the weak convergence of the process, the convergence of all the
correlation functions and, finally, the convergence of the block spin variables. In relation to
this last result, we recall that the block spin variable is constructed by taking the average
of the spins on a square of size ¥~ with 0 < a < 1 and centered in a mesoscopic point .
Then, in the limit v — 0, the “mesoscopic size” of the block goes to 0, while the numbers
of spin in block goes to co. The convergence is proved in the sense of “typical sequences”,
i.e. in probability. We do not enter in details and we describe here only the result on the
correlation functions. We refer to [9] for a more complete description.

We define the macroscopic profile a function my(r), » € RY, such that |my(r)] < 1,
for all . We suppose that mg is smooth, e.g. that it is in C?, with uniformly bounded
derivatives. A “microscopic approximation” to mg is a family p7, 0 < v < 1, of probability
measures on {—1, I}Zd which “approximates” my in the following sense: p”, for each v, is

a product measure with averages

Euv (o(z)) = mo(yz) (1.9)

For any positive integer n, let Zi" be the collection of all the sets z = (z1,...,2,) in Z?

with n distinct elements. Then the following theorem holds.

THEOREM 1.1. Given v, we denote by K, the ezpectation of the law of the Glauber

process starting from p”. Then, there exists a > 0 such that for any positive integer n,

EY, (H dm,t)) - Qm(m,t)l =0 (1.10)

i=1

im sup sup
770 1<a|log | z€Z4”

where m(r,t) is the unigue solution of (0.4) with initial datum m(r,0) = mg(r).

The proof of Theorem 1.1 and of all the other results in [9] is based on bounds on some
functions, called v-functions, which are special linear combinations of the spin correlation
functions. The techniques used are inspired to the usual cluster expansion of equilibrium
statistical mechanics. The physical idea is that a weak form of “propagation of chaos”
holds in this case. We Brieﬁy recall these facts. We consider the “discretized version” of
eq. (0.4)

dm?(z,t)

7 = —m7(z,t) + tanh{B[(J, o m")(z, 1) + h|} (1.11)



with initial condition m?(z,0) = EJ(o(z)). This equation is related to the Glauber

dynamics since one has
dm?(z,t)

pr —E,, (L.p(a:))‘ < eyl (1.12)

for a suitable constant ¢, where v; is the product measure on {——1,1}Zd with averages
E,, (o(z)) = m7(z,t) for all = € Z9. If propagation of chaos holds, namely if y;, the
Glauber distribution at time ¢, remains a product measure, then eq. (1.12) allows to
determine, to leading orders in 7, all the spin correlation functions and then the distribution
of the process. But the measure p] is not a product measure, also if ] = 7 is a product
measure. What happens is that one can introduce a “distance” between p; and the
product measure v, that vanishes in the limit ¥ — 0. This distance is given in terms of
the v-functions, defined by

(e, = B ( [[lole,) - m(et)]) (1.13)

TET

where z € Zg{‘. All the results are based on the following basic estimate. There are

constants ¢, K and a > 0 such that, for all ¢ < a|log~|, one has

sup |v7(z,t)| < cefmtyin/? (1.14)
ZEZY

We point out that the convergence is guaranteed up to times which diverges with v but
that are small in units |log+|. Thus, as in Theorem 1.1, all the results on the mesoscopic
limit hold up to times which diverges with 4 but that are small in unit |log~y|. Using this
fact and the proof of convergence to mean curvature motion of eq. (0.4), it is possible
to prove that the Ising spin system converges, as v — 0, to a motion by mean curvature

under the “macroscopic scaling”
(z,t) = (£,7) = (Myz, A*t)

where A = |logv|'/2. We refer to [9] for this result. The existence of a true “hydrodynamic

limit”, i.e. with ) a free parameter and by performing first the limit A — 0, is still unproved.



2. Motion by mean curvature

We have divided this section into two subsections. In the first one we briefly explain
how to recover the motion by mean curvature by scaling the mesoscopic equation (0.4). In
the second one we prove the validity of the Einstein relation (0.3) for this model. We thus

complete the derivation of the phenomenological picture from the microscopic model.

2.1 Derivation of motion by mean curvature.

We consider the evolution equation (0.4) with ferromagnetic interaction J and external
magnetic field A = 0, namely
om
5 =™ + tanh{8J » m} (2.1)
where m = m(r,t), r € R4, ¢t > 0,8 > 0,0 < J = J(|r|). As in section 1, we assume
J € C?,and J(|r]) =0 for |r| > 1.
We normalize [ drJ(|r|) = 1 and consider the case § > 1. Under these assumptions eq.

2.1) admits two constant solutions *mg, where mg is the strictly positive solution of
B B
mg = tanh{Bmg} (2.2)

For the spin system in the Lebowitz-Penrose limit, 8 = 1 is the critical temperature, while
+mpg are the magnetizations of the pure phases at inverse temperature 8. Obviously the
system exhibits two different phases, i.e. a phase transition, only for # > 1. We refer to
[15] and [23] for details.

The purposeis to characterize the evolution of an initial datum which has two coexisting
phases. More precisely, one considers an initial datum which is close to mg inside a finite
region Ay and to —mp outside; then, the evolved profile has the same structure with A,
replaced by the region obtained moving its boundary by mean curvature. This result holds
only in a suitable scaling limit and the convergence is limited to times when the motion
by curvature is regular. In the next section we will give a stronger result for the 2D-case.
The choice of one single cluster in the previous setting is made for simplicity of notations,
but it can be easily avoided. On the contrary, as just said in the introduction, phase
separation cannot be predicted from (2.1) and the existence of a “good” initial datum is

here assumed.
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We start by recalling the definition of motion by mean curvature. Let I'y be a C 2 closed
surface embedded in R% we denote by Ay the open finite region with boundary I'y. The

motion by mean curvature starting from Iy is defined by the equation

¢ 0
_—= - 2.3
ir R’ (2:3)
where ¢ = £(r) is a point of the surface 'y, R™! = R7!(§) is (d — 1) times the mean
curvature of I';; 0 is a constant and v = v(£) the unit vector normal in I'; in ¢ pointing

toward the interior of I'-.

Following [12] we call (£, 7) the “macroscopic variables” which are related to the “meso-
scopic” ones (r,t) by setting:

r= A"t t=AT?r (2.4)
where ) is the scaling parameter which we suppose much smaller than 1. We then define
mO(E,7) = m(AT €, A2 r) = m(r, ) (2:5)

where m(r,t) is the solution of (2.1) with initial datum
m(r,0) = mo(Ar; A) (2.6)

where mo(Ar; A) converges, as A — 0, to mg inside Ay and to —my outside of it. The

equation for m{? is

()
67;;_ = }\_2{ — m™ + tanh{BJN *m(’\)}} (2.7)

where

TJV(E) = A"4T (AT e (2.8)

The divergent factor A™2 forces the curly bracket term in (2.7) to be small, hence m)
should be close to a stationary solution of (2.1). Hence we look for a solution close to my
when ¢ is in A, and to —mg when £ is outside. Since JN) is an approximate §-function,
in order to describe the tramsition region, it is convenient to go back to the mesoscopic
coordinates. But in these coordinates the interface is extremely flat, so that it is natural

to look for stationary solutions

m4(r) = tanh{BJ xm’(r)} (2.9)

11



which have a planar symmetry. Therefore, modulo translations, m? depends only on one

parameter, m%(r) = m(r - ), v a unit vector, where m(:) is the solution of the d = 1

problem: ; ;
i = tanh{8J  m}, ]_‘.ll’:Ihl m(z) = +mg, m(0) =0 (2.10)
with
J(z) :/ dy J(|z? + y?|*/?) (2.11)
Rd—-1

We briefly summarize the property of the “istanton” 7 (we refer to [12] and [14] for details
and proofs):
i) 7 is an antisymmetric strictly increasing function in C?(R).

ii) there exists constants o and M, both positive, such that:

M
lim e**lm(z) F [mg — —e 2l®l]| =0 (2.12a)
z—rtoo (83
fim el=llm/ (z) — Me=l=l] = 0 (2.12b)
z|—-4oc0
lip eIl () + aMe™ %l = 0 (2.12¢)

iii) 7n is the unique stationary solution of (2.1), modulo translation, in the space

A ={meC(R) | |m|e <1;liminfm(z) >0, limsupm(z) <0}
T—00 ; T——00
that is, if m € A4 and m = tanh{8J xm}, there exists a € R such that m(z) = m(z — a).
The exponential convergence property (2.12a) makes 7n the right candidate to match
the +=mg magnetizations at both sides of the interface in order to comstruct the initial

datum. The precise result obtained in [12] is the following theorem.

THEOREM 2.1. Let T'; be the evolution of I'y according to equation (2.3) and mM(€,1)
as in (2.5) with initial datum

m(A71d(¢,Th)) if  |d(g,To)] < A1 ¢

my(Ar; A) = { _ (2.13)
sgn(d(é,To))m(A™¢)  if  |d(&,To)l > A ~¢

where 0 < ¢ <1 and d(&,T) is the signed distance of & from Ty (positive when ¢ € Ag).
Let T, be the time when (2.3) becomes singular. Then for all T* < 7, there ezists a,b > 0
such that, for all 7 < 7* and all A sufficiently small,

m™(€,7) - sgn(d(€,T'))mg| < A° (2.14)

12




for all ¢ such that |d(€,T;)| > \%; as in (2.18), d(£,T-) is the signed distance, positive
when € € A, with A, the finite open region of boundary I'-.

The proof of Theorem 2.1 is obtained by constructing super and sub-solutions of the
equation (2.1) which give the desired estimates on the solution. The evolution is studied
separately for short times and in small neighbourhoods of the interface. Then the global
solution is obtained by using a “patching and iterating” procedure. All this machinery
holds in view of the “good properties” of eq. (2.1) (see the “Comparison Theorem” and
the “Barrier Lemma” in the next section). The advantage of working locally is that one can
consider perturbations of the planar istanton. We refer to [12] for details. On the contrary,
we show how to recover locally eq. (2.3) from eq. (2.1) in the linear approximation.

Let &y be a point in T'y and let 7y = A71&;. We want to study the evolution (2.1)in a
small neighbourhood of 7y and in a time interval [0,T], T = A% § > 0 and small. We
choose a local frame with the z-axis along the normal to A™!T'y at 7y and the other axes
along the principal axes of curvature. Then, to the first order in A, the equation for the

surface is z = ¢*(y) with

a
|

'

= (2.15)

| =

-
I
A
-
Il

R is therefore (d — 1) times the mean curvature of Ty at &. According to the choice

(2.13), in a neighbourhood of the origin and to the first order in A, one has
P 42
m(r,0) = m(z) - 5 ( Zl —R’;)ﬁz'(m) (2.16)

1=

Now, if § is small enough, the linear approximation of (2.1) around 7 is rather accurate
to describe the evolution. All this can be stated precisely, see [12]. Here we just make this
approximation with no further justification. Then we approximate, for all ¢ <T° and in a

neighbourhood of the origin,

A < .
m(r,1) = () + eHgo(r)  dolr) = 5 (D ) m(a) (217)
where L is the linearization of (2.1) around m:

Lé(r) = —(r) + (1 — w3 ()BT * $(r) (2.18)

We make the transformation



so that

/dr K(r,»Yo(r') — (r)] (2.19)

where
m’ (:z:’ )

m'(z)

Now we are interested in the value of (2.17), at time T, along the normal to A7y at 7,

K(T,r') = (1 — ﬁz(ac)z),@J(jr — 7"])

that is in » = (2,0). For the previous transformation we have

m((z,0),T) = m(z) + m'(z) (¢“Tho) (2, 0) (2.21)

where 9, (7) = ¢o(7)/m/(z). But we can write

T
(eﬁTglJo)(w,O) = /0 dt(emﬁdfo)(m,())
and, by explicit bomputation, one has
T
(“Tbo) (2,0) = / di(e“" f)(a) (2:22)

where £() is the operator as in (2.19) in d = 1 with interaction J (see (2.11)), while

fle)=-(1- ﬁz(m)z)ﬁ/dw’dz.](y(m’ —z)? + 22/?) m( S _;.Z

31

(2.23)

IS

L3 is the generator of a jump Markov process (note that [dr'K(r,7') = 1), and, in [14],
it is proved the validity of a Perron-Frobenius theorem for this process. More precisely,

one considers the measure

m/(m)z ml(m)2

de) = N "/ d Nt'= | de —"1 2.24
It is easy to see that p is invariant for the process. Then, it is shown that the process
converges exponentially to this measure. The rate of convergence of gLt depends on the
starting point z: it takes a time proportional to |z| to reach a neighbourhood of the origin
and then it approaches the equilibrium exponentially fast.

Using this property, by (2.22) one has

(¢“T90) (2,0) — w(F)T| < AC(lo] + 1)

14



for a suitable constant C' and with

u) = [ wda)i(e) = -39

where we have defined

ezfﬂ(dm)@— 7 ﬂfd:c /Rd ldy] o —z)? +y |1/2) _,( ) 2/2 (2.25)

Then, since T = A%, in the linear approximation, one has

A A
m((m,O),T) ~ m(z) — EGTTT’L,((B) = T'fz(:n - —}—Z-HT) (2.26)
By (2.26) we conclude that, in the mesoscopic scale, the interface has moved by AT9/R
in the time 7. Then, in the macroscopic space, the displacement becomes A2T6/R, where
AT is just the macroscopic time corresponding to the mesoscopic one T So, in this

approximation, we recover eq. (2.3) from (2.1) with transport coefficient 8 given by (2.25).

2.2 The Einstein relation.

As we shall see, it is possible to compute the mobility x and the surface tension o
independently for this model. We will prove that the value of § obtained in the previous
subsection is equal to the product po, so that the Einstein relation (0.3) is indeed verified
in this model.

The excess free energy associated to m (see [6,15,23]) is

F(m) = /dr (f(m) — f(mg)) + —é]i / drdr' J(r — ") (m(r) — m(r'))? (2.27)

where
Flm) = =T 4 gt L Mo LI 4 il =g 20T
—*-—22——{-[3”1—7210 1—l——-——m—i—,ﬂ"l——lo (1——m2)' (2.28)
-T2 2 1 -m 2 8 ’ '
/drdr'](r — ") (m(r) — m(r'))? =2 / dr (m* — mJ xm) (2.29)
so that
F(m) = [ dr(g(m) - g(m) (230)
where

1+m
1-—-

() = 87 T og T 1 47 og(1 — m?) — gmd km (2.31)
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We point out that F(m) is a positive definite functional of m. Then it is well defined for
every measurable m, but not finite in general.
Since m is interpreted as the interface profile connecting the +mg phases, the surface

tension can be expressed as

M
o= lim / dy; -- / dyq-1 dz (g(m™) — g(mg))

L—oco (2L d i ]\I——»oo —A

— [ s (g(m®) - glm)) (2:32)

where

m*(r) = m(z) (2.33)
if r = (z,y1,...,¥4—1) in a coordinate frame with the z-axis orthogonal to the equilibrium
interface.

A more microscopic definition of the surface tension (see [28] and references there)
involves the computation of the logarithm (normalized by the surface area) of the ratio of
two partition functions with different boundary conditions. The second one has boundary
conditions + on the two opposite faces of a cube and periodic conditions on the other ones;
the first one is defined by conditions + and — instead of + and +. The correct procedure
for obtaining the surface tension is to take first the thermodynamic limit, then the limit
as v — 0, v being the scalus parameter in the Kac potential. To my knowledge, there is
no proof that this gives rise to the value (2.32). However, if one takes the thermodynamic
limit and simultaneously v — 0, in a suitable fashion, then (2.32) can be proven to hold,
as it follows from the analysis of [6], and from results recently obtained by Cassandro and
Vares.

We compute now the mobility. We look for a planar travelling wave solution of (0.4)
mp(r,t) = mp(z — v(h)t) (2.34)

for small A. E. Orlandi and L. Triolo (private communication) have shown the existence
of a solution for small & which is close to the A = 0 stationary solution m*. Avoiding the

uniqueness problem we take this solution and expand
v(h) = vih + O(R?), my, = m + hyp + O(h?) (2.35)
From (0.4), at first order in h, we obtain the following identity

—v7R’ = —p + (1 — )BT ¥ + B(1 — m?) (2.36)
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Equation (2.10) implies also

(1 —m?)BJ xm' =m' (2.37)

—m
We multiply both sides of (2.36) by m'(z)/(1 —m(z)?) and then integrate; using (2.37) we
obtain

v, = —2NBmyg (2.38)
But, by the definition of the mobility, it must be
v(h) = —2mgph + O(h?) (2.39)
Equations (2.38) and (2.39) imply then
p=Ng (2.40)

We can now prove (0.3). By (2.25) and the definition (2.24) of the invariant measure, we

have the following expression for 8
6= %Nﬂ / dzm'(z) f dz'dy J(|(z' — z)* + yzll/z)ﬁz'(m')yf (2.41)

From (2.33) and the definition (2.10) of 77, it follows easily that

o(m)(r) = 3 (] » 70+ 57 log(1 — 7))(2) (2.42)
Using (2.37), from (2.42) one has
a%g(m*) = %(ﬁz'j*'rh —md «m') (2.43)

Integrating by parts in (2.32) and by (2.40), we obtain

po = —%Nﬂ/dmm%g(m’*)
1

- ZN,B / dedz' (¢ — z)m (z)J (z — z')m(z') (2.44)

In order to compare (2.41) with (2.44), it is convenient to eliminate the dependence on the

1y, variable to have 6 expressed in terms of 7 and J. We note that

i PRY 2(1/2 __:c'—a:_@_ Ry 2(1/2
57 (' =2 + 97 17) = ——= 5 =T (|(" = 2)" +3°1F) (2.45)

Integrating by parts in dz’, using (2.45), and then integrating by parts in dy;, we finally

obtain

6= %N,@/dmdm'(m' — z)m/(2)J (z — z'ym(z") (2.46)

Equation (0.3) follows then by (2.44) and (2.46).

17



3. Convergence at all times in the 2D-case

As just mentioned, for a generic initial datum, the motion by mean curvature is regular
only for finite times; on the other hand, the microscopic evolution is well defined for all
times. It is therefore an obvious problem the description of the system past the appearance
of singularities (see for example [1,8,16,17,22]).

The simplest singularity for the motion by mean curvature of a closed regular surface is
the shrinking to a point. This is the only singularity which appears in the 2-dimensional
case; more precisely, any closed curve embedded in R? moving by curvature, becomes
convex and then shrinks to a point in a finite time. For closed surfaces embedded in R? a
sufficient condition to have such a singularity is the uniform convexity of the initial datum
(see [20]).

In this section we analyze eq. (2.1) in the 2-dimensional case at all times. We choose the
initial datum as in Theorem 2.1; we then prove that, past the appearance of the singularity,
the magnetization profile is close, in the previous scaling, to the negative magnetization
—mg. So we verify, as physically expected, that a cluster of one phase, shrinking to a
point, actually disappears. Here we consider the case d = 2 because this kind of singularity
exhausts all the possibilities. However, it will be clear that the result holds also for d > 2,
provided the initial datum is such that the limiting motion becomes singular just by the
shrinking of the surface to a point. Similar results for the Allen-Cahn equation are proven

in [7]. More precisely, we are going to prove the following theorem.

THEOREM 3.1. Let d = 2 so that 75 = 7., the eztinction time for the curve I'.. We fix
the origin where shrinking takes place. Then, under the same hypothesis of Theorem 2.1,

there ezist positive numbers 1 and q such that, for all A small enough,

ImMN (&, 7) +mp| < A7 VéEeR?  YFE>T, (3.1)
so that

l\j_rilom(’\)(f,?)z——mﬁ Ve R? VT >Te
and

ImMN(€,7e) +mg| < A7 VEeR? ¢ |¢] > \? (3.2)

The proof of Theorem 2.1 is obtained by constructing super and subsolutions of eq.

(2.1) which give the desired estimates on the solution. In our case as sub-solution can
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be taken the constant one —mg (in fact, by the monotonicity of m and the “Comparison
Theorem”, see below, m(*(£,7) > —mg). We will need two supersolutions for each value
of 7 in order to obtain (3.1). Since 7 can be taken arbitrarily close to 7., (3.2) can be
proven using the same supersolutions. In the next subsection we give some properties of

the motion by mean curvature which suggest the form of the required supersolutions to
the 0t*-order in .

3.1 Some basic properties of the motion by mean curvature.

We denote with C (€, R) the circle centered in ¢ of radius R and with B(§, R) the open
ball of boundary C(¢, R).

Let Ty be a C? closed curve embedded in R2. As already mentioned, under evolution
by mean curvature I', first becomes convex and then shrinks to a point at a finite time 7.
It is known that the flow by mean curvature makes convex curves circular. More precisely,
if f‘T is the homothetic expansion of I'; such that Ifrl = [Ty}, then f‘r converges, in the
C? sup-norm, to the circle of length |T'y| centered in the shrinking point. We refer to [18]

and [19] for details. An easy consequence of these facts is the following lemma.

LEMMA 3.2. Let Ty be a C? closed curve embedded in R?; we fiz the origin in the point
where shrinking takes place. Then for any € > 0 there ezists 7/ < 7. and 0 < R; < Ry
such that Ry — Ry < € and

B(0,R:(7)) C A; € B(0,Ry(7)) V' <1< T (3.3)

where R;(7) (i = 1,2) solves the equation

6
Ri(T)

dRZ(T) = — dr Ri(Tl) = Ri (3.4)

Proof. The convergence of I'; to a circle, in the sense explained before, implies that

there exists 7/ < 7, and R; < Ry such that
B(O,Rl) CAC B(O,Rz); Ry — Ry <e¢ (35)

But it is a simple geometrical property of the flow by mean curvature that curves which
do not intersect at a given time, cannot intersect if moved by curvature for all later times

for which the motion is regular; then the lemma follows from (3.5). [
Let now 7g, be such that R;(7r,) = 0; eq. (3.4) imply that

R;?
20

TR, =T + (3.6)
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Then
. RQZ—R12 _ (R1+E)2——R12 62R1+€

26 26 20

Since R; is uniformly bounded in ¢, eq. (3.7) gives 7r, — Tr, = O(€). But from Lemma

TRz - TR]_ (3.7)

3.2, 7r, < 7 < TR,, so that we have

COROLLARY 3.3. Under the same hypothesis of Lemma 3.2, for any ¥ > 7, there ezists

a time ¥ < 7. and a radius R such that

_ 2
A, C B(0,R(T)) Vi<t <1 TR£%+%—<7‘ (3.8)
where R(T) solves
B 9 N 3
dR(7) = ———dT, R(7T) =R 3.9
()=~ RO (39)

From Corollary 3.3 one derives

PROPOSITION 3.4. Under the same hypothesis of Lemma 3.2, for any 7 > 7. there exists

a time 7™ < 7, and a radius R* such that

A; C B(v*(r — )7, RY) Vri<r<r, (3.10)

and
7y =inf{r|0 ¢ B(v*(r — "), R")} < 7 ' (3.11)
where v* = 8/R* and 7 is any unit vector in R2

Proof. According to Corollary 3.3, for any 7 < 7% < 7, by setting R(T*) = R*, we have
A, € B(0,R(7)) C B(v*(+ — 7*)#, R¥) Vi<t <, (3.12)

where the last inclusion follows from the fact that v* is just the velocity of C(0, R(r)) at
7 = 7*. On the other hand, by integration of eq. (3.9), it is easy to see that
R*
To=T" + s =15+ (15 —77) (3.13)
so that (3.11) holds if we choose 7* such that 73 — 7* < 7 —75. O

In order to construct supersolutions, we need now the following notion.

The biased motion by curvature : With the same notation as in the previous section, for
any h real, we define the h-biased motion T of I'y so that the points of N satisfy the

equation
deth g
R .14
7 7 hlv (3.14)

20



The following lemma holds (see [12] and references there).

LEMMA 3.5. Let 7 > 0 be strictly smaller than the mazimum time for which the unbiased
motion by curvature is regular. Then there are hy and c so that I‘S—h) ezists and it 15 regular
for all |h| < hy and all T < 7*. Furthermore if EM () and &(T) verify (3.14) and,
respectively, (2.3) with €M (0) = £(0), then

EM) () — £(1)| < ch (3.15)

The constant ¢ is independent of the starting point in L'p.

We denote by A% the open finite region of boundary N Using Corollary 3.3, Propo-

sition 3.4 and Lemma 3.5, we finally obtain:

PROPOSITION 3.6. With 7, * as in Corollary 3.9 and Proposition 3.4 and h > 0, one
has:

A® C B(0,RM (1) VFI<T< T (3.16)
where R (1) solves
- [ ~ -
(h) — | h — d (B) (7} = .
dR™M(T) ( R(h)(7)> T, RY™(7)=R+ch (3.17)
and
A C B(vi(r — 7%)A, R* + ch) Vrr<r <1 (3.18)

with v} = 8/(R* + ch) — h. Moreover

M Zinf{r|0 ¢ B(vi(r — 7%)A, R* + ch)} = 7 + O(h) (3.19)

so that, for all h small enough, it is ’Téh) < T.

The proof of (3.16) is based on the fact that the h-biased motion has geometrical prop-
erties similar to those of the unbiased one. Eq. (3.18) follows from (3.16); in fact, by
Lemma 3.5,

0< RM(r) = R(t) < ch (3.20)

so that

RM(+*) < R* + ch; re !

from which (3.18) is clear. Finally we compute:

(R* + ch)?
§ — R*h — ch?

9 =

= 1 + O(h) (3.22)
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3.2 Supersolutions.

As just mentioned, in [12] Theorem 2.1 is proved by constructing super and sub-
solutions. We will construct new supersolutions starting from the ones given in [12]. We

recall first their construction. Choose § and R, as follows:
1/40 < 6 < 1/20; 2-106 > aRy > 3/2 (3.23)

with a asin (2.12). For X sufficiently small, it is defined

m(AT1d(E,T)) it |d(6,T5)] < RoA[log A
m*(¢,7) = (h) _ - (3.24)
sgn(d(&, T3 )ymg + A3/2 if |d(&,T%7)] > RoAllog Al
where h = A%/2, Then one has
mMN (¢, ) < m*(¢,7) Ve e RY VAT <7<7* (3.25)
where T = A~% and 7* any time strictly smaller than 7.. Similarly a subsolution is

constructed and Theorem 2.1 is proved with a = 1/80 and b = 3/2.

For proving our theorem, we construct two supersolutions for each time 7. Let ¥ > 7,
be assigned. From Proposition 3.6 there are 7* and R* such that (3.18) and (3.19) hold
(we always fix the origin in the singularity point). In order to prove (3.1) it is sufficient to
define the two supersolutions only for 7 > 7*. Let 51 be the unit vector along the &;-axis;

we define for A sufficiently small and 7 > 7*:

. m(A1d(¢, L)) it |d(& CU)| < RoAllog A
m:l:(é‘)T) = (h) 3/9- . (h) —_ (3-26)
sgn(d(e,C))ms + X271 it |d(€, )] > Roh|log
where
CL) = C(xvj(r — 7)1, R" + ch); h =X/ (3.27)
with § as before and 7, R such that:
3/2> aRy >3/2 —~; 0<vy<56 (3.28)
In the next sections we will prove that for all A small enough one has
mMN(€, 1) <mi(é,7) V¢ e R? V1> 74+ AT (3.29)

We conclude this section by showing that Theorem 3.1 follows easily from (3.29).
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Proof of Theorem 3.1 under condition (§.29). Let us consider the half-planes
Pr={¢eR?¢-&20}; P-={(cR’[¢-& <0} (3.30)
By (3.19) with A = A%/2, for A small enough,
BM NPy =4 (3.31)

where B(T?ﬂ): is the closed ball of boundary C’f.’hj: So, by definition (3.26), if A is small

enough, we have

mh(€,7) = —mg + A2 Vée Py (3.32)

Then (3.1) follows from (3.29) and (3.32) with n =3/2 —~.
It is clear that |£/| < R* +ch for all ¢’ € Cg,)i N Py. Then

Qi = {£€Py||E] >R +ch+ RoMlog M|} C {€€Psl|d(6,CMy) < —RoA|log Al }

so that mi({,7.) = ;—mﬁ + X\3/277 for all ¢ € Q+. We choose then R* = A° with € < §/2.
By looking at the proof of (3.29), it is not difficult to see that it holds also with this choice,

so that one has
mi(€,1e) = —mg + A2V VE€E Py i |€] > ch + Alog A| + A° (3.33)

Then (3.2) follows from (3.29) and (3.33) with ¢ <e. U

3.3 Proof of (3.29) through an iterative procedure.

In this subsection we prove the basic estimate (3.29). We follows the same technique
used in [12] to prove (3.25). The idea is to localize the analysis by studying the evolution
for short times and in small neighbourhoods of the interface, and then to match and to

iterate the procedure in order to obtain global estimates. First of all, we need the validity

of (3.29) for T = 7*.
LEMMA 3.7. For A small enough

mM(g,77) <mi(€,7) V¢ € R? (3.34)
Proof. By (3.25) it is sufficient to prove that for A small enough

m*(€,77) < mi(§, ) VéeR? (3.35)
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By (3.27) it follows that (Ji’:)i = O(0,R* + ch) so that (3.18) implies AY C B,
the open ball of boundary CT* '+, and then d(ﬁ,P(T’,f)) < d(¢, r*?i)- Using the fact that
Ry > Ry, we have then the following possibilities:

1) d(&,0%),) > RoAllog Al 5 d(&, T)) > RyA|log Al.

i) d(g, Gi’:)i) > RoAlog A| 5 d(&,T™) < RyA|log Al.

111) —RO/\|Iog A < d(e, Ty < d(¢, 0, ) < RoA|log A

iv) d(¢, 0, ) > ~RyAllog Al ; d(£,T™)) < —RyA|log A

v) d(g,cﬁ’Qi) < —RoAllog A ; d(&,T™)) < —Ry|log .

In the case iii), inequality (3.35) follows from the monotonicity of m. In cases i) and v)
it follows from the inequality +mg + A*/2 < £mg + A*/2=7 () small enough). Finally, in

the cases ii) and iv) we use the inequalities:

{m( d(¢,T)) < m(Rollog Al) < mys + AXFo < myg 4 33/2=7 (3.36)

m(AT1d(¢, O 1)) > m(—Ro|log A|) > —mg + BA*Ro > —my 4 33/
with A, B suitable constants and A small. The inequalities (3.36) follow from the mono-

tonicity and the convergence property (2.12a) of 7, for the choice of parameters (3.23)
and (3.28). O

In the next section we will prove the following lemma.

LEMMA 3.8. For k € Zo, let t; = A" + kT, with T = A\~* as in (8.25). Let m% (r,t)
be the solution of (2.1) for t > t; with initial datum m(ik)(r,tk) = m* (Ar, A\%t;) for all
r € R2. Then, for all X small enough,

ma)(r,tkﬂ) < mEL(Ar, A2teq) VreR? (3.37)

We conclude this section by proving (3.29) using Lemmas 3.7, 3.8 and the following

theorem, proved in [14].

THE COMPARISON THEOREM. Let u(r,t) and v(r,t) be two solutions of (2.1) for
t > to, such that u(-,ty) > v(-,29). Then u(-,t) > v(:,t) for all t > t,.

By Lemma 3.7 and the Comparison Theorem we have
m(/\)(é‘a Tl) S m(io) (7‘, tl)
where 71 = A?¢; = 7% + A?2~%, Using now Lemma 3.8 we obtain

mN(€,7) < mi(¢,m) (3.38)
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We can now repeat our estimates, starting at time 7;. By iteration, we have
mM(€, ) < mL(€,7x) VkeZy (3.39)

where 7, = 7" + kX278, As it will be clear in the proof of Lemma 3.8, (3.37) holds also if
we replace T' with xT' for any 1 < x < 2; then (3.39) holds for any time 7 > 71, that is
(3.29) holds. 0O

3.4 Proof of Lemmma 3.8 via localization.

We prove (3.37) for the (+)-supersolution and for k = 0; in fact the proof for k£ > 0 is
exactly the same, while, by symmetry, (3.37) follows for the (—)-supersolution. We prove
that, for A sufficiently small,

m (r,t1) < mi(Ar, Nt) Vr € R? (3.40)

The proof of (3.40) is very similar to the analogous inequality for the supersolution m*(§, )
in [12]; in fact, we will be able to make use of some basic estimates given there.
As just mentioned, the idea is to localize the analysis. First of all we need the following

lemma, proved in [14].

THE BARRIER LEMMA. There ezist V ‘and c;, both positive, such that, if u(r,t) and
v(r,t) solve (2.1) and u(r,0) = v(r,0) for all |r| < VS, then

[u(0,5) —v(0,5)] < cre™®
To simplify notation, we translate times such that 7* = 0; then (3.40) can be rewritten as
my(r,T) < m(r,T) Vr e R? (3.41)

where m (r,t) solves (2.1) with initial datum 7n(r,0) and

e t) = { m(d(r, A" Cx2y)) if |d(r, A7 Ca2¢)| < Rollog Al (3.42)

sgn(d(r, \"1C2¢))mp + A/277  if |d(7, A" Cx24)| > Ro|log Al

where A7 1Cy2; = A“lc(wv;Aztél,R* + ch) = C(—viAtdy, A\ (R* + ch)), with &; the
unit vector along the z;-axis in the “mesoscopic space”. We denote by Bjz; the ball of

boundary Cyz;. We verify (3.41) separately in the two regions:

A={reR?||d(r,\7Co)| < 2VT}; A={r eR?||d(r,\71Cy)| > 2VT}
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a) Estimate away from the interface. We suppose » € A™1By N 4; for A small enough
VT > Ry|log )| so that

m4(7,0) = m(7,0) = mg 4+ A3/277 Vi [f—r| <VT
From the Barrier Lemma it follows that
|my (7, T) —m(T)| < cre” T (3.43)

where m(t) solves

m(t) = —m(t) + tanh{Am(t)}
(1) (?) {6m() (3.44)
m(0) = mg + A\3/2=v
But (3.44) implies that there exist a’ and &', both positive, such that
im(t) —mg| < d'e?" (3.45)
From (3.43) and (3.45) we finally obtain
Imy(r,T) —mg| <a'e T+ cre”T < A2 (3.46)

for A small enough. On the other hand the displacement of A™1C)z; in the time T is of

order A17%; therefore, for A sufficiently small,
|d(r, A\ Cz)| > |d(r, A7 Co)| — const. A1 ™0 > Ry |log Al

so that m(r, T) = mg+A3/277 for r € A" ByN 4, and then, by (3.46), m(r, T) < m(r,T).

In the same manner we work in the case r € (R2\A71B;) N 4.

b) Estimates close to the interface. In order to prove
m4(r,T) <m(r,T) Vre A A small (3.47)

we look for an upper bound of m4(r,T) and a lower bound of m(r,T').

i) Upper bound of my(r,T). In [12] it is proven that
my(r,T) < G(d(r,A\"'Ty);A) " Vr @ |d(r,\7I0y)| < 3VT (3.48)
for A sufficiently small, with

G(z; A) = m(z) + ﬁz'(m)[———%T@ + AC(Jz| + 1) + 22T
+[Ee™T 4 eaX¥ 2o o N3 4 A3 T)
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where R™! is the curvature of Ty in any point ¢’ such that d(r,A\™*y) = d(r, A71¢'); &1,
¢z, ¢3, C4, ¢; and C are suitable positive constants. In (3.48) m)(r,t) is the solution of
(2.1) with initial datum

m(d(r,A71Ty)) if |d(r, A1 )| < Ry|log Al

(3.49)
sgn(d(r,\71Ty))mg + X3/ if  |d(r,A71Ty)| > Ry|log A|

m*(Ar,0) = {

(see def. (3.24)). In our case m4(r,t) has initial datum (3.42) with Ry such that (3.28)
holds. By looking at the proof of (3.48) in [12] it is easy to see that analogous estimates
hold for m(r,t):

my(r,1) < G(z;)) Vr @ |z <3VT (3.50)

for all A small enough, where z = d(r,A"*Cy)) and

- A -
G(z; A) = m(z) + "Fn'(w)[———ETG + AC(|z] + 1) + 2 X2T7]
+ [Ele—T -+ 63A3/2-7+QR0 -+ C4A3T + C5A3T10] (351)
possibly with different values of the constants. We point out that in this case R = R* +ch
for all ».

i) Lower bound of m(r,T). Now the situation is somewhat different from [12]. In fact
n [12] m*(¢,7) is constructed by moving I'y with the h-biased motion by mean curvature,
while here we construct m¥ (¢, 7) by moving Cy with constant velocity.

We note that there exists a positive constant ¢g such that
|d(r, A" Cr2p) — 2 + viTAcos B] < ceT?A?* Vr : |z| < RollogA|+1  (3.52)

where 8 = ((r) is defined by the conditions

T T
cos 3 = !

et 0<B < (3.53)
,,,

(notice that for small A, d(0,A71Cy) > Ryllog \| and then (3.53) is well defined for all »
such that |z] < Ro|log Al +1). The estimate (3.52) can be easily proved expanding the

obvious relation

d(r, A7 Cr2p) = A7'R — \/7'2 + 205 T Alr| cos B + (v})2T? )2
at £ = A7!'R — |r| and using the condition on |z| to bound the derivatives.
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By Taylor expansion and using (3.52), we obtain

m(d(r, A" Crar)) > m(z) — /() [(% - h> AT cos B + cgA2T?

— NPT/ (2) — cg A3 T3 Vr ¢ |z| < Rgllog A| +1
(3.54)

for suitable positive constants c¢7, cg (we also used the definition of v}). Moreover, again

by (3.52), for A sufficiently small, it holds

{ lz| > Ro|log A\| +1 = |d(r, \"1Ch27)| > Rollog )| (3.55)
lz| < Ro|log A —1 — ld(r, A\"1Ca7)| < Rollog Al
Finally we note that, since aRy > 3/2 — v, (2.12b) implies

lim AT 5 (Rolog A — 1) = 0 (3.56)
By (3.54), (3.55), (3.56) and definition (3.42), we obtain the required lower bound:

m(r,T) > D(z;)) A small (3.57)
where
D(z;)) = {ﬁz(m) — /() K% - h) AT cos B + ceA*T? | — 7 272w/ (z) — c8A3T3}

x 1(|e] < Ro|log A + 1)
+ [mpsgn(z) + A*>7]1(|z| > Ro|log A| + 1)

where 1(-) is the characteristic function. By (3.50) and (3.57), the estimate (3.47) is proven
if

G(z;2) < D(z;)) Viz| <2VT (3.58)
for all X small enough. We analyze the two different cases:
i) |z| < Ry|log A\| + 1 : We need that, for small X,
G(z; \) < m(z) — m'(2) K% — h) AT cos B + cg A2 T2
— et X272 () — cs A3 T
which holds if

6
(1- cosﬁ)—éAT + hAT cos B > AC(|z| + 1) + caA®T® + cg A2T?

= 11
+C7)\2T27’_L,(m)+ 1

O ml(m)CQA T (3.59)

28



since, for all A small enough, there exists cg > 0 such that
Gre=T 4 g X327 rHeBo o A3 4 e 3T 4 g3 < o A3 T

(in fact (3.28) implies 3/2 — v + Ry > 3 — 2y > 3 — 106). By (2.12) there exists ¢ > 0
such that m'(z) < em/(2); since |z| < Rollog A| +1, (3.59) is then implied by

] _ .
(1— cosﬂ)——é)\T + hXT cos 8 > AC(2 + Ry|log A|) + o N2TS 4+ cg\2T?
+ et A2T? + co' X370 (3.60)

where ¢’ is a positive constant such that m'(Ro|log A| + 1)1 < ¢ A\~*Ro_ which existence
follows from (2.12b). The validity of (3.60) for small A is guaranteed by our choice of 6
and Ry in (3.28).
i) Ro|log Al + 1 < |z| < 2VT : We need, for all A sufficiently small,
mgsgn(z) + X327 > G(z; A)
which is implied by

X277 > (im(z) — sga(e)mpg) + ¢ X 70w (2) + A/ (2)C(1 + [a) + X710 (3.61)

for suitable positive constants ¢/ and ¢"’. By using the properties (2.12) of the instanton
m, it is easy to see that (3.61) is true if it holds

N/2=7 > by yeBo  py yeRo+1=6 4 p\IFteRo( Ry log A + 1) + 'A% 7100 (3.62)

for some positive constants by, by and bs. But (3.62) is guaranteed, for all sufficiently small
A, by (3.28) and (3.23). O
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