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In a celebrating paper, contained in a volume on “the mathematical heritage of Henri
Poincaré”, William Thurston raised some questions and projects concerning 3-manifolds
and Klenian groups [Th]; the 19** was:

Find topological and geometric properties of quotient spaces of arithmetic

subgroups of PSL,y(C). These manifolds often seem to have special beauty.

I have recently become acquainted with a work by Alberto Verjovsky [Ve] on the
quotient space PSLy(R)/PSLy(Z), a fascinating interplay between topological dynam-
ics, geometry and arithmetic, where a lucid geometrical viewpoint throws new light in old
material dealing with horocycle flows on non-compact homogeneous surfaces, their ergod-
ic properties, convergence of ergodic measures and number theory, namely the Riemann

hypothesis in the case of the modular group (Dani, Zagier, Sarnak,...).

Geodesic and horocycle flows on compact surfaces of constant negative curvature are
very classical problems in topological dynamics, mainly thanks to the work by Hedlund.
Both have a geometrical description, they are motions of unit tangent vectors along lines
of constant geodesic curvature (zero in the geodesic case, and maximal without being
closed in the horocycle case), and a group-theoretic description, actions of non-compact
one-parameter subgroups of PSLy(R) on PSLy(R)/T, where T is a co-compact disctrete
subgroup (since the above is the group of orientation preserving isometries of the hyperbolic
two-dimensional space). Properties a dynamic systemist is interested on are: ergodicity
and mixing for the geodesic flow (since it is Anosov), minimality and unique ergodicity for
the horocycle flow. In the case of co-compact discrete subgroups of PSL,(R), the unique
ergodicity has been shown by Furstenberg, by reducing the proof to some L?-estimates of
harmonic functions in the unit disk (a model for the hyperbolic plane H = SL,(R)/S0(2)),
connected to ergodic measures invariant under the horocycle flow. In the non-compact case,
the horocycle flow cannot be uniquely ergodic, since there exist proper closed subgroups
H containing horocycle subgroups, having closed orbits which support finite H-invariant
measures. This fact is quite general, in our case it is easily seen that for any cusp of
the non-compact orbifold H/T', there exist a one parameter family of closed orbits, each
one supporting a probability measure clearly flow-invariant and ergodic. A work by Dani
shows that for reasonable groups these measures constitute the all collection of ergodic
invariant measures, thus determining the cone of finite invariant measures. The quotient
H/PSLy(Z), the modular orbifold, contains only the standard cusp at infinity, preserved

by the obvious parabolic subgroup of the modular group, translations by integers in the
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real axis of the upper half plane model for H; there is thus a curve {my}y>0 of ergodic
probability measures preserved by the flow, each one supported on a closed orbit of period
y~'. As the period increases, measures converge weakly to the normalizad Haar measure
m on PSLy(R)/PSLy(Z), and the rate of approach of mean values of smooth functions
with compact support is intimately connected with the Riemann hypothesis (this is not so
surprising since the modular group contains informations about prime numbers).

All that can be understood by easy geometric constructions, relating the analysis of
convergence, the way closed orbits fill the quotient space as the period increases, to lattice
point counting, by means of looking at particular characteristic functions on the group.

The group SLy(R)is also a prototype for what are called homogeneous contact manifolds
(it has been shown that the only semisimple groups endowed with a left-invariant contact
structure are locally isomorphic with either SLy(R) or SO(3)). Its quotients by co-compact
discrete subgroups furnish examples of non-regular compact contact manifolds, i.e. contact
manifolds which cannot be seen as S'-bundles over the space of orbits of the characteristic
vector field. Indeed, the natural left-invariant contact structure on SLy(R), gives rise to the
characteristic vector field which generates the geodesic flow; in that case it is a topologically
transitive Anosov flow, containing dense orbits and a countable number of periodic orbits,
too, whose union is dense. Note that orbits of the horocycle flow are legendrian curves, as
well as orbits of the SO(2) right action. Perhaps, it would be interesting to investigate for
some Bennequin type classification of these contact sructures.

What seems interesting, is to look for an extension of part of this job to the complex
case, where the group is the group of isometries of the three-dimensional hyperbolic space,
e.g. for the quotient of SLy(C) by the Picard group SLy(Z[i]) or its subgroups.

One good picture of the hyperbolic three-dimensional space is the Poincaré upper half
space, B’ = {(z,t) ; z € C,t € R,t > 0}, and the group of orientation preserving isometries
is PSLy(C); the action on H’ may be defined as fractional linear transformations, using
quaternionic notations, ¢ = z + jt, the formula is

0= (20) e et e + @)

The stabilizer of a point is SO(3), thus, as a manifold, PSLy(C) is the orthonormal frame
bundle of H?. The geodesic flow is now a holomorphic action of C*, and it can still given the
meaning of “holomorphic Anosov flow” [Gh], stable and unstable foliations being defined
by two holomorphic actions of the complex affine group Aff(C). The geodesic flow comes
from the action of homotheties C*, call X the associated holomorphic vector field; the
translation group C gives rise to the holomorphic vector fields ¥ and Z generating the

strictly unstable and stable foliations, with the obvious commutation relations is sly(C).
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Take, for instance, the Picard group I' = SLy(Z[i]); it is generated by
(i O) (1 1> (O —1> <1 z)
0 —/’\0o 1/’\1 0/ \o 1/’
and a fundamental domain for it in H® is
F={a+iy+jt;|z|<1/2,0<y<1/2, |2]* +¢ > 1}

The quotient H?/T' is non-compact but of finite volume, it has only one cusp, the standard
one at infinity, and a horosphere near the end, the surface orthogonal to the ray of geodesics
from the infinity, is a flat torus T2. The action of the geodesic flow, gives rise to an
embedded C* x T2 in I'\ PSLy(C) (coming from a leaf of the unstable foliation), and one
would like to investigate the pattern, the way it fills the homogeneous space.

All that, again, can be viewed as a complex version af a left invariant contact structure,
since there exists the holomorphic one form w, vanishing on the strictly stable and unstable
vactor fields, taking value one on the generator of the geodesic flow, and such that w A dw
is non-singular. The above tori are “legendrian” holomorphic tori, i.e. elliptic curves.

By the way, the relation with three-manifolds is evident, and we plan to find connections
with those manifolds coming from knots in 5% (like the classical “eight knot” example due

to Riley), and Thurston’s Dehn surgery.

What follows, is a sketch of the situation in the case of the modular group.
The group SL,(R) acts transitively by isometries on the two-dimensional hyperbolic
space Hl = {2z = z +1iy € C,y > 0}, the metric being (dz®+dy?)y 2, by means of fractional

linear transformations

g z= (Z Z) .z = (az +b)/(cz + d)

The kernel of this action is Z; = {41}, thus it can be easily seen that PSLy(R) =
SLy(R)/Zsy is the full group of orientation preserving isometries of H. Indeed, as the
stability group of 7 € H is SO(2), one can realize PSLy(R) as the unit tangent bundle of
H, say SH ~ H x S, by means of its action and its differential in a fixed point of SH: i.e.

g= (“ Z) — (9 -4,28,())

where (,(z) = arg(cz + d).




A basis for the Lie algebra sly(R) is

1/1 0) (0 1) (O O)
T == y Y = y &= )
2\0 -1 0 0 10

the corresponding left-invariant vector fields, X, ¥ and Z, induce the flows

el/? 0
gt(g) =g ( 0 e_t/2>

hi“(g):g-(; i)

h;(m:g-c 2)

They are called geodesic flow, unstable horocycle flow and stable horocycle flow respec-
tively. In fact, g; describe the motion of a unit tangent vector in H along an oriented
geodesic v starting from z € H (straight {z = constant} lines or semicircles orthogonal
to the real axis), AT and A~ describe the motion of the vector along the two oriented
horocycles from z, orthogonal to v ({y = constant} lines or circles tangent to the real
axis).

The group SL;(R) is endowed with the standard left-invariant riemannian metric such
that {X,Y,Z} describe an orthonormal frame, and, since it is unimodular, it has the
standard bi-invariant Haar measure m induced by the volume form which takes constant
value one in the above framing.

Let us recall the geometrical meaning of Iwasawa’s decomposition SLy(R) = NAK,

where N/ = {(; f) , T E R} in the nilpotent group that generates the horocycle flow by

right action, A4 = {(a 0 ) ,a > 0} the diagonal group that generates the geodesic flow,

0a™?t
K=50(2)= {(f:ffa 2:;?) ,0 € 51} the compact circle group. The geodesic flow leaves
invariant the splitting T(SLy(R)) = ET @ E~@F, where E*, E~ E are the line bundles
spanned respectively by ¥, Z and X € sl3(R). The circle group, generated by W =Y — Z,
has a free action on SL,(R); the foliations F* and F~, defined by E*T @ E and E-a®F,
are transverse to W, and every leaf intersects each orbit of W in exactly one point.

It is easily seen that both the geodesic and the horocycle flow preserve the Haar measure;
moreover, from the commutation relations in the algebra, we can see that g: dilates the
vectors in E' and contract those in E7, hence it is an Anosov flow: its unstable and
stable foliations are F* and F~ respectively. Indeed, these foliations are nothing but left

translations of two copies of the affine group 4,(R)={}\:R - R ; A(r)=ar+5b, abc
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R, @ > 0} contained in SL,(R) (note that the flip map sends orbits of AT to orbits of h—,
thus they have the same ergodic properties).

What Furstenberg showed [Fu], is that for co-compact subgroups I', the flow A% is
uniquely ergodic on I'\SL;y(R), with m as unique invariant measure, and the proof, by
a standard argument in the theory of measures on homogeneous spaces, amount to show
that the natural action of T' on SLy(R)/N =~ R2—{0} is uniquely ergodic w.r.t. the
Lebesgue measure; this result also yelds minimality of the flow. When the subgroup is
not co-compact, but still the quotient space has finite volume (non-uniform lattices), m
is again an ergodic invariant measure for both flows, but A% is no more minimal, neither
uniquely ergodic.

MH = T'\SLy(R)/50(2) is a non-compact, complete, hyperbolic orbifold of finite area;
it is obtained identifying sides of an hyperbolic polygon, whose vertices are conical points,
associated to elliptic elements of T' and labelled by a rational number p/q ( 2mp/q being
the angle at which two equal sides have to meet around that point), and at least one cusp,
points at infinity associated with parabolic elements (whose angle is zero). These surfaces,
compactified, at least in the case of subgroups of the modular group, can be given the
structure of a Riemann surface; thus genus, area, cusps and conical points are related by
a Gauss-Bonnet formula.

The modular orbifold (i.e. T' = SL,(Z)), has the standard cusp at infinity, whose

stabilizer is
1 n
I'DTl = in e
0 1

and two conical points of indexes 1/2 and 1/3. A fundamental domain F in the half-space
model for H is easily seen to be the intersection of the strip {||R(z)| < 1} with {||z]] > 1},
since we know that PSL,(Z)is generated by

z——=1/z | z—z+1

The area of the fundamental domain (an hyperbolic triangle with angles /3, 7/3 and 0), is
7/3, and the volume of PSL,(Z)\PSLy(R)is x2/3.

Let us fix the notation and call:
SM = PSLy(Z)\PSLy(R) , M = PSLy(Z)\H

Horocycles perpendicular to the ray of geodesics from the infinity are the straight lines with
constant imaginary part, hence associated to the standard cusp there is a one parameter
family of closed orbits, namely the collection of the Cy = T'xo\R x {iy}, where y > 0 and

@, —19

y is the period.




It has been shown by Sarnak, in the more general case where the orbifold has more than
one cusp, each one equivalent by coniugation in the group to the standard one, that this

family defines an embedded cylinder in SM, say Ps
SR — SM

Then Pu, is the set of periodic points of the flow, and is dense in SM. What happens,
is that the curves () are embedded in M until the period is small enough, i.e. near the
cusp; as the period grows they start filling up M in a very uniform way, in the sense that

for every open subset U C M,

lenght(C, NU)  area(U)
lenght(C,) area(M)

as y— 07

Known results are the following.

Call SM the one-point compactification of SM, o, the Dirac measure on the cusp,
my the Borel probability measure which puts uniform mass (w.r.t. the arclenght) on the
closed orbit C,, and m = ;r%m the normalized Haar measure on SH. Obviously these are
all ergodic invariant measures; moreover Dani showed that m, converges weakly to §o, as
y—ocoandtomasy — 0. If B = C’(S]W) is the Banach space of continuous real valued
functions on 5'.7\/[, and B* its topological dual endowed with the weak"“-topology, the result
by Dani is [Da]

Dani’s theorem: the measures my converges to m in the weak™-topology as y — 0 ;

{my} and 0 ezhaust the collection of ergodic measures of the horocycle flow.

It was Zagier [Za] who realized the connection between the rate of approach of the

mean value of a function f € C§°(SM) (i.e. smooth with compact support) w.r.t. m,

<myf>=7 [ fhi(o))ar = | #e +iv, 040

(where g € Cy, t is the period of the AT-orbit and we are in the trivialization in which
PSLy(R) ~ H x S' 3 (z +4y,60), and f can be viewed as an automorphic function on
SH) to <, f >, and the Riemann hypothesis. Sarnak generalized this work in the case
of arbitrary non-uniform lattices [Sa]; his technology consists in forming a Mellin type

transform of the measure my

E(s) = / myy° 2dy R(s) >1
0
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and relate F(s) to some classical Eisenstein series (continuous spectrum eigenfunctions of
the laplacian on H/T'). Let

Cp(s) =< B(e) £ >= [ [ 00 dn(o)

where dp(z) if the area form in H, (dz dy)/y?, and let’s expand f in Fourier series w.r.t.
the argument in 5!
£2,0) = 3 fu(2)
neZ
. 1 e ,
fal2) = o : f(z,0)e""?dg
A computation shows that for any v € T

f(roy - 2) = (€4)*" f(n,2)

ey(2) = (cz+d)/lez+d|  for ’Y:C Z)

If we change variables and move with I' the fundamental domain F to cover all of H, we
get

G5(8) = % [ Bunlz,9)fu(e)iu(z)

nez? ¥

where

Bou(z8) = 3 (e4(2) y(x(2))°

YEL \T

Properties of such functions Ey, are known from classical works by Selberg in the general
case; what turns out in the case of the modular group is that E(s) can be meromorphically
continued to all of C as a distribution on SM, invariant under the horocycle flow; it satisfies

the functional equation

E(s) =9(s,")* E(1 - s)

where (2 — 1)
U(s,0) = sing/2)272 2320 ~ 1)
(5,6) = (sinoy2)"* e
¢ is the Riemann zeta-function ((s) = Yon>1 %, and “4” means that ¥ operates on

functions by convolution w.r.t. the 6 variable. Thus G is meromorphic in C, with no
singularities in #(s) > 1/2, apart from the simple pole at s = 1 with residue < m,f >. A

Mellin inversion formula and classical estimates show that if

€ =sup{R(s), ((s) =0}
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then ,
1 E+100

<My, f>= — Gy(s/2)y'~*/?ds
2m f—ico
Thus < my, f >=< 1, f > +o(y' ~¢/27¢) for any € > 0. In other words, we have

Zagier’s theorem: let f € C§°(SM), then
<my, f >=<m, f > +o(y'?)  asy— 0 ;

the error term can be made to be o(y>/*=¢) for arbitrary € > 0 if and only if the Riemann

hypothesis is true.

Ideas by Verjovsky give a very simple way to understand these results, and the intimate
connection between the way the C)’s fill the modular orbifold and number theory. The key
is to choose a particular base for the Borel o-algebra of SM, and follow the intersection
of these sets with the orbit of the horocycle flow as the period increase.

With the aid of the flip map in the above mentioned identification of SL,(R) ~ SH
(we'll shift to the Z, quotient at the end just by renormalizing measures) we can identify
the stable leaf of 7~ through the identity with the zero section H < SH (it is a copy of
the affine group), i.e.

L7 (e) ={h; ogie); t,Lu € R, t> 0}

The idea is to take a family of boxes B, which generate the algebra, with a base in that
leaf, and fixed “height” £ (i.e. obtained by acting with AT on a square in the leaf), in such
a way that

m(B) = (area of the base) - £

Our task is to estimate the numbers my(B) as y — 0%; what is the same, we fix the
horocycle with period 1, say C; C SM, and form the horocycles C,-. = 9:(C1): these
orbits will intersect the box B in a certain number n(t) of lines of lenght #; since the
period of g;(C1) is €' (i.e. y = e7%)s, and the m,’s are proBabi]ity measure with support

on the closed orbits, what happens is that
my(B) = n(t)e™ "4

hence, we are left with comparing the behaviour of n(t) for ¢ large with 7m(B) = 2 (area)l.
We'll consider boxes from g € SLy(R) of the form

b 14
Bafe ) = { W 05 0hTl) s ol < 5, 1 < 3, ol < £
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Their measure is easily seen to be
m(By(a,b,2)) =LA

where A = asinh(b/2) is the area of the the central leaf of F~, called the basis of such a

box, namely
- a b
{ocomite) s mi<gi<

In order to generate the o-algebra, it is enough to consider boxes with basis in the stable
leaf L™ (e), and since we want them embedded in SM, we’ll take basis in the strip {z €
H ; R(z) € (0,1]}. Thus, the base of a generic box will be the set

Q= {lm—wo! <ay/2 , ywe <y Syoeb/z}

In the above identification, we see that the closed unit horocycle C; comes from the line
Ay ={(z+7,7)} C SH, ie. C; = I'\Ay; thus, in order to estimate the measure My = me-t,

we have to look at the number of intersection points in

Mg:(Ao)NQ

Ify= (Z Z) € I' with ¢ # 0 (otherwise v would be in I's,), since the basis of boxes we’re
going to consider can be identified with rectangles in H, we see that the only points of

intersection with such basis are of the form

a et

_+i_

c c?

By the way, if t = 0, these are the highest points of the so called Ford disks, disks of unitary
hyperbolic area which are images under P.SL,(Z) of the basic horoball {z € H ; $(z) > 1}.

The number n(¢) is seen to be

n(t) = #{g:(C1) N Q}
t
=#{a,cez+ Do 0, {a,c} =1, (fﬂ%) e Q}
c c
where {a,c} # 0 means that a and c are relatively prime. Verjovsky now noted that there

exists an area preserving diffeomorphism (up to a factor 2) between the euclidean upper

plane R? and the hyperbolic plane, namely

= (3+3)
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The preimage of a rectangle in H is a trapezium whose sides are rays from the origin and
{y = constant} lines, and the highest points of the Ford disks are mapped to lattice points
(a,c) with a and c relatively prime.

What turns out, is that estimates of n(t) are reduced to lattice point counting in the
euclidean plane. Rather long estimates with the use of classical theorems in number theory,
lead to

Verjovsky’s theorem: there ezist open sets B C SM and positive constants K
depending only on the B’s, such that

imy(B) —m(B)| < Ky'/?|logy|
for y € (0,1/2]; moreover, for every § > 1/2 we have

lim sup (|m,(B) — m(B)| ¥y 7)) = .
y—0+

Thus, the exponent 1/2 in Zagier’s theorem is “optimal” in some sense, i.e. it cannot be

improved if we take characteristic functions of Borel sets (of course, this doesn’t disprove

the Riemann hypothesis, characteristic functions are not even continuous!).
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