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Chapter 1

Introduction

We show that the BRST quantum version of D=4 N=2 supergravity can be topologically
twisted, to yield a formulation of topological gravity in four dimensions. The topological
BRST complex is just a rearrangement of the old BRST complex, that partly modifies
the role of physical and ghost fields: indeed, the new ghost number turns out to be
the sum of the old ghost number plus a suitable internal U(1) charge, that we name
R-duality. Furthermore, the action of N=2 supergravity is retrieved from topological
gravity by choosing a gauge fixing that reduces the space of physical states to the space
of gravitational instanton configurations. Twisting pure N=2 supergravity, one obtains
pure topological gravity. The corresponding instanton configurations are the self-dual
spin connections. As it stands, the theory we discuss may prove useful in describing
gravitational instantons moduli-spaces. The descent equations relating the topological
observables are explicitly exhibited and discussed. Then we consider the coupling of
vector multiplets to N=2 supergravity. We show that in the minimal case, namely when
the special geometry prepotential F(X) is a quadratic polynomial, there exisits a so far
unknown on shell U(1) symmetry (R-duality) which is suitalbe for the twist. R-duality
is a generalization of the chiral-dual on shell symmetry of N=2 pure supergravity and
of the R-symmetry of N=2 super Yang-Mills theory. Thanks to this, the theory can
be topologically twisted and topologically shifted, precisely as pure N=2 supergravity,
to yield a natural coupling of topological gravity to topological Yang-Mills theory. The
gauge-fixing condition that emerges from the twisting is the self-duality condition on the
gauge field-stength and on the spin connection. Hence our theory reduces to intersection
theory in the moduli-space of gauge instantons living in gravitational instanton back-
grounds. We remark that, for deep properties of the parent N=2 theory, the topological
Yang-Mills theory we obtain by taking the flat space limit of our gravity coupled La-
grangian is different from the Donaldson theory constructed by Witten. Whether this
difference is substantial and what its geometrical implications may be is yet to be seen.

We also discuss the topological twist of the hypermultiplets leading to topological
quaternionic o-models. The instantons of these models, named by us hyperinstantons,
correspond to a notion of triholomorphic mappings discussed in the last part of the thesis.
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4 CHAPTER 1. INTRODUCTION

In conclusion, the topological twist of the complete N=2 theory defines intersection
theory in the moduli space of gauge instantons plus gravitational instantons plus hyper-
instantons. This is possibly a new subject for further mathematical investigation.



Chapter 2

Aim and General Set-up

Recently, Topological Field Theories [1] have attracted a lot of interest, both for their
own sake and in connection with string theory. Their general feature is that of recast-
ing intersection theory in the moduli-space of some suitable geometrical structure into
the language of standard quantum field-theory, specifically into the framework of the
path-integral. Indeed the point-independent correlation functions of these peculiar field-
theories represent intersection integrals of cohomology classes in the given moduli-space.

Particularly interesting, because of their relation with N=2 superconformal theories
(2] and with Calabi-Yau moduli spaces [3] are topological theories in D=2 [4]. A lot of
attention has been devoted to topological sigma models in two dimensions [5]. In this
case one probes the moduli-space of holomorphic mappings from the world-sheet to a
complex target space. Theories that have a close relation with topological sigma-models
are the topological versions of N=2 Landau-Ginzburg models [4]. They have provided an
interesting arena for the study of the moduli-spaces associated with Calabi-Yau manifolds
(3], a topic of primary interest in connection with the effective Lagrangians of superstring
models. In a different, but closely related set up, the coupling of topological matter
multiplets to topological 2D gravity [6] has been used to investigate non critical string
- theories and relations have been established with the integrable hierarchies discovered in
matrix models [7].

In two dimensions the relation between N=2 supersymmetry and topological field-
theory is established via a topological twist that redefines a new Lorentz group SO(2)’
as the diagonal of the old Lorentz group with the U(1) automorphism group of the
supersymmetry algebra [8]. In particular it implies that a whole class of N=2 correlation
functions is topological in nature and, as such, both independent of the space-time points
where the operators are localized and exactly calculable with geometrical techniques [9].

Notwithstanding the interest of the D=2 case, topological theories are worth con-
sidering also in four-dimensions. Actually they were originally introduced in D=4 with
the discovery by Witten of topological Yang-Mills theory [10] and of its relation with
the mathematical theory of Donaldson invariants [11] and with N=2 super Yang-Mills
theory. Indeed Witten’s original form of Topological Yang-Mills theory, which is already
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6 CHAPTER 2. AIM AND GENERAL SET-UP

gauged fixed, was obtained via a suitable twist from D=4, N=2 Yang-Mills theory. The
twist consists of the redefinition of a new Lorentz group SO(4) = SU(2);, ® SU(2)y
where the factor SU(Z)IR is the diagonal of the old SU(2); with the SU(2); automor-
phism group of the supersymmetry algebra. The general BRST-approach to this theory
was developped only later by Beaulieu and Singer [12], uncovering some of the subtleties
hidden in Witten’s twist approach.

From the experience of this example a general lesson is anyhow learnt: just as in
D=2, also in D=4 any N=2 theory is liable to a topological twist and, as such, it should
contain a topological sector where the correlation functions are independent of the space-
time points and exactly calculable. In particular this should apply to N=2 supergravity,
whose topological twist must yield a gauge-fixed version of D=4 topological gravity. It
should also apply to the hypermultiplets, that are the D=4 counterparts of the N=2
Wess-Zumino multiplets. Actually, to state the conjecture in its most general form, the
entire matter coupled N=2 supergravity, whose general form has been obtained in [13],
further generalizing the results of conformal tensor calculus [14], should be liable to a
topological twist and have a topological sector.

Before addressing some of the technical and conceptual details of our derivation, let
us spend few words on motivations. They are essentially three:

i) The construction and the analysis of a well founded four-dimensional topologically
gravity may furnish a gravitational analogue of Donaldson theory. In other words, it
may provide a new tool to study intersection theory on the moduli space of gravitational
instantons.

ii) The topological interpretation should provide new calculational tools in N=2 su-
pergravity. :

iii) The special Kihler geometry [15] of Calabi-Yau moduli-space is related, as we
already recalled, to D=2 topological field-theories. On the other hand, it also follows
from the requirement of N=2 supersymmetry in D=4. From the superstring point of
view, this is understood in terms of the h-map [16], stating that on the same Calabi-
Yau manifold we can compactify both the heterotic and the type II string. The latter
has N=2 matter coupled supergravity as an effective lagrangian. Hence the topological
interpretation of this theory should shed new light on the relation between topological
field-theories in two and in four dimensions.

Let us now outline the conceptual set up and the contents of our thesis.

QOur forst purpose is to show that the topological twist of N=2 pure supergravity
defines a gauge-fixed version of pure topological gravity where the gauge-fixing condition
is w™® = 0, w™* denoting the antiselfdual part of the spin connection. To this effect
we utilize the BRST-approach [17], having, as final goal, the comparison of the abstract
gauge-theory a la Beaulieu-Singer [12] with the gauge-fixed approach a la Witten [10].

Our viewpoint on the construction of a BRST-theory is the following. First one
singles out the classical symmetries and constructs an abstract BRST-algebra involving
only the classical fields and the ghosts, with the exclusion of the antighosts. We name
this algebra the gauge-free BRST algebra, since, at this level no commitment is made on
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the gauge fixing terms and on the lagrangian. Next, in the BRST-algebra, one introduces
the antighosts and the auxiliary fields. The choice of these latter is motivated by the
gauge fixings one wants to consider. Finally one constructs the BRST quantum action
with the given gauge-fixings.

In the case of topological gravity the gauge-free BRST algebra is the specialization
to the Poincaré group of the gauge-free algebra for a topological Yang-Mills theory. The
general form of this algebra is [12]:

sA = — (Dec + ¢),
s¢ = ¢~%[C,C],
sF = Dw—[caF]a
S"/) = D¢~[C,¢],
s¢ = "[Ca¢]7 (21)

where A = A, dz* is the classical 1-form gauge-field, ¢ are the 0-form ghosts (correspond-
ing to ordinary gauge transformations 64, = D,e ), ¥ = 1, dz* is the 1-form ghost
associated with the topological symmetry (64, = u,) and ¢ is the 0-form ghost for
ghosts that has ghost number g = 2, while the previous ghosts have g = 1. All fields are
Lie algebra-valued. The BRST operation s in (2.1) is manifestly nilpotent (s* = 0) and
anticommutes with the exterior derivative (sd + ds = 0). _

One important ingredient of our discussion will be the relation between the gauge-
free BRST algebra for the ordinary theory and for the topological theory. It can be
understood in general terms as it follows. As it is more explicitly discussed in section II,
one can extend the concept of differential forms to that of ghost-forms, by setting

-

A=A+ ¢ (2.2)

where A and c are the (1,0) and (0,1) parts of A (a generic object of form degree f and
ghost number g will be described by (f,g)). One can also extend the concept of exterior
differentiation defining

= d + s, (2.3)

d
where d and s are the (1,0) and (0,1) parts of d. With these notations one finds that,
expanding the extended field-strenght

Po=di+i[4,A] (24)

b

in its (f, g) sectors, the following identifications are possible: F(z’u) =F, F(l,l) = 1) and
Flo2) = ¢. Indeed the first two equations in (2.1) amount precisely to these identifications,
while the last three are sectors of the extended Bianchi identity

dF + [4, F] = 0. (2.5)
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Hence the gauge-free topological BRST algebra corresponds to a parametrization of the
extended curvature F' where no constraints are imposed on the extra components F(l,l)
and F(U!'_g).

On the other hand the ordinary gauge-free BRST algebra

sA = - De,
fc = ———;—[C,C],
sFFo = — ¢, F], (2.6)

correspond to imposing the horizontality conditions I:’(l,l) =0 and ﬁ’(o,g) = 0.

This is interpreted in the framework of rheonomy [18] as follows: the topological
BRST algebra is the off-shell solution of the extended Bianchi identity (2.5) where all
the outer components are kept on equal footing with the inner ones. The ordinary gauge-
free BRST algebra is instead provided by the quantum rheonomic solution of the extended
Bianchi identity (2.5) . By definition the quantum rheonomic parametrization is obtained
from the classical rheonomic parametrization by replacing the classical cotangent basis
of differential forms with the corresponding extended one. In this way the components
of the extended curvatures in the extended basis are the same as the components of the
classical curvatures in the classical basis. For instance in the case of Yang-Mills theory the
classical basis is given by A and V*°, the last being the vierbein; the classical theonomic
parametrization is:

F = Fu VoAVY, (2.7)

so that the quantum rheonomic parametrization is
F o= FuVeAVY = Fyu VEAVE, (2.8)

Indeed, in this case V* = V@, the ghost part being attached only to the gauge field
A, according to (2.2), since omly the gauge transformations are symmetries, not the
diffeomorphisms.

In the case of pure gravity the classical curvatures are [18]

R = DV® = dV° —uw% A VY,
R*® = dw® —w?, Aw®. (2.9)

Their classical rheonomic parametrization is

R® = 0,
R*® = RO VAV, (2.10)

so that the corresponding quantum rheonomic parametrization is

R* = 0,

A

R® = R®VeAVL (2.11)



This time the vielbein being quantum extended
Ve = Ve o4 en (2.12)

Eq.s (2.11) lead to the BRST algebra associated with diffeomorphisms and Lorentz rota-
tions. On the other hand, if we relax (2.11) and we keep all the outer components of &°
and R° as independent fields, we obtain a gauge-free BRST algebra that includes also
the ghosts for the topological symmetry §V! = £, £ being an arbitrary infinitesimal
vierbein. This is our definition of gravitational topological BRST algebra.

We want to compare it with the BRST algebra associated with twisted N=2 super-
gravity. Indeed in order to make a successful twist we must already start at the quantum
BRST-level. In fact, from a formal field-theoretic point of view the general framework of
topological field-theories is that of geometrical BRST-quantization [17]. One deals with
a classical Lagrangian that has a very large symmetry, such as the group of continuous
deformations of a gauge-connection or of a metric and which, therefore, is a topological-
invariant-density (i.e. some characteristic class of some fibre-bundle). To this symmetry
one applies the standard BRST quantization scheme and, in this way, one obtains a topo-
logical BRST-cohomology, namely a double elliptic complex involving both the standard
exterior derivative d* = 0 and a second nilpotent operator (the Slavnov operator s = 0)
that anticommutes with the first: sd+ds = 0. The true geometrical and physical content
of the theory emerges when one fixes the gauge: indeed the gauge fixing condition is,
normally, some kind of self-duality condition that reduces the space of physical states to
the space of suitable instantons.

In this perspective the relevance of the topological twist is appreciated. The twist,
discovered by Witten [10], extracts a topological field-theory with its gauge already fixed
to a suitable instanton condition from an N=2 supersymmetric ordinary field-theory.
Actually, as already noted, the very first example of topological field-theory, namely
Donaldson theory, was constructed in this way starting from N=2 super Yang-Mills
theory. The basic ingredients of the twist procedure are:

i) the possibility of changing the spins of the fields, by redefining a new Lorentz group
as the diagonal of the old one (or a factor thereof) with an internal symmetry group, in
such a way that, after the twist, the top spin boson of each supersymmetric multiplet
and one of its fermionic partners acquire the same spin in the new theory;

ii) the existence of an additional U(1)-symmetry of the old theory, such that, redefin-
ing also the ghost number as the old one plus this particular U(1)-charge, the anticom-
muting partners of the bosons, that have acquired the same spin in the twist procedure,
have, in the new theory, ghost number one, while their bosonic partners remain with
ghost number zero. In this way the old fermions become the ghost associated with the
topological symmetry.

The twist not only provides a constructive procedure for topological field-theories
but also illuminates the topological character of a sector of the parent theory. This
way of thinking has been most successfully implemented in two-dimensions. There the
(Euclidean) Lorentz group is SO(2) and it can be easily redefined by taking its diagonal
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with the U(1) automorphism group of N=2 supersymmetry. In this simple case, the
same U(1) provides also the charge to shift the ghost numbers. The result, as already
mentioned, is given by either the topological sigma-models, or the topological Landau-
Ginzburg models, or their coupling to topological 2D gravity. The topological sector of
the original N=2 theory that is unveiled by this twist procedure is that of the chiral
correlation functions.

In four-dimensions the twist procedure relies once more on the properties of N=2 su-
persymmetry, but involves many more subtleties, so that the programme of topologically
twisting all N=2, D=4 theories needs deeper thinking. This programme has been started
in [19, 20] by twisting pure and matter coupled N=2 supergravity. The present thesis is
mainly based on the results of Ref.s [19, 20].

The result of the twist of N=2 supergravity minimally coupled to vector multiplets
is given by a D=4 topological Yang-Mills theory coupled to topological D=4 gravity,
the space of physical states being the moduli-space of gauge-instantons living in the
background of gravitational instantons. One of the properties of this theory is that it does
not seem to reduce to Donaldson theory in the limit where the gravitational coupling is
switched off. Hence it seems to define a different topological Yang-Mills theory. Whether
this difference is substantial or not is still to be clarified; anyhow, it is not accidental,
rather it is deeply rooted in the properties of N=2 supersymmetry.

Some of the subtleties one encounters in twisting N=2,D=4 theories relate to the
second item of the twisting programme, namely to the identification of the U(1) symmetry
needed to shift the ghost-number. This identification is involved with the non-linear
sigma model structure of the original N=2 theory, in particular with the special Kahler
geometry of the vector multiplet coupling. We find out that the required U(1)-symmetry,
named by us R-duality, exists, in the supergravity coupled case, if the Special Kahler
manifold is chosen to be SU(1,n)/SU(n) x U(1), the so named minimal coupling case.
In the flat case the needed U(1) also exists, as Witten construction shows, if the minimal
coupling is selected. The point is that the minimal coupling in flat space and in curved
space correspond to different unequivalent sigma model geometries: the flat C"-manifold
versus the special Kahler manifold SU(1,n)/SU(n) x U(1). This shows how the flat
space limit of the gravity coupled topological Yang-Mills theory is in principle different
from Donaldson theory as constructed by Witten.

Various subtleties of the D=4 topological twist are already encountered when studying
the twist of pure N=2 supergravity. Indeed the greater complexity of N=2 supergravity
with respect to N=2 super Yang-Mills forces us [19] to generalize the procedure of topo-
logical twist as introduced by Witten [10] in N=2 super Yang-Mills and at the same time
lead us to reach a deeper understanding of its structure. In particular, we stress that
the twist acts only on the Lorentz indices and not on the space-time indices [19] and this
is quite natural in the formalism of differential forms. This feature of the twist avoids
the problem encountered by Witten in Ref. [10], namely that the twisting procedure is
meaningful only when space-time is R*. We shall come back on this aspect extensively
in the second part of the thesis.
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When passing to the analysis of the topological sector of N=2 matter coupled super-
gravity, one soon realizes that there are some aspects of the twist that still need a deeper
understanding. In particular, as we already pointed out, a fundamental question is the
following: what is, in general terms, the U(1) symmetry that leads to the ghost number
of the topological version of a given theory? In N=2 super Yang-Mills, as well as in N=2
pure supergravity there is only one U(1) internal symmetry (apart from global dimen-
sional rescalings, that are not relevant to our discussion) and so either it works or not.
Fortunately it works. However, in N=2 supergravity coupled to vector multiplets, there
can be more that one internal U(1); think for example of the U(1) Kahler transformation
or some U(1) subgroup of the group of duality transformations [21] (at least when the
vectors are not gauged). Anyway neither of these two known possibilities has the correct
properties to become a ghost number and further on we show that indeed they cannot
do the job. On the other hand one expects that a twist is possible, since the theory of
topological gravity coupled to topological Yang-Mills should exist. In Ref. [19] we have
shown how to produce a gauge-free algebra and generic observables for any topological
theory and it would be very surprising to find that it is impossible to choose any kind of
instantons to fix the topological symmetry and a gauge fermion to give a lagrangian to
the theory. So, our work on the twist of matter coupled N=2 supergravity starts with
the belief that if a suitable U(1) internal charge is missing, this is because it is not known
and not because it does not exist. As anticipated, it will be named R-duality, for reasons
that we shall explain. First we shall define it and this will lead us to single out the basic
properties an internal U(1) symmetry should have in order to give ghost number. Then
we shall explicitly prove invariance of the minimally coupled theory under this symmetry.

Our logical development is the following.

In chapter 3 we consider pure N=2 supergravity in the theonomy framework and we
construct its BRST quantization. In particular we discuss its gauge-free BRST algebra
prior to the introduction of antighosts. Then we define D=4 topological gravity along the
lines discussed above and we introduce the gauge-free topological BRST algebra. We also
discuss the descent equations arising from the topological observables associated with the
Pontriagin and Euler characteristic classes. Furthermore we discuss the topological twist
of pure N=2 supergravity, introducing also the concept of topological shift that is instru-
mental for a correct interpretation of the resulting theory. We identify the ghosts and
antighosts and from the latter identification we conclude that the gauge-fixing implicit
in the theory is w™® = 0. Finally we show that the action of pure N=2 supergravity
can be obtained as a topological term plus the BRST-variation of a gauge fermion ¥ that
implements the gauge-fixing w™*® = 0. Some subtleties related with the redundancy of

this gauge-fixing and with the appearance of extraghosts are also discussed.

Chapter 4 begins with some general remarks on the possibility that minimal N=2
matter coupled supergravity possesses the desired internal U(1) symmetry (R-duality).
Then, after having recalled the structure of N=2 matter coupled supergravity in the
rtheonomy framework, we fully determine R-duality and prove that it is indeed an on
shell symmetry of the theory. We then present the topologically twisted-topologically
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shifted theory (the gauge-free algebra, the complete BRST algebra, the explicit matching
between them, the topological gauge-fixings, the observables, the gauge-fermion).

In chapter 5 we discuss the twist of quaternionic matter multiplets coupled to N=2
supergravity and along with this discussion, we summarize all the steps of the twisting
procedure in four dimensions, improved by the experience of the present work.

Finally, chapter 6 contains our conclusions and outlook.



Chapter 3

Twisted Pure N=2 Supergravity

3.1 Introduction

In this chapter we study the topological twist of pure N=2 supergravity. As anticipated,
it is convenient to work on the BRST-quantum version of N=2 supergravity, which is
constructed in section 3.2. It is convenient to employ the formalism of differential forms
and rheonomic parametrizations [18]. The concepts of rheonomy is applied to the con-
struction of the BRST-quantum version of the theory in the way explained in Ref. [17].
Before performing the twist of this theory, we exhibit (section 3.3) the gauge-free alge-
bra of topological gravity and the related observables. In section 3.4 the explicit twist
is done (giving a gauge-fixed BRST algebra), while in section 3.5 we give the precise
correspondence between the gauge-free algebra and the gauge-fixed algebra. Finally, in
section 3.6 we show that the topologically twisted-shifted lagrangian of N=2 supergravity
is BRST exact and we explicitly analyze some details (in particular, the redundancy of
the gauge-fixing conditions of the topological symmetry).

3.2 BRST-Quantum Version of Pure D=4 N=2 Su-
pergravity

D=4 N=2 pure supergravity is described by the following curvatures [18]

i- i -
R* = DV*-— 51/1‘4 Ayipy = dVe —w A VP — §¢A Ay P,

Rab — dwab . wac A wcb’
1
ps = Dypy=dpy — -2—wab Aoy,
R® = F+eapaAvs, (3.1)

where Lorentz indices are denoted by latin letters, ¥V is the one form representing the
vierbein, w® the one form representing the spin connection, ¥4 (A=1,2) is the couple

13



14 CHAPTER 3. TWISTED PURE N=2 SUPERGRAVITY

of gravitinos (one forms as well), while F' = dA, A being the one form representing the
graviphoton. d denotes the operation of exterior derivative, while D represents the covari-

ab = L(y2 4% and €,p is the completely antisymmetric

ant exterior derivative. Finally, c®° = ;

tensor with two indices.
The above curvatures satisfy the following Bianchi identitites [18]

DR* 4+ R AV  — iy Ay°py =
DRab —

1
Dpy + §R°b ANoahy =
DR® 4+ 2e.pPa App =

"

2

’

(o RN e BN on BN o

(3.2)

The rheonomic parametrizations of the four curvatures (3.1) that are compatible with
the Bianchi identities (3.2), at least on shell, since we do not introduce auxiliary fields,

are [18]

R* = 0,
_ - 1.
B = RYuVEAVE 4+ 030 AV = oda A Fpeas,
1,
pa = pYVLAV+ 57"7afub¢B AVPe.s,
R® = FuVoAVY, (3.3)

where F% = F 4 14, F e and giblc = 22',53[07"] — §p%~° [18], where the square
brakets denote antisyrﬁmetrization. These parametrizations are found by expanding the
curvatures (3.1) in a basis of differential forms in superspace (which can be written as
exterior products of V' and ¢ 4) and then imposing the Bianchi identities (3.2) on shell
[18].

For completeness, we write here the lagrangian of N=2 supergravity, because it will
be useful later on.

L = RPAVENAV%qpeq + 454 AvsYa®u AVE + 20R® Ay A ystpesn +
~2i4 AYp Ada Avshg — FPVEA VLA R®eqpeq +

1 . .
+EFabF“bV’ AVIANVEAV esm. (3.4)

N=2 supergravity has an internal SU(2); symmetry holding off-shell and an internal
U(1) symmetry, which, however, holds only on shell [22] (that is to say it is a symmetry

of the equations of motion, but not of the lagrangian). This U(1) internal symmetry

combines chirality of the gravitinos with duality of the graviphoton in the following way
[22]

5¢A = ia75¢,~&7
5Fabv —2iaf”ab = aﬁabchCd. (35)
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One easily verifies that the equations of motion derived from (3.4) are all invariant under
the chiral-dual transformations (3.5). The less trivial case is the one of the field equation
coming from the variation of the graviphoton A, that is

41:6,;Bﬁ‘_; A ")/51,03 - D(F“bV" A Vd)Eabcd = 0. (36)

Its variation under (3.5) is the last of the Bianchi identities (3.2) and viceversa, thus
proving U(1) on shell invariance (the remaining Bianchi identities are trivially invariant).

The operation of BRST transformation is denoted by s. We introduce ghost-number
and s has ghost-number one. In such a way we have two natural gradations: form-number
f and ghost-number g. As anticipated in the introduction, a generic object is described
by the couple (f,g). When permuting two objects it is the sum f+ g that determines the
correct sign (but note that some fields, like the gravitinos and their ghosts also have a
fermionic number and when permuting two of them, the preceding rule must by suitably
amended). So, f + g is a gradation of primary importance. We shall call it the ghost-
form-number. Any object must have a well defined ghost-form-number and so the first
part of BRST quantization consists in extending any differential form {2 (of form-number
f, say) to a ghost-form Q of ghost-form-number f. Let

a

7= Vetel
L:}ab — wab + E.ab’
72}.4 = Yy +cy,
A = A+e (3.7)

where €2, €, ¢, and ¢ (form-number zero, ghost-number one) are the ghosts of diffeomor-
phisms, Lorentz rotations, supersymmetries and Maxwell transformations, respectively.
For the time being, the spin connection is treated as an independent variable: later on
we shall go over to second order formalism. It is useful to similarly extend the operation
of exterior differentiation, as already mentioned in (2.3). As d? = 0 and the extension
to hatted quantities preserves all the algebraic manipulations (as one can easily convince
oneself), we are guaranteed that this property is extended to d? = 0, that is to say

d’> =0,
ds + sd =0,
s =0. (3.8)

In particular we are guaranteed to find a well defined BRST algebra (s* = 0).

The curvatures are extended to ghost-forms of ghost-form-number two, that are the
sum of a (2,0)-piece (the original curvature) plus a (1,1)-term and a (0,2)-term. These
extra-terms will be fixed by the rtheonomic parametrizations. Let it be

Ra = R*+ ,(pa + qsa’
Rab — Rab + Xab + nab,
pa = patEs+Ca
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The same curvatures can be written by suitably extending the definitions (3.1) (that is
to say by replacing nonhatted quantities with the corresponding hatted version). For
example,

B = ROt g =dTe — e AT} - %{LA Aoty (3.10)

After explicit substitution and separation of the various (f, g)-parts, one can read, besides
the definition of R* itself,

sV = 9% —De +e® AV, + —;-(15,; Ayics + 4 A7),
se® = @+ e® A gy + %6_4 ANyle,. _ (3.11)
These are the BRST variations of V* and €* (at least upon fixing ¢ and ¢*). By analysing

the remaining curvatures in a similar way, one gets the rest of the BRST algebra. We
give only the results. The complete BRST algebra is

sV = ¢a — De? + Eab A ‘/l') -+ iE:X A 7a¢_47

swit = % Db,
e = ¢+ Aeg+ %EA Av%cy,
se® = nW et A e
sy = €4—Dey+ %Eabdab¢,47
sca = Cat -2—6“%6‘4,
sA = 1 —dc—2e4pCy NYp, .
sc = ¢—e€ pcsNcp (3.12)

In a similar way one can also analyse the content of the hatted extensions of the Bianchi
identities (3.2). One then finds two sets of variations: i) the variations of the curvatures
themselves, i. e.

sR® = —DY*+e® ARy — R Ney— X AVo+ iy Ay és +184 AYopa,
SRab — _DXab + Eac A Rcb - Ruc A €Cb,
1 1 1
spy = —DEy+ Eﬁab%bm — iRaba'abcA -~ "2“Xab‘7ab¢.~la
sR® = —dp — 2e45(ha Alp + 24 A ps), (3.13)

that are consistent with their definitions (3.1) and with (3.12); ii) the variations of the
free parameters 3¢, ¢°, x*, 1%, £4, (4, ¥ and ¢,

sP* = =D + e Ay — X Aoy — 1" A Ve + 194 Ay Ca 184 A Ea,
s = €Ay — 1% A ey + 184 AyCa,
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SXab — —-D’Ilab + Eac A ch . Xac A Ecb)
Sﬁab — Eac A 77cb _ Tlac A 5(;b;
1 ab 1 ab 1 ab
sy = —D(y+ 3¢ Tapby — S X Tabea = o Tab .1,
1 1

¢y = §€ab0abC.4 — inabaabcxh )

s = —d¢—2eip(cs Nép+viN(R),

s¢p = —2e,gc4 A(p. (314)

Eq.s (3.14) and (3.13) are the specialization to the case of the BRST quantum algebra
of N=2 supergravity of the last three equations in (2.1).

As a next step, we fix the free parameters (1%, ¢, x*, 7%, €4, (4, ¥ and ¢) by means
of the rheonomic conditions [17, 18]. These conditions state that the parametrizations
of the hatted curvatures are obtained by the old ones (see (3.3)) upon substitution of
the forms V* and 4 (the basis of forms in superspace) by their hatted quantities. For
example, according to this prescription, 4 is equal to

. N 1, .0 s -
P = PV A V4 2™ Farhs A VPeyp. (3.15)

After use of (3.7) and (3.9) and separation of the various (f,g)-parts, one can read the
definitions of {4 and (4. In a similar way one prodeeds for the other curvatures and free
parameters. We report here only the final result, that is

Pt o= 0,
" = 0,
X = 2R®GVoNE 40 (ca AV + 9y Ae®) — EaFYpeap,

= 1
'qab = Rabcdsc A g? -+ efﬁCCA Aeg — :2-5‘4?(1&'636‘43,
1
€1 = 2paae® AVP+ —2~7a w(cs AVP+ g Aeb)eys,
1
CA = PA|ab€a A gl + 5711 abCB N EbEABa
¥ = 2F,VeAE,
¢ = Fue®Ae. (3.16)

One can verify that (3.14) are comsistent with (3.16) on shell. This requires no fur-
ther computational work than the one which is required to prove that the rheonomic
parametrizations (3.3) are consistent with the Bianchi identities (3.2) [18] (the formal
manipulations are the same).

By means of suitable redefinitions one can put formulas (3.12) in a more familiar
form, i. e. to write diffeomorphisms in terms of Lie derivatives [17]. To this purpose, let
et = gV}, V¥ being the inverse vierbein, so that ¢* = 1. V%, where 7 denotes contraction.
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The Lie derivative L. is equal to 4.d — di., where the minus sign is due to the fact that ¢
is a ghost [17]. If we define g% = gab — j web, ¢y =cy =194 and ¢ =¢— 1.4, then we
get

sV = LVE+e™ AV, +i8, Ay,

1 . T,
sy = Lopy+ 561 boapta — Dy + 37 FurCly A VPeyp,
s4 = L.A-— dc' — 26,435{,‘ Ag. (317)

We see that the variations of the main fields V', 14 and A are the sum of diffeomorphisms,
Lorentz rotations, supersymmetries and Maxwell transformations, as it must be.

The last point reguards the possibility of employing the second order formalism, that
is to say of expressing w? in terms of the vierbein (R® = 0). For consistency, we must
also have sR* = 0, and this gives a condition on x®°. Consequently, we should expect
to have a condition on sx®, however sx® turns out to be automatically consistent with
(3.12) and so it imposes no further constraint.

3.3 Topological gravity

In this section we discuss the gauge-free BRST algebra of topological gravity. As already
pointed out this BRST algebra involves only ghosts (and not antighosts). In the following
sections we show that this algebra stands to the twist of the algebra of N=2 supergravity
determined in section 3.2 as the Beaulieu-Singer approach [12] stands to the Witten
approach [10]. The procedure resembles the construction of the BRST quantum version
of supergravity, but the difference is that, according to the discussion of chapter 1 and
‘section 3.2, we impose no rheonomic parametrization. We show that this prescription
gives automatically a topological theory. Similarly, (3.12) and (3.14), without imposition
of (3.16), are the gauge-free BRST algebra of topological N=2 supergravity.
As before, we define hatted quantities

~

d = d+s,
oo e,
G = W e
f%a — Ra+¢a+¢a,
R = R4y g et (3.18)

but now %%, ¢* x® and %% remain independent fields. From the definitions of the
curvatures (2.9), extended to hatted expressions as before, and the Bianchi identities
DR+ R, AV® = 0,
DR* = 0, (3.19)
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also extended to hatted quantities, one obtains the BRST algebra

sV = 4% —De® +e® AV,

Swab — Xab N DEub,

s€* = ¢ +e¥ e,

SEab - ab a cb
= 7 e NET,

S¢a — _D¢a+5ab/\¢b_\_xab/\ab_nab/\%’

S¢a — E_ab A d)b _ ,r]ab A €p,

.SXab — ___Dnab + €% A ch _ Xac A Ecb’

S'l]ab = g% A ncb . 77ac A ECb- (320)

Once more this is the specialization to the case of the Poincaré algebra of Eq.s (2.1). Of
course, this algebra is also obtainable by reduction to N=0 of the N=2 algebra of Eq.s
(3.12) and (3.14) (with no imposition of (3.16)).

We have used the same symbols as before, for similar, but different, quantities. When-
ever necessary, we shall distinguish objects belonging to the BRST algebra of N=2 su-
pergravity (3.12) from those of the BRST algebra of topological gravity (3.20) by an
index, which will be 2 in the former case, 0 in the latter. For example, wy®® will be the
superconnection (coming from R,® = 0), while wy® will be the usual connection (coming
from HRy* = 0). The transformations (3.12) will be denoted by s,, the transformations
(3.20) by sp. Similarly, we shall write 1,® and ¥,%, ¢2% and ¢°, et cetera.

As before, we are guaranteed that s? = 0, but now s2 = 0 holds off-shell (it is the
imposition of a rheonomic parametrization holding only on shell that forces s2 = 0 to
hold only on shell). Let us analyse (3.20) in more detail. As we see, 1;” represents the
topological ghost and the variation of V* is equal to the topological variation 1,* plus
diffeomorphisms plus Lorentz rotations. @,* and 7,®® are ghosts for ghost, the former
corresponding to diffeomorphisms, the latter corresponding to Lorentz rotations. As
for xo®, in the second order formalism (R* = 0) the condition sgRy* = 0 (which can
be read from the first formula of (3.13) upon reduction to N=0) implies x3° A V; =
—Dohp® — Ry A €y, which can be solved in the same manner as the condition defining
wi® (i. e. wy® AV, = dV®). As noted in section 3.2, the fact that x,® depends on the
other fields does not impose further constraints and the BRST algebra is well defined.
From now on we shall employ the second order formalism.

The procedure here followed to determine a BRST algebra for topological gravity
does not introduce any antighost. This is because we are not choosing any particular
gauge-fixing. The topological twist, on the other hand, will give automatically a preferred
gauge-fixing for the topological symmetry, as we shall see in the following section.

Now we describe the observables of the theory, which are related to the Pontriagin
P = Ry® A Ry, and Euler characteristic classes £ = Ry®™ A Ro“%eqpeq- s¢® and s
should be compared with the variation of the ghost for ghost ¢ that appears in (2.1),
5¢ = —[c,¢]. As we see, the transformation of ¢ is nothing but a gauge transformation
and so all gauge invariants constructed from ¢ are BRST invariants and can lead to the
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descent equations that give the observables of the theory [10, 12]. In our case it is 7,*
that has a BRST variation which is only a gauge transformation (Lorentz rotation). 7,*
is a 4 x 4 antisymmetric matrix. Any 4 x 4 matrix has the four invariants tr[n,], tr{n,?],
tr[n,®] and tr[ny?]. In our case only tr[n.*] and tr[ny'] are nonvanishing. What are the
corresponding descent equations and to what topological invariants do they correspond?
It will be soon proved that they correspond to the Pontriagin number and to the FEuler
number.

We start by noticing that the proof that the form Ry®® A Ryg is closed works with
hatted quantities, exactly as with nonhatted ones: '

d(Ry™ A Rya) = —2dRo™ A Ropa = —2(@0™ A Rype A Byta — Ro®™ Adgpe A Ro%s) = 0. (3.21)

We have used the hatted Bianchi identity DRy = 0. After explicit substitution and
separation of the various (f, g)-parts, one can read the descent equations

sotr[npo Ame] = 0,
so trfno A xo + xo Amo]l = —dtz[no Aol
so tr[no A Ry + xo A Xo + Ro Amo] = —dtr[no A Xo + Xo A 7o),
sotr[Ro A xo + xo A Ro] = —dtr[no A Ry + Xo A xo + Ro Aol
sott[Ro A Ry] = —dtr[Ro A Xo+ Xo A Rol,
0 = —dt[RyA R, | (3.22)

where the trace refers to the Lorentz indices. So, we have the following observables

0L = tr[ny Anol,
OP=:LHMAm+mAM,
O?::AMMAm+mAm+mAM,
ol = /‘ tr[Ho A X0 + Xxo A Rol,

oY = /Mtr[Ro/\RQ], (3.23)

where M is the four dimensional manifold where the theory is defined (we suppose
OM = 0 for simplicity) and ~, S, and V are generic one-, two- and three-dimensional
cycles on M. So we have proved that tr[n,?] corresponds to the Pontriagin number.
In precisely the same way, one can deduce descent equations and construct observables
associated to the Euler form € = Ry A Ry*€qpca. These observables will be denoted by
O™ and correspond to tr[ny A o). As tr[no!] = L (tr[no A 7o])? + 1(tr[no?])?, we see that
we have exhausted the two invariants discussed before.



3.4. TOPOLOGICAL TWIST OF N=2 SUPERGRAVITY 21
3.4 Topological twist of N=2 supergravity

The topological twist of N=2 supergravity is performed in a similar way as the topological
twist of Yang Mills theories [10]. Nevertheless, some generalizations and specifications
are needed. We identify the internal symmmetry group SU(2); with SU(2)g, the right
handed part of the Lorentz group, that is to say we define a twisted SU(2)%; as the
diagonal subgroup of SU(2)r ® SU(2);. Let us fix a bit of notation. Every field will be
classified, before the twist, by an expression like °(L, R, 1), where L, R and I are the
representation labels for SU(2), SU(2)r and SU(2); respectively, c is the U(1) charge,
g is the ghost number and f is the form degree. Some fields (the graviphoton and the
corresponding ghosts) have not a well defined U(1) charge and so ¢ will be replaced by
a dot in these cases. After the twist, each field will be denodet by (L,R’)ﬁ’fc, where
R’ = R®I. The new ghost number is the sum of the old ghost number and the old U(1)
charge. So, for some fields the new ghost number is not defined off-shell, but only on
shell. However, we do not think this is a problem, rather one of the new features of ghost
number conservation in topological theories. We note that ghost number conservation has
particular features even in twisted Yang Mills theories [10], because the chiral anomaly
of the untwisted theory appears as a ghost number anomaly in the twisted version of the
theory. In two dimensional topological theories, the same phenomenon is represented by
the appearance of a charge at infinity after the twist [8]. We think that the new features
of ghost number conservation that appear in twisted N=2 supergravity deserve further
investigation.

The fields are also characterized by a fermionic number, however it will not play an
important role in the twisted theory. We shall explain this fact in the following section.

In Table 3.1 we list the fields of N=2 supergravity and their twisted counterparts.
We see that the twisted version of 1, has a (;, ;)} component. This is substantially the
ghost of topological variations of the vierbein (the exact identification will be given in
the following section). The components (0,1);" and (0,0);' become the corresponding
antighosts. The variation of the (0,1);! component, in particular, gives the gauge-fixing
of the topological symmetry, precisely as in Yang-Mills theories. The twisted version
of A represents ghosts for ghosts and antighosts for ghosts. This is because the tensor
Feb has two components of U(1) charge £2, and so the twisted version of F® has two
components of ghost number +2.

In Table 3.2 we list the antighosts and Lagrange multipliers of N=2 supergravity and
their twisted counterparts. & and &% are the antighosts of diffeomorphisms and Lorentz
rotations, respectively; ® and 7 are the corresponding Lagrange multipliers; &, are the
antighosts of supersymmetries and P, are their Lagrange multipliers; ¢ and P are the
antighost and Lagrange multiplier of the Maxwell gauge-symmetry. In Table 3.3 (at the
end of this chapter) we give a summary of all the fields involved in the BRST quantum
algebra of N=2 supergravity, their twisted version and their meaning.

The explicit twist can be realized by interpreting the internal indices A, B as dotted
indices ¢, 8. Refer to the appendix (chapter 7) for the notation. The left handed and
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Table 3.1: Topological twist

Field Before the twist After the twist
ve °(3,3,0)! (3,3)"
e °(3,%,0) (3,3)8
e °(1,0,0)5@ °(0,1,0)5 (1,005 @ (0,1)s
Y (2:0,9)t® 710, 4,3)0 | (5,9)i® (0, 1) @ (0,0)7"
€A l(}jvo)%)(l)@ —1(0:%1%)1 (é,%)g@(O,l)g@(0,0)g
A *(0,0,0)9 (0,0);
c .(0’010)(11 D)O)b
right handed components of 14 are twisted as follows

¢C¥.~l - wa;«i?

T (3.24)
while €45 — €5 = —e18. TLet us now consider the supersymmetry transformations
(which can be read from (3.17) when & = 0 and €% = 0)

SV = ey ANy,
1
§a = —Dey+ 57" Fucp A Veun,
A = —2e,pcts NAVYp. , (325)

We now twist these transormations and specialize the twisted version of the supersymme-
try ghost ¢, to its (0,0)-component. This component is C' = chb"ﬁ- (see the appendix).
We set it equal to a constant and precisely —ze, for convenience. Here, e is an object
that rearranges the form-number, ghost-number and statistics in the correct way and
that appears only in the intermediate steps of the twist. It will be called the broker. The
broker is a zero-form with fermionic statistics and ghost number one. e? has even ghost
number and Bose statistics, hance it can be set equal to a number and in our notation
we normalize it as e? = 1.

The twisted version of 14 consists of a (%, %)}—component, which will be denoted by

P = %1!1&‘_1(&’")’10‘ (the ghost of topolgical symmetry), a (0,1);*-component, which will
be denoted by —ey® = (&“b)‘idzbd‘_i (the antighost corresponding to the gauge breaking
of the topological symmetry) and a (0,0)7'-component, denoted by ¥ = —egb&‘iﬁi- (see
Table 3.1 and Appendix A). As an example of the action of the broker e, note that, while
%1#&_;1(6'“)'4"‘ is a one-form, is a fermion and has ghost number zero, the true topological

ghost 1% must be a one-form, with ghost number one and it is a boson.
The transformations (3.25) become

st = g,
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Table 3.2: Twist of antighosts and Lagrange multipliers

Field Before the twist After the twist
& 0(517"1110)—1 (%%)61
g2 °(1,0,0);"' @ °(0,1,0)5" (1,05 @ (0,1)5"
Etl ‘1(%107% 0 1(07%7%)61 (é %)5 ®(0 l)OEB(O 0)
g -(0,0,0)51 (0,0);
L °(3,%,0)0 (3,30
b (1,0,0);' @ °(0,1,0)5" (1, 0) (0, 1)5*
Py “14,0,4)8@ (0,4, 3)8 (3:3)5 " @ (o, 1) @ (0,0)g
a 1 +4ab
St = —2—F AV,
5’()5(1&. _ %w_.ab’
& = 0,
§A = iy, (3.26)

These transformations should be compared with those of topological Yang-Mills theories,
as found in Ref. [10]. As we see, the topological gauge-fixing is the antiselfdual part of
the spin connection. Its vanishing describes the gravitational instantons of the theory of
topological gravity that we are studying.

The square of the transformation (3.26) is not zero, but it is a Lorentz rotation with
field-dependent parameters %F +% This can be immediately deduced from the fact that

§2Ve = §y° = %F“’ab/\Vb. A phenomenon like the present one also happens in topological
Yang-Mills theories [10]. It is only when dealing with the complete BRST algebra [12]
that the square of the transformations is zero (at least on shell).

In [12] we see that the complete BRST symmetry of topological Yang-Mills theories
derives from a composition of the BRST symmetry of the untwisted N=2 super Yang-
Mills theory and the (0,0)3-component of the supersymmetric transformations. We want
to consider the analogue of this mechanism in twisted topological gravity. Here we have
to deal with the fact that now supersymmetry is a local symmetry and nevertheless we
expect that the twisted BRST symmetry is in some sense a composition of the twisted
version of the transformations (3.12) and the transformations (3.26). At the same time we
need to be sure that the new BRST symmetry closes on shell. We cannot simply specialize
the twisted version of supersymmetry transformations to their (0,0)5-component, because
this would require to set some ghosts equal to zero, thus not guaranteeing s> = 0. A
simple way to overcome all this is to shift the (0,0)5-component C of the twisted version
of the ghosts ¢4 (multiplied by —e) by a constant, namely C — C +1. In such a way the
new BRST transformations of the main fields are the old ones plus the transformations
(3.26), as we would like, and closure on shell is automatically assured. The procedure of
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shifting C will be called topological shift. The topological shift should be considered as
a mere trick to reach our purpose to define a suitable new BRST symmetry and should
not be reguarded as substantial.

The twisted-shifted BRST symmetry will be denoted by s'. It will not be explicitly
written down here; we only make some observations. The topological twist and the
topological shift make the new BRST transformations appear as follows

’V“:;Zra~ds“—|—s“b/\%—|—---, st — Xb—dsab-l--",
gt G g .. derh = —1F+ 4
Iab_O__I_ 50 :—dC’“+%F+ab/\%+-",
sP = —dC + fw™ +---, sp=—dC+ -, (3.27)
SO =04+, SO = 4= 4o,
'C'——O+ sSA=1dp—de+---,
se=—1+ zC’ —l—
where x?* AV, = —di® + -+ - and the dots refer to interactions terms i. e. terms involving
products of two or more ﬁelds. C* = fc, (0 )4"‘ 0% = —¢(5%)" % j and C = —ecq 45“
(see Table 3.1 and the appendix). The BRST transformation of the Maxwell ghost ¢
contains a constant —i. This constant is inessential and can be suppressed. In fact
c appears only in s'A as dc (not even the dots contain ¢). Consequently, s =0is
assured even if we write s'¢ = 1C + ---. The transformations (3.27) will be useful

for the computations of the next section; in particular, note that, according to (3.16),
7 = —%F*’ab + -+, 50 (3.27) shows that s’ = 7°® + -, in agreement with (3.20).

3.5 Matching between Twisted N=2 Supergravity
and Topological Gravity

In this section we give the correspondence between the transformations s’ (i. e. the topo-
logically twisted and topologically shifted version of s, (3.12)) and the transformations
su (3.20), at least for what reguards the sector that not includes antighosts. First of all,
let us compare

5.V = —Doe® + e AV, +i84 A7y (3.28)

with
soV® = 92 — Dye® + e A V4. (3.29)

Let us put web = Wi — A® where A% is determined by the condition A AV, =
14 Ay, We can identify the two variations of V? (i. e. impose s, V* = 5,V?) if we
put

ot = 18g APy — AP A =% 4o, (3.30)
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As we see, there is no need to make the topological twist and the topological shift explicit.
By comparing -

SzEa = Eab N Ep + %5_.1 A ’)’aC‘_\ (331)
with !
S0 = ¢" + g A Eb, (3.32)
we deduce .
1
h = -2—5_4 Aycs=C%+---. (3.33)

By comparing s,¢% and sy, one deduces 7,%° = 7,°®. After making these identifications,
one can check by a direct but tedious computation that sy1p?, s2¢0”, s2x0®® 8270 and
5ywp® automatically match with the corresponding sg-transformations.

Let us make a comment to the fact that the above identifications involve bilinear terms
in the fields. This problem is promptly solved by the topological shift that reduces the
above products of fields to a term linear in the fields plus interactions. The presence of
these interactions is the consequence of the already noted fact that, since supersymmetry
is local, we cannot specialize it to its (0,0)5 component. Moreover, a little insight shows
that the appearance of the bilinear terms is all but a problem. In fact, we must remember
that in the topological twist chirality adds to ghost number; since the commutation
properties between s and the fields is regulated by ghost-form number, it could happen,
in general, that a field changes its properties of commutation with s during the twist. This
would be surely dangerous, because it is important to preserve all formal manipulations
to guarantee s> = 0 on shell. Having to deal with bilinear terms, we are sure that the
commutation properties do not change, since chirality is always even. An analogous
observation can be done about fermion number; furthermore, since in the twisted theory
fermion number has no importance, we can simply forget about it. By means of bilinear
terms it is also possible to define the antighosts 1,® and g, at least up to interaction
pieces. The bilinear terms corresponding to them are ¢4 A a'“bl_:;’5 Ypesp and €4 AYpeyp.

The above identifications permit to get explicitly the observables of the twisted theory,
by simply taking the definitions (3.23), rewriting them in the twisted notation and shifting
the gost C. All that is needed is x,®® and 7,%°, which are given by

= 1
b b d b - b
" = Rg chIc NEe™ -+ Gi!CcA Aef — 56,1.7“ CBE€ARB,

xo® AV, = —Dgp? — R Ay (3.34)

3.6 The lagrangian of topological gravity

In this section we discuss the twisted-shifted version of the lagrangian (3.4) of N=2
supergravity. In particular, we want to show that it can be written as the BRST variation
of a gauge fermion ¥. We shall be satisfied of a gauge fermion ¥ that reproduces the
kinetic terms of the twisted-shifted N=2 supergravity lagrangian. In fact any gauge
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fermion can be corrected by adding to it interaction terms and indeed, even if they are
not explicitly written, they are in general required in perturbation theory (a similar
remark is made in [17]). In any case, the main requirement for a good gauge fermion
is that it must remove all degeneracies of the kinetic terms and permit the definition of
propagators, so we are justified in concentrating our attention on the kinetic terms, a
restriction that simplifies considerably the computational effort.

First of all, we re-write the gravitational action in the second order formalism in a
convenient way. As a matter of fact, one easily verifies that

L = R©EAVEA Vdéabcd =
Qw“b A wce ANVENA "[dEabcd +
—w A we? AVENA V8eapeq + d(w™ AVEA Vqpea), (3.35)

and that

4N Mpea hw™ =
4= Aw e AVEA Ve%upeq — 2w " A we"b AVEAVe%pen =
= L—dw® AVEAVeepeq — 20V AdV,). (3.36)

A

il

it

In other words, we have written the gravitational lagrangian as quadratic in the anti-
selfdual part of the spin connection, which is our gauge-fixing, plus a total derivative.
Mapcd is @ two form and is independent from derivatives of the vierbein. This way of
expressing the gravitational lagrangian (up to a topological term) should be compared
with the expression ——itr[FLF"“ﬂ for the lagrangian of Yang-Mills theories, which is
the square of the gauge-fixing of topological Yang-Mills theories [12]. Making space-time
components explicit, we can write

A= 4w;ab ANMypopca N w> e dig, (3.37)

o

Mu,pab’cd is a matrix which is antysimmetric and antiselfdual in ab and cd. One can
easily verify that there exist only two such matrices in flat space, namely the identity
Lopapea = 5Mvp(TacTlbd = Nadbe + i€abea), Where g, = diag(l,~1,—1,-1), and M, ,
itself. Furthemore, M is invertible (one proves that M? is not proportional to M, so it
must be a nontrivial linear combination of M and I).

First of all, we introduce a Lagrange multiplier B for the topological symmetry (a
one form, antisymmetric and antiselfdual in ab), such that s = B and s'B® = 0.
In this section we omit the subscript 0 in %, ©¥o®® and vy By comparing with the
old expression for s'1)%, (3.27), we see that the linear part of the gauge-fixing term is
éw‘ab — dC, that is to say there is a ghost term besides the expected term %w"ab. We
shall explain in a short time the reason for this presence. In any case, we expect that
the gauge-fermion ¥ contains a term

U, = 16i(i B + w™ + 2dC®) A Mapeq A % (3.38)
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Indeed, the BRST variation of ¥y, i. e. s'¥;, contains a term

— 16i(iB® + w™® + 2idC®) A Mgy ea A B, (3.39)
which, upon integration over B gives

4w + 2dC™) N Mapea A (0™ + 20dCY). (3.40)

So, the gravitational lagrangian (3.35) is correctly reproduced (at least up to a topological
term), but there are two more terms, namely 16¢dC® A Mapca A w=? and —16dC A
Mapcd A dC. The first one is zero (or better, it is a total derivative), because

A Mapeg Aw™ ) =0, (3.41)

as can be promptly checked. The second term looks like, at first sight, the kinetic
lagrangian for the ghosts C°, however this is not true, because the kinetic part of
—16dC® A Maped A dC® turns out to be zero. From these remarks we can deduce
two considerations:

i) the gauge-fixing w~=" = 0 is redundant, because the one forms w~°" are not indepen-
dent, but are related by the condition (3.41), which holds identically, without imposition
of w=® = 0;

i) the ghost € is an extraghost, i. e. a ghost the presence of which is due to a
redundancy of the gauge-fixing; of course, it is associated to the redundancy (3.41) of
the topological gauge-fixing conditions w= = 0.

A good treatment of such nontrivial ghosts of vanishing ghost number can be found in
Ref. [23], where the case of the antisymmetric tensor, call it B,,, is explicitly exhibited. In
that case the BRST variation of the antighost C,, (6C, = 6" B,, — 8,c;) contains, as well
as the expected gauge-fixing term, 8V B,,, a term involving the extraghost ¢; and giving
information about the redundancy (which is 8,8,B*” = 0), precisely as it happens in
our case. However, in the simple example of the antisymmetric tensor B, the analogous
term of —16dC® A Mapcd N dC°? does give the kinetic lagrangian of the extraghost ¢; and
so there is no further problem. In our case, instead, this does not happen (the reason
is the richness of symmetries of our theory, in particular local supersymmetry). Since,
as previously noted, only one matrix with the properties of M exists besides M itself,
that is the identity Z,-there is little to do: to give a kinetic term to C'®, it is necessary
to have a further extraghost, say C**® (of ghost number zero, antiselfdual in ab) and a
kinetic term dC*®® A Tabea A dC%, that is to say C**0C,, plus interactions. However,
since we are only reinterpreting a theory and we cannot construct it by hand, such a field
and such a kinetic term must already be present. In particular C** can only come from
the twist of the antighost ¢ of N=2 local supersymmetry and as a matter of fact, Table
3.2 shows that such a field is indeed present and it is precisely the (0,1)5-component of
the twisted version of ¢5. So, all we have to do is to check that the gauge-fermion that
breaks supersymmetry, say ¥, gives the correct kinetic lagrangian for C* and C *ab et
us choose the most common expression for ¥g, i. e.

Vs = X Vi, + aPy), (3.42)



28 CHAPTER 3. TWISTED PURE N=2 SUPERGRAVITY

where P, is the lagrange multiplier of supersymmetries (s'cy = P, s'Py = 0) and ais a
constant that is usually determined in order to conveniently simplify the kinetic term of
gravitinos (a will be of no importance for our purposes). In any case, the BRST variation
of U contains a term of the kind

Py VO, (3.43)

As we expect, after the twist, the quadratic term in C=ab — 0l 15 C**0C,.

Let us now come back to the analysis of the BRST variation of the gauge-fermion
¥, (3.38). The terms —164(i B +w® 2idC®) A 8'(Maped) A 1°¢ are only interaction
terms and so we discard them. Then there are the terms 16is’(w'ab + QidC"b) AMaped N
¥, By looking at (3.27), one sees that the term with dC® in ¥, is required in order
to restore invariance under Lorentz rotations (i. e. in order to avoid kinetic terms like
de=" A Maped A 1/1“1). So, the only kinetic term coming from ¥; that remains to be
discussed is 16ix”ab A Maped N 44, This term reproduces the twisted version of the
Rarita-Schwinger action, precisely the part that contains ¥ and *®, which turns out to

be
16d3% A thay A V. (3.44)

The remaining piece of the Rarita-Schwinger action, namely
—8dY* NY AV, : (3.45)

can be retrieved by means of a further piece ¥, to be added to the gauge fermion ¥,.
U, must also give account of the kinetic term of the graviphoton and turns out to be

(remember 7% = —%F‘Wb +..-and R® =dA +.--)
2 . .
U, =8RO AP AV, + g77‘1";-:5,(,1/’ AVIAVEA Ve u. (3.46)

Summarizing, the total gauge-fermion is

T = 16i(iB® 4+ w™* + 20dC¥) A Mapea N ™ +

2 . .
+8iR® AP AV, + gnabsabw AVIANVEA Ve, (3.47)

plus the usual terms that break diffeomorphisms, Lorentz rotations, supersymmetries
(this one being in part already discussed) and Maxwell gauge-symmetry.
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Table 3.3: Summary of the fields of N=2 supergravity and their twisted versions

Field NMeaning Classification Tw.-field Twisted meaning Tw.-classification
Ve vierbein 0(;1;, %, 0)9 1re vierbein ({;, %)?
e topalogical ghost (£, 51
g gravitinos l(%, 0, —E—)? & (v, % é)? phad topological antighost (0, 1):L
¥ antighost (o,0"
A graviphoton “(0,0,0)9 A ghosts for ghosts (0,0);
€% ghost 0(%, %, 0)s 4 ghost (-f;, % §
L L. multiplier °(%,£,005 L L. multiplier (3.5)8
& antighost 0(—;—, %, 0 6‘1 g2 antighost (:;—, %)0_1
gab ghost 9(1,0,0)f @ °(0.1,0)} et ghost (1,0)5 & (0,1)}
wab L. multiplier (1,0,0); la (0,1, U),;'1 o L. multiplier (1, 0)0_L @ (0, 1)(_7L
gab antighost °(1,0,0)7' @ 9(0,1,0)5" | & antighost (1.0t & (0, 1)5"
ce ghost for ghost (%‘ —;-)g
cq ghost L(.ﬁ,(),-;—)é D "L(U,%,%)é ceb extraghost (U,l)g
c extraghost (V,0)3
pe antighost (3, _15)0—1
Py L. multiplier “1(%, 0, —é—)g ® Lo, -é—, %)8 pab ghost {0,1)§
P! ghost {0,0)§
c*e antighost for ghost (3. —é-)(;""
g% antighost 1.0, _;_)0—1 e o1, %)0_1 c*ab extraghost (0,1)2
c* extraghost (v,0)3
c ghost (0,0,0)} c ghost (0,0);
P L. multiplier (0,0,0)3 P ghost (0,0);
c antighost (0,0, 0)0-l & ghost (0,0);
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Chapter 4

Twisted Minimally Coupled N=2
Supergravity

4.1 Introduction

In this chapter we study the topological twist of N=2 supergravity minimally coupled to
n vector multiplets. The matter vectors can be arbitrarily gauged, but the graviphoton
cannot be gauged. In section 4.2 we make some general observations about the internal
U(1) charge that should be added to ghost number to define the ghost number of the
topological theory. In section 4.3 we recall N=2 supergravity minimally coupled to vector
multiplets in the rheonomy framework. Soon after this (section 4.4), we work out the
precise definition of R-duality and show that it is an on shell symmetry of the theory.
Next we topologically twist and topologically shift the BRST-quantum version of the
theory (section 4.5), thus finding the BRST algebra of the topological theory. We also
discuss the gauge-free algebra and give the complete identification with the gauge-free
subalgebra of the BRST algebra that comes from the twist. We show the observables
and the find the gauge-fermion.

4.2 General remarks on R-duality

In this section we discuss the possibility that minimal N=2 matter coupled supergravity
is R-duality invariant. This internal U(1) charge will add to the ghost number to define
the ghost number of the topologically twisted theory. Thus we shall be able to extend
the procedure of topological twist and topological shift of chapter 3 in a rather direct
way.

Let us first make some simple remarks about the properties of the chiral-dual invari-
ance displayed by N=2 simple supergravity. These properties will guide us in finding the
desired generalization to the matter coupled case. We use the same notation of chapter
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3. Consider the Bianchi identity of the graviphoton A, that is
DR? + 2e,p9%.4 A pp = 0, (4.1)
its equation of motion,
diesgpa A vsts — D(FVEA V) eqpea = 0, (4.2)
the rheonomic parametrization of the graviphoton curvature R®,
R® = F Ve A VY, (4.3)
and the on shell chiral-dual transformation, i. e.

bpa = drva
§Fpp = —2iFu = €apeaF™. (4.4)

In chapter 3 it was noted that the chiral-dual variation of the Bianchi identity is the
equation of motion and viceversa. This is evident if we re-write the Bianchi identity of
the graviphoton and its equation of motion in the following form

d[R® — espPa AYB] = 0,
dleabcaFVE AV — 2iepd™ Aysyp®] = 0. (4.5)
Moreover, let us see what is the condition for the transformation (4.4) to be well defined,
i. e. what is required for the existence of a 64 compatible with (4.4). One immediately

finds

€abca FVENVY = SF,VEAVY] =
= 5R® = d(S-A -+ 21'6_431;‘4 ANvsYg. (46)

50, €apea FVEAVE — 2i€.45%.4 Avs1p must be an exact form and we focus on the case in
which a necessary and sufficient condition for this to be true is that the form is closed,
i e. dlegpea FOVEAVE — 2ie.p®.a A vsp] = 0. This is precisely the equation of motion
for the graviphoton (4.2). Consequently, the U(1) transformation is defined on shell and
only on shell. This way of reasoning is a natural generalization of the well known case of
electromagnetism and it will directly extend to N=2 matter coupled supergravity.

What do we expect R-duality to be like? Obviously, it should reduce to the known
results both on the gravitational multiplet when matter is suppressed and on the vector
multiplets when gravity is switched off. In other words, it should be a dual transformation
on the graviphoton (that is why we call it duality), a chiral transformation on the fermions
and should leave the graviton and the matter vectors inert. The scalars of the vector
multiplets should have charges +2 and —2. Consequently, on the fields of the vector
multiplets the symmetry we are seeking should act as the usual internal U(1) symmetry
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of N=2 super Yang-Mills, which is an R-symmetry [24]. Finally, it should be possible to
gauge the matter vectors (but not the graviphoton) while preserving the symmetry.

We expect R-duality not to be present in the most general case, i. e. with any special
Kahler manifold, but only in the simplest case, namely for minimal coupling [25]. This is
suggested by the fact that something similar seems to happen even in the case of flat N=2
super Yang-Mills theory. Asa matter of fact, the theory involves the choice of an arbitrary
flat special geometry prepotential F(X), which is a holomorphic homogeneous function
of degree two of the simplectic sections X, [26]. As a result, the lagrangian involves a
coupling matrix f(z), which, in flat coordinates z; = —z—(‘)—, depends holomorphically on
the scalars z; and is given by the second derivative of F, f(z) = a(zia(—sz(X(z)) [26].
The kinetic lagrangian of the vectors has the following form :

F. F/*Ref7 — %EWWF;UF,{,Im . (4.7)
Only when f(z) = ", namely when F is quadratic, there is an evident R-invariance,
since if z has a nonvanishing charge, then the only neutral holomorphic function of z is
the constant. In other words, the topological twist appears to be possible only in one
case, although the negative result that R-symmetry is barred in nonminimal coupling has
not been established in a conclusive way. Indeed, we shall prove that R-duality exists in
minimal matter coupled N=2 supergravity, but we shall not prove that this is the only
possible case. There could be some unexpected field redefinitions that make it work in
more general cases, even if they presumably cannot make it suitable for a topological
twist. Uniqueness remains, for the time being, just our conjecture.

We recall that in topological Yang-Mills theory the chiral anomaly becomes ghost
number anomaly after the twist and can be described by saying that the functional
measure has a definite nonvanishing ghost number. Consequently, only the amplitudes
of observables that have a total ghost number opposite to this value can be nontrivial.
These features of ghost number are present also in topological gravity with or without
matter. In Ref. [27] it is shown that the dual invariance of Maxwell theory in external
gravity is anomalous. In topological gravity we thus expect a ghost number anomaly
which is due not only to the anomalous chiral behaviour of the fermions, but also to the
anomalous dual behaviour of the graviphoton. In other words one has to take care of the
zero modes of the graviphoton, besides those of the fermions.

Let us now derive some a priori information about R-duality. As in Ref. [19] to each
field of the theory we assign a set of labels °(L, R, I), where L is the representation of
SU(2)r, R is the representation of SU(2)p, [ is the representation of SU(2)s, c is the
U(1); charge, g the ghost number and f the form number. If the twist acts on SU(2)g,
then after the twist we have objects described by (L, R ® I)?“LC. In this case the left
handed components of gravitinos and gauginos must necessarily have U(1); charge +1,
since they are the only fermions that have the correct spin content to give the topological
ghosts after the twist. For example, the left handed components of the gravitinos are

characterized by (1,0,1)] and give (1,3); after the twist, and the vierbein V* is also a



34 CHAPTER 4. TWISTED MINIMALLY COUPLED N=2 SUPERGRAVITY

(3,%)1 object. Similarly, the left handed components of the gauginos become (3,3 )o after
the twist: let us call them A,. The vector bosons, however, are Lorentz scalars, so they
give (0,0)]. Consequently, the correct topological ghosts can only be A, V©.

The charge of the right handed components of gravitinos and gauginos is fixed to be
—1 by the fact that they are the natural candidates to become the topological antighosts,
as far as their Lorentz transformation properties are concerned. As a check, we can also
see that the charge of the right handed gravitinos is independently fixed by the following
argument to the value ¢ = —1. The supersymmetry charges must also transform. In fact,
the right handed components of the supersymmetry ghosts, which are the ghost partners
of the right handed gravitinos and so must have the same charge, are characterized
by (0,%,1)5 and give (0,1)y @ (0,0), after the twist. This is the only possibility to
obtain a scalar zero form from the supersymmetry ghosts and we recall [19] that the
(0,0)y component must be topologically shifted by a constant in order to define the
BRST symmetry of the topological theory. This implies g + ¢ = 0 for the right handed
components of the supersymmetry ghosts, and so ¢ = —1. '

We conclude that on any of the so far considered fermions, collectively denoted by A
(supersymmetry ghosts included), R-duality acts as follows

SAL = AL
5Ar = —Ag, (4.8)

where § denotes R-duality and A, Ag are the left and right handed components, re-
spectively. This automatically rules out the U(1) Kahler transformation as a candidate
for R-duality, since the U(1) Kahler charges of the gaugino and gravitino left handed
components are opposite to each other [13]. Note that the previous reasonings are not
applicable to the case of hypermultiplets. Indeed, we shall find that the left handed
components of the spinors contained in these multiplets have charge —1, while the right
handed ones have charge +1 (chapter 5).

Once we have fixed the charges of the fermions, the R-duality transformations of the
bosons are uniquely fixed by requiring on shell consistency with supersymmetry, 4., i. e.

8,6 = 0. (4.9)

Before giving the complete result obtained from this requirement, we recall the structure
of N=2 matter coupled supergravity.

4.3 Minimally Coupled N=2 supergravity

By definition, N=2 supergravity minimally coupled to n vector multiplets corresponds to
the case where the special Kdhler manifold spanned by the vector multiplet scalars is the
homogeneous manifold M = 55%38751(—1—) In the language of holomorphic prepotentials
this corresponds to the choice F(X) = }(Xp® — ¥, X;*). An easy way to obtain the
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explicit form of this theory, in the rheonomy framework that we use throughout the
paper, is by truncation of N=3 matter coupled supergravity [18, 28]. If we are interested
in the case of just one vector multiplet, it is more convenient to truncate pure N=4
SO(4) supergravity [29]. As a matter of fact, we first tested our conjectures using this
trick (which we do not discuss here) and, after having found that their were correct, we
extended them to n vector multiplets in the way we now present.

The gravitational multiplet is (V?,94,%", 4y) (the index A taking the values 1,2),
where V¢ is the vierbein, 1, are the gravitino left handed components (ys¢4 = .4),
¥ are the right handed ones (ys%* = —%") and Ay is the graviphoton. The n vector
multiplets are labelled by an index 7 = 1,...n and are denoted by (4;, A, Ay, z;, 2), A4,
being the vector bosons, A;! the gaugino left handed components, A}, the right handed
ones, z; and z' the scalars. Vierbein, gravitinos, graviphoton and vector bosons are
1-forms, all the other fields being 0-forms.

A special Kahler manifold SK(n) is a Hodge Kahler manifold providing the base
manifold for a flat Sp(2n + 2) simplectic vector bundle § = SK(n), whose holomorphic
sections (X4, a—a\%), A =0,1...n,aregiven in terms of a prepotential F(X), homogeneous
of degree two in the n + 1 variables X,(2) (z belonging to SK(n)). It is common to
introduce the following expressions

FAE — 8‘\8EF(X),

NAE — FAE + FAE7
G = —In(N**X,Xy),
Ly, = EgXA,
) . 1 ..
jz\ = 0Ly + ’:‘Z‘GILA,
= 1 =
AL AY All =
= —F —=—— N L N""L= 4.1
N + NAFLALF I = ( O)

where G is the Kahler potential, 8% = %, o = (—9%, G' = §'G.
In the minimal case, if we use the special coordinates z, = %OL (zop = 1) and further-

more we impose Xy = 1, then F(z) = %(1 — >, zi2) and
1 1.
FAY = = 517‘\E = Edlag(l, -1,...-1),
NAE — 771\27
G = -—Ina,
z
LA - A

% 1 2
o= (5) o (e f o).

J

N A 1 1t 9
AL = . ) = 121 ;
o - (NZD N ) 2(1 — z;2) ( =2z 6;;(1 — zz) + 22,'zj> , (4.11)
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where @ = 1 — z;7".
In the notation of N=3 matter coupled supergravity [18, 28], the manifold % =

SU(3,n . f W . . .
5(,r(3);(5£?’('n;®”(1) (which becomes M = 3—05%%—5)(1—) when truncating to N=2), is described

by a matrix L,\E(z,i) that depends on the coordinates zi',z7 = z|, where 4 = 1,2,3,
i=1,...n, A = (A,7). The N=2 truncation is realized by setting to zero the fermions
that have index A = 3, the bosons with A4 = 1,2, the spin 1/2 of the N=3 graviton
multiplet and the SU(3)-singlet spin 1/2 fields of the vector multiplets. The L matrix is

[18, 28]

L' LY L® Ly 10 0 O

s, Lyt L% L, Ly 1 {01 0 o0
L@ = oy 1 1 o | T alo oo 1 o= |0 (41

L' L* L? L7 0 0 z M’

where M,/ = \/&_5{ -+ Tj;(l — y/a). The correspondence with the N=2 notation is the
following

10 0 0
01 0 0
T _ L
=10 0 L ) | (4.13)
0 0 L fHg )

where (g‘%)ij = \/55{#"55 (a—+/a). Note that %]Wikéﬂ/fkj = g7 = §;0’G, where 8; = §'";

|z
gi’ is the metric tensor of the Kahler manifold M. We thus define %]\/Iij = (g'li)ij, and

J

a]l/f_lij = (g”é)i .

The N=2 truncation of the ¥ connection 0, is

H
0 0 0 0
T _ —1y I ) Al £y — 0 O 0 0
Qa" = (L7 )a (dln™ 4+ gfn™ Aalr™) = 0 0 —iQ P (4.14)
00 P Q4280

In particular, @ is the gauged Kahler connection and P* is the gauged vierbein on M,

= —%(Gini — G,VE),

_ (o})'Vs; (4.15)

i

and P = P*. From now on, let A take only the values (4 = 3,i = 1,...n). For
convenience, the index 3 will be eventually replaced by a 0 or simply omitted, when
there can be no misunderstanding.

At this point, truncating the N=3 curvature definitions (see Eq.s (IV.7.46) and
(IV.7.48) of Ref. [18]), we obtain the N=2 curvature definitions already adapted to the

minimal coupling.
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R* = dV®—w® AV, —ib v Ay = DV — iy Ay,

Rab — dwab — WA ch,
1 ) 7
pa = diby — Zwab%b Ny + §Q ANy = Dy + 5@ ANy = Viby,
. 1, .t L1
pt o= dyt — ¥ bvap At — 5@ At = Dyt — 5@ At = Ty,

Fy = dAy+ i Ao A Aa + eapLat* AP + P Lydy A,
1 ) 2 .
VAi = dhiy — Ewab A YapAia + % <1 + ;) QAia + Q7 A4,
. ) 1 . ; 2 . .
v)\z:l — dA:;l = __wab A ﬂ)labAlA _ l <1 + __) Q/\ZA + Qz ~A]A,
4 2 n !
Vz; = dz + gArkd(2),
Vi = di' 4 gA k" (3), (4.16)

where Yap = 3[7a, %) and Q; = (@) kyi(2) and k' (Z) are respectively the holomorphic
and antiholomorphic Killing vectors generating the special Kahler manifold isometries.
The explicit expression of these Killing vectors can be read from Eq.s (4.14) and (4.15),
isolating the term proportional to A, in the definition of P; = (gﬁ)i](dzj + gAAk}\(z)).
One finds k*(z) = f;**2; in the case in which only the matter vectors are gauged (this
point will be justified in the following section). In the N=2 notation it is useful to
introduce the new definitions

j

Moo= —eP(g7) Ajs,
X, = —eap(g7F); ME. (4.17)

3

3 [

Since z and Z will be shown to have opposite R-duality charges, the matrix gé is R-
duality invariant and so the above definitions do not change the R-duality transformation
properties of the fermions. Formulae (4.17) are determined in such a way as to match
the following rheonomic parametrizations

P, = P, Vo4 e'Xap,
Vz = Zy V4 Ay, (4.18)

that appear in the N=3 and N=2 formulations, respectively. In the N=2 notation the
gaugino curvatures are

1 .
VAL = DAt - —?:QAf — T/,

VX, = DXy 450N~ TN, (4.19)
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where T';/ = ——(g‘l)il(ajglk)Vzk — gA, 87k is the gauged Levi-Civita holomorphic con-
nection on M and I'; = (I';/7)*.

In the variables A; 4, P; inherited from the N=3 truncation, the standard N=2 Bianchi
identities (see Eq.s (3.35) of Ref. [13]) take the following form

DR* + R AV, 4+ ip" Ay*hy — i AvyPpy = 0,

DR* = 0,
1 T,
Vpy+ ZRab A Yaba — 53 Ny = 0,
1 :
vpkl + ZRab /\’)’ab'l‘bA 4 %K/\'(,bl — 0,

VFy — fiVazieapd® AP — fa Ve Ph, A g+
+2Lpeapt?t A pP +20ae B App = 0,

, 1 . ; 9
VoAia + ZRG(’ N YapAia — RiIAj4 — % (1 + ;;) KXy = 0,
b 1 . o 9 .
VIN L DR A X - RN 4 2 (14 2) KA = o,
4 7 J 2 n

. 1
VP, :dPi+QH/\P]~+i<1+—>Q/\Pi = 0,
n
. . . 1 .
VP = dP‘—}—Qlj/\PJ—i(1+—>Q/\P‘ = 0, (4.20)
o

where K = dQ, R’ = dQ/+Q.*AQ,’ and R, = (Rij)*. The rtheonomic parametrizations
are
R* = 0,
Rab — Rabcd‘/c A Vd _ i¢—‘4(27[ap;~l]b]c _ 7cp,~!]ab) AV, +
—i (2910 p e — yp I AV, 4+ 2G 0B, A g +

- v abed T 3 i Ay i
+2G+abe‘43¢41 A ’l,bB + _/iE b dqu A 7C¢B(2Ai37dA G- 6;)\i07dA C)?

pa = paaVEAV? —2espGhy"vP AV + “ji%beiB’YaAiA A Vo +
i - . _

+grwbs (227 A - 8Ny e ) A VY,

p.—l — p;lbI/a A Vb o 27:5‘4BG;(,7&¢B A Vb + Zi'wBXiBFYa)‘iA A V; +
+—;"Yab¢3 (2:\1'1131’a)\i‘4 - 53/—\ic’7a)\ic) AV

Fy = FVa AV +i(£3M9Pean + fudin®setB) AV,

VaAiaV® 4+ iPy*¥Pesp + GHyatha + gCitba,

VAIA —_ va/\l_-l‘/a + 7:-P|Za’Ya¢BEAB + G;bl')/ab’l,bA + 9011&‘4,

Vzi = ZjV®+ A,

<
>
H
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Vi o= Z,VO+ Agt (4.21)

where C* = (L‘l);;kLJ-iLlsfkﬂ are obtained from the N=2 truncation as particular in-
stances of the N=3 boosted structure constants, C; = (CY*, fai = (1), GHeb, GF,
G, and G, are determined by the equation

1 . ‘ ,
_2_ng + LAJG—ab + LAsz—ab + (L—] )SHJHAG-HI() . (L—] )ianAGl-—ab — 0’ (422)

where Jun is the SU(1,n)-invariant metric

1 0
One finds
1 o
G+ab — _Z\/&(1+2N)01\Ei—ab’
1 Ly J —
Gre = - a(g?)i (1 + 2N);  Firab 4 — 22:G7 4 2\/_ ZE Y. (4.24)

and Gy, = (GF,)" and G5} = (Gip')"- The rheonomic parametrizations are on-shell
consistent with the Bianchi identities (4.20).

We can now write down the lagrangian of N=2 supergravity minimally coupled to n
vector multiplets.

L= ['kin + EPauli + Etorsion + £4Fermi + A['gauging + Aﬁpotentiah (425)

where

Liin = EabcdRab AVEAVE =4 Ayapa + 5 Ayaha) AV +

—ggz I VAL + X va VA A Vo A Ve A Vg™ 4
+§gij[2fa(Vz] Xia) + Z;a(VE — MY A Vi AV, A Vi 4
+%(A7 MR R, + NP Py +
~07 21, 25" Vecaes VEANVEAVEATVT 4
4G (NAEeb _ \PAT ety A (Fy
—i(FAy pPen + Frliy vseP) A Vo) A Vi A Vs,
Lrawi = —4iFy NN Lgeapd™ AP — N LBy Ap) +
FaFy A (NOE Fdd P ean — N fodivgpe?B) A V2 +
—2igi? (Vz; A Xyyapp™ — VE A Xl qapa) AVEA VY,
Liorsion = R*AViAgdXimAl AV,
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Lipermi = (We, 1B¢ AE A ecpdC AP — WerBPhy Apg A e“Pibg Aip) +
—21g;7 A \’Ya)‘ Py A ’ybi,b AVEAVE +
Fi( Wi e B X yabs A VEA E0Nybp AV +
— Wi pAivad® A VA ecpXS1yp” A V) +

1 .
g VEAVEATVEA V"gﬂ,\f‘,mfgkugvm/\;?,

18
21 .
ALgauging = ~3—g(/\ LyapBWE 5 + Xy g WABY A VE A VEA Vieapea +
1 - .
+-6-g(Jv1”A;f‘/\§ ean + M A X5 P )eareaVENVEAVEA VY,
1
A["’potﬁ'ntial = "“1-2‘9 ngvV W Eabcdva A Vb AVEA ‘/d (4:26)

where W = 2L, Le N'AT, Wi = 2AAS i £ and Wi, = (W¥)", while M¥ = k' fi g7 and
M;; = (M9, Wig = esgk Ly, WP = (Wig)". The lagrangian in Eq.s (4.25) and
(4.26) agrees with the lagrangian (4.13) of Ref. [13] upon suppression of the hypermul-
tiplets and up to Lyperm: and the second term of ALgauging, that were not calculated in
[13]. Indeed, the very reason why we have performed the above described N=2 truncation
of the N=3 theory was that of obtaining these terms without calculating them explic-
itly. Our purpose is that of checking R-duality in the minimal coupling, however, as a
byproduct, we have also obtained the complete form of the lagrangian of N=2 supergrav-
ity coupled to vector multiplets for an arbitrary choice of the special Kéhler manifold.
All the objects entering (4.26) have already been interpreted in a general N=2 setup (in
which the graviphoton can be gauged). As a matter of fact, the N=3 theory does not
admit the most general gauging of the vectors [18, 28], but it surely admits any gauging
of the matter vectors. Even if the minimal N=2 theory exists in any case, the truncation
from N=3 can only give the minimal N=2 theory in which the graviphoton is not gauged.

As promised, in the following section we define R-duality and prove that it is indeed
an on-shell symmetry of the above theory.

4.4 R-duality for N=2 matter coupled supergravity

Now, starting form the R-duality transformation properties of the fermions, as derived in
section 4.2, we determine the transformations of the bosons by simply requiring [5 8] =0
on-shell, if §, is the supersymmetry transformation with parameters € (let £4 and ¢ 1 be
the left and right handed components, respectively). The supersymmetry transformations
can be read in the usual way from the rheonomic parametrizations (4.18) and (4.21). In
any case, their explicit expression will be written down later on in the context of the
BRST-quantization of the theory (see formula (4.41)). So, we start from

S‘()b.-l = "/}Aa 36,—1 = €4, 3/\14 - )‘;47

byt = —p*, fet = —t, BN =X, (4.27)
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First of all, consistency of R-duality with supersymmetry states that, if a field ¢ has an
R-duality charge equal to g, then é.¢ has the same charge g and viceversa. It is immediate
to see that 66,V = 0 and so we deduce §V* = 0. This is good, because in our mind, R-
duality is to become ghost number and the vierbein should remain of zero ghost number
together with all the matter vectors. Slmllarly, §6.2; = 26. Z;, TequIring bz; = 2z;. An
analogous reasoning gives, when applied to z* 5z = —27', thus confirming that z; and 2
have opposite charges. This immediately rules out the possﬂ)lhty that the U(1) symmetry
we are looking for might be a subgroup of the group of duality transformations [21, 18].
Indeed, in that case z; and 2’ would have the same charge. This is welcome, because, if
U(1); were a subgroup of the duality group, we could not maintain the symmetry in the
presence of gauging, as, on the contrary, we expect to be able to do. We immediately
see that the Kihler potential G is invariant, as well as the metric g;° (note that this
fact would not hold true in the nonminimal case). It remains to find the transformation
properties of the vector bosons. Let us concentrate on the ungauged case (g = 0) for the
moment. One can verify that [§,8.]%, = 0 and [4,8.]9 = 0 imply

65GF = £2GHt, (4.28)
while [§,6.)A3 = 0 and [6,8.]A}, = 0 imply

saf* =0, §Gb =0, (4.29)
respectively. Equations (4.28) and (4.29) form a linear system of equations in 5Fi“b, in
which the number of unknowns equals the number of equations. The unique solution is

5F0+ab 4NOA F+ab S‘F-i-ab 0

SFo-ab — 4N’01\F—ab 5F—ab 0. (4.30)

The graviphoton is thus transformed in a way that resembles the duality transformations
and this forbids its gauging it if we want R-duality. Consequently, when considering the
: : o
gauged case, we must assume that only the matter vectors are gauged, i. e. fi' =
whenever one of the indices A, X, ) takes the value zero. There is no restriction, on the
contrary, on the gauge group of the matter vectors.
Let us rewrite the theonomic parametrization of the vectors and the definition of their

curvatures

Frn = FVa AV +i(AX 9 ean + Pukiy®vpe®) A VL,

Frn = dAy+ fa™Ag A Ax 4 eapLap? A8 + P Ly A p. (4.31)
These expressions show that, under the above conditions on the structure constants X0
the transformations 5F+“b =0 and §F =0 imply bA; = 0, 1. e. all the matter vectors
are inert under R-duality (they will have ghost number zero after the twist and this is
good in order to recover topological Yang-Mills theory).
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Summarizing, R-duality acts on-shell as follows

Aé’:-‘/a = A
b=y, ey,
§ FO+ab 4/\7‘01\};1-{—& , 5F0—ab — _4/\/‘0/\ F;—ﬂ ,
i \ (4.32)
BT = A, X, = -,
bz; = 2z;, 6z = —23°.

One easily checks that formulas (4.28), (4.29), (4.30) and (4.32) are still valid when all
the vectors but the graviphoton are gauged.

What about §4,? As in all duality-type transformations, §A4, should be meaning-
ful only on-shell (see section 4.2). In fact, (4.30) and (4.31) imply (using the explicit
expressions (4.11))

SFV, AV, = 4NAFF — NAFTD, AT, =
= 8[dAy + eap Lot AP + P Loy A +
—i(féj\??’aT/JBfAB + foi/—\fnawge’w) ANV,] =
= d6A, — AN Laeapyp™ AP + ANP Lae'Body Ao +
—di(NQ A Ad v P eap — Mot FaidiypeB) A V. (4.33)

Imposing d?6A4, = 0, we get

(NG FF — N" Fr® )WV AV + No* Laeapd AP — NP Lae'Bgy A g +
(NG Fi Ay P eas — Mo Fa Xy ppe'P) AV, = 0. (4.34)

Omne can easily verify that this is the equation of motion of the graviphoton as derived
from the lagrangian (4.25). Furthermore, the R-duality variation of the Ay equation of
motion is proportional to the Ay-Bianchi identity and viceversa. It is easily checked that
the other curvatures of (4.16) and the remaining Bianchi identities of (4.20) transform
correctly, so the last step in order to establish R-duality of the theory is the proof of
invariance for the remaining field equations.

The equations of motion of the vector bosons can be written in the following form

dS* +2fA% As A S* + RY =0, (4.35)

where S* is, by definition, the coefficient in the lagrangian of the field strength Fj,

namely

Sl\ — (NAZFg_ab N‘AEF—ab>V; A ‘/b +NAELE€AB’J]A A ¢B —./VAEZZEAB'IZIA A 'lpB +
+7:(./\7A2f2)\i47a¢86‘43 - ./V‘Azfg,'/—\i"ya’l,bBEAB) A V;], (436)

and R" is the remainder that comes from the T -variation of those terms that are
manifestly R-duality invariant and do not depend on the graviphoton Ay. Since one can
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easily verify that 65" vanishes whenever A # 0 (to this purpose, note that E(NEF;“I’) =
S(NEFz%) = 0 and use the explicit expressions (4.11)), then the field equations of the
matter vectors are all R-duality invariant.

In order to prove R-duality invariance of the remaining field equations, we note that
it is not necessary to study the entire lagrangian £ (4.25), because various terms can give
only contributions with the correct é-transformation properties. These are precisely the
R-duality invariant terms of £ that do not depend on A4,. On the other hand, since 5F""
depends on all the fields, we cannot neglect a term AL only because it is 5—1nvar1ant
(5AE = 0) if it contains Ay. Indeed, if ¢ is a field of charge g (5(;5 = q¢; we can
take ¢ # Ay since the Ag-equation has already been studied), then the contributions
to its field equation (i. e. %AC) must have charge —¢ in order to transform correctly

(SE%AE = —qé%Aﬁ) and it must happen that

0 0
AL = — 4.37
b.3g) 40 = -azgec (431)
For this to be true it is sufficient (and necessary, if AL has not a special form) to have
¢ = —q77 ¢ ) 4.38
b.55) # = -3 (4:38)

for all fields ¢’. However, this is not true for ¢’ = F2 and so, if AL depends on A, one
should analyze it explicitly. Summarizing, it is sufficient to test R-duality invariance of
the contributions to the field equations that come from the terms of the lagrangian either
containing Ay or not §-invariant. This part of the lagrangian is given by

AL = %(A?AEF,;fangab A NAEFT RS Veeaes VEAVEAVEATVT 4
—4i(NAEFFed - NAEFCaY AV AV A (Fs +
—i(fi A v Y ean + FaX v vpet?) A VL),

—2i—1—F0 A(eap®” AP — Py A i) +

Vva
2

__*F
av/a
1 _ _ _ _
+ZL‘(5AB¢A AP A ecpd® AP — By A g A P Ap) +

O A (Zi/_\?')’awBEAB - zi;‘il')’a"biEAB) ANVE +

"“53(212] BXvaths A VA PN Lywbp A VP +

—ZIZJEAB/\{X’YG’(#B AVEA GCD)\?’)’{,’(,[JD A Vb), (439)
where W and WY have been replaced by their explicit expressions in terms of z;, and

7' and, after replacement, the manifestly é-invariant terms not containing A, have been
deleted. At this point, the check that the contributions to the field equations of the
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fermions, the vierbein and the scalars transform correctly is rather direct and we leave it
to the reader. We thus conclude that

Proposition. N=2 supergravity minimally coupled to n vector multiplets gauging
an arbitrary n dimensional group (in which the graviphoton is not gauged), is on-shell
R-duality invariant'. ,

The possibility that R-duality exists also in the N=3 theory or in more extended
supergravity theories as well as the possibility to have it in N=2 matter coupled su-
pergravity in nonminimal cases (even if, we presume, it might not be suitable for a
topological twist) remain open problems. Here we have restricted our attention to that
internal U(1) symmetry that was relevant to our purposes, that is the topological twist.

We have so far neglected the coupling of matter hypermultiplets to N=2 supergravity,
since 1t 1s immediately verified that the generalization of R-duality due to the presence
of them is trivial. The scalars have 0 charge, however the left handed components of
fermions must have —1 charge and the right handed components must have +1 charge,
differently from the case of the other fermions so far encountered. The twist is by no
means trivial. As a matter of fact, it turns out that it is interesting as we shall see in the
next chapter.

4.5 Topological twist of the minimal theory

In this section, we discuss the twisted topological theory. First of all, let us note that the
gauge-free algebra (i. e. the minimal BRST algebra, with neither antighosts nor gauge-
fixings, nor Lagrange multipliers) is simply the tensor product of the gauge-free algebras
for topological gravity (3.20) and topological Yang-Mills (2.1), that is to say

s4 = —Vc—1,
se = ¢ lecl,
s = Vo—I[e9],
sp = —[c ¢,
sV = % — Dye® + P AV,
sw® = ™ — Dyect,
s€® = ¢+ e Aegy,
se® = pob g A g,
s = —Dod" +e® Aty — X Aey — P AT,
s = A —1% A,
sx™ = —Don® 4% At — x* A el
s = e At —p el (4.40)

!Note that for an N=2 theory without hypermultiplets, the statement that a certain vector is not
gauged is equivalent to the statement that it corresponds to a U(1) subgroup of the full gauge group.
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We have grouped the n matter vectors 4; into the column A = (4;). Similarly, ¥ = (¢),
é = (¢:) and ¢ = (¢).

The observables and the corresponding descent equations can be derived from the
hatted extensions of the identities d tr[FF A F] =0, dtz[R A R] = 0 and d tr[R A R] =0,
in the usual way (see section 3.3).

The BRST algebra of N=2 matter coupled supergravity can be found as explained in
section 3.2, that is to say by extending all differential forms to ghost forms. We report
only the final result, that, together with the translation ghosts €%, the Lorentz ghosts e,

the supersymmetry ghosts c.,c¢?, involves also the gauge ghosts .
sV = —De® + eV AV, +i(dy Ay + 81 Ayyp?),

se® = e® Aey+1ic4 A 'y“cA,
Swab — —D{iab + 2Rabcdvc€d + i(ec,&A + %5‘4)(27[ap.-1|b]c _ ,7cp.-1|ab) +

+7:(€C’l/—1A + %54)(27&1‘04 [ble ’chA]ab) + 4:G_abEAB'I,Z—)_4 A cg +
y U abed; T - T i 3 ;
+4G e gt A P+ Zsab‘d(%h Avec? + 24 Ay P)(2XiB1ar ™ — S Xic1aXC),
SEab = % A Ecb + RadeEcEd _ ?:EA(Q,Y[apA[b]c N ,chAlab)Ec +
__iEA(27[apA|b]c _ ")’CPAIGb)Ec + 2G—ab€4BaA Acg -+

—}-2GH—CHE)E_.U§;E‘4 AcP + i—Eadeé,g A '7CCB(2;\1'B"MAM - 5;5‘1,0,“)\1'0),

sy = —Dcy+ Z]ieab’)'ab Nipy ~ %Q Ney — é@(u,ﬂ Ay + 204V A e+
——2ie_4BGjb'y“(cB AVE 4+ 4B A eb) + —;—:(cBV; + ¢Baa):\"37“/\i‘4 +
+é7ab(CBVb + ¢¥pe’) (25\"57“)\1-‘4 - 5ﬁ35\ic7”}\ic) ,

scy = ?}f’:abﬁ’ab Ncy— %Q(o,n Aca+ pajape® A e’ — 2ie gGhy P Neb +

+%CB/_\iB')’aAiA Neq+ %’YabCB (25\”3’7“)\1:4 - 55;\i07a)\ic) A€l

s = —Det 4 Zlisab%b At 4 %Q At + %Q(o,n A7+ 2Piibva Aeb o
—2e* BG4 (cp AV 4+ p AEP) + ?i—(cBV; + Pel)Aipye A +
+%’Yab(CBVb + ¢B5b) (zj\iB,ya}\iA B 5};;\2,07%\{0) ,

sct = isab'yab Act + %Q(Dyl) Act + p]ibea Aeb — ZiGABG;b'y“cB A€’ +
—%cg:\ilgﬂy"/\i‘4 AEq + —;—%ch (2:\i37“)\i‘4 - 5)‘915\1@7“/\’-0) A eb,

sAy = —dcy — 21" Ag Aca — 2eapLap? AP — 26 Ly Acp +

+2FV, Ay +i(fiddy cPean + FaiXiytepe YAV, +



46 CHAPTER 4. TWISTED MINIMALLY COUPLED N=2 SUPERGRAVITY

(]L‘A/\l u"pBElB‘}’f/\z/\ 17 1,bBl':' )/\Ea,
SCy = _f/\ coNcy — 6,113L1\C A C — “lBL\c4 Acg + F\ e, N ey +
+i(f/i;\§&’7aCB€.~1B + ﬁ\i:\f,l'y“c;ge‘"LB) A Eq,
1 1 2 .
S’\i:l - _4_6.:11) A ’YabAi,‘.l - ‘2“ (1 -+ :l—’L—) Q(U,l) A AiA — Q(U,l)iJijl + VaAi,-\Ea -+
+7:Pi|a7acB €ip + G?ab”)’abc,\ + gCicy,

~ 1 , ; 2 . . .
SAIA — ZEab A '7abAlA 4 % <1 + ___) Q 0.1) A )\1,4 = Q(U,l)lj)\.]"-‘ + Va/\“lea +
+iP|i,’YaCB Ex\B + G;bl")/abc 4 + gOiCA,
sz; = —geakM(z) + Z; |a€ + Xe 1,
53 = —ge k™ (2) + Z e+ Nyc (4.41)

In Eq. (4.41) Qv,1) and Qu,1); 7 are obtained by the one forms Q and Q;’ upon substitution
of Vz; with Z1|ae + /\4C4, Vz, with Z'aa + /\ 4 and of A, with cy. In particular,
Q(U,l) = —:—(G Z,]a G Z]a)E - —(Gz/\llCA - G /\f_lc )

The BRST algebra of the twisted theory is the above algebra when one implements
the topological twist and the topological shift, as explained in section 3.4. From now on,
when we shall refer to the above algebra, this implementation will be understood. The
explicit twist is realized as follows

Yant = Yo Y — P,
Aiad — A Nidd _, idd | (4.42)

€AB — €54, B B

i

while the topological shift is obtained by
A —%ee“ + ot (4.43)

where e is the broker.

We now rewrite the most relevant twisted-shifted BRST transformations up to non-

linear terms. To this purpose, note that, When z; and z tend to zero, then a — 1;

J

Ly, Ly — 1; fij — 53; (9%)1' — 5f Gab — - ab ; Gab — —~5 . Let us define (note

that the gauginos are expressed in the N=3 notatlon namely /\“1, /\’ 1)

P = %'ﬂba‘-i(_a)iia’ 'Qz’ab = “e(&ab)‘é}i"pd‘ia "z = _e¢d:}5ﬁa
0" = 5es(@), O = —e()its, C=—eedlth,  (444)
A= %/\ia‘_i(&a)’\a%, Aiab = ——e(a'ab)‘”ldAiuA, Al = ~—8Aid‘453.
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Up to nonlinear terms, we obtain

sVe =% — de® + e AV, set = C°,
se® = —LFF®, sP* = —dC® + LF*SP AV,
sY% = —dC® 4 L=, s = —dC,
sC = 0, sCb = L=
sC =0, shi = 1dz, (4.45)
sA = iFeb sA' =0,
sAi = —de; + A, s¢i = —1zi,
sz; = 0, szt = ;A%
sAp = 19 — dey, scp = —3 +1C.

Here F'— ab _ (Fab—{- zEabch )

From Eq s (4.44) and (4.45) we can directly identify what are the topological ghosts,
the topological antighosts (up to interaction terms) and the topological gauge-fixings.
More generally, one retrieves the topological meaning of the twisted versions of all the
fields of the original theory. 1 are the topological ghosts associated to the graviton, A;
those associated to the matter vectors; the corresponding topological antighosts are 9%
and A, respectively. The ghosts for ghosts are C?, Fi® and z;, respectively for diffeo-
morphisms, Lorentz rotations and gauge transformatlons. z' are antighosts for ghosts,
while C% and C are extraghosts. Let us discuss the gauge-fixings. They involve com-
plicated expressions depending on the various fields (even in the topological o-model in
two dimensions [5] one finds convenient to impose a topological gauge-fixing depending
on the ghosts), but they can be equivalently read when all the ghosts are set to zero,
because in the minimum of the BRST action all the ghosts are zero by definition. To this
purpose, the interaction terms are negligible (they always contain ghosts). QOur expecta-
tions are confirmed: the theory does indeed describe Yang-Mills instantons Fi % = 0 in
a background gravitational instanton w™? = 0 (the Wick rotation to the Euclidean is of
course understood)?.

We note that there are more observables than those we have constructed by means
of the minimal BRST algebra (4.40). They involve also antighosts. In fact there is
another noticeable differential form which is closed but not exact and which could be a
source of nontrivial observables, namely the Kahler form K. In fact the Kahler potential
G exists only locally and K = dQ is only a local statement. The associated descent
equations still give observables, however so far we have not revealed their deep meaning
(if any). The Kéhler form and its extended version are constructed with both ghosts
and antighosts, while one usually uses only ghosts. We must remark that the topological
Yang-Mills theory we have found is not exactly Witten’s topological Yang-Mills theory
coupled to gravity. In fact, Witten’s theory is described by a flat Kahler manifold (and

o=

2Note that the BRST variation of the topological gravitational antighost 1*® contains, in addition to
the gauge-fixing w ™%, also the derivative of the extraghost C*®. As explained in section 3.6, this is due
to the redundancy of the gauge conditions w2 = 0.
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@ exists globally, so K is not interesting), while our theory corresponds to ?(%m

K cannot be globally exact [13], so it cannot be a priori discarded. One has
K =igiVz; AN VE + %g(G’iki‘\ ~ GUEM)(dAy + £ P Ag A App).

The descent equations derived from dK = 0 give the following observables

O(U) = K(O,E)’

Ogl) = /K(l,l)v
.

of) = [ K

g S

where v and S are one- and two-dimensional cycles, while

Ko = ig7(Zjae® + Xea) A (Zje® + Xpe®) +

and

(4.46)

(4.47)

——’L—g Gk — Gk} E,;BLAEA AcB + EABEAEA Ncg — FabEa NEp +
9 J 7 A

—i(fidiy Pep + furice?®) Aed),

Ky = 197 (Zjjee® + Xca) AVE +igd V(2 + Myc?) +
—2g(Gk7* — Gk (2ean Lath! A e + 26 P Ly Aep +
—2FV, Aey — i(fidity cBenn + Faidiytepe’®) AV, +

—i( AN Y eun + Faidyr vse'?) Aca).

(4.48)

The correspondence between the gauge-free algebra (4.40) and the complete BRST

algebra (4.41) is realized by the following identifications

wa — 7:(5,1/\70’40‘4-{-1;_4/\’)’aCA)*‘Aab/\Eb:JJa“f"",
qsa — iEA/\’)’aCAICG—!*"',

Xab — .SA.ab _ Aacecb + EacACb + 2Rabcdx/csd 4 i(ecw—:l + *‘/CEA)(z,y[apA[b]c —
_*_i(ec,lp—:l + V'CE:\)(Z,Y[aPAIb]C = ,.ch:l[ab) + 4:G_abEAB1ZA A cg +

) +

- 1 _ - . _ .
+4GH e pPt A + ZEade(% Avec? + 21 A1) (2Nip7aN ' — §3AicvaXC),

v = 2e4pLibt AP +2¢ B Ly Aep +
—2FV, N ey, —i(fIXIycPean + Fiid v cpe'®) AV +
—i( Iy yPesn + FiiM v vpet? ) Aea = =i+ -+,

¢ = —eaplie* AP —ePLiesNep+ FleaNey+
it A a - i 4 1
il fIX 7 P ean + FuXirene'®) Nea = —zzit oo,

ab

n — RabchCEd _ iaA(Zl_Y[apAlb]c _ ,ch,—llab)ec _ iEA(Z_Y[apA]b]c . ’)’CP,\Iab)Ec 4
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+2G7 e BE A cg + 2GT e gt AP +

< : < : 1
+?:*:6abr'd5_.\ A ")/CCB(2/\Z'B’7L1/\“‘ - 5?;/\1‘(;")’61/\7'0) - ———2—F(-j-ab T+, (449)
where A% A V, = i1b4 A %" and the dots stand for nonlinear corrections.
Finally, we write the gauge fermion ¥, the BRST variation of which is the quadratic
part of the N=2 lagrangian, after topological twist and topological shift.

U = —16i(B% —iw ™ +2dC°) Ahoe AVa AV +8Fy Ap® AV, +

2 1 » |
+ (gnabeab N E(A/[iab - 2iFi;b))‘lab) Ecdef VEAVIATVEAVT 4

4 L. :
+3ATdE A Eabed VENVEA VA, (4.50)

Here, B® and M™® are Lagrange multipliers (31/;‘”’ = B, sAiet = Mt 5B = 0,
sM™ = 0), while A? is such that A; = A2V.



50 CHAPTER 4. TWISTED MINIMALLY COUPLED N=2 SUPERGRAVITY



Chapter 5

Hyperinstantons

5.1 Introduction

In this chapter we discuss the topological twist of quaternionic matter multiplets [13]
coupled to N=2 supergravity. We shall not develop the entire formalism in full detail,
living it for a future publication, but we shall concentrate on some of its relevant aspects.
Along the discussion, we shall have occasion to outline some relevant properties of the
twisting procedure, that are visible only when dealing with hypermultiplets. These prop-
erties contribute to make the difference with the original procedure suggested by Witten
[10]. Consequently, we can recapitulate the whole twisting procedure in a completely
general way (section 5.2). After this, we analyze in detail (section 5.3) the instantons
described by the twisted version of N=2 quaternionic o-models (hyperinstantons), both
in the case when gravity is external and in the case when gravity is dynamical (thus also
modifying the gravitational instantons, due to the coupling to hyperinstantons).

5.2 The general structure of the twisting procedure

We already anticipated in chapter 2 that the twisting procedure as described by Witten
[10] needs some modifications in order to work correctly. First of all, as shown in chapter
3, the twist acts on the Lorentz group and does not touch the space-time indices. This
was straightforward in the case of pure supergravity, since all the fields are one-forms, i. e.
they are all on the same footing as far as space-time indices are concerned. Consequently
the twist on the Lorentz group works in exactly the same way as the twist proposed by
Witten. However, when studying the case of the Yang-Mills theory, one has to face the
problem that the vector bosons A; are one forms and Lorentz scalars, while the gauginos
A# and A are zero-forms and Lorentz spinors. If you are in flat space, you can mix
Lorentz and Einstein indices and so the twist can work in the way described by Witten.
However, Witten himself notes [10] that his method works only in flat space, even if
the result is valid in any curved space. If we follow our method, this problem is simply
absent. We remain in the most general curved space and act only on the Lorentz indices.

o1
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At this point, the twisted vector boson is still a one-form and a Lorentz scalar, while the
twisted left handed gaugino AY = 2A;_ (@ )4“ is a zero-form and a Lorentz vector. From
(4.45) you immediately read that the true topological antighost is not simply A, but
A = AV, 1. e. the object that you obtain from the simple twist (A?) must be contracted
with the vierbein V2. ); is a one-form and a Lorentz scalar, as desired.

In order to show that the contraction with a vielbein plays a substantial role in the
twisting procedure, one would like to exhibit a case in which this step is so important
that no result can be obtained without it (even in flat space). This is precisely the
case of the quaternionic o-model. The multiplet consists of (q*,(;,("), where {; and
¢! are the left handed and right handed components of the spinors (I = 1,...2m),
while ¢' are the coordinates of a 4m-dimensional manifold Q(m) (¢ = 1,...4m), with
a quaternionic structure, namely possessing three complex structures J*, =z = 1,2,3,
fulfilling the quaternionic algebra. Specifically Q(m) is a Hyperkahler manifold when
gravity is not dynamical (i.e. it is external), while it is a quaternionic manifold when
gravity is dynamical. As you see, no field has indices of SU(2);, i. e. all the fields
are singlets under the internal SU(2). Consequently, the usual twisting procedure acts
trivially on hypermultiplets: the Lorentz scalars remain Lorentz scalars and the spinors
remain spinors. Let us see how the contraction with a suitable vielbein can help when the
usual twisting procedure does not give directly the true topological ghosts (i.e. it gives
objects with the wrong spin assignment). Since the hypermultiplets are made of zero-
forms, the vierbein V@ cannot help us. Fortunately, however, there is a vielbein that does
the job, namely the quaternionic vielbein ¢!/ (4 = 1,2 is an index of SU(2);) [13]. We
can for example take the contraction 2’ ;&' ¢!, where I, is the inverse vielbein. After the
topological shift, this expression becomes ——eZ/ll C“ up to interaction terms, and is the
natural candldate to become the topological ghost (it is also the only ca,ndldate) Here is
another novelty: the topological ghost is constructed with the right handed components
of the fermions, not the left handed ones. This means that the R-duality charge of ¢/
is +1 and that of {; is —1, the opposite of what happens in the other cases that we
have studied. This is not completely surprising, because the reasoning of section 4.2 that
established the R-duality charges of gravitinos and gauginos was essentially based on the
effects of the usual redefinition of SU(2)r on the representations of the Lorentz group,
effects that are absent in the present case. From Ref. [13] one can convince oneself that
this is in fact the correct charge assignment.

The general feature of Q(m) is that its holonomy group Hol(Q(m)) is contained in
SU(2) ® Sp(2m). This SU(2) is nothing but SU(2); [13]. In the Hyperkdhler case, the
SU(2) part of the spin connection of @(m) is flat, while in the quaternionic case its
curvature is proportional to 0¥ = hik(J”‘)qui A dg?, where h;; is the metric of Q(m). In
both cases one can exploit another SU(2), which will be denoted by SU(2)g, namely the
SU(2) factor in the SU(2) ® SO(m) maximal subgroup of Sp(2m). We shall see in the
next section that the twisting procedure requires also a natural redefinition of SU(2)y,
namely

SU(2)L — SU(2), = diag[SU(2). ® SU(2)q)- (5.1)
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Summarizing, the complete twisting procedure can be divided in the following three steps.
Step A corresponds to the redefinitions of SU(2), SU(2)r and ghost number U(1),

SU(2). — SU(2), = diag[SU(2)L @ SU(2)q],

SU(2)r — SU(2), = diag[SU(2)r ® SU(2)],

U(l), — U(1), = diag[U(1)y ® U(1)],

“(L,R,1,Q)% — (L®Q,R®I)5", (5.2)

where Q denotes the representation of SU(2)gp. Step B is the correct identification of
the topological ghosts (fields with g + ¢ = 1 from g = 0, ¢ = 1) by contraction with
a suitable vielbein (if it exists). Step C is the topological shift, namely the shift by a
constant (times the broker) of the (0,0)g field coming from the right handed components
of the supersymmetry ghosts.

5.3 Topological quaternionic o-models

We want to analyze the instantons described by the topological varsion of N=2 quater-
nionic o-models. One would have to implement the twisting procedure of the previous
section on the whole BRST algebra, however, for our purpose of spotting the nature of
the instantons, reading the topological gauge-fixings, it is sufficient to consider only those
terms in the BRST variations of the fields that correspond to supersymmetries. These
terms of the BRST variations are

(Sqi = ‘i[(elh‘BCIJEBCJ"}"EAC[))
§¢; = UPIycte 01,
; §¢l = itMytcy, (5.3)

where Cp; is the flat Sp(2m) invariant metric while U&“ is the supercovariantized deriva-
tive of the quaternionic field ¢* with indices flattened both with respect to spacetime and
with respect to the quaternionic manifold via the corresponding vielbeins.

UM = VHUM B — P CT gl — ¢, (5.4)

The topological shift gives, up to nonlinear terms,

5¢ = ——2—32/{‘3[({‘4)1 = g
6(€a)[ = gufj(aa)aBCIJ7
5(¢H = o, (5.5)

From this equation we realize that the topological symmetry is indeed the expected one
for a o-model, namely the map ¢’ : Mypacetime — @(m) can be continuously deformed.
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The topological ghosts ¢ are exactly what we anticipated in the previous section. In
order to correctly identify the topological antighosts, we have to write the index I as the
pair (a, k), where a = 1,2 is the doublet index of SU(2)q and k = 1,...m is the vector
index of SO(m), such that C1; = C(qr)(s.) takes the form €,365. The index of SU(2)g
is written in the same notation as the index of SU(2);. This automatically implements
the identification between SU(2); and SU(2)g that produces SU(2)},. Now we write

€, 5 €. Baks a
6(Ca)pr = 55{57!(0“)&36675&! = 5“57"(0 ) €8+ (5.6)

— lu:-iak
- 27
antighosts ¢ = —e(o"‘b)ofje‘”(Cﬁ)ﬂv and (, = —ee*®({,)pk, which, under the Lorentz

group transform as (1,0) and (0,0) respectively. One finds

At this point we can introduce the vielbein EZ* (c%),. and the true topological

scrett = vt B aq
5 = VIE™9d), (5.7)

where [ab]* means selfdualization in the indices a,b. Thus we see that both ¢l

and
(s are topological antighosts (otherwise we would have not enough equations to fix the
gauge completely). In the previously studied cases, instead, the (0,1) components were
the only topological antighosts, while the (0,0) component permitted to fix the gauge
freedom of the topological ghosts (directly related to the gauge freedom of the gauge
freedom, which now is missing). Thus, the instantons described by this theory (which

we name hyperinstantons) are given by the following equations

V“[“E?]+k5uqi - 0,
VFE®9,d = 0. (5.8)

In a certain sense, Eq.s (5.8) is a condition of holomorphicity of the maps Mpacetime —
Q(m) with respect to the three complex (or almost complex) structures J* of @(m). For
this reason we find it proper to name triholomorphic a map g satisfying Eq.s (5.8). In
conclusion, in the same way as the instantons of topological o-models in D=2 are given
by holomorphic maps, those of topological o-models in D=4 are given by triholomorphic
maps.

If gravity is external (Q(m) is Hyperkahler) then the gravitational background should
be restricted by the need to have N=2 global supersymmetry, however, the proof that
the solutions to the above equations are indeed instantons works for any background and
is based on the following identity

[ 2eV5 98, 8 he; = 2 a d'ay/gl(VE B + (VBT 0,0 ] +
—47 [, Bk A ETTRE AV, AV, 5.9
M

where h;; = 2E¢FE%n,, is the metric of Q(m), while E°* = Edg. The form El*k A
EYM"E AV, AV} is proportional to Q5 AV, AV, (the coeflicient, which is a numerical matrix
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M2® antiselfdual in ab, is not important), where QF are the 2-forms introduced above.
(), are closed forms of Q(m), if Q(m) is Hyperkdhler. Consequently, in such a case the
last term of (5.9) is a topological invariant and this completes our proof.

In the case gravity is dynamical (Q(m) is quaternionic) there exist three forms w,
such that

dQly + €4 AQF = 0
1
dw, + —iezyzwy ANw' = . (5.10)

The definition of the curvatures changes drastically with respect to the case of pure N=2
supergravity [13], in the sense that the curvature p* of the right handed components of
the gravitinos contains a term that modifies the gravitational topological gauge-fixing,
after performing the topological twist and the topological shift. This means that the
gravitational instantons are no longer described by an antiselfdual spin connection. As a
matter of fact, p?* = Dy + %EABECD(O'CE)BCUJI AP where (O’I)AB are the Pauli matrices

and the resulting instantons are given by

W — %M;%I = 0. (5.11)

There exist only one matrix with the properties of M2, up to a multiplicative constant,
and this constant can be fixed by the fact that ]kf;”.Mjbnchzyz = 21 M2 (see for example
section 5 of [30]). The proof that the hyperinstantons that solve Eq.s (5.8) and (5.11)
are effectively instantons follows from the fact that the total kinetic lagrangian (Einstein
lagrangian plus o-model kinetic lagrangian) can be written as a sum of squares of the

left hand sides of the above equations up to a total derivative
1 .
Liin = Eabm’Rab AVEAVE - Eeabch“ AVEAVEA Vdg“”hijapql(?,,qf =

1 1

— 44 —ab % -

i(w 5 5

1 y )
—5eutes VEAVEATVE AV [4(VHeEY 0, q1)? + (VEE™8,4')] +

+total derivative. (5.12)

M2 W™ A (wy, — = Moe,w¥) NV, AV +

As an example, let us consider the simplest case, namely the case m = 1, Q(1) = H!,
with the standard flat metric. We have U}, = (¢*), i and E? = &7,
The hyperinstantons satisfy
a +
vHeg,¢ft = o,
Vio,q" = 0. (5.13)

If we further specialize the example, namely we choose flat spacetime metric, we have

a[uquﬁ = 0,
o.q" = 0. (5.14)
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If you imagine that g, is an abelian four vector, the hyperinstantons are the selfdual
solutions in the Lorentz gauge. But now §,¢* = 0 is a true equation and not a choice
of gauge. In particular, all harmonic forms ¢ = g,dz* are solutions (they would be the
residual gauge freedom in the interpretation of g, as a four potential and so they would

not be true solutions).
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Conclusions and Outlook

Having shown that twisted N=2 supergravity is a formulation of D=4 topological gravity
it remains to be seen which of the N=2 supergravity correlators are topological and how
they are accordingly calculated using some version of intersection theory on instanton
moduli-space. We postpone this investigation to a future publication.

We have seen that, with appropriate procedure and relying on an appropriate sym-
metry (R-duality), all N=2, D=4 theories can be topologically twisted, just as it happens
of N=2 theories in two dimensions. This possibility introduces a set of new topological
field theories, each of which describes intersection theory in the moduli-space of certain
interesting geometrical structures. Some of these structures are, as far as we know, new
or at least not well estabilished in the mathematical literature.

To be specific, let us enumerate these theories.

i) The twist of pure N=2 supergravity yields a formulation of topological gravity
where the instantons are the metrics with self-dual spin connection.

ii) The twist of N=2 o-models in flat background, whose target spaceis a Hyperkahler
manifold, introduces the notion of a topological hyperkéhlerian o-model, where the appro-
priate instantons are the triholomorphic maps (hyperinstantons). Correlation functions
in this theory will be intersection integrals in the moduli-space of triholomorphic maps:
a subject that to our knowledge has not been so far developed and certainly deserves
careful investigation.

iii) The twist of N=2 supergravity minimally coupled to vector multiplets yields a
topological theory where the instantons are gauge instantons living in the background
of gravitational instantons. The moduli-space of these structures is the arena where
correlation functions of our theory have to be calculated. Making an analogy with the 2-
dimensional world, our theory stands to topological Yang-Mills theory as the topological
matter models coupled to topological gravity stand to pure topological minimal models
in D=2.

iv) Similarly, twisting N=2 ¢-models coupled to N=2 supergravity, one obtains a
topological o-model where the target space is quaternionic and which interacts with
topological gravity. The instantons of this theory are interesting objects. They corre-
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spond to the quaternionic analogue of triholomorphic maps living in the background of
generalized gravitational instantons. The space-time spin connection is no longer selfd-
ual but its antiselfdual part is identified with the SU(2) part of the spin connection on
the quaternionic manifold. This is a phenomenon similar to the embedding of the spin
connection into the gauge connection occurring in string compactifications.

v) Twisting the complete N=2 matter coupled supergravity, one obtains a topolog-
ical theory where all the above instantons are fused together: gravitational, gauge and
hyperinstantons. To our knowledge, no study of the moduli-space of such structures has
been attempted.

vi) Alternatively, one can also study the twist on N=2 hyperkahlerian o-models cou-
pled to N=2 super Yang-Mills. In this case we have the fusion of gauge and hyperinstan-
tons.



Chapter 7

Appendix

Notation and Conventions

In this appendix we give the notation for spinor algebra. The algebra of y-matrices is

represented by
m o 0 o™
"= ( sm 0 ) ) (7.1)

(™)5* = ¥e2B (™) 45, (7.3)
and
(:'12 = €21 = 1, €12 = 621 = —1. (74)
A Lorentz vector v™ is represented by
Vag = (Gm)advmy (75)
and the inverse formula is )
v = é—vad(c‘rm)d“. (7.6)
An antisymmetric tensor F'® is represented by
2 1 a —a 1 al _a -—B —ab\&
Feb = S (B 4 F7) = S (f52(0™)a” + F775(3)%5), (7.7)
where
a 1 '
F:t: b _2_ <Fab T %Eabchcd) ,
1 A ~ac
(6®)e’ = z(o'ga#aﬁ — 0057,
(5“1’)"‘[; = Z(&“““a(ié — &baaagg) (7.8)
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A generic spinor 1,4 is written as

e ()

Ya= (P4, Yad), (7.10)

and indices are raised and lowered by means of €*® and . See also [31].

while
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