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INTROD N

~ In this manuscript techniques of 3-dimensional topology are used to (try to ) prove the

following results.

Proposition 1 Let GeDiff™ (S3) be a finite group of diffeomorphisms acting nonfreely on
S>. Then the mapping class group of the orbifold S3/G, MC+(S3/G) , is a finite group.

(here MC+(S3/G)=homeomorphisms of the orbifold S3/G modulo isotopies which fix
the singular set , see paragraph 0) . -

Corollaries 1.6 and 1.8 Exists a finite group FcDiff+(S3/G) which projects on
MC+(S3/G) with kernel either trivial or Z, .

As an immediate consequence one has

Corollary If G is a finite group of diffeomorphisms which acts nonfreely on 83, any
diffeomorphism f:S3—83 for which fGf-1=G is G-equivariantly isotopic to a diffeomorijhism

of finite order .
If GcSO@) , a first step towards a computation of MC+(33/G) is given by the
following

Proposition 2 Let G be a finite group and let F=U Fix g ge G g=identity F=¢:

if SF is Seifert fibered , then MC(S>/G)=NG/ZG.G

if S°-F is hyperbolic ( and not Seifert fibered ) then MC+(S3/GENG/G
(where NG and ZG are the normalizer and the centralizer of G in SO(4))

The first obvious question looking at the above statements is why one assumes that G
acts nonfreely. One has to distinguish two cases . If we know that a group with free action is

conjugate to an orthogonal group , I believe that the above results continue to remain true for it



(certainly prop. 1 is true ). If it is not known if the given group is conjugate to an orthogonal
group , then I believe that proposition 1 is unknown .
It is conjectured that
finite subgroups of diffeomorphisms in the 3-sphere are conjugate to orthogonal groups.
The conjecture has a positive solution if one considers groups with nonfree action ( this is
a special case of a more general result of Thurston ,see theorem 0.3 below ) . In the free action
case the problem has only partial positive answers ( for an account of this case see [Thomas]).
We will use Thurston's result (in it's general form ) only in the proof of proposition 2.
The reason for which in all the manuscript we assume that F(=U Fix g geG g#identity ) is

nonempty is that in this case S*-F is a Haken manifold .

Here I try to explain what roughly Haken manifolds look like .

Consider for a moment compact surfaces . Except in the case of the disk and of the
sphere, all surfaces have 1-dimensional submanifolds which are homotopically non trivial ,
which I call incompressible curves . If one considers a torus , for example , and cuts it along a
meridian and a longitude , one gets a quadrangle . Then one can imagine to embed this
quadrangle in the plain , to give it a geometric structure ( in this case a flat one ) making the
opposite sides of the same length (i.e. to make it a rectangle ) . Finally one can reglue all back
to obtain a geometric structure on the torus . This process (i.e. to cut along incompressible
curves and to embed somewhere the poligon obtained in this way ) can be repeated with all
other surfaces different from the sphere and the disk.

In 2-dimensional topology it is easy to prove that a compact surface with no
incompressible subcurves is either the sphere or the disk . But suppose for a moment that this
result where not known . Suppose that the classical uniformization theorem where not known.
Then it would always be possible to prove along the lines which follow a uniformization
theorem for surfaces which ,first , are such that all their subsurfaces with no incompressible

subcurves are balls or disks , and ,second , contain incompressible subcurves :



(i) one could prove that it is possible , cutting the surface along a finite number of
incompressible curves ( a "hierarcy" ) to obtain a finite set of disks and spheres (this is the
topological part of the proof ) ;

(ii) then one could give geometric structures to the (topological ) disks and reglue all
back, taking care that the geometries overlap well on the common sides of couples of disks (this
is the geometric part of the proof ) .

The topological part of the proof here is to cut along well chosen curves to obtain simplier
surfaces . If one cutted along compressible surfaces one would never simplify his surface.

Haken manifolds are the 3-dimensional version of the situation described above . They
contain incompressible orientable surfaces ( a translation of the concept of incompressible curve
in a surface ) ; they are irreducible ( i.e. something which rules out the presence ,for example ,
of fake cells ) .

Haken manifolds are "uniformizable" and the philosophy is to cut them along
incompressible surfaces to obtain a set of balls , to give to the balls a geometric structure and to
reglue all back ( geometrization theorem for Haken manifols ) .

We will use heavily the fact that Haken manifolds are geometrizable (along with other
properties, for example the fact that , for orientation preserving homeomorphisms , homotopy
and isotopy relations coincide ).

Another obvious question is what happens in the two dimensional case of our
propositions . We will assume the following

Theorem Let GeDiffS? be a finite group . then MC+(S2/G) is finite and the
epimorphism Diff(S%/G)-MC*(S2/G) admits a section . Moreover G is conjugate to an
orthogonal group and , assuming GcO(3) , one has an isomorphism
MC+(82/G)=NG/<ZG,G>

(NG and ZG are the normalizer and the centralizer of Gin O(3) ).

Finally we give sketch of the proofs .



Proposition 1 If F=U Fix g geG g#identity §3-int N('F%_where N(F) is a tubular
neighbourhood of F, is a Haken atoroidal manifold (by the positive solution of the Smith
conjecture and it's generalizations contained in [Smith], and by equivariant loop theorem ). Two
cases can occure.

S3-int N% Seifert fibered. In this case the singular set F' of the orbifold S3/G is
formed by circles . This implies that the stabilizers of balls in S3 do not contain subgroups
isomorphic to As . Therefore , without the assumption of Thurston's claim (here stated as
theorem 0.3 ) S3/G is irreducible both as a manifold and as an orbifold . The Seifert structure
in (S3-int N%be chosen to extend in a foliation of circles in all S3/G ( if this does not happen
at the "first attempt " one uses [Heil] to show that , by the irriducibility of S3/G and the fact
that as an orbifold (and consequently as a manifold) has finite first homotopy group Jindeed it is
G, S3/G is a lens space where F' is formed by cores for a toral Heegaard splitting . Therefore
also in this case one concludes that the original foliation on @3-int N%ould be chosed to be
extendable) . Then , by a result of Davies-Morgan (remark 1.5) , S3/G is a Seifert fibered
orbifold .

We show that in each mapping class there are fibre preserving homeomorphisms . Then
we use the analysis of the mapping class group of a Seifert fibered manifold given in ch 9 of
[Johannson] , to show that MCHS3/G)=MC(0) , where O is the base orbifold. As O isa
spherical 2-orbifold , MC(O) is a finite group.

($3-int N(F}Gi_s hyperbolic and not Seifert fibered .

If the volume is finite the result follows easily from Mostow rigidity theorem (every
homeomorphism is homotopic to exactly one isometry ) , a theorem of Waldhausen (which
asserts that in Haken manifolds homotopy and isotopy relations coincide for orientation
preserving homeomorphisms) and elementary hyperbolic geometry (in a hyperbolic manifold of
finite volume the group of isometries is finite ).

In the case of infinite volume one can double the manifold to obtain a Haken atoroidal

manifold whose nonempty boundary is a union of tori , as in theorem 2' of [Zimmermann] . If



the double is hyperbolic one reduces to a finite volume case which can be worked out as above .
If the double is Seifert fibered , then ,by classical theorems on incompressible surfaces in
Seifert fibered manifolds (stated for example in ch VI of [Jaco] ) it follows that the double is a
surface bundle over S1. It follows easily , considering the concrete situation in which we are
involved , that $3-int N(F) is a handlebody of genus 2 . This implies that S3/G hasasa
manifold a Heegaard splitting of genus 2 preserved up to isotopy by orbifold homeomorphisms
£:53/G—83/G . This induces a Heegaard splitting in S3 preserved by the liftings of our f's
.Then the result follows easily .

Moreover a necessary step before all the above work is to show that the restriction map
gives a well defined immersion MC+(S3/G)—>MC*(S3/G- int N(F)) .Here we sketch our
strategy for the injectivity :

if f:S3/G——>S3/G preserves M'=S3/G- int N(F) and fIM' is isotopic to the identity,
then floN , N=N(F", is isotopié to the identity . After an easy isotopy , assume
floN=identity. Then we define an isotopy in N constant in oN after which fIN=identity.
Then, considered the isotopy in M' which makes fIM'=identity , we extend itin N (assuming

without discussion that the isotopy in M' is standard in some sense in oM.

In corollary 1.6 we show that if M' is hyperbolic then MC+(S3/G) is realizable (i.e.
embeddable in a natural way) in Diff+(S3/G). First we realize it in MC+(M') .If we are not in
the special case of the handlebody of genus 2 this step is immediate (each mapping class
contains exactly one isometry (more exactly the extension also to the boundary of an isometry
defined in the interior : the group action of the isometries in the interior extends naturally also to
the boundary) .Then associate to each mapping class it's isometry ) . In the special case we
used the following geometric argument : first we realized MCH+(S3/G) in Diff+(dM") asa
group of isometries for some hyperbolic stucture (using [Kerckhoff]). Then as all these
isometries are extendable in M', we used uniformization theorem by Schottky groups (which

says that the hyperbolic stucture in 9M' comes from a hyperbolic stucture defined in all M),



and we concluded that one can extend the action on the boundary in a isometric action in the
interior of M' (using the fact that conformal homeomorphisms on the 2-sphere are naturally
identified with isometries in the 3-dimensional hyperbolic space) .

Having realized MC*(S3/G) in Diff*(@M') , one has a finite group of diffeomorphisms
" acting on odN(F') with the diffeomorphisms singularly all extendable . I consider a finite
cover X—N(F) where X is a union of handlebodies with empty singular set. Then I lift
I'cDiff+(dN) ina {I\"chiff*'(aX) and I extend it's action in the interior of X, with no change
of the action of G (by means of equivariant loop theorem , one considers a G-equivariant
hierarcy in X . Then one extends the action on this union of disks, cuts X along these disks ,
reduces to the case of a union of balls , extends the action in the interior of the balls and reglues

all back). The extension of I’\’J induces an extension of I".

In corollary 1.8 Ireduce to the case where G=SO(4) and G preserves the "standar_d"
Hopf fibration and it's orientation , let's denote it by @ (I call it standard here : I don't know if
this it's standard name).If I indicate ®P={elements of SO(4) which preserve @} .

¥

I use the sequences
15Z,—PP—-0(2)xSO(3)—1
(83) 1-S50(2)x{1}->0(2)xS0O(3)—0(3)—>1

which show how fibre preserving elements induce transformations in S2 (up to
conjugation ). The second sequence splits One has MC+(S3/G)=MC(S3/G,) by proposition 1
(where G, comes from the first sequence where G projects to a subgroup of
G1xGocSO2)xSO(3) ) . Then , first I realize MC+(S3/Gﬁ in a I'cO(3) and then I embed
I'cO(2)xSO(3). Finally I lift T in fcd?P . By the commutativity of the following diagram the
result follows

1-Z7— - T

12

¥
MCH(S3/G)=MC(S3/G,)

Q



Proposition 2 Lift the group I of corollaries 1.6 and 1.8 in a finite T cDiff+(S3) .
Then, by Thurston's claim I assume , after a conjugation , 'cSO(4) . Moreover I assume that
G is fixed by this conjugation . Then NG—MC*+(S3/G) is surjective and on has to fin it's

kernel.
For $3- int N(F) Seifert fibered , the kernel is <ZG,G> and one reduces to the 2-
dimensional case to prove it .

For S$3-int N(F) hyperbolic then NG/G acts as a group of isometries in S3/G-intN(F")
to conjugation ( if the action is free this follows from uniformization theorem for Haken
manifolds; for not free actions it follows by Thurston's claim) . As nontrivial isometries are
homotopically nontrivial ( byelementary hyperbolic geometry the centralizer of 71(S3- int N(F)
in PSL(2,C) is trivial) the kernel is exactly G.

Preliminaries 0 Here are collected definitions and statements of theorems of 3-dimensional
topology which will be used later . General references for what follows are [Jaco] , [Scott] ,
[Smith] , [Takeuchi] , [Thurston] , [Waldhausen] . |

Orbifolds Here are presented only 2-orbifolds without reflection points and orientable 3-
orbifolds .

2-orbifolds Are pairs O'=(I0',Z0") ,where 10'l is a surface , ZO' is a discrete subset
of points of 10"l , called singularities , labelled with positive integers , the indices of singularity

Orientable 3-orbifolds Are pairs O=(I0l,Z0) ,where [OI is an orientable 3-manifold ,ZO

is an embedded graph in 10! ,whose points are called the singularities of O, whse edges are
labelled with positive integers , the indices of singularity . Moreover ,2O is locally of the form



group , i.e. if AsaT, then by the positive solution of the Smith conjecture and by others results
which generalize it (contained in the book [Smith]) I' is conjugate in Diff+(D3) to an
orthogonal group . If AscT, the same result follows from the claim of Thurston.

(b) (see[Takeuchi]) By (a) O is irreducible . Let O'cO be an orientable incompressible
suborbifold and let Z=p-1(0".If £ were compressible , as it's components are not spheres ,
it would have compressing disks . By the equivariant loop theorem of Meeks and Yau this set
of disks could be chosen to be G-equivariant , i.e.for ge G either gDND=¢ or gD=D . These
disks would project into compressing discal orbifolds for O'.

A homeomorphism f:0—Q"' (in the orbifold sense ) is a homeomorphism f:(101,20)
—(l0',Z0") which preserves the indices .

Two homeomorphisms f,g:0—0O' aie homotopic ( isotopic ) if exists a homotopy

(isotopy ) F:(I0L,Z0) xI —(I0',Z0" of f and g as maps between pairs ) .

Theorem ( 0.2 ) ( [Waldhausen] ) Let M be a Haken 3-manifold . If f:M—M is

homotopic to the identity and is orientation preserving , then it is isotopic to the identity .

Seifert fibered orbifolds An orbifold O (3-dimensional , orientable ) is Seifert fibered if

it is covered by 3-dimensional suborbifolds {Oj} (i.e. their boundaries are in general position
with ZO and ZO;=XO0N0;)
with O; =T(p,q)/G where T(p,q) is the fibered solid torus obtained cutting D2xS!1

along D2x{1} and regluing back after having rotated one end through q/p of a full turn and
G is a finite fibre preserving group of diffeomorphisms ( T(p,q) and G vary with O; ).

Moreover , the foliations defined locally , define a global foliation in O .

A 2-suborbifold O'cO is boundary parallel if |O'I can be isotopically moved in a

component of 90! remaining at any step in general position with ZO .



A hyperbolic orbifold O has its interior homeomorphic (in orbifold sense) to H3/T (H3
is the simply connected model of the hyperbolic geometry , I is a dicrete group of isometries

for H3 ) and is not Seifert fibered .

In a hyperbolic orbifold O there are no essential toral suborbifolds (i.e. 2-orbifolds
finitely covered by tori , which are incompressible in O and are not boundary parallel )
( Of course the above definitions remain valid if one replaces everywhere the word

orbifold with the word manifold )

There are , up to isometry , only eight 3-dimensional simply connected homogeneous
spaces which have locally isometric (complete ) quotients of finite volume :

$3,R3, SL(2,R) , Nil , S2xR , H3 , Sol .

A compact manifold whose interior is is locally isometric to one of the above spaces (with
a complete metric ) is said to have a geometry . Except T2xI , which is both euclidean and
hyperbolic , all geometrizable compact manifolds have at most one geometry .

A manifold turns out to be Seifert fibered iff it is the quotient by a group of isometries of
one of the first five geometries in the list .

Geometrization theorem for Haken manifolds Let M be a Haken manifold .Then either
O=Sol/T" (T'clso(Sol) where Sol is the 3-dimensional non abelian solvable group which
covers compact homogeneus spaces , see [Scott] ) or M admits a canonical ( i.e. a ,maybe
empty , maximal and unique up to isotopy ) family of essential 2-dimensional tori which

subdivides M in pieces which are Seifert fibered or hyperbolic .

The geometrization theorem for Haken manifolds says that Haken manifolds admit a
"canonical" decomposition in geometric pieces. Thurston conjectured that this might be true for

all 3-manifolds.



I state finally the claim of Thurston mentioned in the introduction (all mistakes in the
formulation are of my responsability : I know very indirectly what Thurston claims )

Theorem 0.3 Consider a finite group of homeomorphisms (sufficiently regular ) G that
acts on an irreducible manifold M and assume that exists ge G g=identity with dimFixg>0
.Then M admits a canonical decomposition in geometric pieces which is G-invariant.

Restricted to the geometric pieces the elements of G are isometries .

Proof of proposition 1

Let F=UFixg geG geidentity, F'<S3/G it's image , N(F") a regular neighbourhood
of F', M'=83/G-int N(F") . '

Lemmall
(i) For each class in MC*(S3/G) exists a representative f such that f(M")=M',and the
restriction map MCH(S3/G)—=MCt(M") [f]—=[fIM] is well defined .

(ii) The restriction map is injective .

Proof (i) Consider g:53/G—S3/G a homeomorphism .As g(F")=F' and by continuity ,
exists a regular neighbourhood N' of F' with N'c int N(F)u int g(N(F)) . As
dM'=0N(F) and g(@M") are peripheral in S3/G-int N', exists a regular neighbourhood N"
of F' with N(F)uUg(N(F))c int N" . Then oM’ and it's image by g are two incompressible
surfaces in an I-bundle over a closed surface . By [Waldhausen] goM' can be moved on oM’

by a global isotopy in N"-int N' which is constant in d(N"-int N') .
If £,g:53/G—>83/G are isotopic and both preserve M', their restrictions in M'- are
homotopic and , by [Waldhausen] , isotopic in M'.

(ii) Consider f:S3/G—S3/G and assume fIM' isotopic to the identity .

CLAIM f, after an isotopy , can be assumed to be the identity in N(F') .

Proof of the CLAIM floM' is isotopic to the identity in oM’ . Extending the isotopy in
an isotopy in all S3/G with support in a thin nbhd of dM', we assume floM' equal to the



identity . Consider N=N(F") and forget the rest . We will show that exists in N an isotopy
between f and the identity constant on the boundary oN and which preserves F.

We discuss the case of a component of N which is a solid torus ( and which we call
again N). ‘

1. Fix a section 1-punctured disk DcN .

2. If f(D)=D then f is isotopic to the identity in D by an isotopy constant on aD
which preserves the puncture . Then cut N along D to obtain a couple (B,F), where F isan
unknotted segment in a ball B (unknotted becouse B retracts on F,as N was a regular nbhd
of the related component of the singular set ) . Now (B.F) is isomorphic to D3,z axis),f is
equal to the identity on the boundary of B and , arranging that f(0)=0 (here we identify
conjugate situations ) , one can apply the Alexander trick f(x,t)=t f(x/t) to obtain an isotopy
between f and the identity in (B,F) constantin 9B . Finally glue back to obtain the wanted
isotopy in N.

3.If f(D)#D I procede as follows . First I assume the following "principle” :

PRINCIPLE. If two surfaces intersect , one can always move slightly them in order to
make them mutually transverse , respecting whichever reasonable conditions on has for this
move .

Therefore assume f(D) and D to be transverse . If f(intD )N int D=6 , then DUf(D)
is a sphere and bounds a ball B in N. Then (B,BNF") is isomorphic to D3,z axis ) .(1e.
BAF is unknotted in B . This follows from the fact that , given k=kj#tk; , if k is unknotted
,then k; and ko are unknotted .Apply this to our case , imagining N immersed in S3 asan
unknotted torus . Consider the fibration in D3 (i.e. B) defined by the z-direction and consider a
z-parallel isotopy which sends the hemisphere f(D) onto D .Extend in an isotopy defined in
all N with support in a nbhd of B with the associated time dependent field tangent to F' in
F .

If f(intD ) int D #4 , then it is a finite union of circles . Consider the inner circles .

These are boundaries of disks in f(int D) and intD . By anisotopy rel F' itis possible (with



the above procedure ) to erase these inner intersections (see the picture ). After a finite number

of moves , one reduces to the case f(int D)nint D =¢ .

r

o)

We now discuss the case when N is a handlebody of genus greater than 1. Consider a
hierarcy of 1-punctured disks for N . Fix one disk D . Then , working exactly as before, make
f=identity in D . Then cut N along D and do the same for another disk and so on . One
reduces ,up to isomorphism , to the case f:(D3,X)—(D3,%) , where X is formed by the three

coordinate axis and f=identity in oD3 . Applying'the Alexander trick , one obtains an isotopy

between f and the identity constant in the boundary and relX in D3. Then , reglue all back .

mma 1.2 :
(i) S3/G is an irreducible non Haken orbifold

(i) 1S3/Gl is an irreducible non Haken manifold with finite first homotopy group .

(iii) M' is an atoroidal Haken manifold . 4

Remark (i) and the general case of (ii) depend on the theorem 0.3 , i.e. on Thurston's
claim. For propositon 1 only (iii) and a special case of (ii) , which don't depend on the
mentioned theorem of Thurston , are really important .

Proof (i) As S3 is irreducible and non Haken (i) follows from thm 0.1

(ii) 1S3/Gl is irreducible :

Given a sphere ScIS3/Gl, put it in general position with F', to obtain an orbifold
O'cS3/G. If O' is a spherical orbifold , by (i) (i.e. by irreducibility of S3/G) it bounds a

ballic orbifold and therefore S bounds a ball . O' cannot be a flat or a hyperbolic sphere with



three punctures, for otherwise it would be an incompressible suborbifold of $3/G_(indeed in
this case all closed loops on Q' are already compressible in O') and by (i) we know that
S3/G it is non-Haken . Assume by induction that if a punctured sphere has strictly less than n
punctures then it bounds a sphere . Suppose that O' has n punctures : considered a
compressing disk for O', make surgery along this diskand consider the two resulting
suborbifolds O" and O™ .These are spheres with strictly less than n punctures and therefore
both bound balls , say B" and B™, inv IS3/GI . These balls are either disjoint or one of the
two contains the other . In any case it is easy to find a ball B' with 0B'=lO'l.

IS3/GI has finite first homotopy group . Indeed one has an epimorphism
1t1°fb(S3/G)(_=_G)—m1(IS3/G) .

(This last epimorphism can be explained as follows.

Every orbifold O of any dimension has a first fundamental group of homotopy defined
roughly as follows :

1. O is simply connected , i.e. 719(0)=1 , if there are no proper regular branching
coverings O'—20.

2. for every orbifold O exists a regular branching covering O—0O where O is simply
connected and which is unique ( in the same sense one has unicity and iniversality for coverings
in elementary topology ).. Then 1t1°fb(0) is the group of deck transformations for this
covering .

If 10! is a manifold , on considers the orbifold (O',Z0O") defined as follows :

(a) p:l0'1-I0! is the universal covering of 101 .

(b) ZO'=p-1(ZO)

Then remains induced a regular covering p:0'—0O and one has the following commutative

diagram of coverings :



( see [Smith] lemma 1.1 ch.X and [Thurston] ch.13) )

(iii) M is irreducible becouse any embedded sphere bounds a D3/T"in S3/G which has
no singular points , for it's boundary is a nonsingular sphere (if D3 had singular points ,
also it's boundary would have punctures . Indeed , if yeI" has nonempty fixed set, if it is
contained in intD3 , this set is a union of circles . But , assuming that y has prime order p,
this possibility is ruled out by the following inequality.( with coefficients in Zj )

O<rank H (Fixy)< rank H;(D3) +rank Hp(D3)=0 ).

As dM=#¢ M'is Haken ([Hempel] lemma 6.7 )

The only nontrivial part of (iii) is to show that M' is atoroidal . Let TcM' be an
incompressible torus . By the proof of thm 0.1 (ii) , there is a compressing (punctured) disk
for T in S3/G . Making surgery along this disk one obtains a 2-punctured sphere in S3/G.
As the stabilizersof the components of it's counterimages in S3 are cyclic ( and therefore they
are not isomorphic to As ), then this 2-punctured sphere bounds a ball whose nonempty
singular set is an (unknotted ) segment . This segment is contained in a circular component of

F' and therefore T is boundary parallelin M'.

By the geometrization theorem :
Corollary 1.3 M' is either seifert fibered or a hyperbolic manifold

Lemma 1.4 MCH(S3/G) is a finite group .

Proof M'is either Seifert fibered or hyperbolic . We distinguish two cases :

(1) M' is Seifert fibered .

CLAIM: M' admits a Seifert fibration @' which extends to a Seifert fibration @ in
1S3/Gl with Fc® .

Remark 1.5 By prop. 7.11 ch.X in [Smith] this implies that there is a Seifert fibration in
the orbifold S3/G which induces @' in M'.

Proof of the claim If a given Seifert fibration @' on M' does not extend to all IS3/Gl,
then by [Heil] 1S3/Gl=L#...#Lp#(S1x52)28+0-q-1 where :



# is the connected sum operation ,

L; are nontrivial lens spaces and m is not less the number of singular fibres of M',

n is the number of components of F',

n-g>0 is the number of components of F' for which a meridian of a tubular
neighbourhood is homologous to regular fibres and g is the genus of the orbit 2-orbifold
IS3/Gl is irreducible ( as the singular set is a union of circles , the stabilizers of G-invariant
ballsin S3 are not As's, therefore the stated irreducibilty of 1S3/Gl follows as a special case
of lemmal.2 (ii), see the remark after the lemma ) . This implies g=0 and n-q=1. Therefore
IS3/Gl is a lens space . If k' is the only component of F' where the fibration @' of M' does
not extend , then 1S3/GI=(1S3/GI- int N(k) )UN(K') is a Heegaard splitting . This liftstoa
Heegaard splitting by tori in S3 and therefore the Seifert orbifold $3/G- int N(k") is finitely
covered by a solid torus without singular points . Then the orbit orbifold of $3/G- int N(k')
has to be a punctured disk , i.e. S3/G-int N(k") has at most one singular fibre . But then F is
formed by one or two connected components which are cores of a toral Heegaard splitting of

IS3/Gl and therefore the claim is proved .

By remark 1.5 S3/G admits a Seifert structure and fibres on a spherical 2-orbifold O .
O is either a 2 or 3 punctured sphere or a 1 punctured projective space .
If O isa 1 punctured projective space , there is a Seifert fibration in S3/G whose orbit
orbifold is a 3 punctured sphere of type $2(2,2,n) . Indeed M=KXI ( the twisted I-bundle over
the Klein bottle ) . KXI admits two Seifert fibrations (up to isotopy ) which come from the
only two fibrations in the double TxI which are invariant for the deck transformation . For one
of these structures KXI is an S!-bundle over the Moebius band . For the other KXI fibres
over a disk with two singular fibres of index 2 ( singular fibres are two disjoint 1-sided curves
on the zero section KcKXI , up to isotopy ) . Both Seifert fibrations extend to all IS3/Gl for , if

fibers where meridians for N(F'") , then one would have a manifold with infinite fundamental



group ( indeed , lifting the Dehn surgery in T2xI , one would obtain $2xS!) which is not
possible by lemma 1.2 .
We will refer now to [Johannson] chapter 9 .
Let H*(S3/G)= fiber preserving homeomorphisms modulo fiber preserving isotopies .
One has a natural well defined immersion H+(S3/G)—MC*(S3/G) . To see this it will suffice
to show that if £:S3/G—$3/G is fibre preserving and isotopic to the identity in S3/G , the
isotopy can be chosen to be fibre preserving .
This can be shown as follows .
1. If £:0—0 is a fibre preserving homeomorphism isotopic to the identity , where O is
a Seifert orbifold with 10! a solid torus and ZO is either empty or a core circle , we show
below that the isotopy can be chosen fibre preserving .
We have a fibraion O—D(n) and
050
11
D(n)—D(n)
¥

f is isotopic to the identity (here n=r.p where r is the index of singularity of 2O and
p comes from the isomorphism as Seifert fibered manifolds , T(p,q)=IOl ). Consider an isotopy
F: D(n)xI->D(n) . Liftitin a Zp—equivariant isotopy ﬁl D()xI—=D(r) between a lift of f and
the identity , for the covering D(r)—D(n) . Embed properly D(r) in O as an incompressible
suborbifold . Consider the diagram

F: D(@)xI-D(r)
PR
F:0xI - O
}:7 is an isotopy defined as follows :
cut O along D(r) . In such a way one obtains a I-fibered ball D2xI . One has an isotopy
f*‘ll :D2x{0,1}xI—D2x{0,1} . The fact that F was equivariant with respect to the holonomy
D(@@)—D(r) implies that F; can be extended linearly in an isotopy ﬁl : D2xIxI— D2xI .

Gluing back one obtains a well defined F:oxi-0.



So far we have changed f ,by means of a fibre preserving isotopy which preserves the
singular set , in a map which induces the identity in the base orbifold .

Now consider again the disk D(r)cO . We would like to change f,by a fibre preserving
isotopy , in such a way that f(D(r))=D(r) .Assume that this had been already done . Then cut O
along D(r) to obtain a D2xI. As f: D2(n)—D?(n) is the identity , after one more isotopy
Ji.e.a rotation around the core curve of the solid torus O (which is the singular fibre ) , one -can
cut O along D(r) and reduce toa £:D2xI—-D2xI where f preserves the I-foliation and is
the identity in the upper and lower disks . Then , using the linear structure of D2xI , define a
fibre preserving isotopy between f and the identity .Then glue back .

If f(D())}#D(1) , assume first that f(D(r))ND(r)=¢ . It is possible to define a global fibre
preserving isotopy in O which projects into the identity in D(n) and sends f(D(r))in D(r), as
follows :

f(D(r)) and D(r) are sections for O . Now find a third section disjoint from them and cut
O along it, to obtain a D2x] .Here D(r) and f(D(r)) are two graphs . Then it is trivial to
define a fibre preserving isotopy in D2xI which is constant in the upper and lower disks
sending f(D(r)) into D(r).

If f{D(@))ND(r)#¢ we assume that they intersect transversely . Then one reduces to the
case f(D(r))ND(r)=0 using the arguments contained in lemma 1.1 (ii) (taking care of the fact
that the moves now have to be fibre preserving and f(D(r))ND(r) contains also segments , but
these are not real problems) .

among other things we have showed that isotopies indisks of the base orbifold "lift".

2. If £:83/G—83/G is isotopic to the identity , the first step allows us to assume that it is
equal to the identity in a fibered nbhd of each singular fibre

(Each singular fibre is preserved by f. This is of course true for the components of
Z(S3/G) Moreover f does not interchange singular fibres of M' for otherwise the induced
map f in the base orbifold would be a homotopically trivial map which interchanges two
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punctures . This last thing never occures for then the lifting to the universal covering £:0—-0



would interchange fixed points of different orbits,i.e conjugating nonconjugate subgroups of
7197(Q") (here O’ is a good orbifold ) .

If D(n)cO, p :S3/G—0, is the projection of the "candidate” fibered nbhd N, choose a
grater disk D' such that f(D(n))cD' . Then for a moment forget S3/G and consider only
N'=p-}(D") . It is possible to change f in such a way that f(N)=N (lift an isotopy of D"). _
After this forget N' and consider only N . Here isotop f to the identity as in the first step .
Finally extend these isotopies in all S3/G in a standard way ).

At this point consider M=S3/G-N where N is the union of fibered nbhd's of the
singular fibres (M is an S!-bundle ). Assume f to preserve M and to bethe identity in N
.Then f:M—M is homotopic and , by [Waldhausen] ,isotopic to the identity in M. I assume
(without further discussion here) that the isotopy is , of the following form in the boundary
dM=0N :

ONxI—9dN
1 1l
D : IT(p,q)xI—3T(p,q)

D((x,y)t)=((expt2 i) x, (expt2niP)y) «andP are rationals (here assume that

IN—{0}xS! (here N is one component of N).

CLAIM : H*(S%/G)=MC+(S3/G)

Proof

1. Assume O to be a 3-punctured sphere . Then we will show that all f:M'—>M'
preserve the fibration , up to isotopy.

The group defined in m;(M’) by the fibre is characteristic. Moreover , for each
component TcoM', n1(T) embeds in 7t (M') (see the presentation of ©1(M") ). These two
observations imply that f:0M'—0M’ preserves the fibration induced in 9M' up to isotopy (this

a well known fact for 2-tori) . This implies f can be changed , by an isotopy with support in an

very thin nbhd of oN in order to make floN fibre preserving .

Now we consider the following general situation :

TR




Let M be a Seifert fibered manifold with nonempty boundary and let f:M—M bea
homeomorphism whose restriction on the boundary preserves the induced fibration. Then
f:M—M preserves the fibrationon M up to isotopy .

SKETCH of proof

(i) M=T(p,q) . Let ¢:M—M fibre preserving which equals f on the boundary and
preserves the core(I don't discuss the existence of this @) . Then consider ¢-f i.e. reduce to
the case where f:M—M is the identity on the boundary . Now we content ourselves to sketch
the argument .

By procedures analogues to the ones discussed earlier , fix a trasversal incompressible
disk D and define an isotopy after which f(D)=D . Then, a further isotopy to make f=identity
in D . Finnally reduce to the case of I-bundles on the disk and ,then , reglue back to obtain the
wanted isotopy which turns out to be constant on M .

(ii) In the general case we proceed as follows:

1. we assume without discussion that it is possible to change f in order that, considered
floM , the induced map f:00—d0O is of finite order .

2. Then we assume the existence of a finite family of mutually disjoint vertical tori and
annuli which subdivide M in a union of solid tori and which has the following property:

after a modification of f, the above family of surfaces is f-invariant.

Make the restriction of f in this family of verical annuli and tori fibre preserving .Then
solve the problem for couples formed by solid tori V and f(V) (working as in the above case
(i) ).defining isotopies which are constant on the boundaries . Finally glue all toghether .

This solves the case when the base orbifold O is a 3-punctured sphere .

2.If O is a 2-punctured sphere then IS3/Gl is a lens space . The two or one
components of F' are cores of a toral Heegaard splitting and with no harm one can assume that
our £:83/G—83/G preserves the splitting . Then one has the following situation (we take from

[Bonahon] ):



f is isotopic relF' to an element of the group generated by (here we fix a parametrization
V=V,=D2xS! of the two solid tori for which our initial Seifert fibration reduces to a standard
one):

(i) the identity

(ii) the involution 'l:Vi—->Vi T(u,v)=(v,u)

(iii) the involution ¢ which interchanges the tori o(u,v)=(u,v) (o exists iff
IS3/Gl=L(p,q) with q2=1[p] and F' has two components with the same index).

Indeed if f preserves each torus then homologically on the middle torus it is either the
identity or it's inverse , i.e. it is isotopic in T either to the identity orto <. Make it actually
equal to one of them in T in the standard way . Then arguments described before allow us to
conclude . If f interchanges the V's, simply compose it with G to reduce to the previous
case.

It is trivial that identity, 6, T, 0 T are not mutually isotopic relF’ and that oT=10G.

Therefore we are done.

We have proved the following thing (among others ) :

If O is a2-punctured sphere then

either H*(S3/G)=Z,

or H*(S3/G)=Z,®Z, (exactly when q2=1[p]).

This concludes the proof of the claim .

Now one has an obvious map H*(S3/G)—MC(O)

CLAIM : the above map is an isomorphism .

Proof of the claim .
Injectivity Let £:33/G—S3/G be fibre preserving and suppose that projects to a map

f:0—0 which is isotopic to the identity. After a fibre preserving isotopy it is possible to

assume that f preserves M'. In [Johannson] is proved that fIM' is isotopic to a composition



of maps Which are Dehn twists around a finite family o vertical annuli and tori which cover a
family of mutually disjoint essential curves which form a system of cuts for O' (i.e. itis a
minimal family of curves such that, cutting O' along them , one obtains a disk ) ,see the
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In our case there are no essential simply closed curves in O' (i.e. homotopically
nontrivial and not peripheral ) and nontrivial Dehn twists around annuli do not extend to all
S3/G . Therefore fIM' is isotopic to the identity . We have showed already that this is enough
to conclude that f is isotopic to the identity in all S3/G .

Surjectivity . Given f:0—0, chosen a disk for each puncture and one more disk of
regular points , it is possible to assume , after an isotopy , that f preserves the disks . Call Q"
the complement of the disks and M" its preimage in S3/G . Then M" is a trivial bundle over

O". Fix a structure M"=0"xS1 . The first define f in the zero section , and then extend it in all



M". This map f:M"—>M" extends also in the tori of IS3-M" (it extends at least in a nonfibre
preseving way becouse , as it preserves the zero section and is fibre preserving , the meridians
of the solid tori are invariant . To make fibre preserving in the wanted way also in the tori,

define in each of them an isotopy as in the above claim ) .

Therefore MCH(S3/G)=MC(O) .As MC(O) (itis isomorphic to a spherical group acting

on the 2-sphere ) is a finite group , we are done .

(2) M'is hyperbolic

If volume M'<eo , as a consequence of Mostow's rigidity theorem and of theorem 7 of
[Waldhausen] , any class of MC+H(M) is represented by one and only one isometry ( this is a
consequence of Mostow's rigidity theorem ; the unicity is an elementry fact of hyperbolic
geometry : as T1(M’) has trivial centralizer in PSL(2,C) , except in the case it is an abelian
group , which certanly is not our case , two isometries cannot be homotopic ) and the
epimorphism Diff*(M")—»MC*+(M') admits a section ( to each class associate it's isometry ),
what is meant by saying that MC*H(M) is realized in Diff+(M’) . As the group of isometries of
a hyperbolic manifold of finite volume is finite (by elementary hyperbolic geometry ) MCH(M))

is finite .

If volumeM'=e0 , i.e. if dM'is not a union of tori , one cannot apply directely Mostow's
rigidity . One can work out this difficulty repeating the argument in the proof of thm 2" in

[Zimmermann] . Here is the construction :

oM consists of pieces of the following type :



|

(i) tori , which come from the S! components of F'

(ii) spheres with three holes , coming from points in F' where three branches meet

(iii) annuli , which connect pieces of type (ii) .

Let 9gM' consist of all pieces of type (ii) and 01M' of all pieces of type (i) and (iii) and
oM'=dgM'Ud M.

CLAIM (a) M' is irreducible and atoroidal .

(b) Every embedded disk (D,dD) in (M',0gM’") is isotopic rel 9D into
oM.
(c) Every essential embedded annulus (A,0A) in (M',0pM") is isotopic in
(M',0opM") into 9;M".

(a) follows by lemma 1.2 .

(b) If (D,0D)c(M',0gM") is a properly embedded disk and if it not doM'-parallel (i.e.
if D does not compresses , by means of a homotopy , on oM’ ) then D is boundary
parallel in dgM" (as dpM' is a union of 3-holed spheres ) . But then one can build easily a 1-
punctured sphere , call it O , in S3/G . Now , O is a bad 2-suborbifold embedded in a good 3-

orbifold . This is not possible .

(¢) If (A,0A)c(M',0gM) is an incompressible annulus , it's two boundary curves are
parallel in 8gM' to two ( different ) holes . But then , gluing along the boundaries two
punctured disks , one obtains from A a 2-punctured sphere in S3/G . It must be good (i.e the
two indices are equal ) and , by lemma 1.2 (ii) ( and here there are no As's ) , it bounds a ball

whose nonempty singular set is a segment . The ball is a regular nbhd for this segment and A
is 0{M' parallel .

B



Let DgM' be the double of M' along dpM'. Then DpM' is a 3-manifold whose

boundary consists of a nonempty union of tori and (a) , (b) , (c) imply that it is irreducible and

atoroidal . Therefore DM’ is either Seifert fibered or hyperbolic .

- DM is Seifert fibered .

Then M' is homeomorphic to Sx[0,1], where S is a sphere with three holes (see
[Jaco] ch. VI for what follows. Incompressible surfaces in Seifert fibered manifolds are either
vertical or horizontal . dpM' is horizontal .Each component of dgM' does not separate
DoM'.This implies that DgM' is a surface bundle over S (the components of dpM' are
fibres). As dgM' separates DgM' in two components , dgM' has exactly two components )
.Then IS3/GI=N(F)UM' is a Heegaard splitting of genus 2 , preserved (up to isotopy) by all
£:83/G—S83/G . This decompositon lifts to a Heegaard splitting S3=N(F)UM and all liftings f
of f preserve each of the handlebodies (assuming that f does). As all Heegaard splittings of
S3 of a given genus are isotopically equivalent (and therefore in what follows one considers
the "better" Heegaard splitting that one can imagine) , and as for a handlebody H one has an
immersion MC*(H)—Out 7t1(@H) ,MC*(S3,F) immerses in a group of permutations S4g

(imagine to have the crosscuts a's and b's in the picture ).




For each class of MC*+(S3/G) choose a representative which fixes oM’ .If the following

diagrams commute

1—)1t1(aM,x)—->n1(aM',x')—>G-—a 1

ad df, XS]

1-571(0M,y)—>7;(0M,y)—>G—1

then f,. is uniquely determined by o and B, for the centralizer of surface groups are
trivial . Therefore MC+(S3/G) is finite .

Second case : DQM' is hyperbolic .

For each class in MCH(M') there are representatives which preserve the decomposition

OM'=0pM'Ud;M' (here I assume this without further discussion ) .

By very hard arguments contained in the proof of the geometrization theorem for Haken
manifolds , it is possible to assume doM'c DpM' to be totally geodetic ( see chV [Smith]). As
this is é special situation , ther is an alternative way to see it ([Zimmermann J.In DpM',
dpM'=Fixt with T the (topological for the moment ) reflection which interchan ges the two

copies of M' which form DyM'.

qu any f:(M',0pM)—(M',0pM") , Dyf and T commute . By [Tollefson] 7 is
conjugate to an isometry in DoM' and conjugation is by means of a homeomorphism isotopic
to the identity . Then , changing the metric tensor, it is possible to assume that T is an
isometry (of course Fix T becomes geodetic ) . By Mostow's ri gidity theorem and by theorem
7 of [Waldhausen] , Dyf is isotopic to an isometry h. As Dyf does , h commutes with T,
and therefore h preserves dyM' and M'. We will see now that the isometry can be chosen to

preserve doM' .




Assume the above not true . Consider F:dgM'xI—-DgM' the restriction in dpM' of one
isotopy between Dof and h . Observe that the restrictions of Dyf and h in dpM' are isotopic
in dgM' by an isotopy defined in all DyM' ( Indeed , the fact that Dof and h:DgM'—>DyM’
are homotopic means that two of their liftings /t\'/and T define by conjugation the same
homomorphism in the group of the deck transformations , for a fixed locally isometric covering
H3-DgM'. 9gM' lifts in a union of mutually disjoint planes which is preseved by f andﬂ;l .
Fixed one plain H, then ﬁl’:H—-)?(I-I):fi/l(I{):H' are equivariant respect the stabilizers I and
I of H and H' and induce the same homomorphism between I and I" . Therefore
f,h:X—2' are homotopic and ,therefore ,isotopic ( here the X's are projections of the H's).
Then it is possible to assume f=h in dyM' ( after an isotopy with support in a thin nbhd of
doM").

As we have done before , we assume that
F:DpM'xI-DgM' can be chosen to be ,when restricted to the boundary , of the form

F:S1xS1xI—-S1xS! F(x,y)=((expt2mio) x,(expt2wiP)y) with o and P
rationals. Assume also that the boundary of dyM' is formed by geodesics for this

parametrization of dDyM' .
Therefore a component of the boundary of dyM' is either
(1) fixed by the isotopy F, or
(ii) spans the related component of dDgM' .

If case (i) happens for all the boundary components of dyM' then one could assume
that the isotopy F preserves dgM', i.e.one can find another isotopy which in dDgM' is equal
to F and makes what we expect . Indeed F:dgM'xI->DgM' is isotopic rel d(dgM'x]) to a
F:0gM'xI->DgM' with ImageF'cdpM' . This turns out to be a restriction of a




- DeM'xI—DoM'" which is equal to the original isotopy F in dDgM' (the argument is described

in detail in [Waldhausen] pg 81-82)

If case (ii) happens for a component CcoX (2<dyM' a component ) , then consider the
map (obtained when one glues the top and the bottom of ZxI)

F:ZxS1-DgM' , and the induced map
Fa: 11 (ZxS1) =7, (DgM) .

Now my(ZxSl)=<a,b,c,f|fcommutes witha,b,c and a.b.c=1>.The image of f
should commute with the images of a b ¢, i.e. with three parabolic elements with fixed points
contained in three different orbits . Then the image of f should be the identity , which is not
true from the incompressibility of the components of dDgM' and the fact that {x}xS! embeds
in a nontrivial loop of dDM, for x a point of a boundary component which meets X ).

therefore assuming case (ii) we obtain a contradiction .

Therefore, given f:(M',0M')—(M',0M") , the induced map Dof:DgM'-SDgM' is :

isotopic to an isometry which preserves M' by an isometry which preserves M'. .

This gives a well defined immersion MC*M")—Isom(DpM") . As the last group is
finite, MC*(S3/G) is finite .

Corollary 1.6 If M' is hyperbolic , there is a section for the epimorphism
Diff*+(S3/G)—->MCH(S3G) .

Proof We prove first that exists a section  MCH(S3/G)—Diff+(M") .

For M' hyperbolic but not a handlebody of genus 2 this has been proved in lemma 1.4

(we have showed that ,immediately or after some work , one is in condition to use Mostow's

rigidity).




For M' a handlebody of genus 2 one has a well defined homomorphism
MCH(S3/G)—»MCH©OM") which is an injection (these things follow easily from the fact that
MCH(S3/G)->MCHM") is well defined and injective).By [Kerckhoff] there is a group of
conformal transformations I" for a conformal structure in dM' which realizes
MCH+(S3/G)cMCH(oM"). Fixing our attention to dM', we see that the elements of I" are
isotopic to restrictions of homeomorphisms $3/G-$3/G . Therefore the single elements of "
are extendable to all M'. Moreover , the conformal structures on oM’ can be thought always
as being induced by hyperbolic structures in M' (uniformization by Schottky groups). The-se
two things , along with the fact that one can identify in a natural way conformal
homeomorphisms of the 2-sphere with hyperbolic isometries , imply that " extends to a group

of isometries for some hyperbolic structure in the interior of M.
The proof is completed by means of the following :

Lemma 1.7 Let O=(I0,ZO) be a good 3-orbifold whose components are finitely
covered by handlebodies , with Ol a union of handlebodies . Assume moreover that 10l
retracts in ZO Then ,if I'cDiff(30) is a finite group of diffeomorphisms all extendable in all
O, theactionof I" extendsinall O.

Sketch of proof .Consider X—O a covering , with X a union of handlebodies . Lift T’
ina I'. Then I' acts on dX and it's single elements are extendable in X. Exists a hyperbolic
structure on 9X for which I' acts as a group of isometries. Consider a decomposition in pants
of 0X, where the boundary curves of the pants are geodesics on 9X which bound
compressing disks in X. Then Meeks and Yau prove that there is in X a G-invariant family of
disks which bound tthese geodesics. Extend the action of T (i.e. of the remaining elements) in

the union of these disks as follows :




the action GxUDy—D,, is conjugate to an isometric action for a fixed flat structure .-
Extend first T" on the centers of the disks and then , using the linear structure of the flat

structure , extend linearly ) .

Then cut X along the disks , to obtain a union of balls . The action of G in the union of
these balls is equivalent to an isometric action for a fixed flat structure . Then extend the action
of I first to the centers of the balls and then , using the linear structure , to the full balls . After

this process glue all back. Then I" induces the wanted actionof " in O.

Corollary 1.8 . If M' is Seifert fibered , Diff*(S3/G) contains a finite subgroup which
projects into MC*(S3/G) with kernel ,say K, either trivial or Z,

(For O ,the base orbifold , a 2-punctured sphere this has been discussed in the proof bf
lemma 1.4 .ie.

either H+(S3/G)=Z2
or H*(S3/G)=Z,®Z, (exactly when qZ=1 [p])).

We need some preliminaries on the relation between Seifer fibrations in S3 and fibre

preserving actions of subgroups of SO(4) (this material is taken by [Scott]) .
One has a sequence
(1)  1-5Z,—83x83550(4)—1

where (x,y) goes to the transformation ~ A(x,y)z=xzy-l (here "A(x,y)" isnota
conventional notation ; here S3 is thought as the moltiplicative group of the unitary

quaternions).

This induces a sequence
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15Z,—83-550(3)—1
for A(x,x) preserves the 2-spheres in S3 formed by points with a given distance from 1e $3.
A sequence
(52) 1-5Z—S0(4)->S0(3)xS03)—1
remains induced .

For any 1-dimensional compact group ScSO(4) remains induced a Seifert fibration (the
leaves are the orbits ) which is a Hopf fibration (i.e. the Sl-bundle over S2 with Euler
characteristic equal to 1 ) . Any two fibrations of this type are conjugate in O(4) . Therefore we

will content to consider the standard one
(S3,9) d={L) |AeCuU{} }
Ly={ (x,y)e C2| xP+ly2=1 x/y=A }
From the multiplication rule for the quaternions
(z1,22) (W1,Wo)= (21W1-2gW2,29W1+21 W) )
one observes that @ is preserved always by right multiplication

( A= Aw1-w)/(Awg+wy ) )  and by left multiplication by (wy,wy) iff either W{=0
(then A——1/A )or ws=0 (then A—L).

This implies easily that the set of fibre preserving elements ®PcSO(4) is exactly the
counterimage in (S2) of O(2)xSO(3).

From ®P—PI'L(2,C)cDiff(S?) ( where PI'L(2,C) is the group of conformal

transformations on S2 - the base orbifold ) , is induced a sequence




1-5S0(2)x{1}—-0(2)xSO3)—=PI'L(2,C)
where O(2)x{1} goes to the transformation A——1/A .

The image in PI'L(2,C) is a conjugate of O(3)cPI'L(2,C) and , composing by an inner

authomorphism of PI'L(2,C), we can assume to have
(S3) 1-S0@)x{1}-=0(2)xS0O(3)—0(3)—1

where {1}xSO(3)—=0(3) is the standard immersion and O(2)x{1} goes to some

orientation reversing orthogonal involution .

Proof of the corollary . We know that G preservesin S3 a Seifert fibration . A classical
result of Vogt asserts that a subgroup of Diff+(S3) -non necessarily finite , which preserves a
Seifert fibration in S3 is conjugate to an orthogonal group . Therefore we assume that '
GcSO(4) . We have seen , in the discussion of lemma 1.4, that the Seifert fibration is S3/G
can be chosed in such a way that S3/G fibres on a punctured sphere . As G is a group of
orientation preserving diffeomorphisms , this implies that exists in S$3/G an orientable Seifert
fibration. This implies that there is an Sl-action on S3/G which preserves the fibres (this can

be seen as follows :

let O"=0-UD where the D's are disks , one for each puncture plus one more disk. Then
it's counterimage is a trivial bundle where is easy to define an Sl-action . Then one extends this

action in the interiors of remaining solid tori (here i don't discuss this ) )

Then G is in the normalizer (in this case in the centralizer) of a group isomorphic to S1
contained in Diff+(S3/G) .By the result of Vogt, the group <G, S! > is conjugate to an ‘
orthogonal group . Now I make the following assumption :

Assumption 1.9 . If G, G' are finite orthogonal groups conjugate in Diff*(S3) then
they are conjugate in SO(4) .



Note .This should follow from a classification (or a list ) of finite subgroups of SO(4)
which should be contained in [Seifert-Threllfal] , a paper which I have not read .

Therefore , we conclude that , after one more conjugau’on if necessary , G&ZS! (i.e. in
the centralizer) in SO(4) .But this S! determines a Hopf fibration in the sense considerd
above, aand that G preseves the orientation of this fibration . From the above discussion the
projection of G in the sequence (S2) is contained in a G1xGL,cSOR2)xSO(3) . Then
GcDiff*(S3)  projects to G,cDiff(S2) and for the base orbifold one has 0=5%/G, . Now,
MC(O) is realized by a finite subgroup of Diff(O) , which , on it's turn , lifts to a finite
subgroup of O(3) . But the sequence (S3) splits . Therefore one obtains a finite subgroup of
O(2)xSO(3). Consider finally the counterimage ,call it I", of the last group in SO(4). Then
I/G—MC*(S3/G) will be an epimorphism with kernel equalto Z, .

2- Proof of proposition 2

Proposition 2 Let G be a finite group and let F=U Fix g ge G g#identity :
if S’-F is Seifert fibered , then MC™(S3/G)=NG/ZG.G
if $>F is hyperbolic ( and not Seifert fibered ) then MC+(S3/G}E-NG/G

(where NG and ZG are the normalizer and the centralizer of G in SO4))
Proof .(i)

() If F is nonempty then we distinguish two cases :

S>-F is Seifert fibered .

e o S e



By the 2-dimensional case of our problem MC(O)=NG,/<ZG,,Gy> . But, as NG,
and ZG, lift to the normalizer and ,respectively , to the centralizer of G in SO(4) , and frém
the diagram

NG — NG,
! !

Mcts3/6) = Mc(o)
the result follows .
S>-F is hyperbolic and not Seifert fibered.

Then NG/G is a finite group ( otherwise NG would contain an S’ and there would be a
free S'-action on 83-F , which therefore would be Seifert fibered). NG/G acts effectively on
the manifold with boundary M'=S3/G- int N(F). If it's action is free then , as the quotient
manifold is hyperbolic (for it is a Haken manifold, therefore a manifold which admits a
decomposition in geometric pieces ,covered by a hyperbolic manifold, and thus is hyﬁerbolic) ,
NG/G acts as a group of isometries for a complete Riemannian metric of constant negative
curvature in M'. If the action is nonfree the same follows assuming Thurston's claim. As
different isometries cannot be homotopic (7j(M’) has trivial center in PSL(2,C) , unless it is a
group of roto-translations respect to a line or a parabolic group, which is not our case. If two

different isometries commuted , then the center would be nontrivial ) the above implies that

NG/G—MC(S%/G) is injective .
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