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INTRODUCTION

Let (T,F,p) be a measure space with o —algebra F and positive measure p . Let
LP(T, 1) be the space of all real functions f on T such that I fllp = fp|f|Pdp is finite.

DEFINITION 1. Let (T,F,p) and (T',F',p') be measure spaces with
() = p' () (p,p' are positive). Two functions f,g; f JF —measurable and

g F' -measurable, are called rearrangements of each other if

B (B, +00))) = p'(g7([8, +0))) for every B € R.

The commone feature of all rearrangements is that a given function f is trasformed into
a new function f* , which has some desired properties, like monotonicity or symmetry.

This is done by rearranging the level sets
Ef ={teT: f(t)> s}

of f, and then by recostructing f* from the level sets rearranged, just like a three
dimensional mountain can be recostructed from a map that shows all of its level lines or
lines of constant height.

The relevence of rearrangements has been already established among the others by
Zygmund [23], Hardy-Littlewood [15], Riesz [19].

Investigators have also used this concepts as a starting point for new directions in
functional analysis and inequalities.

A lot of non-linear problems of Mathematical-Phisics have the following characteristic:
they are posed on unbounded domains of R™ ( like ™, half spaces; stripes, etc.) or
are invariant under certain linear transformations, like rotations, and so they have same
symmetries ( sferical, cylindrical, etc.).

The unboundedness of the domains imply, in general, the resolution of this problems
with methods arising from non-linear analysis, because of the lack of compactness, coming
from the fact, for example, that the Rellich’s theorem does not hold in the whole ™ .

In several different problems, it has been proved that, if one restricts oneself, in

the functional space, to subspaces constituted by those functions which have the same
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symmetries of the problem, it is possible to obtain certain kinds of compactness. On this
topic we quote:

W.A.Strauss [22], H.Berestycki-P.L.Lions [2],[3],[4], for the case of scalar camp equa-
tions;

M.J.Esteban—P.L.Lions [12], for the case of semilinear problems posed on stripes,
arising from Fluid—Mechanics;

P.L.Lions [18], for the problem of the stars in rotation;

G.B.Burton [8], for the existence of a weak solution to the boundary problem for a

steady vortex ring in an ideal fluid flowing along an infinite pipe of circular cross section.

In particular J.P.Lions in [17] put in evidence the results of compactness that it is

possible to obtain by using the symmetries of the functions.

Actually, the aim of this thesis is to prove new theoretical properties for the set of

rearrangements of a single function.

Starting from the known property of the equimeasurability of the level sets of two
functions f,g belonging to the same rearrangement set, we propose a procedure for in-
terpolating at the same time all the level sets of f,g, by mean of a family of measurable

sets indexed on [0,1] and having some desired properties.

This allows us to join f and g with a family of functions belonging to the same

rearrangement set.

As a consequence of this procedure, we obtain fixed points, extension results and
quasi-selections from upper semi-continuous maps, for the set of rearrangements of a

single function.

Chapter 1 is devoted to a catalogue of rearrangements. Chapter 2 shows a procedure
for interpolating a finite number of functions of a given rearrangement set that leads to a
fixed point and compact extension result.

A slight different procedure for interpolating an infinite number of functions is illu-
strated in chapter 3. This will give us a retract property.

Finally, in chapter 4, using the interpolation procedure proved in chapter 3, we prove

the existence of quasi-selection for upper semi-continuous maps with rearrangement va-

lues.



1 CATALOGUE OF REARRANGEMENTS.
In this chapter we will deal with T = R®" and pu = m , where m is the Lebesgue

measure on R” .

It is clear that the rearrangement of a function f is closely tied to the rearrangement

of subsets of ™.

1.1 SYMMETRIC REARRANGEMENTS.

Let D C R™ be a compact set, hence Lebesgue measurable. For n=1, the symmetric

decreasing rearrangement D* of D, is defined by

« _J{teR:[t|<im(D)} ifD#£0
b —{@ it D =0.

Let f:I — R,I finite interval, be measurable. Then, the symmetric decreasing rear-

rangement of f is defined by
f*(t) =sup{ce R :t € (EF)*}

for teI*.

Thus, each set f~!([8,400)) is replaced by an interval of the same measure, sym-

metric about zero.

Example 1.: Let

z if-1<z<1
f(t)_{2—a: fl1<z<2.

Then
- ; <
£t = {é_ o If_l{@l; <3
Let us introduce now rearrangements of functions of several variables.
Given z € R", we write z = (z',y) with z' € R* 1,y € ®. Furthermore we
introduce the notation D(z') = DN {(z',y):y € R} .
The Steiner symmetrization D* of a compact set D C R with respect to the

hyperplane {y = 0} is defined sa follows:

D* = Upegn-1D*(2"),
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where

() = { {0 € R S 3mDE D 20

In other words, the Steiner symmetrization changes a solid into one with the same volume
and at least one plane of symmetry.
Correspondingly, we define the Steiner symmetrization f* of a function f: Q-R,

with Q open, relatively compact, and convex in y , with respect to an hyperplane H as

follows:
Choose Cartesian coordinates z1,+-+,Zp—1,y in R™ such that H is the hyperplane

y = 0 ; then define
F(z',y) =sup{c € R:z € (E)*}, for (d',y) e .

We can more easily define the Steiner symmetrisation of f as:

(@) = [f(, )"

i.e. the symmetric decreasing rearrangement in the last variable.

For verifying that f* is a rearrangement of f , we apply the Fubini’s theorem:

mi{e: @) 28 = [ mly s £('0) 2 B’ =

B /sen-1 m({y : f(z',y) > H)dz’ = m({z : f(z) = B}).

There is more than one way to extend the notion of a symmetric interval of R to
higher dimentions.

Under the Steiner symmetrization the analogue of a symmetric interval was consi-
dered to be a family of ‘parallel ’symmetric intervals. If one considers an n —dimentional
ball as the generalization of a symmetric interval, then one obtain the notion of Schwarz
symmetrization. Hence for a compact set D C R™ we define the Schwarz symmetrization
D* of D by

D*___{{zER”:IzlS%m(D)} if D0
0 if D = 0.
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Thus, the Schwarz symmetrization changes a solid into a ball, with the same measure,
centered at the origin.
Finally, the Schwarz symmetrization of a function f:Q — R, with O compact, is

given by
f*(z) =sup{ceR:z € (ch)*}

for z € O~.
Thus, the Steiner symmetrization of a function f, is a symmetric function with

respect to a plane at least, while the Schwarz symmetrization is a symmetric function with

respect to all planes.
Further, it can be proved (see [5]) that the Schwarz symmetrization can be obtain as

the L'(R™,m) limit of a sequence of Steiner symmetrizations with respect to different

planes.

1.2 MONOTONE REARRANGEMENTS

A measure space (T,F,p) is called a measure interval if w = p(Q) is finite and
positive, and there exists a bijection ¢ : T — [0,w] such that for A C T, we have 4 € F
if and only if o(A) is Lebesgue measurable, and forall A € F we have u(4) = m(a(4)) .

THEOREM 1. (Royden [20],pp. 270). Let p be a positive, non atomic, finite
Borel measure on a complete separable metric space X, and let F be the o —algebra of

open sets on X. Then, (X,F,pn) is a measure interval.

Consequenly, a bounded open set in R™ has the same measure-theoretic structure
as an interval I in R . So, for many purpose, we may as well deal with intervals only.

Let the distribution function of f:I — R be denoted by
af(s) = m(E]).

Note that ay(-) is non negative, non increasing, and left continuous.

The decreasing rearrangement of f on I is defined by

f*(t) =sup{s > 0: ay(s) > t}.

Clearly f* is non-increasingon I*={teR:0 <t < m(I)}.
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Further if af(-) is strictly decreasing, then f* is the inverse of ay(-) . In fact, it
follows immediately from the definition of f* that
(1) Flas(s) > s
and since aj(-) is left—continuous,
(2) op(£7(2) 225

So f*(ay(s)) = s, since, on the contrary, it follows from (1), as(f*(as(s))) < af(s),
and from (2) af(f*(as(s))) = as(s) , that leads to a contradiction.

In an analogous way, we derive as(f*(t))=1.

PROPOSITION 1. f* is left-continuous.

Proof : Clearly f*(t) < f*(t+h) forall Ah>0.If f* were not continuous at t,
there would exist y such that f*(¢) <y < f*(t+h) forall A > 0. But then, (2) would
imply that

af(y) > ap(f*(t+h))>t+h forall A>0.

Thus, af(y) >t and therefore f*(t) >y, a contradiction.
A

PROPOSITION 2. ay«(s) = ag(s) for all s € R ie. f* is a rearrangement
of f.

Proof : Since f* is non-increasing,
(3) ap(s) =suplt > 0: () > s).

Hence, f*(a(s)) > s imply ay(s) < ap(s).-
For the opposite inequality, note from (3) that if ¢ < ay(s) then f*(t) > s and conse-
quently ay(s) > af(f*(t)) > ¢ from (2).

Thus, af(s) > as(s) and the proposition is established.

EXAMPLE 2: Let

z f-1<z<1
f(t)——{2—:c ifl1<z<2;

then

« 1-1z fo<z<2
— 2 —_ —_
F7(#) {2—:0 if2<z<3.
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1.3 COMMON PROPERTIES OF REARRANGEMENTS

In this Section, we shall assume (¥ = Q* (* denote any of the rearrangement proce-
dures illustrated in the precedent Sections).

A foundamental property of the rearrangements is the equimeasurability, i.e. for every
Bew,
(1) m{z €T f(z) 2 8)) = m({z € T, f(2) > 6}) .

Another important feature of the rearrangements is that they are order preserving,
i.e.
(2) D; C D, implies D} C D} for compact D; C R",i=1,2.

This property implies the following:
(3) the mapping f — f* is order preserving, i.e.

f(z) <g(z) for z€Q implies f*(z)<g*(z) for z€Qr.

If ce R is a constant, then
(4) (f+o)=f"+c;

further
(5) themap f— f* is positively homogeneous of degree 1; i.e.

for every ¢ >0, we have (tf)* =tf*;

(6) the mapping f — f* is idempotent,i.e. (f*)* = f*;
(1) (f1%)* = If** for a>0.

Properties (4)—(7) hold by definition.

THEOREM 2. If f,g € L?(®",m),1 <p < 400, and f is a rearrangement of
g, then Ifllp = llgl, .

Proof :  Assume first 1 < p < 400 . It is easy to verify that f is a rearrangement
of g if and only if f? is a rearrangement of g?. So it is enough to look at the case
p=1.

Now,

i = [ trtam = [ [ i = [ astar= [ ey = ol

Setnow p=+oo. If B> [|fl|l4e then m(f™*([B,+0))) = 0,50 m(g~*([B,+0))) =0
and 8> |g|l4+co - Hence, ||fll4oo 2 [Igll+oco -




Similarly we can prove that ||f|l+co < ||g]l4+oco -
A

THEOREM 3. Let f € L?(Q,m),g € LY(Q,m), with f,g >0, and p,q conju-

gate exponents. Then
| teta< [ fois.
[} o
REMARK 1. For f,g € L?*(Q,m), this theorem is attributed to Hardy and Lit-
tlewood [15].

Proof of theorem 3. We proceed by step.
(a) Let D,E C ®™ be compact and f(z) = Xp(z), g¢g(z) = Xg(z). By virtue of (1)
and (2), we have

| f@)g(e)dz =m(D N E) = m((dNB)") <

<m(D*NE*)= /5;,; f(z)g*(z)de

(b) Let f(z) = 35_,a;jXp;(z) and g(z) = 3 ;_, beXE,(2) , where a;,b € R
D;,Ey are compact. Without lost of generality we may suppose D; C Dy C --- C D,
and E; C F; C --- C E, . Under these special assumptions the rearrangement mapping

shows linear behaviour, i.e.
q .
f*(z) =) a;Xp; (=)
j=1
and

(@)=Y bt (2)
k=1

Then, by virtue of step (a), we have

/ f(z)g(z)d Z > ajbem(D; N Ey) <

1, ’qk 1yer

S Z a_,-bkm(D; N E:) = / ZajkaD;XE;cdz = / f*(:c)g*(:c)dm
ik R ok ®e



(c) Finally we can prove the assertion by an approximation argument

THEOREM 5. The mapping f — f* is non—expansive in L?(Q)
Proof : Let f,g € L*(Q). We have from theorem 4,

1£* = g*I2 = I1F12 + llgll2 - 2 f frgtdz < |If - gl2.
2

Mc Crandall and L.Tartar [10] showed that

) /FJ(If*—g*I)dxs /_ 7(f - gl)da

for every convex lower-semicontinuous function J : RF — RF , with J(0) = 0. There-

fore, in particular, (*) provesthat f — f* is nonexpansive in LP(2) for every p,
1<p<+co.

1.4 MORE ON DECREASING REARRANGEMENTS.

In the whole section, I will denote the intervall [0,w], and * will denote the decreas-
ing rearrangement.

A function o : I — I is said measure—preserving trasformation if for every measurable

A C[0,w],071(A) is measurable and m(s~1(4)) = m(4).
THEOREM 6. ( J.V.Ryff [21])

Let f be a measurable function on I, and define
o(z) =m({t: f(t) > f(z)}) + m({t: f(¢) = f(z) and t<<}). Then, o is measure-

preserving on I and f*oo = f

EXAMPLE 3. Let

Cf1-2t teo,}
f(t)—{zt_1 ifte[g,l];
then, f*(t)=1-—1

and

U(t):{% ii

0<t
2-2t if 1<t

it DO

<
<
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A

Although o is measure preserving, in general, it is not invertible. In fact, in the last
example, o is not injective and m(o(A)) # m(4) , in general; indeed o([0,1]) =[0,1] .
Moreover there is no measure preserving trasformation ¥ satisfying f* = fo .

Let R(f) denotes the set of all rearrangements of f on [0,w].

THEOREM 7. Let f, € LP([0,w]),1 < p < +oco. Then, every bounded linear
functional on LP attains its supremum relative to R(fy) .

Proof : Any bounded linear functional on L? can be represented as (-,g9) for
some g € L? ((-,-) denotes the duality between L? and L?).

We have

(f,9) <(f",97) = (f5,9") for every f € R(fo).

It will be sufficient to find an f for which equality holds. Now g = g* o ¢ for some

measure—preserving transformation o . Take f = fy oo . Then fy is a rearrangement

of f,and
(h9)= [ (5 oa)s™ oa)im= [ (fig")odm =

- / f;g*dm7
0

since (fyg*)o o is a rearrangement of fjg*

A

THEOREM 8. Let fy € LP([0,w]),1 <p < 400, andlet & : LP — R be convex
and weakly sequentially continuous. Then @ attains its supremum relative to R(fy) .

Proof : We claim that R(fy) is weakly relatively compact in L? . This is clear
if p>1,since R(fy) is bounded and LP is reflexive. In the case p =1, the equiinte-
grability of the rearrangements of f ensures that R(fy) is weakly relatively compact in
L.

Write M = supscp(s,) ®(f) ; and let u be the weak limit of a maximising sequence
for & . Then ®(u) = M . Weak sequential continuity implies strong continuity; together
with convexity, this implies subdifferentiability of @ .

Choose h € 0%(u) C L?, we have

(u,h) <k =sup{(f,h): f € R(fo)}
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by the weak continuity of (-,A).
By virtue of theorem 7,let F be such that (f,h) =k .
Then,

() > () + (F—u,h) = M + k — (u,h) > M.

Hence f maximises & relative to R(f) .

1.5 AN APPLICATION TO VARIATIONAL PROBLEMS.
Let £ C R™ be open, let H,"*(0}) be the Sobolev space

Hy?(Q)={f € L*(Q): 3k e (L?(Q)n with

/ fDp = —/ ho for every ¢ € Cf®(Q)}
0 2

(denote Df =h). Given f € H,"() define 11l gz22(Q) = (Jg 1F17dz + [ IDF|?dz)?

Consider the problem
(P) min J(#+ D1y

{FeH*(®): [T fodz=1} /0

If f€ Hy?(R) is any given function, then fi(z) = f(z — t) satisfles, f; — 0 weakly in
Hé’z(%) as t — +oo , and ||fHH(1),z, Ilfllzs are unchanged.

More in general, if (f™), is any bounded sequence in H01’2(§R) , then it is easy to
show that there exists a sequence (ip), with fJ — 0 weakly in Hy*(R) as n — +oo.

Hence, any minimizing sequence for problem (P) can be replaced by a minimizing
sequence that converge weakly to 0. There is thus no hope of proving that every minimizing
sequence has a subsequence that converge to a minimiser.

A possibly remedy is to seek a procedure that replaced minimizing sequences by
minimizing sequences that have better convergence properties.

The rearrangement procedures are effective for this purpose. The following theorem

is a semplified form of a result due to P.L.Lions [17].

THEOREM 9. Let Q = U x R, where U is a bounded open set in R . The
closed convex cone of all Steiner symmetric functions in H;’Z(Q) is compactly embedded

in LP(Q), for 2 < p < +oo . Further,
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if feH?(Q),f>0,then f*€Hy*(Q) and [f*llgre < fllgze @ .

Now we present an example that shows the opportunity of rearrangement procedures.

EXAMPLE 5. Let Q = {(z,y) € 82 : 0 < y < 1} . We consider the problem to

seek for a non—trivial solution in H ; ’Z(Q) for

~Af+ f=g(=)fI77"f

where g is a Cauchy symmetric L™ function, ¢ # 0,9 >0, and 2<o <-+co.

Consider the variational formulation

1
SIAIP

('P) min
{fEHY*(Q):F(f)=1} 2

where F(f) = Elr'fn g(z)|fl? d=.

Observe that F(af) = a°f(f) for a« > 0; so g # 0 ensures that there exists
f e H*(Q) with F(f) > 0; now F(af) =1 for some ¢ . So, the constraint set is
non empty.

Since F(|f]) = F(f) and ”Ifl”H;’ = “f”H;.z , the problem (P) has a minimizing
sequence of non—negative functions.

Let f € Hy*(Q) . By virtue of theorem 9, we have

fre Hy*(Q)

1 s < 1l |

F(f*) =3 o 9@)If*I7de = L [o 9" (=)(If1°) de 2 1 [ 9(2)If|17dz = F(f) .

Now, we suppose F(f) =1 ; then we may choose «,0 < a <1, such that

F(af*) =1 50, s = all Pl s < 1l < 1 fll o

It follows that problem (P) has a minimizing sequence of non negative, Steiner
symmetric functions.

Let (fa)n be a minimizing sequence of Steiner symmetric functions for problem
(P) . The sequence (fy)n is therefore bounded and, unless passing to subsequences, we
can suppose fn, — fo weakly in H;’z(ﬂ) . Notice that fy is Steiner symmetric, since

the Steiner symmetric functions form a closed convex set in H,"*(§) , which is therefore

(1) here % denotes the Steiner symmetrization
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weakly closed. Again, by virtue of theorem 9, we have f, — fy strongly in L° . Hence
F(fo)=1.

By the weak lower semicontinuity of || -|| , we have
ol <lim 2 fall3as = inf P
—_ — =1 o
2 0 H;-ﬂ ey 2 n H;vz

Thus fo is the desired minimiser; observe also that fo # 0 , since F( fo)=1.

Now, by the Lagrange multiplier rule, there exists ¢ € ® with

—Afo + fo = ¢l fo]"72 fog(=).

Multiplying by fo and integrating by parts we get

2 2 _ T 00‘ z,
/ﬂwm dm+/ﬂfodw—<§/09( folod
2|lfo|l§;;a = o(F(fo) = oC.

Therefore, ( = 20"1”)‘0”?{1,2 > 0.

Now, write v = {f , where a > 0 is to be determined. Then
a(=Av +v) = (o g(z)[v]|" 2.
If we choose o so that a®°~2( =1, then
—Av +v = g(z)|v]" 2v;

moreover v is non trivial, non negative and Steiner-symmetric.

2. COMPACT RETRACT AND COMPACT FIXED
POINT PROPERTY FOR SETS OF REARRANGEMENTS.

Any continuous function which maps a closed subset A of a metric space X into a
totally bounded set of a normed space E can be extended to the whole space X keeping
the value in a totally bounded set [11]. In fact the range of the extension, the convex hull
of a totally bounded set of a normed space, is totally bounded.
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Such a kind of result has been proved in [13], for maps into L!(T,E) , using the
concept of decomposable hull instead of that of a convex hull.

Purpose of this section, is to present a similar result for maps into L!(T, E) using
the concept of rearrangement.

From this point on, (T,F,p) will denote a measure space, with g positive and
non—atomic measure.

Given a function f € L*(T,R), f-p denotes the measure having density f with
respect to .

Let v:F — R™ be a vector measure, whose component have no atoms.
A family (Aa)agpo,1]»4a € F, is called increasing if Ao C Ag when o < . An
increasing family is called refining C € F with respect to the measure v , if

Ay=0,4;, =C, and v(4y)= av(C) for every a € [0,1].

LEMMA 1. Let g1,92,-*+,9n € L}(T,R) and let v be the vector measure whose
component v; are the measure g; v .

Then, there exists a family (Aa)acjo,1] refining T with respect to (v,p) .

For this result one can refer to [14].
Given a simple function % € L'(T,R), we denote with R(3) the set of all rear-

rangements of ¥ on T.
THEOREM 10. The set R(¢) is closed in L'(T,R) .
Proof : Let (gn)a>o C R(¥), with g, = go in L'(T,R).
We shall prove that

p({z : go(z) > a}) = p({z : ¥(z) > a}) {for every a € R.

Fix a € . Note that {z:go(z) > a})={z:(a~go)" =0}.

By virtue of the Lebesgue dominate convergence theorem, we have
(@ —gn)T = (@—go)t in LY T,R).

Since the functional F(u) = [, X(o}(u(t))du(t) is upper semicontinuous on LYT,R) , we

have

(1) #({z : go(z) 2 a}) = p({z : ¥(z) 2 a}).
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Now, observe that {z:go(z) < a} = UL {z:g0(z) < a — 'lk'} .

Applying the precedent reasoning, one prove that

p({z : go(z) < a — 7];-}) >p({z:¥(z) <a-— %}) for every k € IN.

Therefore
(2) p{z (@) < @}) = Tm_p({z:go(e) S o 1)) >

> p({z : h(z) < a})-

Putting together (1) and (2), we obtain the result.

THEOREM 11. (Compact extension result) Let A be a closed subset of a metric
space (X,d), and let f : A — R(¥) be a continuous map whose image is relatively
compact. Then, there exists a totally bounded set B, with f(A) C B C R(¢), and a

continuous function f: X — B such that fh = f.

The foundamental argument for the proof of this theorem is the following interpolation

result on R(v) . More precisely,

LEMMA 2. (Interpolation result) Let ¢1,¢2,--,0, € R(¢) . Then, there exists a
family of functions (na)x , where A= (Ar,-++,A,),A; >0 and P . ) =1, with the
properties:

(b1) nr € R(Y) forevery Ae §?p (O,
(b2) mxi =¢; forevery j=1,---,p, where
A is the m-ple of all zeros and with 1 in the J—th position;
(bs) A —ma is continuous from SP into LY(T,R);
(b2) llei = malls < Bsupgin, 20 lles — eills,
for every A € SP, where B € Rt isa positive constant
Proof : Rearrange the range of 1 into a finite monotone sequence

a1,a2, ,apm  (a; <ajy; forevery 1=1,---,M —1).

(1) S? denotes the p —dimentional simplex
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Let ¢(p,k) be the set of all k—ples (c1,c2,--,ck) with ¢; € [1,p]NIN and c¢; < ¢jp1
foreveryj=1,---,k—1.
Given o € C(p,k) we write ¢ € o = (c1,-+,cx) if there exists j, with ¢;=1.

Order the set UY_.C(p,k) in the following way:
o <8 i E>E

or

k=k" and o} <& with respect to the lexicographic order

Then, rearrange the set UY_,C(p,k) into a finite sequence of indices di,---,dn .
Let (Afzj (ADa;l=1,---,N;j=1,---,M , be an increasing family of measurable sets
refining the set

1 : i
Da,' = (UiEdl ;,‘) \ (Uiedt aj)
with respect to p and the measures generated by the densities of the form:

lpi — ¢;l(t) for every 4,j=1,---, M,

where I(‘;j = {t:9i(t) > a;}.
Now, we are able to construct a family of measurable sets (Eq;(A))x which interpo-

lates the level sets (¢~ [aj, +00)))iz1, 0 :
Eq;(N) = UL, AL, (w5, (V)
where 9a,(3) = Siep M ;

suppose we have already defined (Eq;(A))y for k4+1<j< M.
Then, define

Ea,(A) = UL 1{(Baryn (V) N Dy, ) U A, (7 (V)3
where pf()) € [0,1],pF(X) < yp,()) satisfies

PPN =0 i p(Bay,,(3) UULZLAL (pF(V) = n({t 2 $(2) = ai}),
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(B, (\) U Ujmy Ag, (pE (V) < p({t 2 9(2) 2 ar})-

It is easy to verify the following properties:
(1) Ba(V) = 97 ([ar, +00)) ;
(2)  Earya(A) C Ear(R)
forevery i=1,---,p;k=1,--- , M -1; 1€ SP.
Since w(UY; AL, (4, (V) = %, Mn(IE,) = u({t 1 9(2) > a;}) for every
J=1,---, M , it is clear that
(3) w(Ba) = p({t: 9(t) 2 a}) forevery A€ 875 =1, M.
Property (2) allows us to construct a family of functions (9(t))aes» having the
family (E,;(A)) as level sets.

More precisely, define
M .
(%) mt) =) @B, (A\Ea, () (Farrya(A) = 0).
j=1

By virtue of (1) and (3) follows

(4)  mi=gi;

(5)  uln*({as,+0) = p(e="([as, +o0)) for every
AESPj=1,---,M;i = 1,---,p.

Now, we prove that A — 7, is continuous from S? into L!(T,R) . It results

N
(Bar (NAEL, (V) <) p(4e,, (v, ()AL, (v, (V) =

=1

N
=3 lyn(A) = ws (N)]e(DL,, ) < 1A = N |u(T).
=1
Analogously we can deduce the extimates
#(Ee;(A)AEq; (X)) < 1A= N[(M — 5 + 1)u(T).

This, of course, ensures the continuity of A — 7.

It remains to prove (by) .
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By the definition of Dij , (%) can be rewrite as
ma(t) = @i(t) if te D, forsome l,j with i€bi.

Therefore,

M N
I = eillx < / lp; —ildu << M sup o — @ills
l;; AL (pr(N) {h:An#0}

where j € b;, and this conclude the proof.

Proof of theorem 11.

Let (An)n>1 be the open sets defined by
A ={zc e X:d(z,A) > 1}
Ay ={zeX:}<d(z,4) <3}

An={z € X iy < d(z, 4) < 7<)

We have: X \A=Up>14n.
Set en = 55,m > 1, andlet N, = {97y---,g%} bean e, —net of {(A). Let m: X — A4
be a function such that d(z,7z) = d(z, 4) ( 7 is any selection of the projection of minimal

distance). Put
U= A, N (771 (f! (97 + enbBh)))-
Consider the pairs (n,j);n > 1,7 = 1,-+-,j» , in the lexicographic order; the pair
(n,j) is identified with a natural 1 by the relation [ = Z;:ll ji+J . If | corresponds to
the pair (n,j), g1 e U' will denote respectively g7 and UD.

Let {¢'(z)} be a continuous partition of unity subordinate to {%'} .
Apply Lemma 2 to the functions of the set N; U N, , i.e.

v; = g; t=1,---,p;p = j1 + Ja,

and denote with (fi), the corrispondent interpolator functions.
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Define a continuous function f; on A; by setting
f1(27) = f)l\(a:)’

where A(z) = (A1(z),--+,Ap(2)), Ai(z) = ¢i(=) .

Let Ry = {bL,}m=0,..m, be an es —net of the totally bounded set fi(A4;). Let 6,
be a function mapping each x belonging to A; into an element of R; , whose distance
from fl(x) is less than e3 .

Define the open sets

Vim =Ui 0077 () +eaB1), j=1,---,j5;m=0,---,m
Vi =UPF, j=1,,jnin > 2.

Consider the triples (n,j,m);n >1,7=1,--+,jn,m=0,---,m, (set m, =0 if
n # 1), in the lexicografic order; the triple (n,j,m) is identified with a natural 1 by the
relation [ = E?z-ll Ji(mi +1) + 7. (m +1). Denote with [, the index corresponding to
the triple (n,jn,my). If | corresponds with the triple (n,5,m); g¢;, V' will denote
respectively g7 and Vim -

Let {¢'(z)} be a continuos partition of unity subordinate to V4.

Apply Lemma 2 to the functions of the set R; UN; U N, U N , l.e.

1 : .
pi=b  i=0,r,my

Pi=gr) t=m1+2,-,13,

where 7(i) = i—(m;+1) , and denote with (f2) the corrispondent interpolator functions.

Define a continuous function f, on A; U A, by setting

fZ = ff(z))
where A(z) = (M(z), >, (2)), (=) = ()

Further, from the definition of Ry ,for every z € 4; \ 4, , we have

1f1(2) = fal@)llx < l1fa(2) = bl + b5 — Fa(@)]] < des = e
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Let us proceed by induction. Suppose that we have defined continuous functions fj on
Ui<;jAr such that
(@)  [Ifi-1(z) = fi(@)lh < €j—1 on (Uigj-1Ai)\ 4; for j=2,--,n—1.

Then there exist f, suchthat (@) holds for j = n. Infact,let Rn = {b}}m=0,m.
be an €,42 —net of the totally bounded set fn—1(Umgn—1 An \Zn) .

Let 6, be a function that maps each x belonging to Uj<n4; into an element of R, ,
whose distance from ]?,-_1(:«3) is less than €,42 . Then, define the open sets
Vi =UFN (02 (0%) + engsB1) ;i =1,y Jism =0, ymnjk = 1,0 ;0 — 15
ij,o =Z/(Jl°, j=1,-- ik k > n.

Let {¢'(z)} be a continuous partition of unity subordinate to {V'} . Apply

Lemma 2 to the functions of the set R, U U;’:ll N; ,ie.

n g .
p; = by, 1=0,-+,mp;

i = gr(i) i=mp+1, a1

where 7(i) =i — (m, + 1), and denote with (f{)x the corrispondent interpolator func-

tions.

Then, define a continuous function fn on Uj_,4;, by setting

fn(®) = fXz)

where A(a:) = (/\1(:1:), Tty ’\1n+1(z))’ A1(:13) = qi(z) .
Further, from the definition of R, , for every = € U;‘:_ll A;\ A, , we have

1fa(2) = Fa-1(2)llx < [1Fa(=) = baclls + 1155 = faca(2)]l1 < dentz = en.
Define a function f: X — X by setting, for every z € 4, ,
f(z) = lim fm(z)

and f(z) = f(z) for every = € A . Since the image of each fn, is contained in R(3),
then also f(X) C R(%) (cfr. theorem 10).
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From the relation

q
”fp(:c) - fq(m)ul S Zsﬁ p .<_ q, T E Ui_—_lAh \ AP+1

J=p

it is easy to verify that f is continuous on X \ 4. Let us check the continuity on A.
Fix €¢ >0 and a € 4; there exists a § > 0,§ < ¢ ,such that if b € A with d(a,b) < §
then | f(a) — f(b)|l: < 35- Now,if z€ X\ A and d(z,q) < ¢, then x belongs to some
UL\ Ant1 , with n sufficently large (we can also suppose that § is small enough to verify
en < 33) - Indeed, d(rz,a) < d(7z,z)+ d(z,a) < 6§, and so 17 (a) — F(me)|1 < 37 -
Therefore, if g}(z) # 0, [If(a)=g2)lls < (@)= F(me)lls +]f(m2) =gl < g5-+n <

&

a8 -
Then, by virtue of lemma 2 part (bs), we have
|Fu(e) = g3, < 8 loF = o5l < 2
n\T)— G 01 = sup 9; — 91> 5
7 G (20} ° 2
and so

1fa(2) = ()l < 5 + 2.

Because of the relation
() (@) = Fa(e)lls < TEes < en < £, for every = € Uy di\ Ausa »
we have, ||f(z) — f(a)|l1 <e¢, for every z € X with d(z,a) < £ .

It is left to show that f(X) is totally bounded. Fix ¢ > 0. Since f is continuous,
and f(A) is compact, there exists § > 0 such that F(A+6B1) C f(A) + £B;. Since
f(A) is totally bounded, then f(A + 6B;) can be covered by a finite number of balls of
radius ¢ . Choose m so that {4;:j5=1,---,m} cover X \[4A+ 6B;] while A,,y; has
empty intersection with it. Since each fj(u;glA,),j > m is totally bounded, and (xx)
holds, we have that whenever j satisfies ¢; < £, an £ —net of fj(U{’;lAz) is also an
e —net of F(UZ, A;) .

Hence we have found a finite & —net for the set f(X).

A

As a consequence of theorem 11, the set of rearrangements R(¢) has a relatively

compact retract property.
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Another consequence of theorem 11, is the following compact fixed point property.

COROLLARY 1 Let F:R(¥) — R(¥) be a continuous function with F(R(s))
totally bounded. Then F has a fixed point in R(%) .

Proof : Set A= m—)—) . Following the notations of theorem 11,1let :: A — A
be the identity map on A, and let 7 : L}(T,R) — B be the continuous function with
A C B C R(¥), B totally bounded and 7|, =i .

For every z € Ly(T,R) , define the function F(z) = F(i(z)) .

For every z € Ly(T,E), F(z) C F(B) C A; in particular F' maps ¢o(4) into
itself.

Let z* be a fixed point of F'. Then z* = F(i(z*)) € A, hence, F(z*) = F(z*).

A

3. THE REARRANGEMENTS ARE RETRACTS

As it is well known the notion of an absolute retract [11] offers a general setting for
several problems of analysis, namely the existence of extensions and fixed points. Up to
recently, only few examples of such sets were known, mainly akin to convexity.

The progress of non linear analysis has provided new examples of absolute retracts:
decomposable sets [6] or sets of solutions to differential inclusion [7].

Purpose of this section is to show that such set of rearrangements are absolute retracts,

hence providing a new framework for their use.

LEMMA 3. (Lyapunov extended theorem). Let (7,F,u) be a measure space,
with p positive, non—atomic measure.

Let (gn)n>0 be a sequence of non—negative functions in L*(T,R) with gy = 1,
Then, there exists a map v : Ry x [0,1] = F with the following properties:
(@1) (T A1) Cy(rA2) i A <o
(a2)  p(v(T1, A1)A7(12,A2)) < 2l — 72| + |A1 — Az ;
(a3) f—y)r,A) gndp = A fT gndp  for every n <,
for all X\, A1, Az € [0,1],7,71,7m > 0 .

For this last result we refer to [6].
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THEOREM 12. Assume that L'(T,R) is separable. Then, the set R(v) is a
retract of the whole space L!(T,R) .

The foundamental argument of the proof is an interpolation result on R(¢)) . More

precisely,

LEMMA 4. Let (pn)nen C R(¥), and let {p;(z)}ienw be a continuous partition
of unity subordinate to a locally finite covering {Ui}ierv of a metric space (X,d).

Then, there exists a family of functions (7;)zex , with the following properties:
(b1) 71z € R(¢p) forevery ze€ X ;
(b2) mzi =¢; if TP€ X is such that p;(Z)=0 forall j€IN except j=71;
(b3) =z —m, is continuous from X into L*(T,R) ;
(0s) |Im= —@ill1 < SUP{jip. (2)0} |95 — will1, forevery ze X,ieIN.

Proof : Rearrange the range of % into a finite monotone sequence of indices
a1,02,7,apM .

Apply lemma 3 to the functions (gy) k>0 defined by:

PC'D‘:‘.‘(t) : ifk=5h-7j,
9:(8) = § lps = pil@) - X \pi (8) if k=273 107,
J j+1
1 otherwise.

where D,’:j_ ={t:@n(t) > a;}, and let (y(7,A))- be the corrispondent measurable sets

coming from lemma. 3.

Now, we are able to construct a family of measurable sets (Eq;(z))sex which inter-

polates the level sets
vi ([aj, +00)))ien :
Ea;(2) = Ut {lv((2), 0u(=)) \ 7(7(2), 61-1(=))] N Dy},

where

l
Oi(z) = zpi(m)v

m(z) = Y al2)qn(z)qi(z)g;(2)2'3P5 1M 11,
Lh,i,j

and (¢gn(z))n are continuous functions with supp ¢, CU, and ¢, =1 on supp p .
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It is easy to verify the following properties:
(1) Buy(e) = 97 (lag,+0))
(2)  Fapa(2) C Boy(a)
(3)  w(Eq(z)) = p({t:9(t) 2 ¢;}) ,
for every j=1,--- M —-1;i €N,z € X .
Property (2) allows us to construct a family of functions (7:(t))zex having the family
(Eq; )(2)zex;j=1,--,M as level sets.

More precisely,define

M
(*) ne(t) = D a;Xp, (eN\B, ,, (=)-

j=1

By virtue of (1) and (3), follows

(4) Tz = $is

(8)  m(nz"([aj,+00))) = (¥~ ([a;, +00))),

forevery z€ X;5=1,---,M;i €IN.
Now, we prove that z — 7, is continuous from X into L'(T,R) .
Set J(z) ={j : pj(z) # 0} and N(z) = |J(z)|.
It results, be lemma 3 part (as),

p(Ea; (2)AEa, (20)) < p(UETI(r(7(2), (=) \ 7(7(2), 01-1(2)) N Dy, 1A
Al(v(r(20), 81(20)) \ 7(7(20), 81-1(20))) N Dy, 1}) <

+o0
D DL [B(r(7(2),8:(2)) Ax(7(20), 61(20))) + (v (7(2), B1-1(2)) Ay (7(20), 6i-1(20)))] <

=1

<p({t:(t) 20} D [Ir(2) = 7(=0)l + |61 (2) — Bi-a(wo)| + [61(2) — Ou(zo)]] <

€T, Uz,
< p({t: 9(t) 2 a;})(N (=) + N(20))(4|7(2) — 7(20)| + 2[p(2) — p(20)]),

where |p(z) — p(zo)| = X; |pi(z) — pi(z0)| ; and this, of course, ensures the continuity of
z— 7, .

it remains to prove only (bs) .
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By definition of D};’. y (*) can be rewrite as
(%) n=(t) = pi(t) if te Dij for some :€IN,j € [1,m]NIN.

Therefore, by virtue of lemma 3 part (a3),

72 — @ill: < i/

Xpy \pL__lp1—pildu =
=1 Y (T (2),61(2)\((2),61-1(z)) 70

oo
= sz(z)/ lot —pildp < sup / o1 — il
=1 T T

{t:pi(2)#0}
A

Proof of theorem 12. We have to prove that, given a closed subset A of a
metric space (X,d), and a continuous function f: A — R(¢) , there exists a continuous
function f:X — R(%) , with fh =f.

To this end, for each z € X \ 4, take an open ball B(z,r;) with radius
rz < d(z,A) . The family {B(z,r,):z € X\ A} is an open covering of the paracompact
space X \ 4, hence it admits a locally finite open refinement {V; :7 € I} . Here I is a
possibly uncountable set of indices. For each 7, choose two points z; € V; and y; € 4
such that d(z;,y;) < 2d(z;, 4) .

Select a countable subset D = {f, : n > 1} of f(A) which is densein f(4) . For
each ¢ € I, choose f,(;y € D such that

1 foiy = F(a)llx < dl=:, 3:)-

Let {si(-):i € I} be a continuous partition of unity subordinate to the covering {V;} .
For every n > 1, define the open set W, = U{V; : v(i) = n} and let
pn(z) = EV(i):n si(z).
Clearly, {pn(:):n >1} is a continuous partition of unity subordinate to the locally
finite open covering {W, :n € N} .
Taking into account lemma 4 applied to the functions of D and the partition of unity
{pn(-) : n > 1} , we can extend the map f to the whole space X by setting

z f(z) ifze 4
f(“’):{f,(, ) ifzeX\A
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The function f maps X into R(%) and moreover it is continuous on X \ 4
(cfr. lemma 4, part (b1),(b3) ).
In order to prove that f is continuouson A,let a € A and € > 0 be given. Choose
6 >0 such that § <5 and ||f(y) — f(a)ls < § whenever y € A,d(y,a) <126.
If d(z,a) <6 and z € V; for some i € I, then diam(V;) < 2§,
d(zi,A) <36 and d(z;,y;) <65 .
Therefore, pi(z) # 0 implies that d(y;,a) <96,[f(vi)— f(e)ll1 <5 and
| foiy = fla)lls < €.
From the last inequality, it follows that

(@) |fn — f(a)|]s <€ forevery n, with p,(z)#0.

Forany = € X \ A with d(z,a) < §, fix an integer 7 for which p;(z) #0.
From lemma 4 part (b3) and (@), we have

1£(a) = F@)1 < If(a) = Fills + 1 F5 — F(=)|lx < 3e.

Since ¢ was arbitrary, this prove the continuity of f on A.

A

Theorem 12 allows us to give a different proof of the fixed point result stated in
corollary 1.

COROLLARY 2. The set R(v) has the compact fixed point property.

Proof : Let f : R(y) — R(¥) be a continuous map whose image is relatively
compact, and let X be the closure of the convex hull of f(R()) . Since X is compact,
it is obviously separable. Using theorem 12 , extend the identity mapion X N R(¥) to
a continuous map 7 : X — R(%) . The composition f o7 maps X into X N R(x) . By
Schauder’s theorem, it has a fixed point z* € X N R(¢) , which is also a fixed point of f.

A
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4. APPROXIMATE SELECTIONS FOR UPPER SEMICONTINUOQOUS
MAPS WITH REARRANGEMENT VALUES.

Let X be a metric space and Y a Banach space. A multifunction F : X — 2Y is
Hausdorff upper semicontinuous if, for every zo € X and every & > 0, there exists a
neighbourhood V of zy such that F(z) C B(F(zg),e) forall zeV.

As it is well known, Hausdorff upper semicontinuous maps admit, in general, only

approximate selections. The classical result is the following;

THEOREM 183. (cfr.[1],pp.84) Let F:X — 2Y be an Hausdorff upper semicon-
tinuous map from X into the convex subsets of Y. Then, for every ¢ > 0 there exists a

locally Lipschitzean map f.:X — Y such that
graph(f.) C graphF + ¢ - By,

ie. fe is an ¢ —approximate selection of F, and f. C coF(X).

Cellina,Colombo and Fonda [9], proved an analogous result to theorem 13, by replacing
the convexity assumption with the decomposability, and with some compactness assump-
tions on the domain of F. Bressan-Colombo [6] removed the compactness assumptions

by using lemma 4.

- Here, we present an analogous result to those of [6] replacing the decomposability

concept with the rearrangement one.

First of all we need a technical lemma concerning paracompact spaces.

LEMMA 5.(cfr [6]) Let X be a paracompact topological space. For every z € X ,
let U, be an open neighborhood of = and let L(z) be an integer number.

Then, there exists a continuous function 7: X — R such that
7(z) > min{L(z'): z € Uy} for every =z € X.

A set B C R(¢) is said closed-rearrangement if lemma 4 holds with R(%) replaced
by B.
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THEOREM 14. Let X be a metric space and let F : X — R(¢) be an Haurdorff
upper semicontinuous map with closed rearrangement value. If either X or L'(T,R) is
separable, then for every € > 0 there exists a continuous map f. : X — L*(T,R) such

that

graphf. C B(graphF,¢).

Moreover f.(X) C R(¥) .
Proof : Assume first that L'(T,R) is separable.

-4

Fix € > 0. For every z € X , choose a number §(z) €0, §[ such that
F(z') C B(F(z),%) whenever z' € B(z,é(z)) .
Let {V;:1 € I} be an open locally finite refinement of the covering

{B(=, 6(;)) :z € X} of X.

For each i, choose z; € X suchthat V; C B(z;, 'S(T”')) and select u; € F(z;) . For

i,j € I, choose also v; ; € F(z;) such that

e .
(1) flui — il < 5 + inf{|ju; — v||1 : v € F(z;)}.

Let D ={f,:n>1} be a countable dense subset of F(z).

For every i € I select a f,;) € D for which [u; — fyilli < § -

Let {si(:) : 1 € I} be a continuous partition of unity subordinate to the covering
{V;} . For every m > 1, define the open set W,, = U{V; : v(i) = n} and let
Pr(z) = 2o, (i)=n 5i(Z) -

Clearly, {pn(-) :n > 1} is a continuous partition of unity, subordinate to the locally
finite open covering {W,} .

Let {gn(-)} be continuous functions such that supp ¢, C W, and
gn=1 on supp p, .

For every z € X , take an open neighborghood U, di z which intersects finitely
many sets V; . Setting I(U,) ={i € I : U, NV; # 0} , this means that N(z) = |I(U;)|
is a finite integer.

For every couple of indices 4,5 € I(U,) , choose a fy(; jz) € D such that

£

2 e N Ay s -
( ) ”fu(t,],:c) vthll < 6N(m)
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Let L(z) be an integer greater that 2(9).3"(55:2) .11M for every 4,5 € I(U;) and also
greater than ) ., ¢n(2)gm(z)qi(z)qn(z)2™ - 3™ - 51 . 7TM . 11M,
Applying lemma 5 to the collection of neighborhoods {U, : z € X} and integer

L(z) , we get the existence of a continuous function 7:X — RF such that
7(z) > min{L(z') : z € U, }.

Apply lemma 4 to (fa)n,(Pr)n,(Wn)n using the continuous function 7(z) found before
to get the level sets (E,;(z))zex;j=1,,M , and denote with (fz)zex the corrispondent

interpolator functions.

Then, the map f.: X — L;(T,R) can be defined by setting

(*) fe(z) = fa-

Clearly f.() is continuous and takes values inside R(3). To show that f.(-) is an
¢ —appoximate selection of F, fix z € X and define I(z) = {i € I : s;(z) # 0},
J(2) ={n 2 1:pn(z) # 0} .

Notice that |J(z)| < |I(z)| < +oco. Since I(z) is finite, there exist an 7 € I(z)
such that § = §(z,7) = max{6(z;):1 € I(z)} .

For every i € I(z) we have that z; € B(z;,8) , hence

(3) F(z;) C B(F(z3; %)

Take a point 2 € X suchthat z € U, and L(z) = min{L(z'):z € Uy} .
For every n € J(z) , select an index i, € I(z) C I(U,) such that v(i,)=n.
Apply two times lemma 4 respectively to the sequence of functions,
(fu(i,,,i,z))n and (v; 3)n (of course with respect to (W), and (pn(+))n),
and denote with (f}),ex and (f?);ex the corrispondent interpolator functions.

Therefore, the functions w(z) = f and w*(z) = f2 are continuous and

w*(-) € F(=;) . For every n € J(z), using (1),(2), and (3), we obtain

@) W= fa il S Mfa—willy + llus, = gl + +llos, 3+ Foi, il <
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+——-—+inf{]lui,, —vfl1:v € F(z;)} < 3M

Taking into account property (bs) of lemma 4, and notice that we can define the in-
terpolator functions (f21).,(fZ). using the same family of measurable sets (y(7,A))r

occurring in the definition of (f;). , from (4) we deduce the extimates

2
(5) 1fe@) = wlhy = 172 = 2l S sup lfi = fui il < 5
(6) o=l =122 = £ € 3 Wiy = vz <

neJ(z)

TEe _ @l _ e e
S GN(z)M SGN(:)M ~ 6M < 6’

Putting together (5) and (6), one has

dXxLl((z’ fe(m))) (:c;,w*)) S dX(x? :B;)—{-

(o) —wls + o= < £+ 5+ 5=
Hence (z,f.(z)) € B(graphF,e) .

This complete the proof in the case where L!(T,R) is separable.

When X is separable, a slight modification of the above arguments is needed. The
locally finite open covering {V;:i € I} of X can be considered countable, because ot the
separability assumption. It is therefore possible to define the countable set

D={u;:i€I}U{v;j:1,j €I} and arrange it into a sequence. After this choice of set

D, the rest of the proof goes exactly as in the previous case.
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