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Chapter 1

Introduction and overview

Simple models of interatomic forces have had an important role in advancing

qualitative and quantitative understanding of condensed matter. In relation to
properties of the liquid state, the fluids of neutral and charged hard spheres, the
classical one-component plasma and the Lennard-Jones fluid have played such a
role under two main aspects. Not only do they mimic classes of real fluids, but
also provide simple test models for progress in statistical mechanics through joint
theoretical and computer simulation studies.
Bond directionality and association are qualitative features of many real systems
which are missing in the models mentioned before. One can ask whether models
of the same simplicity can be developed to describe structural properties of the
disordered phases for system in which covalent bonds play a major role.

Scope of this thesis is to illustrate a simple primitive model for a liquid, that
shows both strong directional interactions and a variable degree of association in
the liquid phase, model which is relevant for the study of the disordered phases of
IV group elemental and III-V compound semiconductors.

A considerable interest from both the theoretical and experimental point of
view has been devoted in recent years to the study of the structure of covalently
bonded systems in disordered states. A first class of systems extensively inves-
tigated is that constituted by a a number of ionic or semiconducting compound
materials of type 4X,; that share the common properties to be well- known glass

formers: among them!22l BeFy, ZnCly, GeO,, Si02, GeSes, SiSez. On cooling
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from the melt at relatively moderate quench-rates, they can form a network-glass,
that is an open structure with tetrahedral local coordination around the A atom,
which is stabilized by the presence of strong directional interaction. As a matter
of fact all these compounds are known to form covalent bonds of more or less ionic
character, t’hat lead in the crystalline state to the formation of tetrahedral units of
X atoms coordinated to one A atom. Such fourfold coordination can successfully be
distinguished from others in the crystal structure classification built by Andreonil®!
for AX, compounds on the basis of quantal parameters of the component elements.
The tetrahedral units can form an extended structure by connecting either by cor-
ner sharing or by edge sharing. This leads in the crystal state to the formation
of 1D, 2D, or 3D regular networks respectively in the case of SiSe; (pure edge
sharing), GeSe; (mixed edge and corner sharing), Si0, (pure corner sharing), and
various allotropic crystalline forms distinguished by their medium range topology
may also exist for a given compound (i.e. Si02). The glassy structure can be
viewed as a disordered network of distorted tetrahedra, and an important point
for its characterization is to understand how this units connect together to form
an extended network, and what is the medium range topology that arises by their
correlation. Interesting structural questions thus concern, the relative weight of
corner and edge sharing, the "ring” statistics, and the presence of residual traces
of low network dimensionality. From the experimental point of view the structure
of the vitreous or amorphous state is reflected not only in static properties deter-
‘mined by elastic scattering experiments, but also in inelastic neutron scattering
spectral!l | as well as in Raman scattering spectra.[S]. As the information is not
sufficient to fully characterize the structure as in the crystal states, models have

been used to translate experimental results in structural terms.

The medium range order in the these glasses is characterized by the presence
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of a first sharp diffraction peak (FSDP) in S(k) in the range from 1.0 to 1.5 47!,

that arises from the connectivity of tetrahedral units in the network!?l.

The corresponding liquids near melting (and in the supercooled states preced-
ing the glass transition) is thought to show also a "network- like” structure, in the
sense that a quite high degree of association between A and X atom is present due
to strong directional interactions, leading naturally to the picture of a percolating
network of bonds, yet non-rigid, subjected to continuous bond breaking and bond

forming processes.

For compounds studied by scattering experiments in both the glassy and
liquid state, as ZnCL[%1 and GeSe,(™¥ the diffraction pattern for the liquid
phase show the same features as the low temperature glass including the FSDP,
that remain almost unchanged, while the other features show the expected thermal

broadening.

A second class of covalent system of current interest is constituted by the
amorphous phases of IV group and III-V compound semiconductors, that doesn’t
show any glass formation process when cooled from their melts at ordinary cooling
rates and are currently prepared by various kind of deposition tecniques(®/. The
diffraction pattern of the liquid phase near freezing shows clear differences from
those of their amorphous state; indeed melting at standard pressure brings elemen-
tal and polar III-V semiconductors from tetrahedrally coordinated open structures
‘into metallic liquids having higher density than the solid and first-neighbour co-

ordination number close to seven!®1°]

. Their liquid structure is nevertheless quite
distinct from that of other liquid metals(*Y. Specifically a first-neighbour coordi-
nation number of order seven is still relatively low and a second shell of neighbours

is seen to lie at a short distance beyond the first shell, in a region of interatomic

separations where the pair distribution function g(r) in other liquid metals has
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its main minimum. Similarly the liquid structure factor S(k) shows a distinctive
shoulder on the large k-side of its main peak, merging into a single asymmetric
broad peak with increasing temperature in the liquid phase. The FSDP observed
in the amorphous state is no longer evident in the melt. Similar structural feature

have been observed in the total diffraction pattern from molten GaAs'?.

The similarity in the behaviour of the liquid phase of these elements with
that of the previous class lies in the fact that both of them show fluctuations
that drive the system towards configuration with local tetrahedral order, due to
the tendency of association of atoms in the melt by the formation of covalent
bonds. The existence of these kind of fluctuation, with the persistence of some
covalent bonding effect in metallic system like liquid Germanium or Silicon was
shown by a recent first-principles molecular dynamic simulation made on liquid
Silicon[!3!, by means of the Car-Parrinello method that allows the simultaneous
determination of structure and electronic properties. This simulation shows, from
the analysis of charge density distributions, that temporary covalent bonds can
indeed form in the liquid, the lifetime of the covalent bond being comparable to
the characteristic timescale of lattice oscillations. Moreover it was observed that
this process of forming and breaking of bonds is characterized by a well defined

tendency of density fluctuations towards local tetrahedral order.

A number of theoretical approaches have been presented in the recent litera-
ture do deal with the disordered states of the above systems. The basic approach
represented by the Car-Parrinello method, combining density functional theory
for the valence electrons with molecular dynamics for the ionic cores, has been
applied to silicon('® | GaAs!*®, and liquid carbon!!®. The metallic melt of ele-
mental semiconductors has also been investigated by the conventional pseudoatom

approach of the electron theory of metals!*®l.
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A number of empirical approaches that include three-atom contributions in
the potential energy functions in addition to pair potentials has been proposed
since the work of Stillinger and Weber on Silicon, (see ref.[17] and references
therein) among which we mention that of Vashista on molten and glassy GeSes
and Si0,['8 and that of Tersoff on Si and Gell®l, These model potential are
tailored to describe a specific system by fitting their free parameters to properties
of a specific phase, by means of MD test runs, and their success depend on a
certain extent to the number of properties fitted and on which phase the fit was

made.

Even if a more fundamental approach is now available by first principle to
deal with the disordered phases of the above system, simple primitive models
can be useful to account for common features observed in the above systems.
As an example of the value of such models, we quote the work of Iyetomi and
Vashistal2?!, who showed, with the help of a simple model of charged hard spheres,
that the presence of a FSDP in chalcogenides glasses arises as effect of medium
range correlations due to steric repulsions and local charge neutrality effect. They
showed also that the position of this peak cannot be accounted for using pair
potential only. Previous explanation of this feature were based on models ol layer-
like structures, similar to that present in the crystalline solid, or on the basis of

the correlations that arise from the random packing of defined structural units!?,

Model of a certain simplicity that can be relevant to our subject arose in
another context, in the statistical mechanical modelling of associated fluids, mainly
in the treatment of network-like liquids. Wertheim developed an approchl?! to
such associating fluids modelling the elementary units as hard spheres with a fixed
number of attraction sites attached on it. The directional interaction is mediated

by forces between near-pheripheral sites, that can interact only if the elementary
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units have the right relative orientation. This model was investigated mainly by
means of Monte Carlo simulations!?22l. Another model that has been used in studies

(23] and

of hydrogen bonding in water and methanol is due to Smith and Nezbeda
is similar to Wertheim’s scheme, with the variant that the near-peripheral sites

acts attracting the center of another units, not another site.

In this thesis we shall present a model able to take into account the peculiar
density fluctuations towards local tetrahedral order that characterize the class of
materials discussed above and distinguish their behaviour from simple liquid’s one.
We considered an extension to the melts of III - V and IV group semiconductors
of the bond charge model adopted by Phillips[?¥ to give a picture of the non uni-
form charge density distribution in crystalline semiconductors and employed by
Martin[?%] and Weber(2627] as a simple empirical model to account for the dy-
namical properties of these materials. A primitive pseudoclassical model for the
melt can be constructed by regarding it as a mixture of hard sphere atoms and
pointlike bond particles, with mutual attractive interactions which can induce lo-
calization of bond particles between pairs of atoms under steric constraints limiting
the coordination of an atom by bond particles to a maximum of 4 in tetrahedral
configuration. The above model involves only pair potentials between components
and thus it can be studied by means of the approximate integral equations of
liquid state theory. A particular realization of this model has been examined in
relation to liquid germanium, for which very accurate neutron scattering data are
availablel*®: we shall shown that indeed it gives a semi-quantitative description of
liquid germanium’s structure near melting, and shows the correct trends of struc-
tural features on varying temperaturel?®. Equilibrium supercooled states of the

model were also investigated in this context, and their structure, as obtained by

integral equations techniques, was contrasted with the results of diffraction ex-
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periments on amorphous germanium. A considerable effort was devoted to test
the accuracy of integral equations techniques for the determination of the pair
correlation functions aﬁd of structure factors for liquid and supercooled states,
by comparison with results obtained in Monte Carlo simulations. Work done on
improving the approximations involved in the integral equations approach by the
inclusion of Bridge Functions will be also reported here. We shall also present here
some empirical melting criteria for III - V semiconductors. The model presented
here was also used to study the the freezing of liquid germanium in the framework

of the density functional theory of freezing (29],



Chapter 2

Presentation of the Model

2.1 BCM IN THE LATTICE DYNAMICS OF SEMICON-
DUCTORS

Bond Charge Models are based upon a semiclassical picture of the electron charge
density distribution in covalent materialsi?43%, and in particular in semiconduc-
tors. The electron density distribution in these materials is neither simply the
superposition of spherical charge densities centred on the atoms as in purely ionic
materials, nor almost uniformly distributed like in simple metals, but a certain
amount of charge is accumulated in the covalent bond between adiacent atoms.
This can be clearly seen from charge density plots of valence electrons for Ge and
for Gads displdyed in fig. 2.1, taken from band structure’s calculation of Wal-
ter and Cohen[®!. Differential plots in which the charge density of an "isolated”
atom at each site is subtracted by the total charge density clearly show that the
bond charge is due to chemical bonding and not to simple superposition of indi-
vvidual charge densities(32]. This pileup of charge in bonds is responsible for the
"forbidden” reflections observed, for istance, in X- ray scattering experiments on
Sil*3l,
Phillip’s idea consist in parting the valence charge density of crystalline semi-

conductors in two contributions, a spherical charge density located at the atomic
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sites, and a point like charge located at the bond, halfway between nearest neigh-
bour atoms in homopolar compounds. A schematic picture of this partition for
the charge density is given in fig. 2.2 for an homopolar semiconductor like 57 or
Ge. Figure 2.3 shows the diamond-type structure of crystalline Germanium after

decoration of covalent bonds by bond particles.

As the band structure of 57 and Ge is nearly-free-electron like, the bare ion-ion
forces are expected to be screened by the charge distribution of valence electrons,
and this screening is represented by the diagonal elements of the inverse dielectric
matrix e '(q + G,q+ G') . But because of the finite gap between valence and
conduction bands, the screening, unlike in metals, is incomplete giving rise to a
finite but quite high value for the static dielectric constant ¢y (16 for Ge and 12
for S7), and as a result there remains a residual screened charge of value +4le|/€o
at each ion. In order to preserve the charge neutrality, Phillips introduces charges
of magnitude —2|e|/¢p at the bond sites. These bond charges just represent the
effect of the off diagonal elements of the inverse dielectric matrix(?5°4, The ex-
tension of this picture to III-V semiconductors, in which the bond has a partial
ionic character, is straightforward. The partial charge transfer from less to more
electronegative atom is reflected in a shift of the bond charge towards the latter,
- as could be seen in fig. 2.1, and so the equilibrium position of the bond charge
in the model should be displaced in such a way to divide the bond lenght in the
proportion 5 : 3.

These concepts where exploited by Martin[**! in a study of the lattice dynam-
ics of Silicon. He pointed out that the consideration of the diagonal (metallic-like)
part of the screening only leads to pair potentials between silicon atoms, unable
to account for the stability of the open tetraedral structure, thus leading to insta-

bility against shear modes signaled by imaginary frequencies of TA modes. The
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introduction of bond charges constrained to remain at the midpoint of a bond
even when atoms are moving, provides through their Coulombic repulsion a bond-
bending force and so gives rise to an effective non central interaction between
ions which stabilizes the structure. Martin found an overall satisfactory agree-
ment with the experimental phonon dispersion curves, being able to reproduce at
least partially the characteristic flattening of TA modes along the [100] and [111]
directions in the Brillouin zone, and values of elastic constants. He also used a
simple two parameter model to account for the main features of the dispersion
relations, allowing Coulomb interaction between ion-ion, ion-BC and BC-BC and
introducing a short range force between nearest-neighour ions only, to account for
the deviation from the Coulomb force due to the diagonal screening, which reaches

the asymptotic value for distancies of the order of the atomic spacing.

These ideas where developed by Weber who proposed a simple empirical model
with few parameters, the Adiabatic Bond Charge Model, that well describes the
lattice dynamics of group IV elements!?®! (C- diamond, Ge, Si, a — Tin) and III-V
semiconductors?” and has the same importance for the lattice dynamics of semi-
conductors as the shell modell®d] for the lattice dynamics of ionic systems,
Weber removed the constraint that B. C. should follow the atomic motion istanta-
neously, allowing them to move adiabatically like the electronic shells in the shell
model, by providing an appropriate ion-B.C. force to fix their equilibrium position
at the midpoint of the bond. The four kind of interactions allowed in the model

are, as sketched in in fig. 2.4:
— Coulomb forces betweeen charges, with coupling parameter v;; = ZiZj]eo.

— Short range forces betweeen nearest-neighbours
(a) ion - ion central interaction

(b) ion - B. C. central interaction
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(c) B. C.- B. C. non-central interaction

As we have already seen, forces of type (a) accounts for the effects of diagonal
screening in semiconductors, while interactions of type (b) and (c) are characteris-
tic of the covalent bond, representing respectively the strenght of the bond and the
interaction between neighbouring bonds, due to variation in the s-p ibridization
when the angle between bonds changes. There are only 4 parameters, related to
the couplings of the different interactions involved, that could be fitted matching
an equal number of relations. These are derived requiring that the observed fre-
quencies are reproduced at some high simmetry points in the Brillouin zone. In
the extension to III-V semiconductors 6 parameters are necessary, being present
now one interaction of type (b) and (c) for each type of ion (the charges of the
two ions are set equal, so still one parameter is necessary for Coulomb coupling).

The good agreement with the observed dispersion relatioﬁs and elastic costants

obtained by the model is shown in fig. 2.5 for the case of Ge.

Weber examined also the importance of the Coulomb interaction in his model,
considering the case in which they are dropped by setting v = 0, and found that
the overall agreement remains good, meaning that their effect is marginal. The
dispersion relations of this uncharged model are compared in fig. 2.6 to that of
the full model, already shown in fig. 2.5. He showed also that the characteristic
flattening of TA modes depends on the relative importance of the ion-bc and be-
be coupling. When the former is weaker than the latter, atoms vibrate in a rigid
lattice of bond charges as almost decoupled oscillators with small force constant,
and only in the long wavelenght limit, when atoms and b.c. move in phase, the
rigidity is trasferred also to the atomic motion. The variation of this ratio can
thus account for the trend in TA mode flattening, which is more prondunced in

less covalent systems as a — T'in, decreases going from Ge to St and is not present
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in diamond. The success of this models is mainly due to the introduction of only
few interaction of short range type with a clear physical interpretation.

In a recent study, Fleszar and Restal®®! have shown that the BCM gives also
correct values of the real space force constants, and of the interplanar force con-
stants as compared with the results of first- principles calculations, and that the
presence of BC with their interactions accounts for an effective atom-atom coupling
up to the 13th neighbour.

The adiabatic bond charge model found recent application to the lattice dy-
namics of polar semiconductor superlattices[37], of the polymorphic phases of St
and Gel®¥ to the study of the surface phonons of the reconstructed Si(111) 2 x 1
and of the S#(111)+ H 1x1 surfaces(®%. It was also applied for examining molec-
ular vibration in diatomic and polyatomic molecules!*?] a field in which Valence-
Force- Fields models have found prevalent applications. Concepts relaying on the
BCM, either in the Phillips-Martin version or in the Weber version, were applied
also to the non-linear optical properties of covalent AB compounds[‘“], and to the

infrared absorption and Raman spectra of group-IV elements!*2].

2.2 BCM FOR SEMICONDUCTOR MELTS

As we have seen in the preceding section, the success of the BCM in reproducing
‘the lattice dynamics of semiconductors relies upon the simple physical representa-
tiqn that it gives of the forces due to the covalent bond, namely the introduction
of bond charges as centres of forces to account for the directional interactions be-
tween atoms, involved in chemical bonding. We want to extend this simple picture
to treat interatomic forces in the melts of IV group and IIT - V semiconductors.

The underling physical assumption for this extension is that, even if these systems
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show metal-like conductivity(*}] in the molten state, the formation and breaking
of covalent bonds in the melt play still an important role, driving the system to-
wards density fluctuation of local tetrahedral order. It was shown by a recent
first-principle simulation on molten Silicon by the Car-Parrinello method*?] that
this is indeed the case.

In the spirit of BCM we examined a primitive model for the melt regarding
it as a mixture of atoms and Bond Particles, in which the atom-atom interaction
is represented at the most elementary level by hard sphere repulsion, and an ap-
propriate ion-BP interaction provides a stable equilibrium position for the Bond
Particles, which are now free to leave the bond. This attractive interaction can
induce localization of bond particles between pair of atoms, constituting a "bond”
between them; the directionality in the interaction between atoms is accounted
for by the steric restriction that at most 4 BP can localize in tetrahedral config-
uration around one atom. The main aim in examining the model as formulated
above is to follow the structural evolution of both the atomic and BP compo-
nent as the temperature is lowered from hot liquid states to strongly supercooled
states. Directionality of effective atom-atom interaction and angular interatomic
correlations are progressively built into the model as localization of BP sets in and
grows. In the liquid state this amounts in the presence of a fluctuating network of
bonds, with the occurence of fluctuations that lead to the temporary formation of
tetrahedral open units of four atoms "bonded” to a central one. One could follow
‘the increasing correlation between such units on lowering the temperature, ending

eventually in the formation of a permanent network with stable bonds.
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A Model for Liquid Germanium

We consider a two-component fluid of hard spheres, with component A (Ge
atoms) and B (Bond Particles) having number density nyg and ng = 2n4 at tem-
perature T. The hard-sphere interactions are characterized by three distances of
closest approach (c44, 0AB and opp, say). In the problem at hand the relevant
values of the hard-sphere contact distances are asked to satisfy the approximate

relations
2
O'AAﬁszBSd O'BBN\/;CI (2.1)

where d represents the bond-lenght. These relations imply that, even though
the B component is essentially point-like compared with the A component, no
more than four B particles can be found in immediate contact with any A par-
ticle. This feature of the model (non-additivity in excluded volume effect) is to
be contrasted with the primitive model of a liquid alloy as a mixture of hard
spheres[44'4s], in which additivity of hard-spheres diameters is imposed by setting
ocap = (0aa +0oBB)/2.

We next introduce interactions which lead to strong relative ordering of the
two components in the liquid, considering two alternative cases. The first choice
(Localized Attraction Model- LAM) is similar in spirit to the Weber BCM and
introduces an attractive interaction between A and B particles in the form of a
‘narrow potential well centred at the distance d/2 from the centre of each A par-
ticle and uniformely spread over its surface (see fig. 2.7). The well is taken to
have a gaussian shape of half-width & and depth V, with o =~ d/2 — g ap is chosen
narrow so that there is a well defined bond- lenght d. We may explicitly note here
that the role played in Weber’s model by bond bending non-central forces between

Bond Particles is taken up in our model for the liquid, at appreciable values of the
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A-B coupling strenght, by the simple requirement made on the distances of closest
approach between them.

The well depth enters the model only in units of the thermal energy kpT, yielding a
coupling strenght parameter V* = V/kpT which will be allowed to increase con-
tinuously from zero in order to follow the process of localization of bond particles.
For liquid germanium near freezing, estimating V from the valence-conduction

band gap of the crystal (V =~ 0.7eV'), we anticipate V* = 6.

The second alternative that we had explored!?®! for the origin of relative
order of the components of the liquid is closer to Phillips’ original BCM. The
hard-spheres are assigned charges in amounts Z e and Zpge respectively, with
Zg =1/274.

The A-B coupling strenght is now measured by the ’plasma parameter’
I' = Z%e?/(akpT), the lenght a being related to the liquid density by
a= (47rnA)‘1/3. Again this parameter will be allowed to increase continuously
from zero. Phillips’ original estimate was |Zpg| ~ 0.5 corresponding to two elec-
tronic charges screened by the dielectric constant of the material, while fits in
the BCM of Martin and Weber gives respectively values of 0.65 and 0.40. The
corresponding value for T' appropriate to Germanium near freezing is in the range

50-20.

A combination of short range attraction and Coulomb forces could also be
possible, but relying on Weber analysis of his model, we think that also in the

liquid near freezing only short range forces are determinant for structural features.

The calculations reported in Chap. 4 refer to two choices of the liquid density
taken from experiments. As we expect the average bond-lenght to be different
in the melt from the value found in the amorphous solid, and as the narrow well

considered by us doesn’t allow the bond lenght d to vary on temperature, we chose
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also two different values for d, read by the Ge — Ge first- neighbour distance in
neutron scattering experiments.

For liquid Germanium at 7' = 1253 K, which is above the freezing point at atmo-
spheric pressure (1210 K), one has ng = 0.04614~3 from rif. [43] and d = 2.634

46]  In amor-

from the neutron diffraction experiment of Gabathuler and Steebl
phous Germanium, on the other hand, the density depends on the film deposition
rate and on film thickness, being at most equal to 97% of the crystalline density
(see for istance ref. [47] ). We have considered such a value of density as ouf
second choice, in combination with the value d = 2.46A from the diffraction ex-
periment of Etherington et al.[*8] on amorphous Germanium at room temperature.
This value of the bond-lenght is pratically the same as in crystalline germanium.
Finally the various choices that we shall illustrate for the hard spheres contact

distances and the well half-width, are collected for convenience in table 2.1. We

shall comment later on these specific choices as the opportunity arises.

TABLE 2.1 Sets of model parameters used in the calculations

na(A=3)  d(A) ocasa/d oap/d  oBp/d o/d

Set 1 0.0461 2.63 0.94 0.475 0.80 0.050

Set 2 0.0429 2.46 0.95 0.475 0.76 0.050
Set 3 0.0429 2.46 0.93 0.475 0.81 0.050
Set 4 0.0429 2.46 0.98 0.500 0.81 —
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Extension to III - V Semiconductors

Let us consider here as an example a straightforward extension of the LAM
model to the description of III-V semiconductors. We shall adopt now a three
component fluid composed by two kind of atoms, A1l and A2, and one kind bond
particles B, so that six close contact distances oap have to be chosen. In the case of
Germanium only one of this distances, namely o 44, is an indipendent parameter,
and has been slightly adjusted in our calculations to give agreement with the height
of the first peak in S(k) in diffraction experiments, while opp and o 45 were fixed
by the relation (2.1). In III-V compounds the BP divides the bond lenght d in two
parts da1, das with da1/das = 3/5, is the ratio between the number of valence
electron in each atom. It should be noticed that the equilibrium position of BP
is given by the location of the minimum in the A-B well, while 045 essentially
represents the repulsive part of the A-B potential. The distances 0Ba; (@ = Al or
A2) should satisfy the approximate relation opo < dy. Now ogp is fixed by the

request of tetrahedral coordination of BP around Al leading to

2 2 ,
OBB ~ 3 da1 < 3 d a2 ‘ (2.2)

The tetrahedral coordination around each atom is still satisfied, but (2.1) shows
that it is more strictly enforced on atoms of type Al, reflecting the different rigidity
against bond bending on atoms of different kinds. A more quantitative treatment
of this effect requires the adoption of continuous repulsive potential for BB inter-
action, whose stepness is related to the different rigidity on bond bending on each
atom.

The atomic diameters ¢, can be chosen close to the actual sizes of the two kind

of atoms, and the distance of close contact between different atomic SPecies o 4140
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can be fixed by the request of additivity of the atomic diameters; this choice gives
only two parameters to be slightly fitted.

Consideration of non-additive hard sphere diameters between atomic components
has been useful in describing the different excluded volume effects in the interac-
tions between like and unlike atoms due to chemical bonding effects in models for
Ni— Y] and Ni — Ti 5% metallic glasses, or to enforce fourfold coordination in
a model for liquid ZnC1l,5, but is not necessary here, as the chemical bonding
is accounted for by the presence of BP. The non additivity of the interactions is
considered only, as we have seen, for the interactions A-BP BP-BP A-A.

Notice that now the relation oo < dn where (o =A1 or A2) may be violated,
meaning bond particles localized not at the surface but well inside one of the

atomic spheres.

Two BP-atom attractions are now needed to account for covalent bonds be-
tween Al and A2 atoms, i.e. one for A1-BP the other for A2-BP, and the same
gaussian well can be used, centred at d4; for A1l atoms and at d 45 for A2 atoms,
with the depth fixed again from the value of the gap.

As thereis evidence that a small amount of wrong-bonds between like elements

(141 it might be necessary to

may occur both in the liquid and amorphous state
introduce two other different wells of suitable depth to account for A1-A1l and A2-
A2 bonding, and their influence on the structure might sistematically be studied.
‘This kind of bonding should certainly be accounted for in studies of i — Ge
systems, or other mixtures of IV group elements. Maybe the case that for such
systems the equilibrium position for BP in unlike bonds should also be shifted
toward the most electronegative atom.

Another point that can be explored by this model is whether the partial ionicity

of these compounds is completely accounted for in this scheme by the shift in the
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equilibrium position of the BP in an uncharged system, or it should be necessary
to place ionic charges of different sign on atoms of different kind. One can thus

study to what extent this choice influences the structural properties.

2.3 MELTING CRITERIA

As we shall show in Chap. 4, the liquid structure for the models considered
here shows the same qualitative structure of liquid Ge when values of the coupling
strenght parameters assume approximatively values of V* ~ 7.5 for the LAM and
I' o 24in the other BOM. We notice that these values are close to those anticipated
in Sec. 2.1 from the observed band-gap E; in the crystal and from the extimated
value of —2 for the bare bond charge, in the Phillip’s scheme, that leads to a
coupling 4/¢y betwen them.

We now ask whether there is any generality to these results. Namely, we ask
whether for semiconductors which melts with a break-up of chemical bonding, one

can formulate empirical melting criteria in the forms

E
kBi;m ~ constant (2.3)
or
4 2
;—0_(;];2‘—1;;'— ~ constant (24)

at the melting temperature 7,,. First we looked for linear correlations between

T,, and Eg or T, and nl/?’/eg where n is the number of atoms per unit volume.
Figure 2.8 shows that there is an approximate linear relation in both cases.

Data for T,,, E,4, € used in the figure are taken from Landolt-Bérnstein tables

(521, The constant of proportionality are found to be approximately equal to 10 for
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(2.3) and 20 for (2.4), that are essentially in agreement with the values obtained
in our model. We note also that criteria (2.4) is well satisfied, being almost all
the values on the same line, and this line has intercept zero. In the other case
the values are more scattered around a line, and the value for E, = 0 lays at
T ~ T40K; being the value 740/kpT of order unity at the melting temperature
involved, we can still say that the criteria (2.3) is approximatively satisfied.

The melting criteria involving the bandgap was not unexpected, and a melting
criterion relating the melting temperature to the band gap was already proposed

53], The melting criterion based on the bond charge

by Godefroy and Aigrain
concept is less obvious and its empirical verification give additional support to the

qualitative usefulness of Phillip’s ideas.
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Fig. 2.1 — Total valence electron charge density (in units of electronic charge, €) in
the (1 -1 0) plane, for crystalline Germanium (upper figure) and Gallium Arsenide (lower
figure). The insert shows the direction of the plane in the unit cell. From Walter and
Cohen, ref.[ ].
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Fig.. 2.2 — Separation of valence charge distribution in diamond- type semiconductors

into atomic and bonding parts. From Phillips, ref.[ b].



Fig. 2.3 — Cubic cell of crystalline Germanium showing decoration of interatomic
bonds by bond particles. In crystallography this decorated structure is know as the ideal
ﬂ-crystobalite structure for S105.

Fig. 2.4 — Schematic presentation of the short range interactions used in the Adia-
batic Bond Charge Model of Weber: (a) ion-ion (central); (b) ion-BC (central); (¢) BC-BC

(non-central). From Weber refs.[ , |.
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Fig. 2.5 — Phonon dispersion curves for Germanium. Solid lines show the results

of Weber’s Adiabatic Bond Charge Model compared with experimental values (points).
From Weber ref.[ ].
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Fig. 2.6 — Phonon dispersion curves for Germanium as calculated from Weber’s BCM

with short-range forces only (solid lines) in comparison with the results showed in fig.2.4
for the full model (dashed lines). From Weber ref.[ ].
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Fig. 2.7 - Atom-Bond Particle interaction potential in the LAM.



| t , — , 0.06
GAP (eV)[ ' : AIN © l
: - - ns / .
1 AIN

. - ° 4004

I T Alsp  GaP °

- . P O AIP

I GaP AlP | o S 2 Alas

i o Alhs ° T GaOSb Lo - 0m

i AlSbo GaAs o Ge GaAs

i GaSbInPo o o _-InSTJ b

O o) Ge
r énSb O InAs l . .
O. L ! L 1 L I ) . L | ; | L | L 0.00
700. - 1400. 2100. 2800. 700. 1400. 2100. 2800. 3500.
Tm (°K)
Fig. 2.8 — Correlation of the melting temperature 1}, of elemental semiconductors

and III-V compounds with the valence-conduction band gap Eg (left) and with the quan-
tity n1/3/60 (right), where n is the number of atoms per unit volume and €gthe static

dielectric constant of the crystal.



Chapter 3

Methods for the Study of
the Model

We present here a summary of concepts from the theory of liquids, including
the definitions of the relevant structural quantities (i.e. pair correlation functions
and structure factors), and a description of the statistical mechanical methods we
employed in the study of our model, namely integral equations and Monte Carlo
simulations.

In order to make the presentation of results in the following chapters as sim-
ple as possible, we include here for later reference all the technical details about
numerical calculations. A general reference for this chapter is the book by Hansen

and McDonald[54,

3.1 DEFINITIONS

Notations for Fourier Transforms

We shall adopt the following notation to indicate a 3D-Fourier transform of

a function of a vector

flio = [ fw) e ar (3.10)
If f depends only on the modulus of r, one can write the integral in polar coordi-
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nates as

Flk) = /027r dqﬁ/ooo dr/jldcose r?f(r) e~tkreost

(3.1b)
47 [ )
= — rf(r)sin kr dr
k Jo
In the same way we can express the inverse fourier transform
£) = s [ 10 ¢ e (3.2a)
- (2m)? '
when f depends only on the modulus of k
L [T kf(h) sin b dh b
H0) = 5oz | kisinkr (3.20)

Number Density

In what follows we shall always denote with n the number density of an
homogeneous system, that is the number of atoms per unit volume measured
in A7%. On the contrary the mass density, i.e. mass per unit volume will be
denoted with p. Dealing with m-component systems, n is the total number
density, while ny, (o = 1,2, ...,m) are the partial number densities, and zo = no/n

are the molar fractions or relative concentrations for the component of type a.

Pair correlation Functions and structure Factors

At present the only structural quantities directly measurable by experiment
for disordered homogeneous systems like a liquid, a glass or an amorphous solid are
‘the pair static correlation function (or radial distribution function) g(r) and the
static structure factor S(k). They are related in the former system to the average
(time average) equilibrium local fluctuations of density, and to the correlation
between the position of particles, averaged over the sample, in the latter. These
functions give some information about the spatial correlations of pair of particles

" in the range of few (from 0 to 10-12) Angstrom.
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In a X-ray scattering experiment, and in a neutron scattering experiment
under certain conditions, the coherent scattered intensity at a given angle is pro-
portional to S(k), k being the trasferred momentum in the scattering process. In
Statistical Mechanics the structure factor describes the correlation between density
fluctuation of wavelenght A = gkﬂ in two different points at equal time

1 NN‘k..
S&):Rf<§:§:g .On_nﬂ>

i=1 j=1
where the brackets indicate a statistical average over a canonical ensemble of N
particles.

The pair correlation function for an homogeneous system can be defined as
the probability distribution function for finding any particle around any other par-
ticle at a distance r. It describes at a pair level the average local arrangement of
atoms in the system. It’s useful to introduce another function, called also pair
correlation function or total correlation function A(r) = g(r) — 1, describing the
spatial deviation from the uniform mean density.

The link between the pair correlationfunction and the density-density autocorre-
lation function at equal time G(r,t = 0), describing spatial density fluctuation is
given by

N N
G(r,t) = ’]%f— <Z Z/&[r’ + 1 —r;(t)] §[r — r;(0)] d1.1> 53

G(r,0) = ng(r) + é(r)

The structure factor is related to the pair correlation function by a fourier trans-

form, giving for k # 0 the relation
S(k) =1+ nh(k) (3.4)

Dealing with multi-component systems we need more than one pair distri-

bution function to describe its structure; for two component fluids with particles
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of type A and B, three functions g4, gap and gpp are required. The partial
distribution function g.s(r) represents the probability distribution for finding any
particle of type a (¢ = A or B) at a distance r around any particle of type 3 (8 =
A or B) , so that 4mr®nggap(r) represents the average number of particle of type
« within a spherical shell of radius r centred around one particle of type 3.

The cumulative coordination numbers Nog(R) are evaluated from the integral
R
Nag(R) = 47rng/ r2gap(r) dr (3.5)
0

Notice that gos = gsa but Nog # Nag if ng # ng.
The near-neighbour coordination numbers that we shall report are obtained set-
ting the integration limit R equal to the position of the first minimum in the
corresponding gag(r).

The partial structure factors can be defined in several ways('!l; among various

definition we chose that due to Ashcroft and Langreth(*4]

Sap(k) = bap + /Mamis hap(k) (3.6)

which has, for like particles, the same form as eq. (3.4) for the one component
system.

Direct correlation Function and the Ornstein-Zernicke relation

For the theoretical description of liquids it’s useful to introduce another kind
of correlation function.
The excess Helﬁloltz free energy of an inhomogeneous system can be expressed
as a functional F.,[n(r)] of the one particle density n(r), which is the probability
density of finding any particle at the position r. We can define the n-particle direct

correlation function taking the functional derivatives

_ 8" Fey
~ bn(ry), ..., dn(ry,)

¢ ™y, rn) (3.7)

n(r;)=n
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around the homogeneous state.

For an homogeneous system ¢ (*) depends only on the distance between particles
ri; = |r; —rj|, and so
c (2)(1'1,1‘2) =c (2)(r)
c (3)(1‘17 1‘2,1‘3) =c (3)(7’12,7‘23,7"13)

Direct correlation functions are related to the total correlation functions through

the Ornstein-Zernicke (0.Z) relation
) = e(r)+n [ el = eDh(r) de (3.80)

that can be written using fourier transform as

h(k) = &(k) + né(k)h(k)
(k) (3.85)

Bw):1~na@

Using egs. (3.8b) and (3.4) one can find the following relation between c(k) and

S(k)
1

S%):1~nd@

(3.9)

The generalization of the O.Z. integral equation to a two component system leads

to the Pearson-Rushbrooke integral equations
ha/g(r) = Ca/g(’f') -+ Z nﬂ,/ca,g(]r' - 1‘[)h55(7") dr’ (3.10a)
6

hap(k) = Eap(k) + > nylas(k)hss(k) (3.100)
)

where the sum runs over the two components of the system. A relation between

Sap and cqp similar to eq. (3.9) is easily written in matrix form as

(Sap(8)) = (a5 = yiams anth)) (3.11)
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3.2 INTEGRAL EQUATIONS

Integral equation theories of liquids provide a way for determining the structure,
at the level of pair correlation, and the thermodynamic properties of equilibrium
states for fluids whose particles interact with pair potentials only. In the simplest
version we shall sketch here, the theory apply to model fluids composed by ”simple”
particles, regarded as isotropic, structureless objects (i.e. "atomic” or “ionic”

[54] and associated

liquids), but generalizations also exists to deal with molecular
fluids(?4],

For studing our model we are interested in the case of a two component system
of particles interacting with pair potentials only, that is a system whose potential
energy V is factorizable as a sum of pair interaction vqg(7ij).

We have two sets of equations connecting the unknown functions gos and cqg with
the pair interaction vqg.

- one is the set of integral equations (3.10), which generalize the O.Z. equation
relating cqg and hqop

— the other is an exact relation, called closure relation

Jap(r) =~ Do5(7) + hap(r) — cap(r) — Bap(r) (3.12)

where ®,5(r) = Bcapg(r) is the pair potential in units of temperature. This rela-
‘tion has originally been derived by diagrammatic methods!®! (see also ref.[%]) ,
from the formal series expansions of g and ¢ in powers of the density, but it can
be derived also by means of a density functional formalism[®*7IP81(59] The func-
tions Bag(r) in the diagrammatic derivation are expressed as the sum of the so

called "elementary diagrams” or ”bridge diagrams”, which have a precise topo-

logical characterization (see ref.[54]); on the other hand also in density functional
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derivation the bridge function can be expressed by a series
Bag(r) = i B (r) (3.13)
v=4
For a one-component system, the generic term in this sum takes the expression
BW)(r) = BUH3(p) = ——7—;—,;-/c(k"‘l)(r,r1...rk)h(r1)...h(rk) dry..dre  (3.14)

the first term of the series being

2
n

B(4)('r) = ———é—/c(3)(r,r1,r2)h(r1)h(r2) dr]_drg (315)

We shall deal extensively with the bridge functions in a later section.

The two sets of equations (3.10) and (3.12) constitute a closed set of three
coupled nonlinear integral equations, usually expressed in the unknown function
Yap(r) = hap(r) — cap(r), that can be solved from the knowledge of the potential
®,5(r), provided that we have chosen a suitable analitical expression or an ap-
proximation for the bridge functions. The advantage in casting the equations in
terms of y44(r) is that this function is smooth even for discontinuous potentials,
like the hard-sphere one, while both gag(r) and cap(r) are discontinuous at the
points of discontinuity in the potential (see ref.[54]).

Different kind of approximate integral equations can be obtained assigning
to Bag(r) a specific functional form in terms of v45(r). We present here a list
of approximate closure relations that are relevant for our work, classifying them
‘from the functional form that they show for the bridge functions.

HINC EQUATIONS - the simplest choice for the bridge functions, i.e.
neglecting completely the contribution of the elementary diagrams, by setting

Bag(r) =0, gives rise to the Hyper-Netted-Chains equations

Jap(r) =€~ Do3(7) + hap(r) — cap(r) (3.16)



It is superior to other closures in the treatment of charged systems, where it is
accurate for a wide range of parameters, as this approximation maintains some
sum rules, involving correlation functions, that ensure the overall charge neutral-
ity of the system!®?] (for extensive refs. on this closure see the review article of
Ichimarul®9]).

MSA APPROXIMATION - The Mean Spherical Approximation deals

with system of hard-spheres plus a potential tail and correspond to the choice

Bugs(r) = { —1In(hap(r) + 1)+ hap(r) if 7> oap(r) (3.17a)

400 otherwzise.

that substituted in (3.12) gives a more familiar relation

gap(r) =0 if r<oup(r);
{(I) g h (3.17b)

ap(r) = —cap(r) otherwise.

that is motivated on the physical ground by the requirement of excluded volume
effect and correct asymptotic behaviour of cog(r). It also found extensive appli-
cations as in many cases can be solved analitically. It can be generalized to soft

repulsive potentials plus an attractive part (Soft MSA)
PY EQUATIONS - The Percus-Yevick closure (PY) corresponds to the

choice
Bap(r) = vap(r) — In[l + yap(r)] (3.18a)

that when substituted into eq. (3.12) gives

gap(r) = [1+ vap(r)]e ~ Tes(r) (3.185)
or alternatively

cap(r) = gap(r) (1 = e‘I’aﬁ(T)> (3.18¢)

It was derived by diagrammatic methods by neglecting a particular class of bridge

diagrams, and resumming the remainder. It is superior to other closures in the
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case of hard spheres, for which it reduces to the MSA, and it is analitically solvable
for one-component hard-sphere and two component additive hard-spheres systems.
As the gop(r) is not positive definite in this approximation, it can show for attrac-
tive potentials at strong coupling strenght negative values at the position of deep
minima.

As a consequence of the approximations made on the bridge functions, one
obtains an approximate theory for the structure that can be still accurate over a
wide range of parameters for a certain class of systems, but one as to check the
limits of validity of the chosen approximations contrasting its predictions with ”ex-
act” results provided by computer simulation. The exploration of the accuracy of
various approximate closure in the case of the LAM in one of ther main arguments

treated in this thesis.

Another consequence of the approximation is a certain amount of thermody-
namic inconsistency, as a consequence of the violation of certain sum rules between
correlation functions. This means that some thermodynamic quantities can have
different values if one computes them through different routes. The amount of
thermodynamic consistency can be used to judge the goodness of the approxima-

tion.

EMPIRICALLY MIXED INTEGRAL EQUATIONS

The empirical observations that HNC solution and PY solution bracket the

_exact solution as it emerges from simulations, gave rise to the Roger- Young mixed

(1] that interpolates between the PY closure at short distances and the

closure
HNC one at long range. As a statement on the bridge functions, it can be expressed

by

€f11/'4(71)7:t/;|(r) — 1] )

Bas(r) = vag(r) — In .1
5(T) = Yas(r) {1+ o) (3.19a)
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that gives the closure relation

( ) 3 ( ) efu/s(r)'yﬂ,@(r) o 1 (
gap(r) = e FePtT ] 4 3.196
o) Fo(7) )

where f represents a mixing function of the form fos(r) = 1— e "/f=8 and €,p are
parameters that can be fixed by the requirement of Thermodynamic Consistency
(TC) of the theory. In the same spirit another mixed closure have been proposed
by Hansen and Zerah [®2]; it interpolates between the HNC closure at long range,
and the Soft-MSA approximation (a generalization of the MSA closure)at short

range. It is expressed by

Fap (M) (ap(M—275(r) _ {

fap(r)

€

Bap(r) = Yap(r) — 853(r) —In |1+ (3.20a)

31 () efaﬁ('r')('va,s(r)——éif/;(r)) -1
gap(r) = e Tant™ |14 e (3.200)

where @Sﬁg(r) and @&zg(r) are respectively the repulsive and the attractive parts
of the potential, defined by

1 ®,5(r)(r) — Pag(r)(Tmin 1f1 < Tminj
30)(r) { 5(r)(r) 0/3()( ) ifr<

o otherwise.

(1) . @a (T)(Tmin) zfr < Tmin}
2., (r) = { @ﬂaﬁ(r)(r) otherwise.
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3.3 BRIDGE FUNCTIONS AND MODIFIED-HNC or
IMPROVED-HNC EQUATIONS

RHNC and MHNC EQUATIONS

Rosenfeld and Ashecroft(®3] and Lado [#4) proposed to solve the closure rela-
tion (3.12) with the Bridge functions of a reference hard- sphere system having
a packing ratio optimized to give Thermodinamic Consistency. This approach is
based on the assumption that the bridge functions at short range have a universal
behaviour, for any potential, and thus they can adequately be represented by the
bridge functions, in the PY approximation, of a hard-sphere system of a suitable
density.

Two equivalent schemes were devised to enforce TC in the solution: one
minimizes an expression for the free energy of the system (RHNC or Reference-
HNC), and the other requires the equality of the compressibility computed from
the equation of state (virial route) with that computed from the fluctuation route
(Modified-HNC).

IMPROVED-HNC EQUATIONS and BRIDGE FUNCTIONS

Tt was realized by Ichimaru that non-universal features at medium range in
the bridge functions could be important to describe the actual structure in some
systems, i.e for the OCP at strong coupling. He obtained a formulal®® that re-

lates the first term in the expansion (3.13) with the hop(r). Substituting in the

‘expression (3.16) for B®) the following approximations for the c(®

(]
[N
ot
~—

6(3)(1‘1>I‘2,1‘3) = h(|ry — r2|)h(jre — r3))h(jr1 — ral) (:
one obtains
2
B®(r) = _% / h(r1)h(r2)R(|ry — r2))A(|ry — r])A(|rz — r|) dry drz  (3.22)
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The corresponding expression for the first term B® in a two component system

is

BE) = 2 3 [ hanlrsJhasra hsslirs = xal)roa(les = vl)hsa(fra — o) drs o
" (3.22q)

Ichimaru and Iyetomil®® solved the closure relation using bridge functions deter-
mined through these relations, where the total correlation function h(r) of the HNC
solution were used. They rescaled the computed function at low rin order to repro-
duce the ’universal’ repulsive behaviour at short distances and obtained a certain
degree of thermodynamic consistency. They named this approach improved-HNC,
as it starts from the knowledge of the HNC solution to evaluate the approximate
bridge function used to obtain the improved solution.
CROSSOVER APPROXIMATION FOR THE BRIDGE FUNCTIONS

An approximation that retains both the universal behaviour of the bridge
function at low r, that allows to reach Thermodynamic Consistency, and the struc-
tural information present in the B was employed by Pastore Ballone and Tosi
in an extensive work on the structure and the thermodynamics of molten salts
[66] . Tts is based on the idea of interpolating between the short range behaviour of
the HS bridge functions, and the values given by B at intermediate distances.
A similar idea have been used in a work by Ashcroft, Foiles and Reatto (671, who
interpolated between the 'universal’ behaviour at short range, and the expression
‘given by the MSA at long range.

The crossover between the Hard-spheres bridge functions and ij; has the

’following form
Beap(r) = [1 — fap(r)] BLg(r) + fas(r)BEF () (3.23)
where the fas(r) is the mixing function that specify the region in which one
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observes the crossing from the behaviour of one function to that of the other. We

chose here for our work the same form chosen in ref.[66] that is

fap(r) = exp—(r/Eap)’ (3.24)

where {,p are the parameters that determine the crossover region and have been
fixed by the position of peaks in the HNC result for gos(r)-

The thermodynamic consistency is to be enforced by the appropriate choice
of the parameters of the reference HS-system. We used as HS bridge functions
those determined by a numerical solution of the PY closure for a reference system
of hard spheres with the same ratio of diameters dao/d12 as the ratio in the the
peaks’ positions of gas(r) in the HNC solution. In this way we have only one
parameter di» to vary to look for Thermodynamic Consistency.

The inverse isothermal compressibility 1/kgTxTp = %IT was calculated

from the fluctuation route from the formula

58P i}
T{'T =1- n; ; Tozpies(k = 0) (3.25)

while the inverse compressibility from the virial route where determined by nu-

merical differentiation of the virial equation of state %13 repeating the calculation

at a slightly higher value of density.

‘We used p1/po = 1.002. For the solution at higher density also the density of the
reference system have to be varied in accordance, and also B'*) have to be scaled
by the density factor that appears in front of the integral.

The scheme employed, that we call TC-IHNC consist in solving the HNC,
calculating the bridge function B{* from formula (3.22a ) and use the resulting

crossover with the hard sphere part, according to (3.23 ) to find a new solution.
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As we shall show later, we explored the self consistency of the solution computed, by

calculating again from it a new bridge function and a new solution.

3.4 NUMERICAL METHODS : BRIDGE FUNCTIONS
AND INTEGRAL EQUATIONS

SOLUTION OF THE INTEGRAL EQUATIONS

The integral equations for the HNC and the TC-THNC were solved using the Al-
gorithm of Gillan(l. Tt consists of a mixed iterative Newton-Rapson Method that
is rather stable and accurate, and do not require as many iterations as a pure
iterative methods. It projectes the unknown function onto a small basis, to repre-
sent its coarse shape. This part gives rise to system of nonlinear coupled algebraic
equations that can be solved by a Newton-Rapson method. The fine variation
of the function is then determined iterating the coarse solution in the integral
equations. The cicle is repeated until convergence in the solution is attained.

We used in the calculations 512 points for doing the fourier transforms in-
volved in the algoritm, with a mesh in real space of Ar = 0.02a, and we employed
9 basis functions over which the yo(7) Wwere projected to obtain the coarse part.
Particular care as to be exercised in the treatment of the hard core discontinuity
in the gos(r) that is determined by both the value of the potential and the bridge

function at contact.

NUMERICAL EVALUATION OF THE BRIDGE FUNCTIONS

In order to evaluate numerically the integral in formula (3.22) one has to

expand the terms hog(|r1 — rz|) appearing in it in legendre polynomials so that
one can carry out explicitely the angular integration, ending up with a sum of two

dimensional integrals over 2 functions h(r) and the product of the three coeflicients
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in the legendre polynomials expansion, where the sum runs over the order of
the polynomial. This procedure is described in detail in ref.[2]. Other three
integrations have to be carried out in order to compute the coefficients of the
expansion, and this has to be done for every combination of the mutual position
of the four points entering in the definition of the diagram. We carried out the
numerical determination of the coefficients with the help of a finite transform,
derived by a gauss-legendre integration formula. We used from 40 up to 80 points
in this integration. The external bidimensional integration was carried out by a
trapezoidal rule using from 101 to 141 points. It was necessary to include up to
the 18th order in the legendre expansion. The accuracy of the algoritm is mainly
determined by the accuracy in the determination of coeflicients of the legendre
expansion. In order to achieve the best accuracy in this integration it is necessary
to transform a g(r) that is not discontinuous, at contact and to subtract from the
transformed function a contribute with an analitic formula, as indicated in the
reference.

Tests were made employing the same trapezoidal rule for all the integrations,
and it resulted in serious errors in the determination of the bridge functions. Thisis
directly connected to the presence of high and narrow peaks in the pair correlation
functions. From basic numerical analysis one knows that the numerical integration

of this kind of functions has to be done with particular care.

3.5 MONTE CARLO SIMULATION

The Monte Carlo Simulation used to compare the results from the integral equa-
tionstheory was reported by us in refs.[28]wl. We used a Canonical ensemble

simulation with 64 atoms and 128 bond particles, in a cubic simulation cell of
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lenght 9.2996 a, with periodic boundary conditions

We prepared the system in the position of a diamond-type lattice, as shown in
fig 2.3 and equilibrated the system for 1.600.000 elementary moves, roughly 3.000
moves per particle, at V* = 1, and then we madea series of runs at various coupling
strenght equilibrating first the sistem for at least ~ 8000 moves per particle and
taking statistics on runs of the same lenght. During the run we monitored the
energy, the pressure and the order parameter of (111) and (001) planes in order
to be sure of the equilibration of the sample and to be sure that the sample
was not undergoing crystallization. It appears that the correlation time between
subsequent configurations in the simulation increases with coupling strenght. Thus
the results at strong coupling present greater numerical uncertanties. In particular
this slowing down changes with the values of the diameters, and for the parameters
reported as set 3 we could not perform a simulation in a resonable time. This could
be improved allowing a kind of move that samples the configuration space better
than the usual one, by allowing bond breaking and forming processes that change

the number of bonds in the system.
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Chapter 4

Results

4.1 LIQUID GERMANIUM

’LOCALIZATION OF BOND PARTICLES AND STRUCTURAL
TRENDS

First we examine here the behaviour of the LAM model at costant density on
varying the temperature, i.e. on increasing the coupling strenght V*, as results
from the analysis of structural trends‘in the partial pair correlation functions and
structure factors. Our major aim in this presentation is to follow the process
of localization of bond particles in bonds and to show that the degree of BP
localization induce increasing directionality in the effective atom-atom interaction,
leading to peculiar features in the structure. The calculations reported here were
made solving the model in the liquid state by means of the HNC-integral equations,
at a density and values of parameters, reported in table 2.1 as set 1, appropriate
to liquid germanium.

On increasing the coupling strenght, the atomic component A manifests a
strong attraction to the BP component through the potential well present on its
surface (see fig. 2.4), and one can gauge the degree of BP localization in this well
from the values assumed by the main minimum of the pair correlation function

gaB(Ranp) (see fig. 4.1). A main sharp minimum with value zero in this function,
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together with a first narrow and quite high peak signals the creation of a well
defined first coordination shell of BP around each A atom, and a slow exchange
of particles from this shell with the rest of the fluid. In this sense we can say
that these BP are temporary localized in the potential well at the surface of the
A particle, the coordination number Nos(R) being the number of BP trapped in
it. They thus provide a preferred site of attraction to another A particle, that
can form a bond by sharing the bond particle. This is what we mean saying that
the model shows association. Directionality in the resultant A-A interaction is

enforced when four BP are localized around that atom.

Figure 4.2 shows the partial pair distribution functions and the partial struc-
ture factors for coupling strenght V* equal to zero. These results can be compared
with liquid structure in additive models for mixtures of hard spheres with very
different diameters, for both neutral fluids*¥ and charged fluids®!. In both these
cases, some degree of relative order of the two components is marked by a valley
in Sap(k) in approximate corrispondence with the main peak in Saa(k), while
Spp(k)(the structure factor of the small-sized component) is essentially feature-
less. As is evident from fig. 4.2, our choice of opp by a tetrahedron rule (see
formula 2.1) builds sharp structure in Spp(k)and in gpp(r), while it preserves
and somewhat %trengthens the relative order of the two components. Localization

of BP is nevertheless absent.

Figure 4.1, starting from the A-B and A-A pair distribution function at V* =
0, illustrate how localization of bond particles proceeds on increasing V7", and
the structural changes that it induces in the atomic component, down to strongly
supercooled (V* > 7.5) liquid states.

Bond particle localization starts to appear at (V* = 2) and grows rapidily, with the

exchange of bond particles between localized states and free states being rapidly
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suppressed and the atom-bond coordination number increasing towards 4. This is

signalled at (V* = 2) by the rapid drop in R4B and Nap.

From V* = 2 to V* ~ 5 the potential well acts mainly as an ordering inter-
action between the components, as only gap is affected, showing the formation of
well defined shells of BP around A atoms by a rapid drop in the value attained at
its main minimum. Thus we can say, in a pictorial way, that in this range of cou-
plings there is a certain amount of association of A atoms, although exchange of
bond particles with the surrounding liquid is still consistent (gap =~ 0.8 —0.3) and
doesn’t allow the formation of bonds with a lifetime longer than the characteristic

time needed for diffusion.

The next rapid change in structural behaviour occurs for V* in the range 6-7.
Here the localization of BP becomes quite strong (gap =~ 0.1), as its also shown
by the appearence in gap of a quite sharp and high first peak, with an height of
~ 10 (to be compared with the value of 3 at V* = 0) right at the position of the
well minimum. This means that rather stable (with respect to the characteristic
time of diffusion) bonds are forming between A atoms, the number of bonds being
roughly proportional to Nog(R), with an average of 3 bonds for each atom. The
fact of having three BP localized on average means that there is a certain amount
of atoms which have got four BP, and can form a number of bonds from 2 to 4.
At this point a strong directionality in the Atom-Atom interaction is present for
those atoms that are fourfold coordinated to BP. This is apparent in the changes
occurring in gaa, where the first coordination shells splits, with the appearence
of a structure that grows on increasing coupling to constitute a second peak just
in thé place where the pair correlation function showed a minimum at V" = 0.
This is marked in fig. 4.1 by the sudden drop in the position of the main minimum

R at V* = 8. The ratio between the position of this second growing peak, that
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develops in strongly supercooled states, and that of the main peak ranges from
1.5 and 1.6, and it compares well with the ratio between first and second neighbor
atomic distance in a tetrahedrally bonded structure, that is the ratio between the
edge of the tetrahedron and the lenght of the A-A bond (see fig 2.4) /% = 1.63.

Upon further increase of V* the coordination number N 4p slowly moves towards

the value 4, while the localization of BP becomes essentially complete.

We can see from fig. 4.3 how the structural trends that we have followed
from the pair correlation functions are reflected in the partial structure factors,
on increasing coupling. Upon incipient localization of BP at V* ~ 2, the valley in
S 45(k) is shifted towards the position of the main peak in Spp(k), and a pre-peak
grows in correspondence with the main peak in S 44(k). These features, together
with the increasing depth of the valley, mark the increasing ordering between the

components illustred above.

More remarkable is the behaviour of the atom-atom structure factor S4 a(k)
that first becomes slightly asymmetric (V* up to 5), then developes a shoulder
at its right side for V* in the range 6-7.5, where the splitting of the first A-A
coordination shell occurs. On further increase this shoulder grows into a strong
peak at essentially unshifted position, while the former main peak is reduced to a

pre-peak at progressive lower wavenumbers.

We want to compare these trends with those observed experimentally in liquid
germanium. A well known qualitative feature of the observed structure factor of
liquid germanium is the presence of such a shoulder near freezing, becoming an

(461 In figure 4.4 we show

asymmetry in the peak shape at higher temperatures
the structure factors for liquid germanium above freezing and amorphous germa-
nium at room temperature from neutron diffraction experi1ne11t5[1°’48], plotted in

reduced units ka (@ being related to the number density n of the atomic compo-
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nent by a = (1/4mn), for comparison with fig. 4.3. As we can see in detail in the
following sections we can make contact with the observed structure for the liquid
near freezing and the result at (V* = 7.5) while the structure of the supercooled
liquid at V* a2 20 — 24 qualitatively resembles that observed in amorphous germa-

nium.

QUANTITATIVE COMPARISON WITH EXPERIMENT

The partial structure factor of the model S4.4(k) should be directly compared
to the structure factor of Germanium as measured by neutron diffraction, as they
are scattered only by the "atomic” component (scattering off nuclei), while X-ray
are also sensitive to the electronic component. In a previous work (28] we made the
comparison between the structure factor displayed by the model at V* = 7.5 and
the X-ray scattering data of Wasedal®!, which were the only accurate data available
to us in numerical form!'!] at that time. Now accurate neutron scattering data
are available from the experiment of Salmon*?Y, thus we can compare our model
directly with them. Figure 4.5 shows the data from both X-ray e neutron scattering
experiments compared with our results.

From the figure it’s apparent that there are slight differences between neutron
and X-ray data, mainly in the height and the position of the first peak and its
shoulder, and a little dephasing of the oscillations at high values of k. This differ-
‘ence can be only partially accounted for by the different data reduction algoritms
employed in the two experiments, and should be attributed to the contribution of
valence electron to the observed X-ray diffracted intensity[*.

From the figure we can see that there is a good qualitative agreement between
our results and experiment, but we also notice that differences between the model’s

structure factor and the neutron scattering result amount to a scale factor. Then
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our result for S4a(k), contracted of a factor 1.037, were compared to the same
neutron scattering data, and now the model fits quite well not only the first peak
but also the overall shape of the observed results. Such a comparison is shown in

fig. 4.6 for the partial structure factor Saa(k).

Thus in order to account for the experimental results in a quantitative way,
we should repeat our calculation with values of the hard-sphere diameter A-A
in reduced units o 4 = raad/a (where r4a is the value expressed in the first
column of tab 2.1 and a is related to the density as explained in the previous
section) enhanced by the factor 1.037. If we fix the bond lenght as d = 2.68 4 from
Salmon’s experiment, descarding the previous value d = 2.63A4 quoted in table
2.1, we need a density of nge = 0.0479A473, that is 5% higher than the value of

0.0456 A~* found from experiment.

In conclusion the density required for the model to be in agreement with the
diffraction data, once we have taken the bond lenght from the same experiment,
is higher than the experimental density of Ge. As the equilibrium density of a
fluid at a given pressure is the result of a delicate balance between repulsive and
attractive forces, is not strange at all that the rough schematization of repulsive
interactions made in the model doesn’t allow to predict the correct equilibrium
density. It requires the adoption of more realistic repulsive potential to predict

also the correct equilibrium density of Germanium.

We proceeded further on, asking weather the solution of the model by a
more accurate approximation than the HNC closure could further improve the
agreement with experiment. We employed the scheme outlined in sec. 3.3, already
used with succes in previous work on molten salts!®®! and we solved the integral
equations derived from the closure relation (3.12). The bridge functions were

determined as a crossover (see eq.3.23,3.24) between the bridge functions of an
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hard-spheres reference system (found in the PY approximation), and the first term
in the espansion (3.13) B’(fﬁ)(r) computed by the integral in formula (3.22a) using
as input the total correlation functions heg(r) of the HNC-solution. The mixing
parameters {,3 where fixed at the main peak’s position in the HNC solution.
The ratio of diameters di;1/d12 and di1/d12 for the hard-sphere reference system
was fixed as well from the ratio in the peak’s position. The only free parameter
di» was varied to enforce Termodinamic Consistency (TC) between virial and
fluctuation compressibility. From the solution obtained (I iteration) we computed
again ng(r) and solved again the integral equations with it, to obtain a new TC

solution (II iteration).

This solution is show in comparison with the HNC solution and neutron scat-
tering data in fig. 4.6, and one can see that indeed a better agreement in S(k) is
reached. We can make it even better by choosing a coupling of V* ~ 6.5 — 7, in
order to have less a marked shoulder. In the same figure we show also the pair
correlation function g44 of the model in the HNC and in the T'C solution com-
pared to experiment, and we shall comment on it later, in the section dedicated

to the accuracy of the integral equations method.

We can conclude this section by stating that this model can fit the structure
factor of liquid Germanium as well as the hard- sphere system is known to fit the
structure factors of simple liquid metals and alloysl*¥), We think that a better
‘modelling of the real system can be achieved using A-A interactions more realistic

than hard sphere repulsions.
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4.2 ACCURACY OF THE INTEGRAL EQUATION
METHOD

We shall discuss here the work done to test the quality of the structural pre-
dictions made by the liquid-structure theory in the LAM, for values of coupling
corresponding to liquid states down to values in the supercooled- liquid region, and
our attempts to improve the approximations involved by the use of empirically-
mixed closures or the inclusion of bridge functions, in order to predict the structure

with the best accuracy.

At this purpose, we made some Monte Carlo simulations in the canonical
ensemble of the LAM at different values of coupling (V* = 1, 5, 7.5, 10, 14, 22)
choosing the parameters of the model as set 2 in table 2.1, where the tetrahedron
rule has been somewhat relaxed, and the density was fixed to a lower value than
in the liquid near freezing (it is precisely the density of the compacted amorphous
phase). This choice for the density and for ogg is motivated by the need to
accelerate the equilibration rate and to reduce the lenght of the sampling runs
in the simulation. Further details on the simulation were given in chap. 3. The
localization process of bond particles shows the same features as shown before at
liquid density, but the splitting of the first coordination shell, that is the emergence
of a new closer second coordination shell appears before, at V* = 6 — 6.5 with

respect to V* = 7 — 7.5 for parameters at liquid density.

Figure 4.7 shows the HNC and Monte Carlo results for gop(r) at two different
values of the coupling strenght, V* = 5 in the liquid region that correspond to
the onset of strong association, and V* = 10 in the supercooled region. It is seen
that the INC solution is still in full quantitative agreement with the simulation
up to the value V* = 5, except that the values (only partly shown in the figure)
at hard-sphere contact, mainly in gap, are higher in the HNC. The TC solution
found in the HMSA approximation is very similar to the HNC and to the data

over this range of V*.
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On the other hand we found that from this value of V* on, some quantitative
discrepancies between HNC and simulation arise. Let’s summarize with the help of
the case V* = 10, shown also in fig. 4.7, the other work done for greater couplings.
We find in general that a good agreement between HNC and simulation persists
up to large values of V* for gan(r), gB(r), except for slight asymmetries in the
first peak of gap(r) and in IT peak of gpa(r) (that show also a lower value) for
the HNC solutions. However there is a discrepancy, increasing with coupling, for
gaa(r) in that the HNC seriously underestimates the structure of its second peak,
that is gives too high a value of the main minimum, and too low a value of the
II peak. Thus the HNC poorly predicts the progressive formation of the second
shell of neighbours arising from the correlations of two atoms bonded to the same

atom.

This defect of the HNC approximation is not remedied by the HMSA, that in
the supercooled region performs worse that the HNC, predicting even higher values
of the main minimum; in addition it shows the disappointing feature of yielding a
negative valie for g4p(r) at its main minimum. A major drawback of the HNC
approximation is shown in fig. 4.8 for the LAM at liquid density (set 1), in relation
with the behaviour of the compressibility {7 evaluated from the fluctuation formula
(3.25) and from the virial route, by numerical differentiation of the virial equation
of state (see eq. 3.26). The increasing degree of thermodynamic inconsistency
between the two routes showed by the HNC solution is evident from the fact that,
while the virial compressibility increases only slowly up to V" = 20, the fluctuation
compressibility shows first a more rapid linear increase and then seems to diverge
at values of V* a 22 for the parameters quoted; the same behaviour is shown
by the HNC solution at V* = 14 for the parameters chosen in the Monte Carlo

simulation (set2).
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It seems that the HNC somewhat misplaces the location of the spinodal line
between the liquid and the solid phase in the (p, P) thermodynamic plane, that is
the loci of points in which the the second derivatives of the free energy with respect
to volume (or density) is zero, lines at which the compressibility diverges and that
marks the region of mechanical stability of the liquid state in the supercooled -
metastable region. This prevents to obtain solutions in the HNC approximation for
larger values of coupling in the supercooled region, due to the intrinsic sensibility
to the value of the fluctuation compressibility shown by the numerical algorithm of
solution, that becomes unstable when this value is high enough. It can be largely
remedied by the adoption of any TC empirical-mixed closure like the HMSA or
by the inclusion in the closure relation of the brige functions of hard spheres like

in the thermodynamic consistent MHNC approach.

As we have assessed the importance of including the hard-sphere bridge func-
tion for the thermodynamic consistency, and in essence for the possibility of finding
solutions for the LAM in the extreme supercooled region, we turn to the accuracy
on the prediction of the structure. For this analysis we focused our attention on
the LAM at the value V* = 7.5, that in the simulation shows already some struc-
ture in the second peak of gaa, solving for it the integral equations at the same
value of the parameters used in the Monte Carlo simulation. The inclusion in
the closure relation of hard-sphere bridge functions alone, acting like an effective
short-ranged repulsive potential, mainly affects the values of gog(r) in the first
peak region, giving lower values of the peak and slightly higher values of the main
minimum, and cannot improve the agreement with simulation but at the first peak
value. The other differences seen between the HNC solution and simulation arise
mainly from the not-universal, not hard-sphere-like behaviour of bridge functions

at intermediate range.
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Thus we explored the effects on structure of the first term ng(r) in the den-
sity expansion of bridge functions, as expressed by formula (3.222) and evaluated
from the knowledge of hap(r) of the HNC solution, including it in the closure
relation and solving then the resultant integral equation. Clearly the new evalu-
ated hop(r) is different from the previous one, and gives rise to a different bridge
function B((fg. We reached self-consistency in this iterative process, and explored
for the first time to our knowledge, whether the first iteration approximation is
close to the self-consistent determination of Bglﬁ)(r). The iterative process was
stopped when the difference between the old and new determined bridge function
was comparable to the numerical accuracy of our algorithm for computing them

from the hop(r).

The resulting structure for gog(r) at each iteration is shown in fig. 4.9 to-
gether with the bridge functions from the first and the fourth iteration; 4 iterations
are enough to reach self-consistency with our criterion. The three bridge function
are characterized by a marked first valley at the position of the peaks in gap(r),
followed by a peak in the region of the main minimum. Let’s analyze the con-
sequences of these features on the structure. The effect of the bridge functions
on gap and gpp is to eliminate the residual discrepancies with the simulation,
as one can see from fig. 4.10 where the self-consistent solution is compared to
the simulation; the higher values at peaks and lower values at the main minimum
.could soon be put in agreement with the simulation once the hard-sphere-like be-
haviour at low r, here neglected, is taken into account; in g4 the main minimum
is predicted with the correct depth, but yet not at the correct position, and the
structure of the second peak is greatly enhanced with respect to the HNC, but
present a marked splitting of the second shell that is not present in the simulation

data; further inclusion of the short range term worsen the agreement.
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As the present determination of the bridge function was quite accurate, and
the discrepancies are outside the statistical error in our simulation, we should
conclude that they are entirely due to terms neglected in the scheme that replaces
B,s(r) with Bffﬁ) as given by formula (3. 18). To trace the origin of the remaining
discrepancy, we should remaind now that B®)(r) is only the first term in the
expansion (3.13) of B(r), whose expression is given in formula (3.15), involving the
¢®(ry,r2,1r3) and that the relation used by us (eq. (3.22), (3.22a) ) can be derived
from it making the approximation (3.21) Maybe that this simple factorization of
¢(3) is not completely accurate in our case. A more likely possibility is that higher
order correlations are equally important, leading to some strong structures at
intermediate range in higher order terms of the expansion (3.13). We shall give

here an argument that strongly supports this conclusion.

The bridge functions Bg}g take into account correlations between four parti-
cles, as one can see by the considerations of the diagram that correspond to the

integral in the expressions (3.22), (3.22a).

A line in this diagram gives the correlation between two particles as repre-
sented by the total pair correlation function has(r), and black vertices represent
variables to be integrated, namely rs,rq, while white vertices are the variables

gives the distance r at which the bridge func-

not integrated and r = |rz — 1y
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tion is evaluated. Now let’s consider the kind of correlations present in a limiting
case, that is is the solid phase. In the tetrahedral structure of the crystal are
present rings of 6-atoms, and it is evident that similar correlations are also strong
in the amorphous phase. These correlations in the ring are described by terms
in the bridge function’s expansion (3.13) of order higher than 4. To be precise
they correspond to correlations involving up to six particles if the pair A-A or B-B
are involved, and up to 12 particles if pairs A-B are involved. These terms are

neglected in the approximations that retains only B(*).

The last point that deserves further investigation, and some work is in progress
along this direction, is how a TC solution that mantain an accurate structural de-
scription can be obtained by the self-consistent B((fﬁ). Including the short range
hard-sphere term at each stage in the iteration, as we attempted in the com-
parison with the experimental structure of liquid Germanium, is cumbersome, as
convergence in the bridge functions becomes slower than before. A better compro-
mise may be that of making a crossover of the self- consistent ng with the hard

sphere-like part only at the end.

At the present stage of the investigation our conclusion is that the crossover
with hard-sphere bridge functions must be handled with care, particularly with
respect to B(:/){, where less weight should be given to the short-range-repulsive
part, with respect to the other components, if one want to reach the best accuracy

attainable at this level. In particular one has to resort to more complicated ways

of making the crossover than that employed here.

Turning again, after this discussion, to the comparison of the gos(r) for the
LAM at liquid density with the experimental structure of germanium, fig. 4.11
shows the pair correlation function g4 as obtained at the second iteration, man-

taining the TC consistency request at each stage, and the corresponding bridge
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function with the two terms that enter in the crossover expression. The fact that
it behaves worse than the HNC in describing the main minimum region can be
traced to an overestimation of the the hard-sphere-like short range contribution

to the crossover.

4.3 STRUCTURE OF THE SUPERCOOLED STATES

We want to contrast here the results obtained in the LAM for high values of the
coupling parameter V*, to the experimental structure of amorphous Germanium.
Usually amorphous Germanium is prepared by non-equilibrium techniques, like
deposition from a gaseous phase onto a cold substrate. It’s not possible to prepare
it by fast cooling from the melt by usual fast-cooling-techniques!®!, because it
has a strong tendency to crystallize. Nevertheless one can think of obtaining it
by pulsed laser tecniques as it was done for Silicon, by means of a short laser
pulse that melts a portion of the solid, that is suddenly cooled very fast by the
surrounding material. To this kind of experiment do correspond the simulation
studies, made with various tecniques and potentials, quoted in the introduction.
It’s likely that a well annealed sample prepared by deposition tecniques tends
towards the structure of a quenched ’glassy’ material, that is essentially a system
out of equilibrium because of long time-scale of its relaxation processes. Such a
system is like a liquid with an arrested dynamics, and its average (spatial average)
structure can be compared with the average structure of the ideal metastable-state
of a supercooled liquid at the same temperature, as determined for example by
the integral equations method. In this spirit, we make here such a comparison

between a supercooled liquid and the actual structure of amorphous Germanium.

We saw in section 4.1 that the supercooled state of the LAM at liquid density
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reaches an high degree of localization of BP, being the number of bonded atoms
slightly smaller (N 45 being 3.7), with a number of atoms in the first coordination
shell (not yet sharply distinguished from the arising second coordination shell, as
one can see from the value at the main minimum of g4 not yet zero) of ~ 5.
In order to make contact with the observed coordination number, one as to take
into account the reduced density of Amorphous Germanium, and we solved the
integral equations at this reduced density (set 3) in the HNC down to last value
of coupling at which the HNC has solutions ( V* = 22 ). The high degree of
association present in the system due to bonding of atoms, is signalled by the
sharp, high first peaks in gaa and gap, of values 13 and 25 respectively, to be
compared with the value 3 of the hard shpere liquid at zero coupling strenght.
The coordination number atom-atom N 44 now tends towards the value 4, while
the bond-bond Npp reaches the value 7, not too far from the value corresponding

to a tetrahedral structure (Npp =6).

In Fig. 4.12 we show the structure predicted by the HNC for S44(k) and
gaa(r) in comparison with the S(k) and g(r) from the neutron scattering data of
Etherington[*®]. The HNC result represent only qualitatively the features in g(r),
with peaks in the correct positions but too low structure, and in S(K), the main
discrepancy being the height of the first diffraction peak, and the position of the
pre-peak. It’s also evident the effect of the thermodynamic inconsistency, in the
low k part, that can be remedied by the adoption of any TC closure, like in the
case shown in fig. 4.3 for liquid densities, where the HMSA solution is illustrated,
-shvowing a better behaviour at low k, and a more marked separation between peaks

than the HNC solution.

The next step was to use a bridge function obtained from the crossover be-

tweeen a reference hard-sphere bridge function at low r and the Bf;g, determined
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from the HNC solution. The partial pair correlation functions corresponding to
the solution obtained in this way are displayed in fig. 4.13 together with the
bridge functions employed. The comparison with experiment for S(k) (see fig.
4.12) shows that the structure of the pre-peak is better resolved, but the solu-
tion doesn’t achieve yet quantitative accuracy. This is connected to the fact that
the g(r) in the solutions determined until now with the integral equation method
doesn’t show a second peak clearly resolved from the first one. The pre-peak and
the main peak in the structure factor essentially arise from the presence of the
main peak and the second peak, that is from correlations connected to the short
range tetrahedral order, as can be shown by back trasforming the g(r) truncated

8], Thus the failure of integral equation method in

after the second minimuml
providing an accurate descriptions of the second peak in g(r) explains its failure
in providing an accurate description of the pre-peak position in S(k).

At the present state of our investigations it seems that only resorting to Monte
Carlo simulations an accurate quantitative comparison with experiment can be
attempted. A look at fig. 4.14, where we show the partial correlation functions
obtained from the LAM at V*= 22, from the Monte Carlo simulation with pa-
rameters as set 2, supports these conclusion, as one can see from the well defined

shape of the second peak in g44, that reaches an height close to that observed in

experiment, and is well separeted by the first peak by a deep minimum.
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Fig. 4.1 -
structure changes with increasing coupling strenght V'* in the LAM. The top drawings
show the atom-bond (left) and atom-atom (right) pair distribution functions at zero cou-
pling strenght. The evolution of special features of these functions, as defined in the top
drawings, is shown at constant liquid density in the bottom drawings. The dashed por-
tion in the curve for IV 4 4 shows the effect of reducing the density from that of freezing
Germanium to that of compacted amorphous Germanium. The value V* = Eg/kB Th

is marked on the bottom axes.
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Fig. 4.2 -

Partial structure factors SQﬁ(k) (left) and pair distribution functions
9ap(T) (right) for the LAM (set 1) at V* =0 in the HNC approximation. Full curves,
A-A correlations; dotted curves, A-B correlations; broken curves, B-B correlations. Values
of the peaks in gog(r) are: 3.65 (A-A); 3.04 (A-B); 6.02 (B-B).
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Fig. 4.3 — Partial structure factors SAA(k) (left), SAB(k) (right, dotted curves) and
SBB(k) (right, full curves) for the LAM (set 1) in the HNC at a series of values of the
coupling strenght V*(V* =0,3,5,17.5, 14, 24, the first and the last value being marked
in the figures). The broken lines give the HMSA (with b = 1) results for V* = 24,
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Fig. 4.4 — Structure factor S(k) of liquid Germanium near freezing (triangles) and
amorphous Germanium at room temperature (solid line), in reduced units ka, from neu-
tron scattering experiments. The scaling factor used are a = 1.204 for the liquid and
a = 1.229 for the amorphous. Data are from the works of Salmon, ref.[ ] and Ether-
inghton, ref.[ ].
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Fig. 4.5 — Partial structure factor SAA(]{!) (a) and pair correlation function gAA(r)
(b) of the LAM in the HNC at V* = 7.5 (triangles) and the experimental structure

factor S(k) for liquid Germanium near freezing, in reduced units.

Solid line, data from

the neutron scattering work of Salmon, ref.[ ]; Dashed line, data from the X-ray scattering

work of Waseda, refs.[ , ].

1.200 for the latter.

The scaling factor a is respectively 1.204 for the former and
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Fig. 4.6 — Partial structure factor Saa(k) of LAM in the HNC (solid line) and of the
TC solution of the II iteration (dashed line) compressed by a factor 1.037, in comparison

with neutron scattering data for liquid Germanium near freezing from ref.[ ], (triangles).
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Fig. 4.7 — Partial pair distribution functions gaﬁ(’r') in the LAM (set 2) at coupling
V* = 5 (upper figure) and V* = 10 (lower figure). Full lines, HNC results; circles,

Monte Carlo results.
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Fig. 4.8 — Thermodynamic inconsistency of the HNC solution for the LAM (set 1).

Circles. Virial compressibility; triangles, Fluctuation compressibility.







F ig. 4.9a — Convergencein the self-consistent solution. upper figure: pair correlation
functions g4 4 in the LAM (set 2) at V* = 7.5; dotted line, HNC solutions; solid line,
solution at the IV iteration; dashed lines, solutions at the I, II and III iterations. Lower
figure: bridge functions Bffi(r). Triangles, bridge calculated from the HNC solution.
Solid line, bridge function at convergence.






Fig. 4.9b — Convergence in the self-consistent solution. upper figure: pair correlation
functions g4 p in the LAM (set 2) at V* = 7.5; dotted line, HNC solutions; solid line,
solution at the IV iteration; dashed lines, solutions at the I, II and III iterations. Lower
figure: bridge functions BE:;(T‘) Triangles, bridge calculated from the HNC solution.

Solid line, bridge function at convergence.






RS R A o

g T

15 m—T—7T7— 7T T T 7 T T T

Fig. 4.9¢c — Convergence in the self-consistent solution. upper figure: pair correlation
functions gpp in the LAM (set 2) at V* = 7.5; dotted line, HNC solutions; solid line,
solution at the IV iteration; dashed lines, solutions at the I, II and III iterations. Lower

figure: bridge functions Bg%('r‘) Triangles, bridge calculated from the HNC solution.
Solid line, bridge function at convergence.
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Fig. 4.12a — upper figure: pair correlation functions g4 4 in the LAM (set 3) at

V* = 22; dashed line, HNC solutions; solid line, TC-IHNC solution . Lower figure:
. 4 . .

bridge functions B 5421(7') Triangles, bridge calculated from the HNC solution. Solid line,

cross-over bridge function obteined from it.
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Fig. 4.12b — upper figure: pair correlation functions 9AB in the LAM (set 3) at
V* = 22; dashed line, HNC solutions; solid line, TC-IHNC solution . Lower figure:

bridge functions B f:% (’P) Triangles, bridge calculated from the HNC solution. Solid line,

cross-over bridge function obteined from it.







Fig. 4.12¢ — upper figure: pair correlation functions ggpg in the LAM (set 3) at
V* = 22, dashed hne, HNC solutions; solid line, TC-IHNC solution . Lower figure:
bridge functions B B B(?‘) Triangles, bridge calculated from the HNC solution. Solid line,

cross-over bridge function obteined from it.






Gaplr)

Fig. 4.13 —
v

Partial pair distribution functions ga[g('r') in the LAM (set 2)
* = 22 from Monte Carlo simulation.
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Chapter 5

Conclusions

In this thesis we presented an elementary, primitive statistical mechanical model
showing in the liquid phase both associaﬁon and directionality in the interactions
in a variable degree on varing the temperature, which is meant to represent in
a semiclassical way the structural consequences of the incipient electronic local-
ization process that occurs near freezing in the melts of IV group and III- IV
semiconductors.

This aim was achieved introducing, in analogy with BCM used in the solid
state, a Bond Particle component in addition to the atomic one, subjected to
localization between two different atoms with the constraint that the maximum
coordination number possible is of 4 BP around an atom, an 2 atoms around a BP.
In particular we explored a representation of the model, the Localized Attraction
Model, consisting essentially of a mixture non-additive hard spheres where the
atomic component shows on his surface adhesion to the BP component, in the
form on a narrow, spherically symmetric well. This permits to represent the
characteristic fluctuations towards local tetrahedral configurations present in the
liquid near freezing, due to the process of forming and breaking of covalent bonds,
‘that was shown to be present by the recent first principle molecular dynamics

simulation of Stich and Car on liquid Silicon!*?!

The inclusion of the BP component permits to treat an effective directional,
many body interaction between atoms by the introduction of only pair interactions

between components, and allowed us to employ the formalism of standard liquid
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state theory (integral equation method) to explore the structural features of the

model.

We showed that this model shows quantitative agreement in describing the
structure of liquid Germanium near freezing, as results from the form of the neu-
tron scattering structure factor. A picture of a restructuring network of bonds
in the liquid emerges from the model, that is similar to ideas arose in the past
in the study of water. The peculiar features of the structure factor arise from
correlations between atoms belonging to tetrahedral units temporary forming in
the liquid. The model offers the possibility to follow the build up of a disordered
network by the connection of these units on cooling, towards the formation of a

disordered solid-like fourfold coordinated network structure.

This point, and the study of the effective extent of angular correlation in
the melt by the examination of bond angle distribution, can be followed only
in computer simulations, and constitute a point of interest for further work on
the model, together with work connected to a better modelling of germanium
that could be obtained substituting the hard-sphere atom-atom interaction with
more realistic repulsions. The development of Monte Carlo methods to sample
in an efficient way the configuration space of the primitive version of the model

constitutes another point that deserves further investigations.

From the statistical mechanical point of view, we explored the accuracy of
‘the structural prevision made by the HNC closure, and we can conclude that it is
able to give semi-quantitative agreement in the liquid state up to freezing when
compared with the results of a restricted set of Monte Carlo runs (made mainly
in the liquid region and partially in the supercooled region). The agreement can
be made quantitative in the liquid state, where the extent of angular correlation

is still low, by the inclusion of appropriate bridge functions in the closure relation.
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This method, even if represent a valuable tool in the exploration of the accuracy
of the model, demands an higher computational effort than common algoritms for
solving integral equations. Thus it should be interesting to explore the possibility
of obtaining quantitative results for structure and termodynamics by means of
empirically-mixed integral equations, as a fast tool in exploring the parameters of
the model in the liquid state. Work is in progressin this sense with the examination

of a modification of the Martynov-Sarkisov closurel®!.

The accurate numerical evaluation of elementary bridge diagram for the sys-
tem of interest, that involves a five-dimensional integration over functions with
one very high and narrow peak, was a delicate point that required a considerable
effort. It should be also interesting, from the point of view of general liquid state

theory, to develop a faster algoritm to evaluate these diagrams.

It was explored, for the first time to our knowledge, the achievement of self-
consistency in the determination of the elementary diagrams, by means of subse-
quent iterations in the solution of the integral equations, and the approximation
of the first iteration commonly employed was found not to be very accurate for

our model.

Moreover we showed that, connected to the increasing directionality built in
in the model, the integral equation method based on the closure relation, supple-
mented by the elementary diagrams B (4) is not adequate to describe with accuracy
‘the structural features connected to the second atomic coordination shell, in the
supercooled state, and we strongly suggest that this is due to the neglection of
higher order terms in the expansion of the bridge functions, due to the increasing
importance of many-body correlations in the supercooled states. This strongly in-
dicate that future investigation of the supercooled region should rely on computer

simulation methods.
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The model found also an application in the calculation of the possibility of
freezing from the melt in a tetrahedral open structure, with consequent incresing
in volume. Calculation by Badhirkan et al.[**lbased on the density functional the-

ory of freezing, showed that indeed it seems possible to achieve the freezing in such

an open structure.
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