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0. INTRODUCTION

The purpose of this thesis is to present a survey of some significant results in the theory
of homoclinic bifurcations and of strange attractors. The combination of these two topics
is motivated by some recent work which indicates a strong connection between the two
phenomena. In the course of the survey I will sketch the proof of Smale’s classical homo-
clinic theorem and of a couple of other results. In general, however, I will limit myself
to a discussion of the interelations between the various results. After some preliminaries,
chapter 1 presents the essential results in the theory of homoclinic bifurcations for diffeo-
morphisms. This forms the core of the thesis and I go into some detail about the basic
concepts developed in the theory. Chapter 2 contains a brief discussion on the notion of
strange attractors and two fundamental theorems on the existence of strange attractors
in particular families of diffeomorphisms. Chapter 3 is dedicated to a recent theorem of
Mora and Viana which shows that the strange attractors constructed in the theorems of
chapter 2 are always present when unfolding a homoclinic tangency.

My goal is to give a general idea of the kinds of results and approaches of a perticular
branch of dynamical systems theory. I will not concentrate on the technical details or on
the fine points of certain results, like the best estimates one can get for various parameters.
Instead I will always assume the best conditions and as much differentiability as we need,
taking care to emphasise the most significant aspect of the results. For this reason I will
also keep to a minimum the technical definitions of which the theory of dynamical systems
is full (e.g. Axiom A, strong transversality hypothesis, chain recurrent, non wandering
etc.).

Preliminaries.
Let M be a smooth compact boundaryless surface and ¢ : M — M be a diffeomorphism
of class C3. Let p be a dissipative hyperbolic fixed saddle point of ¢, i.e. ¢(p) = p and

De(p) = (g g) with 0 < A <1< o and Ao <1.
Then we have the fundamental:

Stable Manifold Theorem. There exists and e-neighbourhood of p and a C* curve W/
containing p such that

(1) o(W2) CW?
(2) W2 is tangent to the contracting eigenspace E* of T, M
(3) ¢™(z) = p asn — coVz € W)(p).
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2 STEFANO LUZZATTO
Applying the theorem to ¢! we get a C* curve W*(p) tangent to E* and such that
¢™"(z) = pasn — —oco Yz € W*(p). These curves are called, respectively, local stable
and local unstable manifold.

The global stable manifold and the global unstable manifold can be constructed by
iterating ¢ restricted to W*(p) and ¢! restricted to W7 (p). We get

By construction W#(p) and W*(p) are C® immersed submanifolds; in particular they
cannot self-intersect.

Dynamics in a neighbourhood of a fixed point.

The dynamics in a neighbourhood of a fixed point are fairly well understood. The
Grobman-Hartman theorem [H,1964][DeP,1983] tells us that if p is a hyperbolic fixed point
(i.e. no eigenvalue of the differential has modulus 1) then the dynamicsin a neighbourhood
of p are topologically conjugate to the dynamics induced by the differential Dy on T, M.
Formally, there exists a homeomorphism h : U — V from a neighbourhood U of p to a
neighbourhood V of the origin in T, M which sends orbits of ¢ to orbits of Dy. There is
also a lot of work on differentiable conjugacies [IV,1991] but the situation there is quite
a bit more complicated. The differentiability class of the conjugating diffeomorphisms
depends on very fine details: the ratios of the eigenvalues must satisy some non-resonance
conditions related to the theory of small divisors and badly approximable irrationals.

If p is a non hyperbolic fixed point, i.e. if at least one of its eigenvalues has modulus one,
then it is said to be a (local) bifurcation point. For generic 1-parameter families unfolding
such bifurcations there are normal forms which give us a complete description, up to
topological conjugacy, of the dynamics before and after the bifurcation in a neighbourhood
of p [IV,1991]. For generic k-parameter families the situation is less well understood

Remark. All the definitions and results for fixed point can easily be extended to the
case of periodic points by considering the eigenvalues of Dy™ instead of those of Dy. For
simplicity I will always assume the periodic points to be fixed.

In this survey I will be interested in a more "global” kind of bifurcation which occurs
when an intersection between the stable and unstable manifolds of a fixed point is created
or destroyed.
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1.HOMOCLINIC BIFURCATIONS

Definition. Let p be a fixed hyperbolic saddle point, and suppose that W*(p) and W"(p)
intersect transversly, then we say that ¢ € W#(p)NW*(p) is a point of transverse homoclinic
intersection. If the intersection is not transverse then g is a point of homoclinic tangency.

Y

The presence of transverse homoclinic intersections implies some very complicated dy-
namics. This was first noticed by Poincaré [P] and can easily be noticed by us through
some simple geometric considerations. Keeping in mind that the orbit of ¢ must tend to
p both as n tends to +oo and as n tends to —oo and that W*(p) and W"(p) cannot self
intersect we see (fig.1a,1b) that both manifolds accumulate on themselves near the fixed
point p. The result is a big mess also known as a "homoclinic tangle”(fig 1c ).
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main objective is to understand what kind of dynamics are present in the tangle. Our
approach to this question will be through the study of one parameter families unfolding
homoclinic tangencies.

Let (¢,.),p € I, with I some interval containing 0, be a one parameter family of diffeo-
morphisms satisfying the following properties:

i) for p < 0, ¢, has very simple stable dynamics with, say, only a finite number of
periodic orbits in its limit set.

ii) @o has a point of tangency between the stable and unstable manifold of some periodic
point p.

iii) for u > 0, ¢, has points of transverse homoclinic intersection.

[(m<o] ﬁﬁ;?r Mmool
—— WSC?\ 7? WS(?\ ﬁws@)
T W R W (R

Then the homoclinic tangency represents a “bifurcation” separating the simple dynamics
of p,, for p < 0 and the complicated dynamics of the homoclinic tangle. Thus homoclinic
tangencies are often called homoclinic bifurcations.
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4 STEFANO LUZZATTO

Usually we impose some reasonable (and generic) conditions on the family (¢, ) to make
it easier to study. In particular we ask that the point of tangency be of quadratic order
and that % #0 at g = 0. Under these assumptions we say that the family (¢, ) unfolds

12

the homoclinic tangency generically at pu=0.

Smale’s horseshoe.
We begin with a landmark result of Smale [S,1967] which represents the beginning of
the modern geometric approach to dynamical systems.

Theorem. Let ¢ : M — M be a surface diffcomorphism, p a hyperbolic fixed saddle
point and suppose that W*(p) and W*(p) intersect transversly. Then there exist a subset
A C M which is hyperbolic, compact, invariant, has a dense orbit and contains a dense set
of periodic orbits. Moreover the map ¢ restricted to A is topologically conjugate to the
full shift on two symbols.

Definition. A compact invariant set A is said to be hyperbolic if there exists a continuous
decomposition TM = E* @ E¥ of the tangent bundle of A which is invariant under the
action of the differential, i.e. Dyp(E?®) = E® and Dp(E") = E* and there exists constants
C > 0 and A > 1 such that

|De™ (=) = CX" ¥z € E”

IDe"(@)| < CTAT" Ve e B

Definition. A full shift on two symbols is the dynamical system defined by ({0,1}:,0)
where {0,1}” is the space of biinfinite sequences ¢ = (....a—1,a0,01, - ..) with a; = 0,1
and & is the usual shift map: b = ca is defined by b; = a;—;. On {0,1} we consider the
topology induced by the following metric:

Iaz—b |
Z 2l

lE._l

With this metric the (uncountable) set {0,1}" is totally disconnected and has no isolated
points and is therefore homeomorphic to a Cantor set.

Sketch of proof. To achieve this result, Smale noticed that, given a transverse homoclinic
intersection, one could find a thin strip in a neighbourhood of a piece of W* which, when
iterated a sufficient number of times, say N, would intersect its image in two connected
components (fig.5). The action of @™ can be schematically represented by a map f which

maps a unit square @ into itself. m
N a |

b
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QN £(Q) is then formed by two vertical strips. It is easy to see that Q@ N f(Q) N f*(Q)
consists of 4 vertical strips, @ N f(Q) N f2(Q) N f3(Q) of 8 and so on, we get a family of

nested strips. Then
Ay = () (@)

n>0

has the topological structure of the cartesian product of an interval and a Cantor set,
I x C. It is also easy to see that the inverse image of vertical strips are horizontal strips
and succesive iterates of these form another family of nested strips. We have

A_:ﬂf””:C’xI

n>40

Now we define

A=AynNA_

which has the topological structure of the cartesian product of two Cantor sets and which
is therefore itself a Cantor set. By construction, A is invariant under . The existence of a
dense subset of periodic orbits and of a dense orbit comes from the topological conjugacy
of ¢ |s to o and the analogous facts for the shift map. If we denote the two vertical strips
by 0 and 1 and construct a sequence z = (....z_1,Tg, 1 ....) associated to a point z € A by
the rule that

z; =0 (resp. 1) «— f’(m) €0 (resp.1)

then this rule defines a bijection of the elements of {0,1}* with points of A. Indeed
it is obvious that each point determines a unique sequence; to see that each sequence
determines a unique point notice that the infinite sequence (ay,a1,az,....) determines a
unique horizontal curve by the construction above and the sequence (....a_3,a.4-2,a_1)
determines a unique vertical curve, the two lines intersect in a unique point correponding
to the sequence (...a_3,a_3,a_1,4a9,a1,02,....). To show that this bijection is in fact a
homeomorphism we can show that it sends points which are close together to points which
are close together. An e-neighbourhood of a sequence g is the set of all sequences whose
middle k-terms are equal, for some k. Such sequences correspond to points contained in a
small square wAich is the intersection of a vertical strip and a horizontal strip determined
precisely by the first positive terms of the sequence and the first negative terms of the
sequence respectively. So, we have shown that there exists a homeomorphism H : A —
{0,1}* such that the following diagram commutes:

A — A

) ‘| |

0,117 —— {0,1§°

Notice that a periodic point of ¢ corresponds to a periodic sequence. Given any sequence
it is possible to find periodic sequences with an arbitrary number of terms equal to the
given sequence and thus arbitrarily close to it. This proves that the periodic points are
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dense in A. To see that there exists a dense orbit notice that it is possible to construct a
sequence containing all possible blocks of all lengths, where an n-block is any sequence of
0’s and 1's of length n. The proof of the hyperbolicity of A requires many technical details
and I will not go into it here. It can be found in [PT,1992]. I

Remark. The set A constructed above is often referred to as Smale’s horseshoe. In what
follows I will call horseshoe any set with the characteristics of Smale’s horseshoe: compact,
invariant, hyperbolic containing a dense subset of periodic orbits, containing a dense orbit
and having the topological structure of a Cantor set and whose dynamics are topologically
conjugate to a full shift on two symbols.

Smale’s theorem tells us that in a generic I-parameter family as above, for any given
value of g > 0, , will exhibit at least the dynamical complexity of a horseshoe. The
mechanism by which the horseshoe is created is, however, not at all clear. There must be
some local bifurcations creating or destroying periodic points and it is completely unknown
how the horseshoes for different values of the parameter are related. In this direction we
have the following result by Yorke and Alligood.

Theorem. [Y-A] Let ¢, be a family of diffeomorphisms unfolding generically a homoclinic
tangency associated to a dissipative periodic point p. Then the creation of a horseshoe
is necessarily preceeded by a cascade of period doubling bifurcations producing attracting
periodic orbits of unbounded periods for different values of the parameter.

Definition. A cascade of period doubling bifurcations in a one parameter family of maps
is a sequence (p) of parameter values, converging to some g such that for each pi the
corresponding map exhibits a periodic point undergoing period doubling bifurcation. A
periodic point is said to undergo a period doubling bifurcation if one of the eigenvalues
of the differential at the point has value —1. In that case, if the family satisfies certain
generic condition, maps corresponding to values of the parameter either above or below
the one at which the bifurcation occurs will exhibit periodic points with twice the period
of the original point. For further details see[GH,1983] or [IY,1991].

The next result shows that diffeomorphisms exhibiting homoclinic tangencies are never
isolated.

Proposition. In a generic 1-parameter family as above, each parameter value whose
corresponding diffeomorphism exhibits a homoclinic tangency is accumulated by parameter
values corresponding to diffeomorphisms which also exhibit homoclinic tangencies.

Proof. This can be seen using a simple geometric argument. We will show that p =0 1s
accumulated by parameter values corresponding to diffeomorphisms exhibiting homoclinic
tangencies. Given any smalle > 0,Vp € (0,€), ¢, will have points of transverse homoclinic
intersection. Call T, the approximately parabolic piece of the unstable manifold near ¢
and T', the piece of the stable manifold near r. Succesive iterates of I', by ¢ will produce
other parabolas closer to p, and each time taller and more squashed (fig ). For some n
¢™(T',) will intersect T'; transversly.

- wY 5 I ) 9(13)
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Since o7(I',) N T = @ it follows that for some value of the parameter the two inter-
sect tangentially creating a point of homoclinic tangency. Since this argument can be
repaeated for arbitrarily small € it follows that there is a sequence ny — 0 as k£ — co such
that @, exhibits homoclinic tangencies. It also follows from the proof that each of the
parameter values n; are themselves accumulated by other parameter values corresponding
to diffeomorphisms exhibiting homoclinic tangencies.l]

Each tangency in the above theorem is a contact making tangency in the sense that
as the parameter value is increased the tangency is created and followed by a transverse
intersection. We say that a homoclinic tangency iscontact breaking if, as the parameter
value is increased a transverse intersection turns into a tangency and then into an empty
intersection. In conjunction with the above proposition we have the following recent result:

Bubble Lemma. [K-Y]-[D-G-K-K-Y] If s, is a tangency value at which contact is made,
then there are tangency values arbitrarily close to py at which contact is broken (and vice
Versa).

Persistent tangencies.

So far we have implicitly assumed the fixed or periodic point to which the homoclinic
tangency is associated to be isolated. However all the results discussed so far are valid if
it belongs to a larger invariant set, in particular a “Smale horseshoe” type set. In 1979
Newhouse discovered that such a situation in fact added an entirely new level of complexity
to the dynamics making it possible to obtain “persistent tangencies” and “infinitely many
coexisiting periodic attractors”. First we need a couple more definitions. For a hyperbolic
set like the horseshoe it is possible to generalize the notion of stable and unstable manifolds
for non periodic points.

Definition. Let ¢ € A, we define

We(g) = {y € M : d(¢"(y),%"(g)) — 0 as n — oo}

W*(q) = {y € m : d(¢"(y),%"(g)) — 0 as n — —oo}

Notice that this definition is consistent with the previous one if g is periodic. Now we
can define the stable and unstable sets of A:

Definition.

we(A) = | W*(z)

rel

we(A) = | (=)

€\

Recall that the topological structure of A is that of the product of two Cantor sets
<o the stable and unstable sets will be formed, at least locally, by a Cantor set of lines

(curves)(fig.7).



Since the periodic points are dense in A; a dense subset of these lines will correspond
to the stable and unstable manifolds of periodic points. Now consider a homoclinic inter-
section associated to one of these periodic Apoints. As can be seen from the figure this
implies many other transverse intersections and possibly other tangencies as well between
W#(A) and W¥(A). These tangencies could occur along a curve £ which, essentially, cuts
a cross section of the stable and unstable sets of A. Both W?(A) and W*(A) intersect 12
in Cantor sets C® and C*. Thus the stable and unBstable sets of A will have a tangency
if and only if C* N C™ # 0.

Newhouse tackled this problem by considering the general case of the intersection of
two Cantor sets in a line. He defined a characteristic of Cantor sets called thickness and
showed that if two Cantor sets are thick enough and if neither one is completely contained
in a gap of the other then they must intersect. For completeness I give here the precise
statement of this result.

Definition. Let C C R be a Cantor set. Let the connected components of R \ C be called
gaps of C. Then each point ¢ € C will be in the boundary of some gap G (see fig.). There
exists a unique point ¢/ € C such that the interval between ¢ and ¢/ contains no gaps of
length greater than or equal to the length of G. We call the distance between c and ¢/, D.

We define the local thickness of C at c as

() = length of D
Te ~ length of G

and the thickness of C as
() = inL{r(O)}

We have the

Gap Lemma. Let C1,02C R be two linked Cantor sets (neither one contained in a gap
of the other)If 7(C1)7(C3) > 1 then C1 N C2 # 0

Notice that this lemma says that the intersection is persistent: we can translate one of
the Cantor sets along R for a whole interval of values and they will continue to intersect.

Applying this result to our original problem on homoclinic tangencies we get a condition
on the thickness of the cross sections of the stable and unstable sets of A which will
guarantee that there are whole intervals of parameter values for which the stable and
unstable sets of A have points of tangential intersections. Since a dense set of the leaves
of W*(A) and W*(A) are associated to periodic points, a dense subset of this interval of
parameter values will correspond to diffeomorphisms with homoclinic tangencies associated
to periodic points and to which, therefore, all the previous results apply.

, 5
¢ c ~ 3¢
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Newhouse also showed that when unfolding generically a homoclinic tangency there are
parameter values, arbitararily close to the one for which the tangency occurs, for which
the corresponding diffeomorphism has a periodic attractor. Combining this fact with the
persistent tangencies he obtained residual subsets of the intervals of persistent tangencies
discussed above, such that for parameter values in these residual subsets the correponding
diffeonorphisms have infinitely many periodic attractors. Finally, to crown this series of
spectacular results he showed that arbitrarily near a diffeomorphism exhibiting a homo-
clinic tangency (even if this tangency is associated to an isolated periodic point) there are
diffeomorphisms exhibiting homoclinic tangencies associated to periodic points contained
in a horseshoe of large thickness. This implies that arbitrarily near a diffeomorphism
exhibiting a homoclinic tangency there are others exhibiting persistent tangencies and
infinitely many periodic attractors. These results are summarized in:

Theorem. [N,1979][PT,1992] Let ¢, be a generic family of C* diffeomorphisms unfolding
a homoclinic tangancy at u = 0. Then, given ¢ > 0 there exist intervals N; C (0,¢) in
the parameter space such that each N; has a dense set of parameters corresponding to
diffeomorphisms exhibiting homoclinic tangencies associated to periodic orbits. Moreover,
there are residual subsets R; C N; corresponding to diffeomorphisms exhibiting infinitely
many coexisting periodic attractors or repellors.

Remark. It is an open problem whether an analogous result is valid for conservative
systems substituting elliptic points for attractors.

Newhouse’s result created a small shockwave. In the first place it cast doubts on the
claims of people who were performing computer studies of various maps and who seemed to
be finding non periodic “strange” attractors, like Lorenz [L,1963] and Henon [H,1976] for
example. The existence of infinitely many periodic attractors necessarily implies that some
of them have very high period and an orbit of very high period might easily be mistaken,
in a computer study, for a non periodic attractor. If the phenomena was so common as
Newhouse’s theorem appeared to imply then there seemed to be a high probability that
the map under investigation might indeed exhibit such periodic attractors of very high
period. This reaction was partly a product of a general “philosophy” which guided re-
search in dynamical systems theory throughout the seventies. This was the belief that the
most significant and important systems to study are the structurally stable ones, i.e. those
which are stable under small perturbations. Amongst the reasons underlying this point of
view was the idea that physical systems, or at least the asymptotic behaviour o physical
systems, would necessarily be structurally stable. Consistently with this topological notion
of stability there was an accepted topological notion of persistence, in the sense that an
open and dense subset was considered to be a huge set, pretty much as large as one could
hope for, and if not open and dense, residual (countable intersection of open and dense
subsets) came second best. So, a lot of research in the seventies aimed at characteriz-
ing the dynamical behaviour of open and dense or residual subsets of suitable spaces of
diffoemorphisms or vector fields.

Newhouse's theorem fits perfectly into this canon. However the difficulties encountered
in dealing with his results contributed to a shift in perspective which brought a different
notion of persistency to be accepted and used, that of measure theoretical persistency.
We say that a particular dynamical system is measure thoeretically persistent if it occurs
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for a set of parameters of positive measure in some k-parameter family. Of course if a
phenomenaon occurs for an open and dense subset of parameter space it clearly occurs for
a set of positive measure however it can also happen that the complement of an open and
dense subset has positive measure. A typical case is that of a Cantor set of positive measure
in an interval. In fact it is possible to have Cantor sets of arbitrarily large measure in the
interval; their complement, of course, is always open and dense. Dynamical phenomena
occuring for parameter values in such a Cantor set will never be structurally stable but they
will occur with very large probability and so we say that they are measure theoretically
persistent.

According to this new point of view then, it is interesting to estimate the measure of
the set of parameter values for which infinitely many sinks coexist. There are some partial
result in this direction which seem to support the conjecture that it has measure zero, but
this is still an open problem. However there are some recent and relevant results on the
relative measure of the intervals of hyperbolicity and those of persistent tangencies. We
say that a diffeomorphism is hyperbolic if its nonwandering set is hyperbolic as a compact
invariant set according to the definition above. Intuitively a hyperbolic diffeomorphism is
one which is not bifurcating, i.e. which exhibits no local bifurcation orbits nor homoclinic
tangencies.

Let ¢, be a generic family of diffeomorphisms unfolding a homoclinic tangency assocl-
ated to a periodic point p belonging to a horseshoe A. Let HD(A) denote the Hausdorff
dimension of A and define the set

A= {p € [—e,€]: pu is not hyperbolic}

Then we have the following results:

Theorem. [PT,1987]

If
HD(A) <1
then 4
lim Anlzee) [—e.e] =0
e—0 2¢
0 is a point of full density of hyperbolicity !
Theorem. [PY,1991] If
HD(A) > 1
then 4
mint 201706 S g
e—0 2e

0 is not a point of full density of hyperbolicity !
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2.STRANGE ATTRACTORS

The term strange attractor was coined by Ruelle and Takens in 1971 [RT,1971] to indi-
cate, in a loose way, the concept of a non-periodic attractor with some curious properties.
There is still no universally accepted meaning for it. Here we adopt the following working
definitions:

Definition. A compact invariant set A is called an attractor if there exists a set of positive
Lebesgue measure U such that: : '

d(e™(U),A) =0 as n— o0

and if A is minimal in this respect, i.e. it does not contain any proper subsets which are
also attractors.

Definition. An attractor A is a strange attractor if it contains a point 2 which has a dense
orbit and positive Lyapunov exponent, i.e. there exist constants C > o and A > 1 such
that

[De™(2)}| > CA" ¥Yn 20

Remarks.

1) The definition of attractor is consistent with fixed or periodic attracting orbits. The
positive Lyapunov exponent indicates a kind of expansivity on and near the attractor.
Points get closer and closer to the attractor, but the closer they get the more influence the
expansivity of the attractor has and nearby points tend to get pulled apart producing the
characteristic sensitivity to initial conditions which is noticeable in computer studies.

2) It is desirable to define on the attractor an invariant measure absolutely continuous
with respect to Lebesue measure. This is in general difficult but it could be that the
existence of such a measure might become a requirement in the definition of some class of
atiractors.

3) So far, all the strange attractors we know are structurally unstable but measure theo-
retically persistent. It does not seem unreasonable to wonder whether these characteristic
are in some sense intrinsic and intimately related to the dynamical structure of strange
attractors.

The most well known strange attractors occur in 1-dimensional quadratic maps. Already
in 1981, Jakobson proved the following:

Theorem. [J,1981] Let
P(z)=2"+a a€R
For a < i let B, denote the largest fixed point of P,. Let 1 < A < 2,6 >0 Then there
exists an ay € (—2, %) and a set A C [~2,ay] such that
(1) m(4) > (1 - 6)m{~2,a0
(2) for a € A, we have: the interval [—8a,0.] is a strange attractor with a uniqe
invariant ergodic measure absolutely continuous with respect to Lebesgue measure.

We also have the following very recent result of Swiatek:
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Theorem. [S] Let P,(z) = 2 + a be the quadratic family as in the previous theorem.
Then the hyperbolic (structurally stable) maps form and open and dense subset of the
parameter space

This is exactly the kind of situation mentioned above: hyperbolic behaviour in an
open and dense subset with positive measure in the complement. It is an interesting and
open question whether strange attractors form a set of full measure in the complement of
hyperbolicity.

In 1989, Benedicks and Carleson proved, using completely different methods, a gener-
alization of Jakobson’s result to a special family of plane diffeomorphisms: The Henon
family. These maps are defined by: ’

P, y(z,y) = (z° + a +y,bz)

Henon studied this family numerically for values of (a,b) around (1.4, 0.3) and conjectured
the existence of a strange attractor. The result of Benedicks and Carleson concerns the
dynamics for parameter values near (a, b) = (—2,0) under condition of extremely strong
dissipativeness. Notice first that for b = 0 the map degenerates into the non invertible
quadratic family Po(z,0) = (22 +a,0) on the real axis for which we have Jakobson’s result.
Essentially, Benedicks and Carleson proved the theorem in the one dimensional case using
a method which allowed them to prove an analogous theorem for small perturbations of
the degenerate case. We have the following:

Theorem. [B-C] Let 1 < A <2 and § > 0. There exists an a, € [—2,0] and a by > 0 and,
for each 0 < b < by a set Ay C [—2,ay] with the following properties:
(1) m(4s) > (1 — &)m(-2,a0)
(2) For0<b<by,an€ Ay, denote by A = A, the closure of the unstable manifold
of the hyperbolic fixed point of Py, then A is a strange attractor.

It has been announced by Benedicks and Young that they have constructed absolutely
continuous invariant measures for these attractors[BY,1991].
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3.STRANGE ATTRACTORS WHEN UNFOLDING
HOMOCLINIC TANGENCIES

13

In 1985, while Benedicks’ and Carleson’s work was already in development, Palis sug-
gested an extension of their method to more general perturbations of the quadratic family
on the real line. One could then use the fact that a generic family unfolding a homoclinic
tangency admits a renormalization which is Hénon-like to apply the results on the existence

of strange attractors to unfoldings of homoclinic tangencies.

The Heénon-like renormalization of a generic family unfolding a homoclinic tangency is

guaranteed by the following result:

Theorem. [PT,1992! Let (pmu be a generic one parameter family as above with g a point
on the orbit of tangency for p = 0. Then there exists a constant N and, for each positive

integer n, reparametrizations /mu = M, (f1) of the parameter and i dependent coordinate

transformations
V,u4(2,9) = (2,9)
such that
(1) for each compact set K in the fi,&,7 space, the images of K under the maps

(/3'7 53,'3)) - (]\/In(ﬁ'), ‘Pn,ﬁ(ii g))

converge, for n — oo in the (u,z,y,) space to (1,0,9)
the domains of the maps

(2)

(7 #,9) — (B (7% 0 9370 © Tni)

converge, for n — oo to all of R® and the maps converge in the C* topology to

the map
(i, 2,3) — (2.5,5° + i)

Essentially, this theorem says that  restricted to a very small domain near the

orbit of tangency and for a very high number of iterates is very close to the one
0,

dimensional quadratic family (fig 8). W
W)

E B(v\) 1/‘A

bald
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The program proposed by Palis was carried out in detail by Mora and Viana
who proved the following:

Theorem. [MV,1992] Let ¢, be a C* generic one-parameter family of diffeomor-
phisms on a surface and suppose that wy has a homoclinic tangency associated
to some periodic point py. Then, under generic assumptions, there is a positive
Lebesgue measure set E of parameter values near p = 0 such that forp € E, pmu
exhibits a strange attractor, or repellor, near the orbit of tangency.

Further results, open problems and conjectures.

From the results presented above it appears that homoclinic bifurcations are a
main source of rich and complicated behaviour. Indeed their presence implies the
“pnearby” presence of most of the “complicated” dynamical phenomena which we
know today: e.g. infinitely many sinks, Hénon-like strange attractors and the so-
called Feigenbaum attractors -accumulation points of cascades of period doubling
bifurcations-. A most significant question is whether the converse is true:

Question. [PT,1992] Do infinitely many sinks, Hénon-like strange attractors and
Feigenbaum attractors imply the existence “nearby” of diffeomorphisms exhibiting
homoclinic tangencies 7

There are very few results in this direction. A partial result due to Ures|U,1992],
states that for the Hénon-like strange attractors constructed in the proof of Mora-
Viana, the question above has an affirmative answer.

Palis has proposed the following

Conjecture. The set of all hyperbolic diffeomorphisms and all diffeomorphisms
exhibiting homoclinic tangencies is dense n Diff*(M), the space of all Ck dif-
feomorphisms.

An affirmative answer to the first question above would be a big step in the
direction of proving this conjecture. Araujo and Mane have proved the conjecture
for C! diffeomorphisms in the C 2 topology.

Other interesting questions concern the relative density of strange attractors
at p = 0. By the result of Palis and Takens above on the relative density of
hyperbolicity, strange attractors cannot have positive density in general. However
we can ask whether, in a generic family as above, u = 0 can be a point of positive
density of strange attractors if HD(Ag) > 1 where Ay is the horsehoe containing
the periodic point to which the tangency 1s associated. The same question can be
asked for infinitely many sinks. Moreover it is conceivable that there might exist
diffeomorphism exhibiting infinitely many coexisting strange attractors. Palis has
proposed the following:

Conjecture. The set of parameters for which ¢, exhibits infinitely many coexist-
ing sinks or infinitely many coexisting Hénon-like strange attractors has Lebesgue
measure 0

However, Diaz, Rocha and Viana [DRV,1992] have recently found parameter
values of surface diffeomorphism which are points of positive density of Hénon-like
strange attractors.
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