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1 Introduction

The behaviour of a 2D electron gas in extremely high magnetic fields has
been the subject of extensive works in the past years. While the origin of
the quantization for integer and simple odd fractional fillings is now well
understood, a theory of the fractional quantum Hall effect (FQHE) for gen-
eral filling fractions is still missing. Much of the present understanding of
the FQHE is based indeed on first quantized many electrons wave functions
which are available only at special filling fractions. The strategy based on
trial variational wave functions has proved to be very fruitful in this field
while traditional approaches like the Hartree Fock approximation and stan-
dard many body theory have not really produced satisfactory results so far.

The basic reason for this is that in two dimensions and in the quantum
limit (all the electrons in the n = 0 Landau level), kinetic energy is totally
suppressed, while lack of Hilbert space completeness (only recovered for
B — oo0) makes the many body correlation effects entirely non classical
and novel. In these circumstances no simple descﬂption of the correlation
between electrons is possible in terms of a single particle picture.

In this paper we propose a new picture for the problem of the many
body physics of the lowest Landau level. This is based entirely on the
second quantization formalism. The main idea is that a 2D many body
system in high magnetic fields (in the symmetric gauge) may have its natural
description in terms of pair operators. All the two body operators, like the
interaction potential or the correlation function, are expressed in terms of
the number operator of particle pairs. The quantum numbers of these pairs
are the total and relative angular momentum.

The main difficulty within this representation comes from the compli-
cated commutation relations among pair operators, which deviate from per-
fect boson character. Nonetheless, we show it to represent a useful tool in

the case of e.g. edge waves. The first part of this paper presents the formal-




ism and shows that many of the known results are easily translated in terms
of pairs. The picture presented has the advantage of being intuitive and
simple. We also briefly report about some abortive approach to the general
problem of the FQHE using a BCS type pairing theory. The failure of these
approaches suggests that pairwise correlation are not enough to diagonalize
the problem.

The second part deals with an application to a specific problem for which
an interesting picture has been recently proposed on the basis of both an-
alytical and numerical work [6]. This concerns edge waves or the low lying
excitations near incompressible states as the v = 1 or v = 1/3 states. We
deal with the v = 1 case, and using the formalism precedently introduced
we test the proposed picture in the scheme of many body theory and second
quantization, a description which has not been applied up to now to this
problem. We show that the reason for edge waves excitations at v = 1 —¢€ to
behave as free bosonic waves can be undersood, and corrections quantified,
using the pair formalism. The predictions of our approach agree very well
with numerical results. This example shows the simplicity of the pair formal-
ism in dealing with operators whose ugly form, in the single particle picture,
has up to now forced researchers towards straight numerical techniques.

The concluding section contains a general discussion and some perspec-

tive on the possible extensions.
\

2 Pair description of the FQHE in the disk ge-
ometry (symmetric gauge)

Let us consider a general two body operator represented, in first quantiza-
tion, by the function V' (21, 27). The second quantized form of this operator

is: e
V= 3 Z (T — s,8|V(z1,20)|T — u,u)cf}'_ucjcscT_s (1)
T=1u,s=0



here ¢ (c) are single particle creation (destruction) operators and the con-
servation of total angular momentum has been made explicit.
The matrix element is given by:
Iv(T, s,u)
47227 /(T — s)!sY(T — u)lu!

(2)

(T - s,8|V(z1, 2)|T — u,yu) =

with
I(T, ,u) = /d221d2z2 AT=5 59V (o1, 22) 2T~ ste=(m 4l )/2 (3
We consider in what follows only operators V' (zy, 22) that are separable

in the relative (§ = z; — z2) and center of mass (Z = (2 + 22)/2) coordinates

and that depend only on the moduli of these coordinates:

V(Z+¢/2,Z-¢/2) = w(Z)-v(£) (4)

The usual case of a translationally invariant operator V(z; — z3) corre-
sponds simply to w(Z) = 1.
In the more general case 4 the integral in the matrix element can be

performed as follows:

I (T, s,u) = TZZTZUEU:( )()(T;“)(g(_l)ma.

a=08=0 v=0 =0
: / 427 ZT-o=Py(2)ZT 17120 .

. /d2€ (5/2)04—%',51](6)(5/2)—7.{_06_1512/4.

The integrals vanish whenever a + 3 # v + o and otherwise depend only
on ¢ = a+ f =7+ o. Using the identies

T dz i{k—7)x d
bk; = / — (k=) and doigyto = Z 5q,a+,6 : 5q,7+or (5)

— 2T =0




the summations on a, 8, 7 and ¢ can be carried out and

o) = 3 [T () (o) e

/ 2+ )T's (1~ ) e . Iy(q) - I4(T, )

with  Ie(q) = 47 [ u(e)lg/re1o"/4

and  I(T,q) = / &27 w(Z)| Z|T~9) 12"

It is now possible to carry out independently the summations on v and
5 in equation 1, so that the second quantization form of the operator V

becomes:

e T
V=33 Vr(9)ff(9) fr(q)- (6)
T=1qg=0
The sum on u (s), which involves the first (second) integral and the pair
of operators C; JCF (ep_,c,), defines the new pair operator fT( ) (F7(2))

apart from a normalization constant

T
(@) =" br(u,q)ch_cf (7)

u=0

The normalization of the envelope function b7(u, q) is determined requir-
ing that the state £;(¢)|0) is normalized to 1. This means that Yubi(u,q) =
1/2. After some algebra, using the theorems of residues, we finally get

r T dz . —-u Nu -
br(u,q) = \“"‘(‘Q‘*‘/ d—(l-%—e_”")T (l—e"”’) e'?®

(Z)2T+1 2T
T q
= \ (T)(§;+1 [%“(1 +2)T7(1 - Z)u} o (8)

and
Iz(T,q) - I¢(q)

VT(Q) = 27!'2(T — Q)'q, (9)



The following properties hold for the coefficients br(u, q)

bT(T — U, 9) = (—'1)qu(“’7 Q) (10)
bT(Q?“) = bT(ua 9) (11)
T
2 Z br(u, )br(uw,p) = dop (12)

see appendix A for the derivation of these relations.
Before moving on to consider more properties of the pair representation

it is useful to pause for some comments:

) Start with just two particles in a strong magnetic field interacting through
the potential V' (21, z2). This problem is easily solved in first quantiza-
tion [1]. Diagonalization of V coincides with the lowest order degener-
ate perturbation theory if only the lowest Landau level is considered.
The parameter of the expansion is the ratio between the energy scale
of V (in the case of Coulomb energy e?/£,) and the separation Aw,
between Landau levels. This parameter can also be expressed by the
ratio a,/{, between the Bohr radius and the magnetic length. Higher
Landau levels, whose effect will be neglected in the following, yields

second order corrections.

1) From the solution of the two particle problem, one obtains br(u,q)
as the wave function in the space of Landau orbitals. The quantum
numbers ¢ and T turn out to represent the relative and the total

angular momentum respectively.
i1¢) In the case w(Z) = 1, Iz(T, q) = m(T — ¢)! and Vr(q) is independent of
T:
Vr(a) = & = o 7e(0) (13)
iv) Considering the commutation properties of the operators ¢t and ¢, we

get f1(9) = Tucr/2(b7(u, @) F b1(T — u,q))ef_ e where the upper




(lower) sign refer s to fermions (bosons). Then ff(g) = 0 for even
values of ¢ for fermions, while for bosons the same holds for odd ¢
values. As a consequence of the Pauli exclusion principle the relative

angular momentum q can take only odd (even) values for fermions

(bosons).

In what follows we will specialize to the Fermi case. Consequently all
the sums over the relative angular momentum will always be assumed to
run on odd values.

The pair creation and destruction operators provide a very simple ex-
pression for most of the operators of physical interest. In particular the
Coulomb interaction V' (21, z3) = 1/|21 — 22| is given by (in magnetic units)

o

He= 3% eff(a)fr(q) (14)

T=1 g

where

_ /7T (29)!

172 (ql29)2
note that for ¢ > 1 ¢; & 1/,/7 as in the classical case.

(15)

The pair correlation function can be expressed in the form 1 by replacing

V (21, 22) with §(r — z; + z2), yielding

3= 3 % T @ e (16)

T=1 ¢q
and so omn.

Once the number of pairs with a definite relative and total angular mo-
mentum N7(q) = (f#(q)fr(g)) is known on a given state for all T and ¢ we
are in a position to evaluate all correlation functions. This makes the pair
representation quite appealing.

The main problem is however that ff(q) does not represent a true

bosonic operator. In fact the commutation rules for f}"(q) is not bosonic,



but has a residual term which contains a density excitation
[Fr(0), FE )] = 51,8600 — 43 br(w, br(wp)eh_yer . (17)

"Loosely speaking, this reflects the fact that in the pair formalism not all
degrees of freedom ff(g) are independent.

Suppose we want to build the ground state of an hamiltonian such as H,
for a system of 2n electrons. Intuitively one should occupy the lowest pair
orbitals €, with n pairs consistently with the constraints on the total angular
momentum. If boson-type commutation relations were satisfied NT(q) would
indeed count the pairs that have been used to build the state thus giving

the lowest energy. However it is easy to check that

oc o T
Z Z NT(Q) = Z Z c;rcuc%-—ucT‘—u = TL(2TL - 1) (18)

T=1 ¢ T=1u=0
this is simply because the number of ways for making a pair out of 2n parti-
cles is n(2n—1). So that while only n pairs have been used to build the state,
this contains much more pairs than n (of order 2n?). Our trial ground state
will almost certainly not be a good approximation. As an example, figure 1
shows the distribution of relative angular momentum N(g) = > 7 N7(q) for
v = 1/3 and 6 electrons. The physics this function describes is perhaps more
evident if one considers its relation with the correlation function 16. Full
dots refers to the true ground state while open squares to the ground state
obtained in the zeroth order approximation in which the second term of the
commutator is neglected. Even if this zeroth order ground state is made
of three pair creation operators with T = ¢ = 15 acting on the vacuum,
it contains a lot of pairs with small relative angular momentum, including
angular momentum one. The true ground state is instead characterized by
a minimal number of pairs with the smallest value of ¢, since these give the
largest contribution to the repulsive energy. In particular N(1) = 0 is ful-
filled for v = 1/3 by the Laughlin state (open dots), as implied by g(r) « r°




Figure 1: Plot of the distribution of relative angular momentum, N(g) =
2.7 N7(q), for a 6 fermion system at effective filling 1/3. L, is the total
angular momentum, M, is the highest Landau orbital considered. Lines
are drawn only for guiding eyes. The full dots (e) refers to the exact ground
state, open dots (o) to the m = 3 Laughlin state while the squares (O)
refers to the state built with three pair creation operators of highest relative
angular momentum.



and from equation 16. The approximate pair wave function does not satisfy
N(1) = 0, so it has g(r) o< r? which is energetically bad and fails to yield
quantization at v = 1/3.

Equation 16 expresses a connection between the coeficients of differ-
ent powers of r in g(r) and the number of pairs with a definite relative
angular momentum. These coefficients have been studied extensively by
Yoshioka [3], in rectangular geometry (Landau gauge), who has found that
the coefficient of r? and of r* (which is non zero in this gauge) decreases by
decreasing v and vanishes for » > 1/3. The same happens to the coeflicient
of % and 78 for v ~ 1/5 and so on. In the pair picture this result sug-
gests that the quantization in the FQHE is a consequence of the successive
elimination of all the pairs with the smallest relative angular momentum.
Loosely speaking approaching v = 1/3 from higher fillings, the degrees of
freedom increase in the system and pairs with ¢ = 1 are suddenly eliminated
at the cost of introducing a large number of pairs with ¢ = 3. For » < 1/3
there is no pair left in the ¢ = 1 state. For lower fillings the same mechanism
is applied for the pairs with ¢ = 3 which are elimina.féd totally at v = 1/5.
All of this is well known, and is just made more transparent by the pair
language.

The hamiltonian itself can be approximated by the terms with ¢ = 1 for
v > 1/3. This approximation is the same as that of considering only the first
component of Haldane [2] pseundopotentials. The interaction parameters V;,
are exactly the correlation energies of pairs of particles with relative angular
momentum m.

The ¢ = 1 approximation coincides with replacing the Coulomb inter-
action with the hard-core potential V(zy,22) = 2nV2§(2; — 2z2). Indeed
performing the integral of equation 13 for this potential, we find ¢; = §,1.
We then recover the well known result [4] that Laughlin state is the exact

ground state of this hamiltonian.



The simple form of two particles operators, such as the hamiltonian
and the correlation function, suggests not only that pairs provide a relevant
description in the FQHE, but that genuine pairing may take place in some
filling regime. However it is obvious from our fresh example that simple pair
condensation into a single T state (analogous to K;,; = 0 in the BCS case)
will not work. Possible attempts, including extended Gutzwiller projectors,
are now under study, aimed at eliminating the excessive near-neighbour

repulsion implied by the unphysically large N(g = 1) in the paired state.

3 Edge waves in the quantum Hall effect

We turn now to a specific problem where the pair formalism turns out to be
helpful. We shall consider the spectrum of low lying excitations on the v = 1
quantum Hall state in disk geometry. These excitations have been called
edge waves because they involve density fluctuations of the two dimensional
electron gas at the boundary of the system. The characterization of these
excitations is under current activities by many authors. For a review on the
subject the interested reader is referred to a recent paper of X.G.Wen [5]
where a general theory for edge excitations is discussed. The starting point
of Wen’s theory is a classical hydrodynamical approch where coordinates
and canonical momenta yield, upon quantization, the creation operators of
the edge modes. These turn out to behave as free bosons.

A different approach, based on first quantized operators, has been used
by M.Stone. In a recent paper M.Stone et al. [6] have analyzed the energy
spectrum by exact diagonalization for systems of up to 400 particles. If
strictly only the lowest Landau level orbitals are considered, the ground
state for v = 1 is that of the filled Landau level, whose first quantized form

is (apart from the gaussian factors) just the Vandermonde determinant

‘I’o(zla"':zn) = H(Zi - zj) (19)

i<y

10



whose total angular momentum is L, = $n(n — 1).

Consider an excitation of angular momentum M. The Hilbert space
of the system with total angular momentum L = L, + M is spanned, in
first quantization, by the wave functions obtained by multiplying ¥, by
symmetric polynomials of degree M. These in turn can be expressed in a
unique way in terms of the power sums

n

Silz, e z) = 3 2 (20)

i=1

In their work M.Stone et al. [6] conjecture that these polynomials provide
a bosonic description of the excitations of the quantum Hall system, in the
sense that they correspond to the bosonic creation operators of edge modes.
Moreover their numerical result strongly supports the expectation that edge
excitations behave as free bosouns, i.e. the energy spectrum for L = L, + M

reduces, with excellent accuracy, to
E=E,— Z NEWk (21)
k

where ny are (integer) bosonic occupation numbers such that >, ngk = M
and wy > 0 are single particle energies.

In the following we are going to reformulate the problem in the lan-
guage of second quantization and to verify the validity of this picture. Our
approach differs from the one of X.G.Wen [5]; our starting point are the
electron creation operators. This method allows to recover qualitatively
and quantitatively the results of M.Stone et al. [6].

First of all we notice that S correspond to single particle ladder opera-

tors

b m+ k)!
Si=2 (———n;,—)—cj;%cm (22)
m=0 :

The conjugate operators S, are easily defined. It is easy to check that in

general this set of operators can not be interpreted as bosonic creation and

11




destruction operators, because of their commutation rules

(m+)l  (m—k) Cm+5

m! m+jy-m*

sest = 3 [t al ] iR (23)
m=0
So these operators do not create in general an orthogonal basis of states for
a given M.
However we now show that, in the limit n — co and for » = 1-—¢, they do
form a bosonic set of creation operators in the sense that the overlap between
states with different occupation numbers (i.e. with different combinations

of §;) vanish as n — oo.

Let us consider the state |k) defined as
|k) = Ak(n)S{10)
Ag(n) is a constant defined by the normalization condition

n—1
(k) = An)0ISiSI0) = ai(m) 3 R

m=n—k

n—1 k ~-1/2
= Ar(n [ Z (m-[— j!
m=n—k

so that Ag(n) o n=%/2 for n — co. For the state |k, j) = Ag ;(n)SF570),
we easily get that A j(n) « n~(k+9)/2 Now consider the overlap

(k, gl +7) = Arj(n)Aes;(n){01S7 87 5¢,;10) =
= A j(n)Ary;(n)(0] [ i [Sk v5k+j” 10) =
= Ag,j(n)Ars;(n) ni: {(m +T:1+ 2 f:fﬁ:]

m=n-—j

the leading term in the sum is not m**7, but is m*+tJ=1 so that for n > k, j

the sum is proportional to n*+7~! and the matrix element (j, k|k + j) o

12



n~! — 0. The same thermodynamic limit orthogonality between states

with different combinations of S; can be verified for generic states
W
In) = A () TT (858)™ 10)
k

The reason is that the norm of this state can be evaluated using a sort of
Wick theorem, i.e. contracting all operators into commutators in all possile
ways. The leading power of n in A{“fk}(n) is obtained when all operators
S; are coupled to their conjugates S; . This term of Azrfk}(n) is of order
nM with M = 3", kny, all other terms are of order at least n~! with respect
to this. On calculating the overlap between two different states this leading

1

term cannot occur so that the overlap is at least of order n~' smaller.

We conclude that in the limit n — oo and for M <« n the operators
S,j' and their conjugate can then be regarded as creation and destruction

operators of particles obeying bose statistics.

Consider now the hamiltonian

=33 Vi(g)¥r(e)

T=1 g

The operator Nr(q) = f1(g)fr(g) in the v = 1 state has the following value
Nz(q) = (0|N1()|0) = 2 b7 (u, q) (24)

where the sum runs from max(0,7—n+1) to min(7, n—1) so that N7(g) = 1
for T < n and Nr(g) =0for T > 2n — 3.

If H were the hamiltonian of a system of free bosons we would have
[H, 57| = wib}

where b;: is the boson creation operator and wy its spectrum. We have then

to evaluate the commutator of the hamiltonian with S: to test the free

13



boson picture proposed in ref. [6]:

[,5¢] = > S vala) (£(0) [ £, 5E] + [£(0),57] £2(0) =

T=1 g
=5 (Vear(@) FE4(@) [Fro(0), SE] + Ve(a) [£F(0), SF) Fr(a))  (25)
T.q

Let us evaluate the first commutator:

T+k oo
/ k)
[fT—f-lc(Q)’S/ﬂ = Y > brik(uq) (m ) [cucﬂk,u,c;Mcm} =

u=0 m=0
u + k)
= ...=2 Z brix(u+ k,q) %CUCT,_U (26)
u=0 '

We now define coefficients G x(p, ¢) such that

2bT+k(u + k, q)\/ '(‘y“-i:—k”‘ Z GTk P, )bT(uaP) (27)

so that by definition
[Frena), ] = zau (p:9) Fr(p)- (28)

To find these coeflicients we multiply equation 27 by 2b7(u,r) and sum over
u. Performing the summation on u in the second term, using the relation 12,
we get a delta function 6, so that
T
u+ k)
GT,k(rv Q) =4 Z bT(u’ 7') ( )

u=0

brix(u+k,q) (29)

With a similar procedure we find

£ (a), 5] = «szT way U e e,

this takes a form very similar to equation 28 using the coefficients Gr (g, p).

The only difference is now that the sum runs only from 0 to T, so in order

14



to reconstruct f:;f_{_k(p) we have to add and subtract the terms with u =

T+1,...,T+k. Carrying out these operations, after a little algebra we get:
T+k—u
[ (9, Sk] ZGT/» (0,2) f1 4 4(p) +ZbT ,q) (—(T——T)— T k—uCa
u=0

Note that the coefficients in the first term are the same of equation 28, but
the indexes p and ¢ are interchanged. We can now evaluate the commutator

of equation 25 and after some simple algebra we get

[#,5¢] = i > Gri(e,p) Vrsk(p) = Vr(@)] Ff () fr(a) + C2 - (30)

T:l a,p
with
k-1 T
T+k
Gy = ZVT Z Z bT ’q)bT('S’ q) (———l T+k CjcscT——s (31)
T.q u=0 s=0 (T —u)!

Here the sum on u is restricted only to v = 0,...,k — 1 < n, and these
orbitals are always occupied so that C, can be non zero only if s = u or

T — s = u. The second term of the commutator is then

T+E—-u)!
C;~2ZZVT bT(usq L’(j’v"_’_—;‘)_‘)—cT-{—k wCT—u

T,qg u=0

when this is applied to a v = 1 — ¢ state, the relevant terms in the sum are
those for T ~ n. In the case of the hard core potential only the ¢ = 1 term

occurs, and Cy can be expressed explicitely as

oc T
:%Tz—: 2. (u) = T2u ("Zk) itk

u=T—k+1

it is easy to check that the coefficient in front of 4/ ﬁ%ﬂc:+kcu here is expo-
nentially small in n, while we will see that the first part of the commutator
gives a contribution of the same form whose coefficient vanish as a power of

n.

15




We conclude that for the hard core potential C, is totally irrelevant. It
can be shown that this is also the case for ¢ < n. However if this is the case
also for all ¢ values is a more complex task. Motivated by the fact that the
relevant part of the hamiltonian is the one with ¢ < n we will assume this
to hold in general and we will neglect the second term of equation 31 in the

following. In this approximation

oo

[4,57] = 33 Grala,p) Vran(p) = V(@) Ff(p)fr(a)  (32)

T=1 q.p

Before continuing with the general case we spend some word on the
particular role of the ladder operators § it Consider in fact the commutator

of §7 with the hamiltonian. We need to evaluate explicitly

T
GT,l(Qap) = 4 Z bT(ua Q) vu + 1bT+1(u + 11p) =

u=0
_ T ET I 58
- TioT g LA
(T
-Z<u>(1+z+w+zw)T"”(1—z—w+zw)“ =
u=0 z=w=0
_ V2AT-9)W(T+1-p)pl 025} T
- T! _I;!——q_!- ) (1 - Z)(]. + Z'UJ) z=w=0

carring out the derivatives we find that Gr,1(¢,p) # 0 only if p = g or
p = q+ 1. The second possibility is ruled out by the fact that p and ¢ must
both be odd integers, so that we get

GT,I(‘LP) = 5p,q \/ 2(T -q+ 1)

when this is inserted in equation 32 we find:

[, s7] = S50 VRAT — g + 1) (Vrasla) - Vrla)) () F2(a)

T=1 g
so that, provided V7 (g) = €, does not depend on T, or equivalently V(zy, z2)
depends only on |z; — 23|, this expression vanishes. Only the C, term con-

tributes to the commutator, yielding an operator with exponentially small

16



matrix elements for ¢ < n

[I.:[, Sf"} = 2 Z Zeqb%(ﬁ,q)\/T + et qer
q

I
V]38
-7

-T
)2 T+ 1c%+1cT

Then in the approzimation of equation 32 and if Vr(q) does not depend on
T, the operator 5 commutes with the hamiltonian. This means that St
corresponds to a boson creation operator with w; = 0. When this operator
acts on an eigenstate of H for L = L, + M, it produces an eigenstate
for M' = M + 1 with the same eigenvalue. This result has been observed
numerically [4, 6]. The excitation mode produced by § 1+ concerns the motion
of the center of mass (S1(z1,..., 2,) is indeed the coordinate of the center of
mass). Even if the interaction lifts the degeneracy of the lowest Landau levels
for the electrons, the energy levels of the center of mass remain degenerate;
S,:f are the ladder operators for these levels. 57 plays also another important
role. [t can be shown (see appendiz B) that 51 identifies homogeneous states.
For homogeneous state we mean those states which are described in first
quantization by a wave function whose polynomial part has the property
that
U(zy 4 ¢yevyzntc)=T(21,.0042n0)

This relation in second quantized form becomes
S7|¥) =0. (33)

The operators Sf characterize the translational properties of the system in
the same way as the quantum number L [2] does in spherical geometry.
Finally note that the commutation rules of these operators with the

others take a simple form

[S7,5¢] = kS{, for k> 1. (34)

17




Let us now return to equation 32. This does not have the form typical of
free bosons because the right hand is not proportional to S,:'. Note however

that

P (@) = Fra) i) - [fr(a), Fup)] = (35)
T
= fr(@)ff () + 4 br(u, Qbree(u+ k,pet, e,

The range of T which is relevant at ¥ = 1 is from n to 2n — 3 because
two electrons must be destroyed by fr(q) and two have to be created by
fr}'+k(p). When the above operator is evaluated for v ~ 1 the first term is
very small because fzi-+k(P) has no room to create a pair of electrons. On
the full Landau level this is possible only if T > 2n — k. The left hand
side then can be approximated with the second term in the right hand side,
neglecting the first which only introduces small corrections to the energy.

When this approximation is used in equation 32 we find

. 2n-3 T
[f-’, 5[:] = 4> > {Z Vrk(p) {Z Gt k(g,p)or(u, Q)] bryr(u+ k,p)+

T=n u=0 p
- > Vr(q) {Z Grk(q, P)br+{u + k,P)} br(u, 9)} et ey

using equation 27 to simplify the expression in the first square brackets and

a similar equation for the second term, we find:

[7,57] = 83 |3 Ves(@)bhoa(u+ k,q)—zvm)b%(u,q)]-

u Tq Tyq
(u+ k)!
A T kG =
u+ k)
= Wkl 0= W)y R e o (ag)
2n-3
where W, (u) = 8 Z ZVT(q)b?[(u, q) (37)
T=n ¢
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Figure 2: Plot of Wy x(u+ k) — W,(u) versus u for the hard core potential
for n = 60 and n = 80. The horizontal line is the true frequency for n = 60.
The data for n = 80 have been shifted in u to make the two maxima coincide.
Note that this quantity is stationary at u ~ n — k/2, where it approximates
well the true wy(n) for n = 60 and & = 4.

We have then arrived at something very similar to S, Provided that
Whii(u + k) = Wy (u) is almost constant in the range of interest in (from

n — k to n), it can be moved out of the sum thus yielding

[ﬁ, 5;’] ~  —wi(n)SF » (38)
with wi(n) = W, (n) — Woak(n + k). (39)

In figure 2 we show a plot of W4k (u+ k) — W, (u) versus u for the hard core

potential. We see that in the range of interest (v ~ n — k/2) this function
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displays a maximum which becomes flatter and flatter as n increases. More-
over the numerical values around the maximum are close to the exact one
for n = 60. We can therefore state that in the limit M/n < 1 equation 38
1s correct and the excitations of the electron gas can be described as a gas of
free bosons whose creation operators are S:.

Figure 2 also shows that the definition of wi(n), equation 39, is not very
precise. A better definition is given by

wif(n) = A73(n)(0|8; [B,5F] In) = (40)
= A;Q(n) Yi (Wa(u) = Wnik(u + k)] (—n—l—;'—k—:—)—'
m=n—*k )

with Ag(n) given by equation 24.

The frequencies wy, are positive numbers and they are increasing function
of k. This means that the ground state of the system with total angular
momentum L, + M is given by S7;|0) as conjectured by Stone et al. [6].
Using equation 34 we can say also that this state will be homogeneous, in
the sense of equation 33, for n — oo.

We can now compare the above result with exact numerical diagonal-
ization results. We deal first with the hard core potential that allows to
treat a relatively large number of particles. As shown in table 1 it is not
necessary to go to very high number of particles to obtain a good test of
the above picture. Already for 20 electrons the boson picture seems rather
good and it becomes more and more precise for larger values of n. Clearly
it get worse and worse increasing k as can be seen e.g. from the decreasing
of the overlap.

The frequencies have been computed subracting the energy of the filled
Landau level to the energies of the state S;|0) and of the ground state with
L = L, + k. The last column contains the overlap between these states.

We will give later a justification for the deviation of theoretical values,

w,tgh in the table, obtained from equation 41, from the true values. Here we
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k| we(5710)) x 107 | wi(ftrue)) x 102 | wi? x 10% | (true[$]0)
n =20
1 0.0000 0.0000 -0.0003 1.0000
2 0.1832 0.1836 0.0567 0.9987
3 0.6854 0.6930 0.3789 0.9925
4 1.5533 1.5970 0.9966 0.9786
5 2.7246 2.8777 1.7698 0.9544
6 4.0445 4.4360 2.5447 0.9177
7 5.3212 6.1164 3.2983 0.8675
n = 40
1 0.0000 0.0000 0.0000 1.0000
2 0.0328 0.0329 0.0110 0.9997
3 0.1274 0.1278 0.0749 0.9981
4 0.3042 0.3064 0.2181 0.9946
5 0.5724 0.5807 0.4450 0.9884
6 0.9278 0.9516 0.7393 0.9786
7 1.3533 1.4095 1.0735 0.9643
n = 60
1 0.0000 0.0000 0.0000 - 1.0000
2 0.0120 0.0120 0.0040 0.9998
3 0.0470 0.0471 0.0276 0.9990
4 0.1140 0.1144 0.0823 0.9975
5 0.2192 0.2206 0.1740 0.9948
6 0.3651 0.3694 0.3014 0.9904
7 0.5504 0.5610 0.4580 0.9839

Table 1: Mode frequencies for n = 20,40,60 electrons interacting with an
hard core potential. wi® refers to equation 40. The last column contains
the overlap between the ground state of the hard core potential |true) for

L = L, + k and the state |k) = 4(n)S;|0).
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state (Ey— F) x 10* overlap
SFSTSTST|o) 0.0000 0.9129
StSESsT0) 0.0120 0.9992
S5 8510) 0.0240 0.9997
Sr8510) 0.0470 0.9983
5710) 0.1144 0.9975

Table 2: Eigenstates of the hard core hamiltonian classified according to
the boson picture. Ej is the full Landau level energy and E is the energy
eigenvalue. The overlap is between the energy eigenstate and the state in
the first column.

remark only the clear trend of convergence in n displayed by the data.
Table 1 refers only to the ground state. In table 2 we deal with all the
eigenstate of the hamiltonian for M = 4. The overlaps of these states with
those built with the operators S; are remarkably good. Also note that the
energies correspond exactly with the sum of the frequencies of single bosons
for composite states. .
In the case of the hard core potential wg(n), using equation 39, is given

by
4 2n—1

wi(n) = = 3 [B3(n,1) = b 4ln + k1)) (41)

T=n
We can extract the asymptotic behaviour of this frequency for a fixed & as
n — 0. Note indeed that 2b%(n,1) = (1)(T - 2n)/T so that

n

2 [13(n,1) - B aln + k1)) = @24 [(1?2_)

(T +k)!n! (T —2n - k)?
Tn+ k)28 T +k

In the limit of large n we can make the following substitutions in the above

(Z) 27T = \/;%exp [—"—‘——*—*(n ;,312/2)2} +0 (;)
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(e (L) (k)

Tl(n+ k)l2k 2n T
T —2n—k)? T — 2n)? k
(L —2n—k) Tk ) = (T —2n) T ) + 0 (T) (42)

with these relations, using the variable ¢ = T'/2n, we get

n(l-=z?)(1-a*) , o=x?
b%xn(n’ 1) - bg$n+k(n + ks 1) = \/; 23/2 e

(43)

In order to obtain wg(n) we need to perform an integral on z from 1/2 (i.e.
T = n) to 1 (corrisponding to 7' = 2n — 1). The main contribution to this
integral comes from the region ¢ ~ 1 because of the exponential function.
In this interval 1 — zF ~ k(1 — z) + O(1 — 2)®. The only dependence of
wi(n) on k, at this stage of the calculation, is contained in this term. The
predicted k dependence of wy(n) is then linear. A more complex dependence
is expected using equation 41.

Changing the integration variable to z = v/2n(1 — z) in equation 43 it is
easy to see that

wi(n) o« =372,

If wg(n) is referred to single particle energies then wi(n) « n=5/2. We
have then recovered analytically the result of ref. [6] for the asymptotic
dependence of the frequencies on n. The main contribution to wg(n) comes
from the region T ~ 2n. The approximation of neglecting the first term
of the right hand side of equation 36 is relevant in this interval. So while
the above approximation works very well for the total energy and for the
eigenstate it may not work so well for wi(n) which is a difference of energies.

Let us now turn our attention to the Coulomb potential. The calculations
are more difficult because b7(u, ¢) is a complex expression for a general ¢ > 1.
Moreover all ¢ values are involved. The asymptotic behaviour of wi(n) with
respect to n, obtained by Stone et al. [6], differs from the hard core case,

having one extra power of n. This additional power may result from the
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Figure 3: Log-log plot of wi(n) in the case of the Coulomb potential for £ =
3. The range of n is from 10 to 40 the dashed line refers to wx(n) ~ sqrtn.

extra summation over ¢ for the Coulomb potential. We have computed -
wg(n) for the Coulomb interaction up to n = 40. For higher values of n
round-off errors become significant because br(u,q) is a sum of terms of
different signs. In figure 3 we show a log-log plot of wi(n) calculated from
equation 39 vs. n for k¥ = 3. A linear fit of this plot yields

wi(n) ~ 03,

As before this refers to the total energy, so that the exponent v = 0.4445...
has to be increased by unity when referring to single particle energies. The

power « for different values of k is almost exactly the same. When this is
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compared to the numerical result [6], v = 0.5, we find a good agreement
considering that the asymptotic value of 7 is reached from below in ref. [6].

Note, in the end, that all the results of this section, apart from the
propertier of § ,;t and on numerical data, could have been obtained for a
generic ladder operator L =3 Zk(m)c$+kcm.

In particular the commutator of LZ with the hamiltonian still yields,
in the same approximations, an operator which is very similar to L] in the
same sense of equation 37. The choice £,(m) = /(m + k)!/m!is however the
only one related by second quantization to the first quantized one particle
ladder operators S;. The properties of the envelope functions b7 (u, ¢), more

than those of {z(m), play instead a crucial role.

4 Conclusion

The pair formalism seems to be a very natural one for the description of the
physics of interacting electrons in the lowest Landau level. The expressions
of two body operators become very simple in this formalism. However the
problem is still very difficult due to the ugly commutation rules between pair
creation and destruction operators. This new perspective calls then for a
different theoretical approach which has to deal with the correlations built in
the commutator. These correlations contain more than the Pauli exclusion
principle of single electrons (or the Bose statistic for bosons). It contains
also the fact that n(n — 1)/2 pairs are built using only n particles. The true
independent degrees of freedom of the system pertain to real particles and
this poses overwhelming restriction to the motion of pairs.

As we have shown in the previous section the pair formalism is neverthe-
less a very useful analytical tool. All the above complications are lumped up
in the pair operators and in the coefficients b7 (u, ¢). With the basic prop-
erties of these coefficients it is possible to handle expressions that would be

very complicated otherwise. All this results in a very efficient tool for both
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rigorous results and for approximation schemes. In particular the pair pic-
ture should eventually be relevant for the description of even denominator
filling fractions and at » = 1/2. Also the extension of the above results on
edge waves to other incompressible quantum states, as the v = 1/3 state, is

under current investigation.

A The pair envelope function br(u,q)

In this appendix we analyze the properties of the coefficients b7(u, ¢). To
enstablish the relation 10 between br(u,q) and br(T — u,q) it is sufficient
to note that with the substitution 2z — 2/ = —z in equation 8 we obtain
exactly b7(T — u, q) apart from a factor (—1)? which comes from the fact
that 97 = (—1)967..

To prove the second relation (11) we observe that

L e A Sl o 1 |

which, once introduced in equation 8, yields

min(u,q) -
3 V(T - ¢)ul(T — w)l2-t-1
br(u,q) = g:% (-1)" E(u— k) (qg— k)T —u—q+k)

This is the same as b7(qg, u) because the above expression is totally symmetric
in u and g.

The last relation (12) follows from the equation

T -1/2 -1/2 T
T T 89 9P T
2 br(u,q)br(u,p) = ( > ( ) e <u> '

u=0 q P q! p' u=0
-(1+z+w+zw)”(1—z~w-{—zw)T"“

-1/2 -1/2 a0 o ’
() g
q p g P
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the p derivatives on w, evaluated at w = 0, leave a factor (z;) 2P, This has
to be derived g times with respect to z and then evaluated at z = 0. The

result is clearly zeroif ¢ #pand 1ifg=7p

B Homogeneous states

To prove equation 33 we first consider a Slater determinant of single particle

noninteracting states. The polynomial part of such state is given by

2%
- J
‘I’{ai}(zl, caey Zn) = det {W}
the set of integers {a;,7 = 1,...,n} identifies the state. Let us now analyze

the state obtained substituting to each z; in the above equation z; + z:

z;+z)™
‘P{a;}(zl —}-:Z),...,Zn-!-él!) = det{’(—é_ﬁ-c;.-!—-—}g—;} =

«; o mkgz?ﬂi"k‘i
= det 7
€ {kgu (k,) v 2ma;12% }
using the multilinear property of determinants [7], the sum on k; can be

moved out of the determinant thus yielding

ap!
Z Z H |2kh/2 ap — kh)! .

k1 =0 kn=0h=

Il

‘I’{a;}(zl +T,.. )

I
=

Q
ki
- det 2 6Q — ) ki
“\ e } o5

Let us analyze the Q' term of this sum. The determinant in this sum is,

apart from the sign, a many body state ¥y, _.}(21,...,2n). This slater
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determinant is obtained by the original one by lowering the orbitals o; by k;
steps. This is obtained by applying a combination of lowering operator .S &
to the original state. The coefficients \/m are indeed those of the
ladder operators. The sum on all values of k; consistent with the restriction
>i k: = @Q indicate that this ladder operator acts in all possible ways on the
single particle orbitals. The form of this combinations of ladder operators
is given by the combinatorial coefficient Q!/(ky!...k,!). This counts the
number of ways in which @ lowering operators can act k; times on ay, k-
times on aj,... k, times on a,. This means that the above equation is the
first quantization expression for the action of the operator (S7)% on the
state |&@) which corresponds to ¥, 1. The above equation can be translated
in the language of second quantization as follows:
L -\ 9
SURDY g (75.2—) %) = exp | 257 9)

where T, represent the translation operator. |¥) can be any many particle
state in the lowest Landau level because T, is a linear operator so that if
the above equation holds for Slater determinants it will also hold for any
linear combinations of them. From the above equation it is clear that a
necessary and sufficient condition for ¥(z; + z,...,2, + z) = ¥(z1,..., 2,)
is that S |¥) = 0.

We have to remember however that in all the above discussion the ex-
ponential part of the wavefunction has been neglected. The above results
hold only for the polynomial part of many body wavefunctions in the low-
est Landau level. In the plasma analogy the exponential part plays the
role of the confining potential on the disk, while the polynomial part rep-
resents the interaction between particles. We may say that the operator
T, = exp(le"'/\/i) is a translation operator in the loose sense that it trans-
late the electron gas by a constant z with respect to the ion background of
the disk.
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