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1 Introduction

In the last couple of years, there has been much progress in superstring
theory, in particular the study of multiloop amplitudes® in covariant for-
mulation [2] a la Polyakov [3]. From the explicit computation of scattering
amplitudes in superstring theory [4], one sees that closed superstring the-
ories are free of any divergences, i.e. they are finite theories. Due to some
heuristic arguments, one believes that this finiteness should be persist to
all orders in string perturbation expansion. In particular, one believes that
a nonrenormalization theorem [5] is true. In spite of the efforts of many
authors, it is very difficult to verify this theorem explicitly. Even in the
case of cosmological constant, i.e. vacuum amplitude or partition function,
this problem has not been completely solved. It now appears that major
steps havé been taken by Atick, Moore and Sen in the case of heterotic
string theories [6], but it seems to us that much work remains to be done,
in particular for understanding modular invariance in the general genus

case.

The recent progress in the computation of multiloop amplitudes in
superstring theories stems from the work of Verlinde and Verlinde [7] (see
also [8]). In particular, explicit calculation becomes feasible by using of
hyperelliptic language [9,10,11,12] at two loops. Although the computation
at arbitrary loops (or arbitrary genus in connection with Riemann surface)
may be a formidable task, we will see in this thesis that this is not the case
at two-loops. This is possible only when one understands how to implement
modular invariance at two-loops. This was achieved in [13]. Following [13],

we computed N-particle amplitudes in [14] up to N = 3 and four-particle

1See ref. [1] for reviews and references therein.




amplitude in [15]. In this thesis, we will present more details about our

computation and some new results. It is organized as follows:

In section 2, we review briefly the general strategy of multiloop cal-
culation following [16,7]. In order to do explict calculation, it is convenient
first to do integration over supermoduli—leaving two insertions of super

current at two-loops—and then over moduli.

In section 3, we give some relevant mathematical background about
hyperelliptic Riemann surface. Some useful relations among ©-constants,
period matrix and branch points (see section 3), i.e. Thomae formula and
variational formula etc. are also given. We also give the proof of a formula
(which will be used in section 5) given by V. G. Knizhnik in [10] and some

new results.

In section 4, N-particle amplitudes up to N = 3 are calculated at
two-loops and nonrenormalization theorem, i.e. the vanishing of N-particle
(N < 4) amplitudes, is verified explicitly. This verification is based on a set
of identities called Lianzi identities in [14,15]. We give in this section the
proof of Lianzi identities and also the derivation of a summation formula
used in [15].

In section 5, we present the full details about the computation of
four-particle amplitude. The contribution from ghost and superghost is
also calculated. As we will see in section 6, this contribution is necessary

to ensure the right properties of the four-particle amplitude.

In section 6, we verify the main properties and in particular the finite-
ness of the four-particle amplitude. All our discussions go through both

heterotic string (HST) and type II superstring (SST II) theories although




sometimes we discuss heterotic string theories only.

In the last section (section 7), we discuss the implication of our
calculation at two-loops. Some unsolved problems and in particular the
factorization of the four-particle amplitude which may be interest for fur-

ther investigation are also pointed out.

An apology: Because of the lack of space and time, we discuss mainly
the original works about two-loop computation in this thesis and neglect
most and almost all the works on string perturbation theory although all
of these works are impdrtant for our understanding of string perturbation
theory in the general case and at two-loops in particular. We apologize

to all these authors for our ignorance and hope to review their works in a

Doctor thesis.



2 String Perturbation Theory

In this section, we review briefly the general strategy of multiloop
calculation following [16,7]. We will discuss first what Polyakov’s approach
to string theory means. We discuss how to fix the gauge and reduce the
functional integration to the integration over moduli space. Then we extend
all these discussions to superstring theories and derive the two-loop measure

for superstring theories (for both HST and SST II ).

In the Polyakov approach to string theory, quantization is per-
formed by summing the functional integration over all geometry and string
coordinates. The vacuum amplitude (partition function) is then

- ¥

topologies

D(geometry)D(string coordinates) _g

Vol.(symmetry group) ¢ (1.1)
Please note that we always assume Wick rotation both for two-dimensional
world-sheet and target space-time where string moves. S is the action. The
N-particle amplitude is computed by inserting vertices on Riemann surface
in the partition function, i.e. we have

AN (Pi, E,') = Z D(geometry)D(StrinQ COOTdinates) o

topelagics ‘ Vol.(symmetry group) w2)

N .
X/;: HdzziV(p,-,e,-,z,-)e"s

7 3s=1

where V (p;, €;, 2;) is the vertex for the emission of i-th particle.

For closed bosonic string, we have
S = / L0, /Gg™P0,X - 85X (IL3)

where X are string coordinates describing the embedding of string in space-

time and gop(g*® = (97')ap) is the world-sheet metric (c%(a = 1,2) are




local coordinates on the world-sheet). It is not difficult to see that this

action (IL.3) is invariant under the following reparametrization of the local

coordinates:
0_& —_ f&(o.)
; (IL4)
Jap dox ggf I\
and under the following rescaling of the metric:
Jag — €”gap (IL5)

To quantize this theory properly, one should factorize out the volume of
this symmetry group and get the correct measure for the path integral. We

will follow Faddeev-Popov procedure to factorize out this (infinite) volume.

To choose a gauge condition, we would like to choose the conformal

gauge in which the metric takes the form
Japg = e‘pfsaﬁ (IIG)

But this extremely convenient gauge has some topological limitations. Let

us discuss now both the derivation of (I.6) and these limitations.

The first naive argument which shows that (I1.6) is possible is the

following. The possibility of the choice (I.6) means that any metric gus

can be given in the form

9f" 817

— (pPlo) f— gelfle) 2L _ZJ

gop = (€¥19605) = ¢ 355 5P (I1.7)
where {f7(o)} defines the hecessary coordinate transformation. Hence, the
RHS of (IL.7) depends on three arbitrary functions f(c), f?(¢) and p(o).

But g.s(0) also has three independent components. Therefore, the number



of independent functions matches. However, this is not enough. We must
show that the transformation (II.7) is nonsingular, i.e. the jacobian for

passing to the variables (¢, ) is non zero. To show this we shall consider

a small variation of (IL.7):
5gaﬁ - 6(Pgaﬁ + VQVﬁ + Vﬂch (118)

where V* = 6f*. The nonsigular nature of the transformation (IL.7) will
be proved if for any 6g.s we can find 6o and V such that (I1.8) will hold.

In other words, we must be able to solve the equation:
5(:05aﬁ + Vavﬁ + VﬁVa = 5gaﬁ = Yap (HQ)

or

1
(PV)ap = VaVs + VaVa = 9ap V' Vs = Yas = 50007 (IL10)

which is obtained from (IL.9) by substracting the trace. The question,
whether the conformal gauge is always accessible, is reduced now to the

possibility of solving (II.10) which we shall rewrite symbolically:

PV =~ (IL.11)

Here we have denoted by P the differential operator, defined by (II.10)
which takes vector fields into traceless tensors (notice that the number of
independent components is the same). There exist a conjugate operator
which acts in the opposite direction—transforming tensors into vectors. It
is easy to realize that the equation (II.11) will be solvable if and only if the
conjugate operator P* doesn’t have zero modes. On the other hand, the

solution of eq. (II.11) is not unique if P has zero modes.

So, our conclusion is that zero modes of the operator Pt mean that

6



the conformal gauge is not accessible, and zero modes of P that it is not

unique (and one should further fix the remaining gauge freedom).

The number of zero modes is regulated by index theorem. We will
not go into the details of these mathematics and only recall the results. We
have

No(P) — No(P*) = 3x = —(6g9 — 6) (II.12)
where Ny denotes the number of zero modes, y is the Euler character of the
Riemann surface ¥; and ¢ is the genus. In particular, we have the following
list: |

No(P) =6, No(P*)=0, for g =0 (sphere)

No(P) =2, No(P*) =2, for g=1 (torus) (IL.13)
No(P) =0, No(P*)=69g—-6, for g>2

So we found that on a sphere we can always introduce a confor-
mal gauge, which is defined modulo SL(2,C) transformations (with six
(= No(P)) real parameters) which requires extra gauge fixing, e.g. the fix-
ing of three out of four complex 2,7 = 1,2,3,4 (the locatidns of the inserted
vertices) in the case of four-particle amplitude at tree level. In the case of
Riemann surface with higher genus we have topological obstructions for the
conformal gauge. The best thing which can be done is the following choice
of gauge

(©)

9es(0) = g8 (0371, 72, -+ g_) (IL14)

where g&oﬁ) is a metric which depends on 6g — 6 extra (real) parameters and,
e.g. which can be chosen to have constant negative curvature. Integration
over all metrics (i.e. geometry) must include not only functional integration

over (o) but also 6g — 6 dimensional integration over {r;,i = 1,2, - - , 69 —



6}—the moduli space. Let us now derive the explicit measure for such
integration. Before doing that, let us mention an important mathematical
result. Roughly speaking, this moduli space is a complex space. So we will
use complex coordinates for this moduli space and also for the Riemann
surface. In complex coordinates, the metric tensor on the Riemann surface
are given by the components g.:, 9., and g;;. Then eq.(IL.8) can be written
in the following form:

80, = V.V,

69z: = V:Vz (IL.15)

6922 = 60gaz + 6:2(V7V, + V. V)

Here 57, and /# are covariant derivatives:

ViyVe = ¢°%9;V,
@ (IL.16)

Vgl)Vz - gzzaz(ngzvz) etc.
and
(V) = —¢g*a; (IL.17)
where we used index (n) to distinguish the covariant derivatives acting on
different tensor fields (see, e.g. [17] for more details).
Froin the previous discussions and (II.17), we see that an arbitrary
variation of ég,, can be written in the following form:
0922 = V.V, + 67 iz (II].S)

where 7;,7 = 1,2,---,3g — 3 are the complex coordinates for moduli space
and {¢',} are a basis of the zero modes of (v{))*—the holomorphic 2-

differentials. Similarly, we have

0gsz = VzVz+ 67 _fs,g (II.IQ)



In order to find the integration measure, one defines a metric in the

space of all metrics:

| 89.2 [|*= / d’29.569.:69**

(11.20)
| 6.0 2= [ d2.580..80
- / P2g.: VO V. Vi VE + S1b7,(¢, 67)  ete.
where (¢, ¢) = [ d?2(g,z)"'¢L,4!.. Then we have
3¢-3 . .
Dg = D[pV,V;] [ d*ndet'(V.V{_1))det(¢',¢')  (IL.21)
i=1

Notice that the functional integration over conformal factor () can
be trivially factorize out in the critical dimension d = 26 for closed bosonic

string as shown by Polyakov in [3], the partition function can be written as
Z=7y /M I d*ridet' (7. 1)) det (', ) / DXe™S  (11.22)
g "M

where M, is the moduli space. In this expression we decomposed the vari-
ation of ég,, as in (II.18). In other words, this is a choice of gauge slice.

We can also choose other gauge slice, e.g.

Egzz = VZVZI + 5yiuiz

' _ (I1.23)
69z = ViV + 0Uiliz;
as shown schematically in Fig.1, and where i}, = g,;u%,u® are called
Beltrami differentials.
From (II.18) and (II1.23), we have
Ve + 618, = V.V, + Sy, (IL.24)



or
87(¢,¢") = bui(¢’, ') (I.25)

Doing wedge product over j = 1,2, ...,3g — 3 with eq.(I1.25), we have

39—3 39-3
I dy: - det(#', 7)) = ] dri - det(¢',¢7)  (11.26)

i=1 =1
Substituting this expression into (I1.22), we get

2 dt i’ 7 2 ] z -
Z= ; fMgEId y,-]—d%%;;’-f&%—l—det (V=V{y) / DXe™® (IL27)

Following the standard Faddeev-Popov procedure, the gauge parameter
V# for reparametrization invariance can be replaced by an anticommuting
ghost field ¢®*. Introducing its conjugate antighost field b,,, we have the

following reparametrization invariant ghost action

Syn = /dzz\/g?bzz v e® + C.C. (I1.28)

Then we can represent det'(V,V{_,)) by a path integral over ghost fields.
We have

| detd*(zx) |2

detlgr, ) (129)

| Divedel [T b(z)b(z)e = det!(7,7)

Substituting det’(vzvf_l))/det(gb",qﬁ") by the above expression, we found
that the partition function (IL.27) can be expressed as

det gb u)
— 2. e~ (5+5g1)
Z Eg / g |1| d*y; | et () |2 /D[Xbcbc l I b(z)b(z o
(I1.30)

- 2 . F i 2 "'(S+S )
;/Mgl_‘ldyt/D[XbeC]];['</_L,b>[ e gh

10



where (u',b) is the standard notation for the pairing between b field and

the Beltrami differentials:
(ui,b) = / &2, (11.31)

All the above discussinos can be extended to supersymmetric string
theories. Here the complication comes mainly from the fermion fields on
Riemann surface. First, we have supersymmetric (2-dimensional) partners
for all the bosonic fields in closed bosonic string theory and have to integrate
- over all these fields. The functional integration can be carried out straight
forwardly. In the end, because of topological obstruction one should also
integrate over a 2g — 2 dimensional space {&,,¢ = 1,2,---,29 — 2}—the su-
permoduli space, in addition to the 6g — 6 dimensional moduli space. How-
ever, the integration over supermoduli space is a Grassmannian integration
and can be explicitly carried out and we have the following expression for

the partition function derived in [7]:

2= [ T, | st ssutesons
g g

5 (11.32)
x JT6({xarB))({xa, J) + 35a) TT(',b) x (Left sector)

g

where J is the total super current (see eq.(IV.6)), 8 and + are the bosonic

ghost flelds for the super reparametrization transformation. Here % acts
on [I;{(u*, b) as follows
9 =2 (I11.33
2&" = om; X -33)

We will not go into the details of the derivation of the above expressions.

Second, because fermion fields are half integer differentials, they

can change a sign when travel around a non-contractible cycle (path) on

11



Riemann surface. In order to define a fermion field, one should specify its
properties when traveling around all the non-contractible cycles on Rie-
mann surface. A specification of this properties is called a spin structures,
and there can be 229 different spin structures on a genus g Riemann surface.
Because large reparametrization (those which cann’t be continuously de-
formed to identity and are related to modular transformation) mixes spin
structures (changing one spin structures to another one), one has to discuss
all the spin structures and do the approprate summation over spin struc-
tures in patition function in order to get a sensible (e.g. supersymmetric,
tachyon free, etc.) theory. Up to now, the problem of summation over
spin structures was not completely solved. However, at two-loops this was
solved in [13] by using of modular invariance and the cosmological constant
was shown to be zero. We will discuss this solution in section 4 and also
the nonrenormalization theorem there. Now we recall some mathematics
in order to do expiicit computation at two-loops by using of hyperelliptic

language.

12




3 Hyperelliptic Riemann Surface

It is a well-known fact that every genus two Riemann surface can be

realized as a hyperelliptic surface in C P?

y' = E(z - &) (IL.1)

where a;(7 = 1,2, --,6) are the six branch points. From (IIL.1) one readily
solves y in term of z:

v= () ==\ T[(= - ) (m2)

=1
Then every genus two Riemann surface can be thought of as a double
covering of S? ( the Riemann sphere) with cutting and gluing appropraitly.
We will see this in connection with canonical homology basis soon (Fig. 2).
There are two independent holomorphic abelian differentials on a
genus two Riemann surface:

dz zdz
M= Ok Q2(2) = ") (III.3)

To see that 1;(z) and Q;(2) are holomorphic differentials, one recalls that

the uniformizer coordinate near branch point is u:

2
z-0=u (ITL.4)

and the coordinate near infinite point is v:

1
z=—
v

(IIL.5)

13




Set Q(z) = 4z 47, one sees that ()(z) has two zeros: one z = z on
the upper sheet of S?, one z = z on the lower sheet. We denote it simply
as z = zk.

On hyperelliptic Riemann surface, spin structures are in one-to-
one correspondence with the splitting of branch point {a;} into two non-
intersecting sets {Ax} and {B;}. In particular, the ten even spin structure
(at genus two) are corresponded with the case when either set {4;} and
{B:} has exact three elements. If we use the cononical homology basis as

shown in Fig.2, the ten even spin structures are calculated to be
SRR R KU R YRS R W
which is abbreviated as (123 | 456)
Se~[S 8]~ (1241358) sy ~[0] L (1as]sa) | Sq ~[19 ]~ (1261348),
S5 o (3alast) | Sv[§ 0] w (aasfass) L Sy~ (08 ] (a3¢)245),  (IIL6)

ng[ii~(i4$|236), S7~[Z;]M(1¢({135j ) Sgo*‘fii}"’“"““‘/—)

where the symbol { t: t] is the standard symbol to denote spin structure

in connection with ©-function with characteritics (see, for example [18,
19]). The ordering of the ten even spin structures is arranged following the
convention: A; = a3, Ay = a;, A3 = a; with ¢ < 7 and s; < 85 if 7; < 7, or

J1 < J2, which has been used in [10,13,14,15].

It is easy to see that the holomorphic abelian differentials ;(z) (eq.

(II1.3)) are not normalized in the standard way:

fa. wj = by, ji Wy = Tij = Ty (I1L.7)

B

‘where 7 is the 2 x 2 period matrix. In fact, these differentials are related

14



as follows:
Q=2 w ?ﬂ f (IIL8)
Set (K)i; = £,, Qj, we have :
0 =wK; (ITL.9)
It is not difficult to solve w; in terms of (;:

_ Ky — K1 Q)

“1 3 detK
II1.10
e = — K200 + K110 ( )
- detK

In what follows, we give some useful formulae which will be used

later. The first one is the Thomae formulas:
3
@g(O) = j:det2KHA;jB,-j (IIIll)
i<j
where A;; = A; — A;, B;; = B; — B;. Because of the sign ambiguity of the
above expression, we will use another quantity Q, intead of ©%(0) [13]:
3
Q. =[] 4i;B;; (1I1.12)
i<j

The second formula is

Q(z,@) = w(z) - (Imr)™" - o(w) = 1 / (2 — u)(w — a)

o
o d*v (II1.13
T y(2)5(w) v P (1I1.13)
T= / | L2212 g2, g2, — 2 | detK |? detImr (IIL.14)
y(z1)y(22)
Finally we have a variational formula [9]:

87',-j . T A

Ba, —é‘ﬂi(an)ﬂj (an) (IT1.15)

15



where (1(a;) is defined as follows:

A

0(2) = (Q(20) + V' (20)(z — 20) + - - -)dz

= 2uf)(uv? + ;) du (I1L.16)
0(a;) = lim 2ud(u? + a;)
where one should use the unifprmizer coordinate v instead of z near the
branch point.

All these formulas can be proved quite easily by explicit computation.

The only trick is using the standard formula:

/w,. A@; = ; {fak ws 7%: @j — (o ﬂ)} = =2(Im7)i; (II1.17)

and the explicit formulas for 7 in terms of K and G: G = §; (1. For example,

we have

o —G1 K13 + G2 Kpq (II1.18)
12 detK

To conclude this section, we recall another formula which is given by

V. G. Knizhnik in [10]:

X

1 1 2] {y(xz) o1
(IIL.19)

(0X*(21)0X" (23)) = —g* {m "7 32 \ve) = -

(-"31 - Zl)(zl - 22) 21— 22 12 ;2 2 }
X . dzid*zq p + (1 &
e 1 e by sy BC LY el Ra).

We now give a derivation of this quite important formula (see section 5).
Because (0X*(z,)0X"(z2)) has a double pole when z; = 3, and no simple

pole, one can postulate the general form of it as:

(0XH(2:)0X" (2)) = g™ {aa [z(xi 0+ Aza)

)+l )|

16




I I UEAETC NP,
- {amz[z(ﬂ?l*xz) (1+y(x1))]+ﬂ’( 1) G4 2)} 0)

Here we include the factor (1+ z—((i—f%) (instead of the factor 2) to cancell the

pole when z; and z, are on different sheet of the Riemann sphere.

Introducing the following anti-holomorphic (0,1) differantials:

"—1/[Z|2d22——§:/ z
9(z) ) y(2) 7(2) Iyz

a‘c_~__/ d2z+_~/
5(z) J |y( 4(z) J | y(2)

(I1.21)

we have
Pz 2. 1.
f (z)Q2(2)d°z = ST (I1.22)

Then it is easy to find C;{;(};(z;) from the holomorphicity of (X (z,)0X (x,)):

/ PH(z){(8X (21)0X (z5)) 1 = O (IIL.23)

i.e. we have

i 1 y(:vz) (z ' iz 2, —
/P {63:2 B = O ya)) e G 2)}01 ;=0 (II1.24)

From the above expression, we get:

Gue) == [ Plape {2 Mol g, (i)
Then
<6Xu(2:1)8XV($2)> = _gMU {2(331 il— 332)2 + %8i2[x1 }— I3 . zgzj;]_

2] 1 y(mz)]d221}

0zy 21 —z3 y(z1)

~70(a) [ Pz)

17



S R N . By 1 i
2(zy — z,)? 2T Oz, a:l — Iy

(z1 — 21) (21 — 22) 212 2 g2, 32 }
X . d“zyd“z

(22— 21) (T2 — 22) el | s
Symmetrizing in z; and z;, we get (IIL.19) as given by V. G. Knizhnik in

(I11.26)

[10] with minor modification.

From (II1.26), one can also write the expression for }; a; (0 X (2) X (w;))
with 3, 0 = 0. It is "

Zai<aXll( )Xu wt 2“9“112‘1:{ Z—wt 2T/ywz

: (I11.27)
SN CEPN RPN NN S

z—w; (wi—z1)(wi — 22) y(zl)y(z2)

which satisfies

X

/ Pi(z Za, 8X*(2) X¥ (w;))d?z = 0 (IIL.28)

By differentiating (II1.27) with respect to w;, we get

OX(2)5X" ) = ~n6®(z —w) + T s | - 72‘?55”;; 9

= —6*(z —w) + Gw(2) - (Imr) - a(w)

U

(111.29)

Finally, we would like to give the expression of Segd keneral—the
propagator of 1/2-differential field ¢. It is [18]

1 u(z) +u(y)

TV 2/u(z)u(y)

(Y(z)e(y)). = (111.30)

where

3
=JI[/= 4i (I11.31)
— B;

18




All these formulas will be used later in two-loop computation in
superstring theories. That completes our review of the mathematics about
genus 2 hyperelliptic Riemann surface. Now we start to do computation at

two-loops.

19




4 Nonrenormalization Theorem at Two-Loops

Since odd spin structures give trivially no contributions to the N-
particle amplitudes up to N = 4, we shall consider only even ones. From
(I1.2), (I1.30) and (IL.32), we know the expression for two-loop N-particle

amplitude in HST for a given choice of the spin structures:

4 N —
AN, = / du(mi, ;) [[ d*zi(detImr) Lo R, (IV.1)

ss!
=1

To get the right amplitude, we have to perform the sum over all spin struc-

tures:

N
AN = /du(m;, 173;) H clz,a';(alet_fmr)"5 Z Moot Ly Ry
=1

ss!

(IV.2)

N
— / du(mq, m;) [ d*z(detImr)=® > Ly > n.R,
t=1 ry 8

where 7, and @, are phases.

To be specific, we consider the gauge boson vertex in HST. That is,
we take the following form of V'(k, ¢, 2):
V=Vr- VL
Ve = {8(e- X) + ik - e - p}e'* X (IV.3)
VL e /\IAJ

where A are the left moving (i.e. antiholomorphic) two dimenional spinors.

Then we have

20



R / D Xz,bbcﬂ’)'} = (5+Sgn(b.c.0,7) H VR(kn €, Z,) X

X{H5(Xaa <Xa,J>H u,b)—{—ZH/J,,
J=1i7g (Iv.4)

x| 3’“],,ﬂ>6<<x1,ﬂ>)<x2,J>a(<><2,ﬂ>) (o))

3

N
Ly = /D Abc)e ~(5+5p (5, H LB IV
i=1

where s refer to spin structures of ¢, # and «; s' refers to spin structures of
M;n,i=1,2,3and xq,a = 1, 2 are Beltrami and super-Beltrami differen-

tials respectively. All the scalar products are defined as

(Xas B) = / d’zx.B, et (IV.5)

and
J(2) =1 -0X + 2¢88 — vb + 33cf (IV.6)

is the total super current. In eq. (IV.4) we have assumed that the metric
is independent on supermoduli but allowed the super-Beltrami differentials
Xo to depend on moduli. Due to the local world sheet supersymmitry,
there is a freedom in choosing x, and different choices are related by total
derivative on moduli space . In the following we shall make the choice that
Xa are d-functions located in moduli independent points z,(a = 1,2) on
the Riemann surface and u' are also §-functions located in b;. In particular
we make the convienient choice [13] of taking z,, to be the zeros of a
holomorphic abelian differential ((z) = ﬁdz to simplify computations.
Then z,, = z+, i.e. the two corresponding points in the upper and lower

Riemann sheet. Then eq.(IV.4) simplifies to the form [13]:
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Rs = (det’ég)“s (det’gz)(detél/z)s(detlég/z)_lX

% <J(:l:1).](.’1:2) Hzl\il VR(ki’ €, Zf)>3
detp?(zy)
where (?(2) are the holomorphic 3/2-differentials and (J(z;)J(z2) - +), de-

(IV.7)

notes the normalized correlator (the spin structure dependent part in R,):

: N
AY = (T (z1) I (z2) [] Ve(kir €, 2))5 Qs
= (IV.8)
_ < eer I (a6 (B(za)) T b(b:) TTE, Vi (Kiy €65 2) >0
B < HZ:I 5(/6(2:0)) ?:1 b(bl) >>8 ’
Here the double bracket < - .- > indicate the functional integration over

all the right fields (including X also).

To begin with, let us first consider the case N = 0, i.e. the vacuum
amplitude. Using the explicit form of the supercurrent, we can represent

A° as a sum of a matter part

K, = (B (1) (22)) (0K (21)0X" (22)). Q0 (IV.9)

and a ghost part

Aoy = (Ton(21) Tgn(22))s Qs (IV.10)

where Jg = J — - 8X. We will not do the calculations done in [13]
and only recall the relevant results which will be used in present and next

section. We have (following the notation of [13]):

0p, (331) _
L2 (2?2)

Agh = {—232P($1$2)R($1.’2}2) - (32R(:cga:1) + 2A(IB2)R($2CE1)
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—2P(2:2:51)R(:1:23:1)§(£-1(S:Tl)) —(1+— 2)} Qs (Iv.11)

In [13], it is proved that all the terms in Agh can be reduced, up to spin
structure independent factors, to (v(z;1)¥(z2)).Q. and (0¢(z1)¥(z2))s Q5.

Then, baseed on modular invariance, the following unique determination of

phases
M="M2=N3= "N =N =—Ng=N7g=1Ng=—Ng =710 =1 i(IV.12)

was found and the cosmological constant was proven to be identically equal

to zero.

Notice that a modular transformation in hyperelliptic language simply
corresponds to a permutation of the six branch points a;,1 =1,2,---,6. So
what modular invariance means is that 2. Ns R, is invariant under all the

permutations of ¢;’s. From [13], we knew that

3

3
R} =FQ,) (A — B;) + F,Q,Y (A? - BY) (Iv.13)
=1

i= i=1
where we have set £ = co and the coefficients Fy 5 are independent of s (to
be precise, they are antisymmetric for every interchange a; «— a;,7 # 7).
Then we must have -, 7,Q, X3, (A7 — BP),n = 1,2 to be antisymmetric
for every interchange. Because these expressions are homogeneous poly-
nominal (of degree 6 and 7 for » = 1 and 2 respectively) in a;, it should be
proportional to P(a) = [l;¢;(a; — a;) = [I;<; ai; (a homogeneous polynom-
inal of degree 15 in a;). One sees immediately that the powers of a; cann’t
be matched. We have then

3

2 MmsQu) (AP = B)=0, n=1,2 (IV.14)

i=1
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To prove nonrenormalization theorem at two-loops, we have to study

the following quantities

N
Ag = Z s <].;[ VR(kiﬁ € Zi)‘](xl) J($2)>3Qs (IV.IS)

Substituting (IV.3) into (IV.15), we can calculate AY by using of Wick
theorem. We consider first the contractions of ¢ which are relevant for the

summation over spin structurevs. There are two types of contractions:
Type A: contractions (J(z+)t(z)), appear

Type B: only the contraction (J(z+)J (z—)), appears,

H VR(I{:‘U €, Z,)>3<J(.’E1)J(:C2)>3

I—

Let us compute A3:

3
= Qu{I[{e - 0X(2) + iki - (z)es - (=)} X . 7 (1) 7 (), (Iv.16)
t=1
We have
47 =Qu{A, + B, + C, +D,} (Iv.17)

where
3 .
As= (%@ €, 0 € ax(25) L i) Tlxy I(Kz)>5

Bs =-i <£ € X g, B)((i;)@ Y(E) by "f'@:H' (13) +(2<—>s)}ﬂe + ijj(x‘))‘(x%

- Iv.18
Cs = <f €, 3K () &, He;)k H2) € Uk, ]7(’(21)-}‘(4(—)2).,.(49;}-”642 'X@')Jmm% ( )

Ds = =i (& bk 4 & viz Rowedd &4 by e n &% 300 Ty

For A,Q,, one sees that it is similar to K, up to spin structure

independent factor because X (2, %) is independent of spin structure s. Then
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4\; 1:4sQs =0 (IV.19)

by using of eq. (IV.14).

As to B,, C, and D,, they lead to the following various spin structure

dependent factors:

Edg = {Y009)) Cyp (),
E2s = W pRDCHRIVEDY, Cpis 19,

LYR) Y(xe) >,
<% UK, ),

Eds = rlwwa)), () P2y, Che,) bz )y, s, >,

E3s = Warpe); « f
(IV.20)

{P(xy )
B = Shemn), Geove ey, « | COV
<L) ¥,
Ebs = {hzyyz)y VP2 (@) gy, ),

Setting z; 5, = co+ and using (II1.31):

Wle)pla))s = - L) -y ulm) 21

21— 29 2\/u(zl)u(zz) ’ 2v/u(z1)

u(zz) 11 1.3 (IV.21)
<¢(z2)¢($2))s = T, <¢($1)¢($2)>3 = - Z(A,' - B,-)
2y/u(z) _ 4:=
and \
(@van)blan))s = 53 (42 - B) (1v.22)

one sees that:

1). 3, 7,E1,Q, = 0 leads to the following identity
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1
28: M {u(z) - 'J(‘z‘)*} Q=0 (Iv.23)
2). X, n:E2,Q, =0 leads to the identity

) u(z)

u(zy
u(z)  u(z)

| Esjns { } Qs =0 (IV.24)

and if (IV.23) is true.

3). X nsE3,Q, = 0 leads to the following identities

S0 {4 M S ar By =0, n=1,2 (v

s u(z1) ) =
where we have used (IV.14).
4). ¥, n.E4,Q, = 0 if (IV.23) is true.
5). X.nsE5,Q, =0 if (IV.25) is true.
8). >, n:E6,Q, =0 leads to

}_;m{ ulm) u(zz)u(Z3)}Qs =0 (IV.26)

u(z2)u(zs) u(z)
and if (IV.23) is true.

So if we want to show that Y, 7,A% = 0 is true, it is sufficient
(but not necessary) to show that (IV.23) — (IV.26) are true. What we
will show below is that this is really the case. All these identities (called
Lianzi identities in [14,15]) are true. In fact, (IV.26) implies (IV.23) and
(IV.24) as it can be easily seen by setting z; = 23 and 23 = co respectively.

Moreover, we have one more general identity:
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S, {2l sl o, <o (1v.21)

7 (ulzs)u(zd)  u(z1)u(z)

From this identity, one can easily derive (IV.26) by settin z, = oco.

All these identities (IV.23) — (IV.27) can be proved quite easily. Let
us see, for example, (IV.24). Substituting u(z;) and u(z;) by (II1.31) into
(IV.24), we have:

LHS of (IV.24) Z”s{ﬁ\J = j‘;gz‘—.g:;..(zlﬁzz)}%

H 21 )(32 - Bi) - (21 «* Zz)
— i=1 0. (1v.28)
R VI (o1 — @) (22 — @)

ZE:’?s {H 1— Ai)(z2— Bi) — (A ‘—*B)}Qs

=1

y
An important pomt is that this expression is modular invariant in the sense

of that whenever we interchange a; and a; (¢ # j) we get a minus sign for
this expression. So this expression should be proportional to P(a). By
simple power counting, one sees that 3=, n,([T-; (21 — 4;)(22 — B;) — (A <

B)) - Q, is a homogeneous polynominal of degree 6 +6 = 12 in a; and z;.

But the degree of P(a) is 15. So we must have

Zm {H — A;)(22 — Bi) — (A B)} Q,=0 (IV.29)

=1
That completes the proof of (IV.24) (and also of (IV.23) by setting 2z, = o).
This same argument can also be used to prove (IV.25). We have

Znst {H A;)(z2 — Bi)+

LHS of (IV.25)
y(zz P =1
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+(A < B) 23: (IV.30)

One easily sees that this expression is also modular invariant and should be

proportional to P(a). But the degree of 3=, n,Q.{IT}_; (21 — 4i)(22 — B;) +
(A« B)} >, (A? — Br) is at most 14 (n = 1,2). So we must have

ZmQ{H(zl A) (2 — B)+(A<—+B)}ZA"—-B")_0 n=1,2 (IV.31)

=1

To prove (IV.27), one follows the same strategy as above. We have

:1 (=) Zm {y(zl — Aj)x

X(Z3 — B,')(Z,; — B,) - (A > B)} Qs

LHS of (IV.27) =
(IV.32)

Notice that when z; = 23 or z, or z, = 23 or 24, (IV.27) is true because
of (IV.24) (which has been proved). Then the last factor 3, ns(-++)Q;s in
(IV.30) should be proportional to P(a)(2; — 25)(z — 24) (22 — 23) (22 — 24):
a homogeneous polynominal of degree 19 in a; and z;. But the degree of

2eMs(-+)Qs is 3 X 4+ 6 = 18. We have then

S TTen — 4z — A — B o4~ B) — (A B} =0 (1v.33)

In summary, we have proved the following Lianzi identities:

S {uto) - )% =0




(IV.34)

" 3
Zsz{ZQ }ZA"_.B”— n=1,2

u(z)

Using this set of identities, one readily proves th nonrenormalization

theorem, i.e. the vanishing of N-particle amplitude up to N = 3. We have
d>onAY o> RN =0, N=1,2,3 (IV.35)
For example, for N = 1 we have
ZAZ Zm J(z2)Vr(k, €, 2)).Q,
= Flzm (¥ (z1)(22)) Qs +F§§ns(3¢($1)¢(xz))st+
+F"Zm (¥ (21)(2)) s ($(2)1h(22)) s Qs

:“_Z’“{ '()}Q“O

To conclude this section, we would like to prove the following

(IV.36)

summation formula:

S, {HEgle , oo s g,

(e (IV.37)

_ =) _ _ _ 1 n=1
= Hley(zi) (21 23)(21 24)(22 23)(252 24) { Z?= Z::l 2 n=2
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which has been used in [15].

For n = 1, we have

LHS of (IV.37) = —{Ily—(z-)- D ons {g(zl — A;) (22 — Ai) (23 — Bi) (2 — Bi)+

. (IV.38)
+(4 < B)} > (4 - B)Q,

i=1

x {a homogeneoﬁs polynominal of degree 19 in a; and z;}

1
TS v
From Lianzi identities (IV.25), this expression vanishes when z; = z; or 24,
OT 22 = 23 or z4. It should be proportional to (z;—z23)(21—24) (22 —23)(2a—24).
It is also modular invariant and should be proportional to P(a). Then we
have
23: (- ) g(A,- - B)Q, = ﬁ%(zl — 23) (21 — 24) (22 — 23) (22 — 24) (IV.39)

where ¢ is a constant and can be calculated to be: ¢ = 2.

For n = 2, we should have

(e 4 = B = s — ) 2

x (22 — 2) (22 — 24) {26: o+ Flx) } (IV .40)

i=1
from the above experience (and power counting). Here F(z) is a linear
function of z; (without constant term). From the symmetry of the original
expression, we have F'(z;) = a ¥, z; and a = —1 (by explicit computation).
That completes the proof of (IV.37). Let us now turn to the computation

of four-particle amplitude which is presumably non-vanishing.
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5 Four-Particle Amplitude at Two-Loops

In this section we ére going to compute the following expression

A4 = Zm(ﬂl VR(kia €5y Z,') : J(zl)J(z2)>st
. | (V.1)
= Zm([{ k; - Tﬁ(zi)fi P (z)e* XL T (21) T (2,)),Q,

because of nonrenormalization theorem which was proved in the last sec-
tion.

First, we want to show that Type A contractions give zero contribu-

tions, i.e. we have

2 ms(c YW (1) (20))s (0 (22)97 (25)), Qs = O (V.2)

In fact, all the contractions are the following kinds:

Kb = {Vr0$(20), (hiey 9z, () ZER)XQICORIERY YCTERT AR
B, = SHE B20) (P QoW by Yiz) (H2a) ) <2 bay ds (V.3)
C4s = L) 1{)(8;)55 {pix) W(83)>5<4/(93)“y(24)>} <"P(24-) '{’(&’}5

or sometimes the expressions permutated among zi, 23, 23 and z4. By using

of the explicit formula of (1(z;)t(2,)), etc., one readily shows that

2 MA4,Q, =3 1,B4,Q, = 3 1,C4,Q, = 0 (V.4)

by using of Lianzi identities (IV.32). Here one should use the more general
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identity (IV.27) which is not needed in the verification of nonrenormaliza-
tion therom.

Using (V.2), we have

32"8<ﬁki'¢(zi)5i’¢(zi)> J(21)J (z,) H FXEN Q. (V.5)

By using of the sufnmation formula (IV.37) derived in the last section, we
have

Zm(tﬁ (1) (22))s (9 (22) 9 (25) o (9 (25) ¥ (24) a (0 (24) b (21))s Z(A” B7)Q,

= 2 me(9(21)(22))2 (2 (24))2 Z(A”
P(a) % { 1 n=1

8 Hz—l y(z,) E?=1 a; — Zi=1 2y, n=2

Then one can do the summation over spin structures in (V.5). We have

B! Q, (V.6)

SnelIlk p=)e v(a0), T (47 — B7)Q

() .K(ke)x{l nl W)
where the kinematic factor & (k,€) is computed to be
Kke) =- &

4_(S+é~6362-64+5ué~6,é-é,,-a—tuié € €, 54)
B

T kg b, Gt + 6 bbrhérat Ghith ée ve b éife e,
_f(é Rk &G TER GG 6 TG e, & héoh 66) (V.8)

Tu(ahg b ¢ él1—(—-k‘ék,éfé,,r"r6‘.~b,462»k363-64Té,~kzé4,b‘g.tc)
= M*“"‘”kh’h"ge Gelek

+

which coincides with the standard kinematic factor at tree and one-loop
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level [4].

Recalling the relevant computations done in [13], we have
: 1
(@) = ((e+)7(e=) [T*5) = 2920, (z+)0, (2-)x

X [T1e*%) + ([T %) I (=)

where Ijn(z) = (Jpu(z+)J,n(z—)) is the contribution from the ghost part.

(V.9)

See [13] and (IV.11) for explicit expression.

The various factors appearing in (V.9) can be calculated follow-
ing [13] by Taylor expansion. The calculations are tedious and sometimes
very complicated but straightforward. We only give the results of all the

calculation for completeness.
1): 21,2, are the zeros of (1;(z) = oy, T1z = oL
2): - Pl2,y) = 515(8()6 (1)) 0 (y)
P(z125) = —(4(21)9()) = —P(zs1,)
O1P(2221) = =02 P(2125) = (3% (21)3)(2)) — A(22) (¥ (1) (22))

where A(z) is the finite part of P(z,y) when y — z and A(zy) = A(zy) =
EG 1 a'z
3): wilz) = 20 () (b (2) (), oilz,) =65 i=1,2
Ops(z;) = —0p1(z;) = *(¢($1)¢($2)>

3901(2?1) 3@2 1’2)—- Za,

4): R(zy) = —(e(y)b(z) [T, b(b; ))
R(zym1) = —3(2 o — 2;1;,.) + %Z(b)
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02 R(z37,) = ———(SZa -+ GZa,a, ) + %f:a, Zs:b;—
e P ame -0
where
£(5) = — Y61 + (123 — 231) + (123 — 312)
(b1 — b2)(by — bs)
T'(b) = (bfbi;l)’?z"l"(f‘gs) + (123 — 231) + (123 — 312)
5): (W(z1)¥(z2)) = 1 TL, (4 - By)
<8¢(-’B1)1/1 932 %Zj’:

i

where b; are the locations of the Beltrami differentials. Putting the above

results together and doing some computation, we get

Ipp = —"(Zlaz - 25:6 Z(A2 B})-

(V.10)

~§]§(;a 2Za,aj +8§_jb :b;) Z(A — B;)

i<y i<y

The factors ,(A? — B?) an
to be substituted by D a; —

summation formula (IV.37).

d ¥:(4; — B)) appearing in (V.10) will have
>k 2k and 1 respectively in (V. 9) due to the

By using of the formula (II1.19), we have

(aXﬂ(xl)aXV(xz) oT / {—--Za + - Za,a] +'u,1 + Uq Uy +u2

t<J
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6
Uz 2 ;2. 2
u+u —_—_ |* d*ud’u
sl S} i " e |
(V.11

_____{_—Z + = Za,ag Z:a?%l”(TI}laj)}

f.<]

Putting all these results together and doing some algebraic calculation,
we have

6 3

I(z = oo za,a, zbb FI ey b

t<] z<J i=1 =1
(V.12)
6

+= (Zaﬁ\;\ 2zlb szw-Zatga—;ln Ha,,)

where we write only the leading terms when k — 0, i.e. we put [[e** —1
in (V.9). We see that, for generic b;, I(z) is symmetric for the permutations
of a;, i.e. it is modular invariant. In the following we will take a1 23 to be
the moduli, i.e. our integration variables over moduli, and therefore we fix

b,; = ag forz = 1,2,3.

Notice that we have presented the expression for I(x) when z; 5 = oo,
i.e. the zeros of ;. To get the generic case T12 = z=+, one simply perform

a M&')bius transformation: z,a — —1/(z — z), —1/(a — z). Then

4 : 6
Zy — 1 1 1
dzl z,Ia: dop——— { —— —
H 1) = 1T a7 {2; :

i<
1 3 1 1 1>6 1 3 1
_Zgbz—xbj_x‘i‘zgai_x;bi_x-l— (V13)
1.8, 1 3 1 4 q 5 . 3
8 -7 I ZinT
+8(i2=:1a,~-—x i};l'b’_m)gz‘-w_kllgai—z a,n



Putting everything together (see [13,15]), we get finally the follow-

ing expression for the four-particle two-loop amplitude for HST (choosing

S0(32) and when k — 0):

A(K) = CK(IC, E) / d2a1d2a2d2a3 \ a.45056064 \2 X
(V.14)

L ] H 2.0(2)12) LI Ve)2:

X e
5
T H:<g ai]
where the integration runs over the complex plane, ¢ is an undetermined

constant and s denotes the spin structures of the Left sector’. We will

discuss the various properties of this amplitude (V.14) in the next section.

Similar calculation can be done for SST II. Here the relevant super

current insertion is

(J(r+) T (E+) T (r=)T(5-))s (V.15)

where we have ta,kén T2 =T% for Right sector and Z; 2 = 8% for the Left
sector. We remark‘ that it is necessary to take r # s to get ride of some
sigularities arising by simply taking r = s.

By using of eq. (II1.29), it is an easy matter to arrive at the following

expression for the four-particle® amplitude at two-loops (k — 0):

1

<] la'w ‘2

/Hdzz, %= )() ; S){ ()I(s)+4(z~y(r 8)/d2 "'(3(;”5))2}

2Needless to say, {[] Vi) can also be explicity expressed in terms of (AX) = ().
3The vertex function is V (k, €,2) = (8X* +ik- D*) e (8XY + 1k - Y€’ ik X

AII(IC) — chf d2a1d2a2d as ‘ 0'450'560'64 ‘ TSH
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where K is the same kinematic factor as in tree and one-loop level, see
ref.[4].

In the next section we will discuss the various properties and in

particular the finiteness of the four-particle amplitudes (V.14) and (V.18).
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6 Finiteness of the Four-Particle Amplitude

The four—particle‘ amplitudes calculated in the last section seem to
depend on arbitary parameters, i.e. the choice for z and for the values of
a4s,6. It is seen from the starting expression (it is actually simpi«r to do it
before summing over spin structures) that A(k) (eq.(V.14)) is invariant if
we simultaneously make the same Mobius transformation for z and Q456
Since a generic Mdbius transformation depends on three parameters, it
follows that if we show that A(k) is independent of z, then it will also
be independent of ass56. The z independence is expected by a general
argument [7] and indeed we can explicitly verify that it is true. In fact, the
integrand on the RHS of (V.14) is a meromorphic function of z and the
poles, i.e. £ — a;, can be expressed as total derivatives in ai2,3 and 21234.
The sigularities of the integrand for z — a;, 7 = 1,2, 3, can be isolated in
the form:

3 _ 6 4
CKZsza,{l 1 _112 1 +112 1

4 (a; — z)? 4a;—zijjaj—a; 8ai—zTiTzm—a

+5‘ 2 0 lnT} ﬁ = E<HVL (VL1)

k<l anay

- f[ } II a;f"g(H V)@t

B Z ; 9a; { —zT® Hk<l Gkl =y y(2) k<l
which are total derivatives in a; 3. Similarly, the sigularities of the inte-

grand of ( V.14) for z — a;, ¢ = 4, 5,6, can be isolated in the form (choosing

T — a4 for specifics):

— ————— e e

1 A z—as (1 2a—as—ag 123: 1
4
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4
+';’ > : + 29 lnT} I[egta;? 17° > A V)@t (VL2)

—1 fk — Q4 48(14

By making use of the formula

d 1
—InT = {Z(as + ae) Z Z @isis 5 — lnT} (VL3)
i=1

Jay Q45046

which can be derived from the projectve invariance of T , we can write (V1.2)

as: :
13 98 1 aisa
CK{Z;—&Z{“———H T~ H }

A4 = T Q45046 ;; k=1 y(zk)
1 4 8 (Zk - 0/5)(25],, —_ 0,6) 4 R — 0,4} 6 -1 -5
+" a’t“ 'T X (VI'4)
2 k§=:1 aZ]c { Q45046 I;:[=Il y(zk) E I

<[l SAIve.

i<j
which are also total derivatives in @123 and z;234. When £ — Zp, ONe can
easily see that there is no sigular terms because of the prefactor [, (z; — z).

There is also no sigular terms when z — co. When we set z = oo in (V.13),

we get precisely (V.12).

Actually, the above expressions for the sigularities in = can be

generalized to include the ] e*X part of the vertices, by making use of the

formula
(0X*(z4+)0X" (z—) ] e**) = (T (z+ Hefk'x
. 1 (VLS)
T(z— ik X\ ki ks . kX
+< (.’E )HC > ; J:E-—Z,' T — Z2; HC
where T'(z) is the (normal ordered ) energy momentum tensor T(z)=—3:

8X(z)-0X(z):. This formula can be easily verified by calculating both side
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of (V1.5) explicitly by making use of the expressions of (3X9X ) (eq.(II1.19))
and (X0X) (eq.(IIL.27)). For k — 0, we have

1 1
lim (0 X (z+) - 80X (z—)) =5 —=— 1
B 8 (a; — z)?
(VLé)
1 1 &1 1 9
" —I lar t
+4 a; — ,%:Z a; — a * a; — z da; nT} T (regular terms)

which has, implicitly, been used previously, see eq.(V.11) for £ = co. By
using of (VL5), we have
1

Ji 0X(e) - 0X ) T =8 { - LT e+ (Vi)

+ ! --a—-ln(Tﬁ | @y — a; |1/? (T e**) (I e”"X>} + (regular terms)

a4 —Toa k<l
Then one easily sees that the above discussions go through by including also

the factor []e***. Therefore the present discussion holds for the general

case.

The proof of independence of z is completed by checking that
there are no boundary terms, i.e. that the total derivatives give vanishing
contributions. We have checked that this is true, by studying in detail the
potentially dangerous degenerate configurations in the moduli space. For
instance, consider the integration of the expression (VL1) or (VL4) in the

region u — 0 where u = a, — a;. The boundary term will be proportional

to

. da 3 _

rlz,l-g(l) = |u [*-F(u,q) (VL8)
where we have taken into account that T — in | w |. The integration

over d’z is included in F: in the degeneration limit dz/y(z) ~ dt/t in the

uniformizer coordinate t* = z — a;. Since the left part is regular for 2 — @,

40



there is no sigularity coming from the integration over dZ. Therefore F is

regular and the above expression (VL.8) vanishes.

Of course, when many 2k collide together, in particular in the point
a1, possible singularities have to be interpreted as’ physical singularities in
the external momenta and one has to take into account the factor [] etk X,
As always in string theory, the integration by parts, like the ones we are
discussing here, are meant to be done in the region of the momenta k where

the integrand is regular, and then analytically continued everywhere [20].

As an extra exmple, in the “dividing” degeneration case az — a1 = U

as — a1 = VU, taking into account T — l—h, we get the following boundary

term for (VL1) and (VI4):

g § 22| f -F(1,) (V19)

n—0
In this degeneration limit dz/ y(z) ~ dt/t? but the left, part is regular (for
all the spin structures but one, where however Q* gives a further factor
(2)®) and F is regular so that (V1.9) vanishes. The conclusion is that A(k)

is independent of z, and therefore also of ass56-

The mdependence of the four-particle amplitude for SST 11, eq.(V.16)
onr (and 5) and a4;5,6 CaN be discussed similarly. Let us compute the sigular

terms when r — @i, 1 = 1,2,3 and § kept arbitary. They are

L | 4,.2’5_‘5 10 1 6 1 1 4 2 — B
cKIIl—- B2 ) o (—— 11 D T(5)4
gakl ,]:__—.Il y(Zk) 48“:'(01'—'7‘1‘10,“ TS frse] y(zk) ) ('5)
5 1 1
i ; 6 5 % (VL.10)
40”'_?1—1#:'(0'3'—ai)nkqakz-T .10)
Zk“(l; L /(v——a,—)(z’;——g) 22}
% a2y
kHl T e
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where we have used the results of the previous analysis. One notices that the

only obstruction for the ﬁrst term to be a total derivative in a;, ¢ =1,2,3,

is coming from I(3) = ---+ 3 5; 5= 33 ===InT, the last term. What we will
show below is that this gives a contribution which cancels the second term

in (VI.10), i.e. we have

; cal 1 or 1 (w—a)5=3) , .,
PO s — T T e (i

This identity can be proved as follows. From (III.15), we have

»Sklv—t

=1

B'r,-]- 1T A A
3a. = 7 u(en)f(an) (VL12)

Notice that T = 2 | detK |* detImr, we have

2 2 2

{ l =
90:33, nT = 90:93, ndetImr = TT(Ba;ij InImr)
VI.13)
= _4(£ 1 / (”"ai)(f"aj))z (
T §(ai)y(a;) | y(v) 2

So we have

Z '1 _ o? lnT=~Z-.1 ~(£ .12——.)/('0“'01)('0—'(—1_7'))2

| y(v) 2

(VI.14)

1 (Zr_ 1 /(v—ai)('v-—&j))z
9%(a:) T 9(8) | y(v) ?
This is precisely (VL.11). Then the sigular terms when r — a;, 1 = 1,2, 3,

are

1 5. 0 1 1 4 (zk—a,-)(zk-—s)
2 ;5— o T e F L H 9(5) I I(3)] (v115)

Similarly, the singular terms when r — a4 are
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1 ~ 3 J 1 ‘a¢~5a,~6 1 ﬁ (Zk - CL4)(2k - 5) T(S')]

— 8a; as—rasa T | I a5 |2 02y | y(ze)

+(total derivatives in z)

by making use of the formula

Ai5a46 62 82
e e InT = — —
i—1 a45046 80,,‘80,]‘ 6a48a,-

InT (VIL.17)

It is an easy matter to show that all these total derivatives egs.(VI.15)
and (VI.16) give zero contributions. That completes our verification of the

independence of AII(k) on r (and likewise on 5) and therefore also on a4 5 6.

We metion that a form of the two-loop four-particle amplitude
for SST II was conjectured in ref.[21]. While in some aspects it resembles
our above formula 'éq.(V.16), in some others, in particular in the important
ones related to the super current contribution, it does not seem to agree

with the result of our explicit computation.

Next, we would like to discuss the finiteness of A(k), considering
for definiteness the HST case. In the “handle” case we consider the corner
u — 0 where u = ay— a1, and in the “dividing” case the corner v — 0 and v
keep fixed, where v '= ay — a;, vu = a3 — dl. We can read the corresponding
expressions for HST from eq.(V.14). By taking the appropriate variable
y = u? and doing some computations, wé can put the “handle” degeneration

expression in the canonical form [22,23]

2
% (n |y ) (VL.18)
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where one recognizes a tachyon 1/4? in the left sector and a massless state
1/y in the Right sector, as is expected in HST. For the “dividing” degen-
eration case the appropriate variable is v = y* and from (V.14) we get the

canonical form

2
Y pp (VL.19)

where we recognize again a tachyon in the Left sector and a level 3 massive
excitation (y?, compare with the zero level 1/y) in the Right sector as is to
be expected from the norenormalization theorems, implying that the one-
loop tadpole vanishes if it is attached to a vertex (¢¢)™ with n < 4. Of
course, the integration over arg(y) will select the same contribution from
the Left as it does from the Right, and therefore finally the degeneration
expression will be
d’y -5 « »
W(ln ly)™°-F for the “handle” case (VI.20)
dy|yl*-F for the “dividing” case (VI.21)

The amplitude is thus finite, for generic values of the external momenta k;,

taking into account the part J] ek X,

A more ;ubtle question is whether the leading term which we
have obtained for A(k), i.e. the coefficient mutiplying K (k, €) in eq.(V.14),
where we dropped []e'*%, is also finite. The question arises because in
the “handle” case, taking z — a; = ¢* we get y(2) ~ ¢ - (¢? + u)'/? and the
integration over dz; looks like [T} dt:/(t? + w)'/* which combined with an
appropriate Left sector contribution could give ~ (In | y |}, making the
expression (VI.20) aivergent [21] (notice that the divergence comes from the

integration region 2; ~ z; and therefore disappears for generic k;). We have
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not done the rather involved explicit computation for the Left sector, but
we can nevertheless argue that even this divergence in k; — 0is removed.
In fact we can make use of the arbitrariness in z to choose* £ — a;: we
have then to take the finite part of (V.13) in this limit, and we can see that
't contains a factor (2 — a;) =t} at least for two values of . The resulting

divergences from the integration over dz; will then actually be
IZI dt;
i=114/ t? + U

making the expression (VI.20) finite.

x (Left sector) ~ (In |y !)2 (VI1.22)

Similarly, in the “dividing” case: z — @1 = 2, z—ay = 2 + u,
z—ag =t = uv, we put z = a; and we would get, from the corner z — ay,

a divergence like

at; x (Left sector) ~ !

= 23
S+ P |y |4 (VL.23)

:‘N ‘

Ll
Il

and the expression (VI.21) will remain finite.

In conclusion, we have obtained a finite integral representation of the
two-loop amplitude for four massless particles in HST. The leading term
for k; — O is written in eq.(V.14), where z and ass¢ are arbitrary. In

particular one can use the expression for £ — co:

T annten 1) — 11225 {3 e S+ S as

z<J 1<J =1

(V1.24)

+—;—(§a;a, Zzzb)z,zk — —Za -——-ln TH_aj)}

4This means choosing the super current inertion on a branch point, as conidered in
ref.[10,24,25].
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The terms in bracket on the RHS coincide with I(co) defined in eq.(V.12).
We have also obtained an expression for SST II and one can also take the

limit r = s = oo in the SST II formula (V.16), since there is no sigularity

in this limit, and we get

~ 1
AII(;C) = c,'K/dzaldzazdzag l A45056064 l T‘SH I oo lz X
i<y tJ

k_ 2 (V1.25)
gh S e BCIR oy

However, as we have seen it is more convenient to keep the arbitrariness of

z,r,s in order to study the various properties of the amplitudes.
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7 Conclusions

In this thesis, we have described the full details of the computation
of the four-particle amplitudes for both HST and SST II at two-loops by
using of the genus two hyperelliptic formalism. The obtained expressions,
eqs.(V.14) and (V.16), are reminiscent to the Koba-Nielsen formula [26]
for the tree amplitude. However, one should also integrate over moduli,
which are described by a3, in addition to the locations 2, k = 1,2, 3,4,
of the vertices. One virtue of the hyperelliptic formalism is the description
of modular transformation. In this formalism, modular transformation is
simply the permutation of the branch points, which form a finite group. So
we needn’t care about the fundamental region of the modular group and
simply integrate al,g,g over the where complex plane. The group factor 6! =
720 can be reabsorbed in the overall factor ¢ which should be determined

from factorization or unitarity.

We have checked that the amplitude (V.14) and (V.16) have the
correct properties. They are independent on the location of the supercur-
rent insertions. They are finite by itself. One sees that the contribution
from the ghost part is very important to ensure the right properties of the
amplitudeAs. Even though most of the string specialists believe that su-
perstring theories are finite in perturbative expansion order by order, as
shown by explicit one-loop calculation, this has not been checked explicitly
beyond one-loop. The caculation we have done shows that this belief is
really true at two-foops and one sees that superstring theories show mira-
cles once again. The interplay between finiteness and the arbitrariness of
the locations of supercurrents is very crucial to ensure the finiteness of the

amplitudes. Probably this arbitrariness will also play a role to ensure the
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right factorization properties and unitarity.

The amplitudes we have obtained may have important physical
consequences, for example, to study ultra high energy behaviour of scatter-
ing[27]. ‘

Another problem worth studying is to do similar calculation for

four-dimensional superstring theories[28]. Here, all the relevant machinary

are at hand, but we don’t know whether the difficult is only complex.

As to higher loop computation, we have nothing to say. But we
believe that our explicit computation may sheld some light on the general

theory of high loop computation in superstring theories.
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