
SISSA - ICTP

MASTER IN HIGH PERFORMANCE COMPUTING

Master's Thesis

APPLICATION-LEVEL ENERGY PROFILING:
THE CO.S.IN.T. CASE STUDY

Author: Supervisors:
Moreno Baricevic Stefano Cozzini

Andrea Bartolini

ACADEMIC YEAR 2014-2015

Abstract. This thesis aims to explore feasible methods to profile, from the
energy efficiency point of view, scientific applications by means of the
performance counters and the model-specific registers provided by Intel family
microprocessors. The Aurora HPC system[1] used as testbed was made
available by courtesy of CO.S.IN.T.[2], and it belongs to the same family of
machines that enabled the Eurora[3] cluster hosted at Cineca[4] to reach the 1st

rank in the 2013 Green500[5]. Retrieving power consumption information
through NVIDIA accelerators and external monitoring and management devices
on such platform is explored too.

Keywords: application-level energy profiling, energy efficiency, RAPL,
top-down characterization, performance counters, HPL, BLAS comparison,
HPCG

Table of Contents
1. Introduction...1

1.1. The energy problem in HPC...1
1.2. Motivation and approach..3

2. Testbed..5
2.1. Hardware..5
2.2. Software...7

2.2.1. General overview..7
2.2.2. Power management and acquisition software...8
2.2.3. Benchmarks...11
2.2.4. BLAS libraries..12

2.3. Technology...14
2.3.1. Frequency scaling...14
2.3.2. Hardware performance counters...16
2.3.3. RAPL..18
2.3.4. Top-down characterization - TMAM..20
2.3.5. Tools..22

3. Results...23
3.1. Energy measurement..25
3.2. HPL..27

3.2.1. Comparing BLAS implementations..28
3.2.2. Top-down characterization..30
3.2.3. Performance counters..31
3.2.4. Frequency scaling...33
3.2.5. Problem size scaling...34
3.2.6. HPL + GPU...35
3.2.7. Summary of HPL investigation...37

3.3. HPCG...38
3.3.1. Frequency and problem size scaling...38
3.3.2. Top-down characterization..39
3.3.3. Performance counters..40
3.3.4. Summary of HPCG investigation...40

3.4. Quantum ESPRESSO..41
3.5. LAMMPS...43
3.6. Comparison..47

3.6.1. Energy efficiency and frequency scaling..47
3.6.2. Top-down characterization..48
3.6.3. Performance counters..49

4. Conclusions...50
4.1. Future Perspectives..51

5. Acknowledgments...53
6. Bibliography...54
7. Appendices..58

Appendix A. List of Acronyms...58

Appendix B. TMAM formulas and performance events....................................60

Appendix C. FLOPS from performance counters...61

Appendix D. Unused metrics..62
Appendix D.1. Power rectifiers..62

Appendix D.1.1. Power consumption detected by the power rectifiers..........................62
Appendix D.1.2. Detecting network devices power consumption using the rectifiers...64

Appendix D.2. Idle power consumption of the system...67

Appendix D.3. msr-statd (omitted) metrics..69

Appendix E. Additional plots..70
Appendix E.1. HPL: power consumption by CPU sub-systems...............................70

Appendix E.2. HPL: problem size scaling...72
Appendix E.2.1. BLAS comparison...72
Appendix E.2.2. Top-down characterization...73
Appendix E.2.3. Performance counters..74

Appendix E.3. HPL: problem size and frequency scaling..75
Appendix E.3.1. ATLAS...75
Appendix E.3.2. MKL..76
Appendix E.3.3. OpenBLAS..77
Appendix E.3.4. Netlib...78

Appendix E.4. HPCG: problem size and frequency scaling.....................................79

Appendix F. Playing with performance counters..81

1. Introduction

In this section, the main concepts and the motivation behind this work will be introduced.

1.1.The energy problem in HPC

Energy-consumption is one of the main limiting factors for the development of High Performance
Computing (HPC1) systems into the so-called "exascale" computing, which consists of systems
capable of at least one exaFLOPS. Indeed, the Top500 project[6], which ranks and details the 500
most powerful computer systems in the world, already reports power consumption in the order of
the thousands kilo Watts for systems with “few” petaFLOPS of computational power. As of
2015/11, 212 supercomputers declare a total power of over 1 MW, 3 of which over 10 MW:
"Tianhe-2"[7], the supercomputer currently ranked at the top of the list with 34 PFLOPS, requires
17.8 MW, and "QUARTETTO"[8], a cluster ranked “only” 67th with 1 PFLOPS, requires even
more, 19.4 MW. Following this trend, an exascale supercomputer built with the technology
available today would demand a power budget in the order of 500 MW, sustainable only with a
dedicated power plant. For this reason feasible exascale supercomputers will have to fulfill the
20 MW power budget.[9] Reaching this target will require an energy-efficiency of 50 GFLOPS/W,
one order of magnitude higher than today's greenest supercomputer. In fact, the Green500[10] list,
which sorts the Top500 by energy-efficiency, ranks Tianhe-2 only 90th and QUARTETTO 499th. The
greenest computer as of 2015/11, “Shoubu”[11], is capable to deliver 7 GFLOPS/W (ranked 135th in
the Top500), which would still need 143 MW if scaled up to exascale.

Several power management strategies can increase dynamically the final energy-efficiency of a
supercomputer by keeping the power consumption under control or by assessing the energy
efficiency online. Practical examples can span from the power capping features of a job scheduler,
to the (unattended) energy profiling of an application, tasks taken into exam with the project hereby
presented.

In addition, due to energy cost and availability, power consumption of data centers is facing as one
of the rising problems, thus energy efficiency is rapidly becoming a hot topic, especially moving
towards exascale systems. "Green" computing is now often coupled to high-performance
computing, introducing a new concept of "high-efficiency" computing, especially due to the fact
that the total cost of ownership (TCO) of a HPC infrastructure is largely impacted by the power
consumption during its life cycle.

This growing interest in energy efficiency is leading to new approaches to HPC as well as new
hardware requirements. Sysadmins, engineers, decision makers (and eventually users) are becoming
aware of the energy problem. There's a growing need for energy-aware resource management and
scheduling, in order to implement and enforce power capping constraints. Doing this, though,
requires probes and tools for monitoring the power consumption of a system and change the power
consumption of the hardware at run-time. To accomplish this, hardware/software sensors report
near-real-time power consumption. The software interfaces for accessing this information at
run-time are rapidly evolving and more often integrated in high-end infrastructures.

1 Many acronyms will be used throughout this document. Their explanation and expansion can be found in Appendix A.

1.1.The energy problem in HPC 1

At the monitoring level, novel concepts are emerging to increase the final user awareness on the
energy efficiency. Energy-to-solution can be used to account the energy dissipated by the execution
of the user code while energy profiling of the application provides more details about the "cost in
energy" of running a specific code on a specific machine, and using a specific library.

At the power management level, several methods can be taken into account in order to reduce the
power consumption of HPC resources by adapting their performance level to the workload demand.

Power wasted by idle resources can be reduced by mean of software power management policy,
which will automatically put the idle resource into power saving modes (sleep, standby, power-off),
and will power on/wake up the nodes when new workload is available. PDU power off can be used
to further reduce the total power consumption.

Some hardware capabilities can be exploited too, for instance the Advanced Configuration and
Power Interface (ACPI) defines sleeping states (S-states), power states (C-states) and performance
states (P-states, for instance by means of Dynamic Voltage and Frequency Scaling (DVFS), Turbo
Boost technology, RFTS mechanisms and power/clock gating) in order to dynamically configure
and monitor the power consumption. All these features, which are implemented at hardware level
by the CPUs, can be enabled by compliant motherboard's BIOS and exposed as a control knob to
the operating system for run-time power-optimization.

While dynamic power management approaches, which trade-off performance for energy efficiency,
may affect the final user QoS on the supercomputer infrastructure, emerging power capping policies
[12] allows to constraint the total power consumption of the supercomputer by admitting only the
jobs which fulfill a required power budget. A run-time-enforced reduced power budget saves energy
by avoiding cooling over-provisioning. In addition by selecting the highest performance-per-watt
resources first the overall energy-efficiency can be improved.

All the above strategies are now granting a lot of attentions, and a significant effort from the HPC
industry and research community is focused on the development of energy-aware resource
management systems and schedulers.

All these techniques, to be effective, require run-time access to the system and power consumption
status. Recent generations of microprocessors introduced specific registers that allow to measure the
power consumption of different sub-systems (logical and physical areas) of the CPU with fine
granularity. For the Intel family of processors, these metrics can be obtained accessing specific
hardware counters through the Model-Specific Register (MSR) interface, in particular the so-called
Running Average Power Limit (RAPL), which allows to monitor, control, and get notifications on
System-on-Chip (SoC) power consumption (platform level power capping, monitoring and thermal
management). RAPL is not an analog power meter, but rather estimates current energy usage based
on a model driven by hardware performance counters, temperature and leakage models, and makes
this information accessible through a set of counters[13].

In addition, large infrastructures can count on several sensors and devices, for instance local
machine hardware sensors, power distribution units (PDU), power grid counters, external hardware
dependent probes and sensors. High-end machines offers out-of-band management and monitoring
capabilities (independently of the host system's CPU, firmware, OS), through the so-called
Intelligent Platform Management Interface (IPMI), which allows the monitoring of system
temperatures, voltages, fans, and power supplies.

1.1.The energy problem in HPC 2

Other external devices can be instead accessed via various standard network-based protocols, like
the Simple Network Management Protocol (SNMP), or proprietary protocols and connections.

Additional local hardware probes and sensors interfaced to the motherboard (depending on the
vendor and models) can be queried using lm-sensors (Linux monitoring sensors), which provides
tools and drivers for monitoring temperatures, voltage, humidity and fans. The fam15h_power driver,
for instance, permits to read the CPU registers providing power information of AMD Family 15h
processors, similarly to what RAPL does for Intel microprocessors, although without the same level
of granularity.

1.2.Motivation and approach

Power capping capabilities, energy-based policies and energy-aware scheduling, all require some
insights concerning the power consumption of the system. Choices concerning the evolution of such
systems must be based on the ability to estimate the power consumption of a specific job depending
on the resources requested and the kind of task or calculation that will be performed. CPU-bound
application will draw more power from the CPU, and probably less from memory and storage.
Memory-bound applications will demand more activity from memory and storage than from the
CPU, thus moving the larger power consumption to other sub-systems, while the CPU will be
probably idling most of the time. Real world applications are often a combination of both, and
identifying which part will prevail may be an indication of what the power consumption could be.

Therefore, the capability of collecting application-based energy profiles and monitoring the power
consumption of the entire system, will allow an energy-aware scheduler to predict the trend based
on the applications that are queued for execution, and hence schedule the jobs in a way that allow to
respect imposed power capping constraints.

The purpose of the first phase of this project was to determine an energetic profile for some
well-known scientific applications, by identifying, in particular, the power consumption relative to
some specific routines or hardware activities. Furthermore, this profiling included the comparison
between different BLAS implementations, as supplied by widely used mathematical libraries, for
the same application, thus highlighting how different implementations of the same family of
routines can affect the power consumption in order to solve the very same problem.

Most of the tests in this phase involved the High Performance Linpack (HPL) and the High
Performance Conjugate Gradient (HPCG) benchmarks. Besides being well-known applications,
used to characterize and rank the clusters of the Top500, these tools were chosen because the first is
a CPU-bound application, while the second is memory-bound, difference that allowed to perform a
study of the trade-off between energy consumption and performance by changing the frequency of
the CPUs (DVFS).

HPL was compiled in several versions making possible to compare the performance delivered by
various BLAS implementations, in particular Netlib[14], ATLAS[15], OpenBLAS[16],
PLASMA[17], Intel MKL[18].

1.2.Motivation and approach 3

In the second phase of this project, a couple of real-world scientific applications was tested,
Quantum ESPRESSO[19] and LAMMPS[20]. All the methods used to analyze the previous
benchmarks were then used on these applications. A lot of efforts was dedicated to the analysis of
the performance counters and the top-down characterization, issues explained in details in section
2.3 and throughout section 3.

With the exception of Intel's MKL, only Free and Open-Source Software (FOSS) was employed in
this study. NVidia's CUDA accelerated Linpack was also used in this research, even though not
strictly open.

The outline of this work is as follows: in section 2 the testbed will be explained both at hardware
and software level, including the technological issues and solutions explored and eventually
adopted, as well as the way the benchmarks were chosen. In section 3, the results obtained will be
exposed and discussed in details, for each type of analysis performed throughout this work. Finally,
section 4 is devoted to the conclusions and the future perspectives that this research stimulated.

A rich set of appendices complete the work. Some specific details concerning analysis methods are
reported in Appendix B. and Appendix C., while the results of exploratory testing are presented in
Appendix D. Finally, many of the plots produced and cited in this document have been collected in
Appendix E. and Appendix F.

1.2.Motivation and approach 4

2. Testbed

In this section, the development platform will be introduced and detailed. In particular, the
hardware, the software and the technological peculiarities of the approach are explained in
dedicated subsections.

2.1.Hardware

The basic requirements to perform this work were:

• super-user's privileges;

• dedicated master node + at least 2 computing nodes;

• Intel family processors supporting RAPL.

The infrastructure in production at COSINT (Amaro, UD, Italy) was able to fulfill all the
requirements, and offered even more. The available platform, an Aurora[1] system developed by
Eurotech S.p.A., was an ideal platform for this kind of analysis since it belongs to the same
architecture that reached the 1st position in the 2013 Green500[5], the “greenest” platform, with
3.2 GFLOPS/W.

Full control over a virtual machine (VM), used for testing SLURM[21], and a computing node was
initially granted full-time for the whole period covered by this project. Few more computing nodes
were made available occasionally for scaling tests, and external monitoring devices were made
accessible too.

The Aurora computing nodes under exam are equipped with 2 Intel Xeon Ivy Bridge processors
with 12 cores each at 2.7 GHz, 64 GB of RAM, and 2 NVidia K20 GPUs.

In detail, the tests on this platform involved the following machines:

• 1x masternode / access node;

• 1x AURORA chassis with 6 blade (no accelerators);

• 1x AURORA chassis with 4 blade (2x NVIDIA GPU K20 on each blade);

• 10x blades with 2x 12-cores CPU Intel Ivy Bridge @2.7 GHz, and 64 GB of RAM;

• 1x virtual machine installed and configured as SLURM server;

• 2x blades configured as SLURM compute nodes.

The chassis used for most of the tests may be reported in plots and tables as "chassis 2".

The blade used for most of the tests is "b21" ('b'lade node, chassis #2, blade #1).

Unfortunately, the original design of the Aurora platform, developed with the clear intent of
providing an innovative and energy-friendly system (successfully), presents some side effects too.
Due to the peculiar experimental nature of the platform (in between a technology demonstration and
a production-ready architecture), some tools and sensors often available and used on mass-produced

2.1.Hardware 5

high-end platforms are not available or just not implemented yet. For instance, the IPMI interface
that manages the blades cannot be queried in order to obtain temperature and power readings, and
the system does not offer any alternative interface or remotely-accessible sensor for this purpose.

Nevertheless, the external power supply can be queried via SNMP and it is able to provide real-time
voltage, current, and temperature readings from the monitoring sensors of its 6 power rectifiers
(electrical devices that convert alternating current (AC) to direct current (DC)). Each of the 2
available chassis of blades are directly powered by 3 of these 6 rectifiers. By combining the data
collected from the 3 rectifiers connected upstream, it is possible to derive the total power absorbed
by all the blades of a chassis, although this value includes the chassis itself (rootcard controller,
fans, ...). The granularity and precision are clearly suboptimal, but the idea was to obtain differential
readings in order to exclude the background power consumption of the chassis and idling blades.

In order to obtain as much data as possible for the study of the power consumption, some tests
hence included the reading obtained querying these devices while the benchmarks were running on
one or more nodes at the same time (while the other nodes were idling). The analysis of these
readings is reported in Appendix D.1.

Most of the analysis hereby presented are based upon the microprocessor and its features. The
processor in use on the test platform is the Intel Xeon Ivy Bridge EP E5-2697 v2 @ 2.70 GHz[22],
with 30 MB of L3 cache, in a dual-sockets server platform configuration (code-named Romley).

Section 2.3 will reveal additional details concerning the features of this family of processors.

The Figure 2.1:1 shows the internal topology of the processor as reported by lstopo (hwloc[23]).

2.1.Hardware 6

2.2.Software

This section provides all the details concerning the software layers of the test environment. The
needs, and the software tested, developed, and eventually adopted will be discussed.

2.2.1.General overview

The operating system used is Linux, in particular a CentOS distribution [24], version 6.5, with the
stock kernel 2.6.32-358.23.2.el6.x86_64 and default utilities. Additional packages, detailed in
sections 2.2.2 and 2.3, have been installed to perform low-level operations, like handling the power
governor, the frequency scaling, and the performance counters.

The libraries and executables were compiled using the GNU compiler version 4.8.3 [25] and
OpenMPI version 1.8.3 [26]. A license for Intel compilers and MPI was not available on the
platform used. Any difference in performance, though, was deemed irrelevant for the kind of
analysis meant to be performed on the system and on the software stack.

Even though the cluster was configured to use PBS-Pro[27] as resource manager and job scheduler, it
was not involved during most of the tests, as direct access to the computing nodes was preferred
(avoiding cpusets and other unwanted features). PBS-Pro doesn't currently support out-of-the-box
energy-based scheduling policies, power capping mechanisms and per-job energy reports.
SLURM[21], though, an open-source workload manager, is rapidly evolving in this direction, already
allowing to enable the report of per-job power consumption, and it is rapidly moving toward
implementing and providing power capping capabilities and energy-based fair-sharing too.[28][29]
A virtual machine and a couple of computing nodes were temporary dedicated to setup such
framework (SLURM 14.11.7), and some tests have been conducted to investigate its features. The
per-job energy reports, in particular, were used to compare the results obtained by the means of
other monitoring utilities.

The Eurora Monitoring Framework [30], a set of scripts and utilities developed by Micrel
Lab[31]/UNIBO[32]/CINECA[4] and used for similar analysis on the Eurora cluster[3], was used in
order to access the hardware performance counters and record the power consumption of a node
during the run of the application under exam.
In the setup phase, the framework was adapted and improved. Some utilities, in particular the one
which acquires the MSR/RAPL counters, called msr-statd, and the one devoted to filter the data
(msr-filter), have been modified in order to work on the COSINT cluster, and virtually, anywhere
else too. In particular, these utilities have been interfaced to hwloc and numactl[33] in order to
automatically detect the hardware configuration at runtime (number of sockets, number of cores,
core-to-socket map), and many command-line options have been added in order to modify at will all
the vital parameters, hardcoded at compile-time in the original version.
The overhead of this utility was considered negligible as its CPU-time was measured in
1.2 milliseconds for each reading performed at regular intervals of 10 or 5 seconds. Should be noted
that, due to the size of the registers and the frequency these registers are updated by the CPU, the
interval must be kept reasonably short (<30 s), as some counters regularly overflows and the
software must be able to notice this and handle it to compensate.

The modified code was then compared to the energy readings obtained through SLURM and
LIKWID[34]. From a first analysis, by detecting the power consumption of a run of HPL, the values

2.2.1.General overview 7

reported by SLURM and msr-statd resulted to be compatible and reliable, likwid-powermeter, though,
reported values that wasn't possible to associate clearly to specific resources utilization. By using
LIKWID versions 3.1.3 and 4.0.0, the values reported were not even compatible with each other. After
these results, LIKWID was not used for further testing. Should be noted, though, that at the time of
this writing, the current git version of LIKWID (as retrieved the 2015/10/16) reports values compatible
with the readings obtained with SLURM and the msr-statd utility.
At the end of this comparison, the software developed by Micrel Lab was chosen as it suited best all
the requirements, as it is stand-alone, out-of-band (no instrumentation of the tested code is needed),
flexible, easy to use and to adapt.

Performance monitoring events represent a powerful tool for the profiling and improvement of the
performance of an application. Some of these performance events permit to understand whether an
application is memory-bound or CPU-bound, or maybe bound to other components such as the
GPU. This allows to identify where the application is bottlenecked and possibly indicate how to
improve it.
A preliminary phase was devoted to study the available Linux utilities, libraries and APIs for the
management and monitoring of system performance and energy consumption, as well as
programming techniques for low-level access to CPU performance counters and registers.
The various tools and techniques that have been used to retrieve and analyze such kind of
information will be illustrated and discussed throughout this document.

Several ad-hoc scripts and utilities were developed in order to collect other pieces of information
and useful data for the analysis. Some of these scripts were used to access, for instance, the power
rectifiers via SNMP, while many others were just wrapper scripts for “perf” and other utilities
(msr-statd, cpufreq, ...), in order to automate the simulations by varying many of the parameters
(core frequency, problem size, performance counters, ...). Many others were written and used to
collect, parse and filter the huge amount and variety of data obtained. All these tools have been
collected in a git repository and will be soon published as open-source software.

2.2.2.Power management and acquisition software

Various software was investigated, tested and used in order to acquire and collect the information
needed, as well as for managing the environment. This section briefly reviews them, giving also
some usage examples.

As mentioned in the previous section, the software developed by Micrel Lab/UNIBO on their study
of the Eurora cluster, was modified and widely used to obtain RAPL power readings from the CPU.
msr-statd is a MSR/RAPL acquisition software written in C, linked to hwloc and numactl, that
requires super-user's privileges in order to access the MSR kernel module interface (/dev/cpu/*/msr).
Usage example:

msr-statd --hwloc --background --path $PWD --prefix xhpl.openblas --interval 5 --truncate
msr-filter --input xhpl.openblas.msr.log > xhpl.openblas.msr.log.report
msr-compact.pl < xhpl.openblas.msr.log.report > xhpl.openblas.msr.log.summary

Concerning GPU power readings, a python script named gpu-statd (as well part of the Micrel Lab's
Eurora Monitoring framework) interfaced to the NVidia Management Library (NVML)[35]
provided power consumption and load of the GPUs. Similar readings, even though with a far larger
overhead, can be obtained by using the utility nvidia-smi[36].
Usage example:

gpu-statd start --path $PWD --prefix xhpl.nvidia --ts 5
gpu-filter.py --input xhpl.nvidia.gpu.log --gpus 2 > xhpl.nvidia.gpu.log.report

2.2.2.Power management and acquisition software 8

Additional power consumption information was supposed to be collected by accessing the rectifiers
and the power management of the Aurora blades. SNMP utils[37] and IPMI tools[38] were used in
order to access the external power rectifiers and the IPMI management interface of the blades.
Some ad-hoc utilities were written in order to setup and poll the power supply and get readings at
regular intervals.
Usage example:

ipmitool -H sp-b21 -U foo -P bar power status
ipmiwrap.sh b21 sensor list
snmpwalk -mALL -v2c -cfoobar pdu .1.3.6.1.4.1.10520.2.1.5.6.1.8
snmpbulkwalk -mALL -v2c -cfoobar pdu .1.3.6.1.4.1.10520.2.1.5.6.1.10
pductl -f status all
pductl -f pout 2

cpufreq-utils[39], a user-space utility provide by the kernel tools, was used to query and modify the
frequency scaling governor and the CPU frequency, even though it was wrapped by a script to
simplify and modularize the utilities used.
(setting frequency and governor requires super-user's privileges).

cpufreq-info
seq 0 23 | xargs -t -i cpufreq-set -r -c {} -g userspace
seq 0 23 | xargs -t -i cpufreq-set -r -c {} -f 2700000

Direct access to sysfs[40] was exploited too for the same tasks. Sysfs is a virtual filesystem on
Linux, which provides user-space access to kernel objects, like data structures and their attributes. It
is possible to read and write various flags, which will be applied by the kernel to the proper
sub-system or device.
(setting frequency and governor requires super-user's privileges).
Usage example:

read and set scaling governor:
grep . /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors
grep . /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor | sort -tu -k3n,3
echo userspace | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

read and set frequency:
grep . /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
grep . /sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq | sort -tu -k3n,3
echo 2700000 | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq

Beside the Eurora framework, SLURM energy plugins (acct_gather_energy) and utilities provided by
LIKWID (likwid-powermeter and likwid-perfctr) were tested to evaluate their capabilities of reporting
energy consumption of a job/process, A comparison was performed to verify the power readings
obtained and their reliability, in order to figure out the most complete and flexible alternative
(msr-statd was eventually chosen).
(may require super-user's privileges for some metrics)
Usage example:

likwid-powermeter
likwid-perfctr -f -c 0-23 -C 0-23 -g ENERGY mpirun --np 24 xhpl
likwid-perfctr -f -c 1 -C 1 -g BRANCH /bin/ls

Linux Perf[41] was extensively used in order to collect the performance counters, needed also to
perform the top-down characterization. Perf is a native Linux utility that interfaces its kernel-space
layer (perf_events) to the user-space, allowing to access, read and collect the performance counters
during the run time of a process. Perf_events interacts with the model-specific registers (MSR) and
the performance monitoring unit (PMU) of the CPUs through the msr kernel module. The data
collected can be post-processed in order to perform a deeper analysis and extract derived metrics,
obtaining low-level runtime information about the software under exam, its performance, and its
bottlenecks.
(may require super-user's privileges for some metrics)
Usage example:

perf stat sleep 1
perf stat -e branch-instructions,branch-misses /bin/ls

2.2.2.Power management and acquisition software 9

perf stat -o ./perf.log -x, -e r03c,r19c,r2c2,r10e,r30d /bin/ls
perf stat -a -x, -o ./perf.log \

-e cpu/config=0x003C,name=CPU_CLOCK_UNHALTED_THREAD_P/ \
-e cpu/config=0x019C,name=IDQ_UOPS_NOT_DELIVERED_CORE/ \
-e cpu/config=0x02C2,name=UOPS_RETIRED_RETIRE_SLOTS/ \
-e cpu/config=0x010E,name=UOPS_ISSUED_ANY/ \
-e cpu/config=0x030D,name=INT_MISC_RECOVERY_CYCLES/ \
mpirun --np 24 xhpl

Finally, a huge number of ad-hoc scripts, filters, parsers and wrappers to run the benchmarks and
collect and analyze the data were written in bash, awk, sed, perl, python, C, gnuplot[42].

2.2.2.Power management and acquisition software 10

2.2.3.Benchmarks

Four different applications were used in this work: two HPC standard benchmarks and two
scientific applications in materials science. All the four packages are well-known in their respective
scientific domain.

High Performance Linpack benchmark and the High Performance Conjugate Gradient benchmark.
have been used in the first phase to investigate and calibrate the profiling methods.

High Performance Linpack (HPL) is a portable implementation of the High Performance
Computing Linpack Benchmark widely used to benchmark and rank supercomputers for the Top500
list.
HPL is CPU and memory intensive with non-ignorable communication. HPL generates a linear
system of equations of order n and solves it using LU decomposition with partial row pivoting. It
requires installed implementations of MPI and makes use of the Basic Linear Algebra Subprograms
(BLAS) libraries for performing basic vector and matrix operations.
The HPL package provides a testing and timing program to quantify the accuracy of the obtained
solution as well as the time it took to compute it. The best performance achievable by this software
on a system depends on a large variety of factors. The algorithm is scalable in the sense that its
parallel efficiency is maintained constant with respect to the per-processor memory usage.[43]

The second benchmark tested is HPCG, the High Performance Conjugate Gradient, a benchmark
designed to validate the performance of a supercomputer by simulating an utilization of the
resources closer to the real-world applications, often bound to frequent and sparse memory accesses
and inter-node communication more than CPU dense computation.
High Performance Conjugate Gradient (HPCG) is a self-contained benchmark that generates and
solves a synthetic 3D sparse linear system using a local symmetric Gauss-Seidel preconditioned
conjugate gradient method. The HPCG Benchmark project is an effort to create a more relevant
metric for ranking HPC systems than the HPL benchmark. Reference implementation is written in
C++ with MPI and OpenMP support.[44]
Jack Dongarra, presenting the benchmark[45][46], talks about a “Performance shock”. The
performance observed with HPCG can be even less than 1% of the peak performance of a system,
far away from those obtained with HPL based mainly on the computing power of the CPU.

The fact that the algorithm is known, the applications are reliable, the input finely configurable, and
both provide performance and timing, made of these tools the perfect samples to profile and later
use as a reference for comparison. Beside these reasons, HPL is a CPU-bound application, while
HPCG is memory-bound. This simple and basic difference permits to figure out how much being
dense (or not) in the CPU influences the power consumption of an application.

HPL was tested by linking various BLAS implementations, and for each of them, various
performance counters were collected and later used for further analysis.
The power consumption of HPL was also monitored changing frequency scaling governor and
forcing different CPU frequencies for each run.
Another test was performed to investigate the hybrid CPU+GPU implementation (optimized and
precompiled by NVidia), in order to verify the impact in terms of energy efficiency of moving the
computation from the CPU to the GPU and scaling down the CPU frequency.

2.2.3.Benchmarks 11

The tests performed on HPCG include the power consumption by varying CPU frequency, problem
size scaling test, as well as performance counters analysis and top-down characterization.

These two benchmarks were largely investigated in order to obtain reliable basis to study additional
applications, whose behavior could be unknown, but likely residing within the “extremes”
represented by HPL and HPCG.

The next stage was dedicated to the analysis of two scientific applications commonly used in HPC,
taken as real-world examples of actual calculations performed on the cluster under exam: Quantum
ESPRESSO and LAMMPS.

Quantum ESPRESSO is a software suite for ab-initio quantum chemistry methods of
electronic-structure calculation and materials modeling. It is based on Density Functional Theory,
plane wave basis sets, and pseudopotentials. The core plane wave DFT functions of QE are
provided by the PWscf (Plane-Wave Self-Consistent Field) component, a set of programs for
electronic structure calculations within density functional theory and density functional perturbation
theory, using plane wave basis sets and pseudopotentials.[19]
The data set used for Quantum ESPRESSO (pw.x in particular) is a scaled down input taken from a
real simulation performed by a user of the cluster. In this test a Palladium surface is modeled, using
a slab geometry. Most of the computational time is therefore spent in linear algebra operations such
as matrix-vector multiplications, as well as in fast Fourier transforms.

LAMMPS is a classical molecular dynamics code. LAMMPS has potentials for solid-state materials
(metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or
mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle
simulator at the atomic, meso, or continuum scale. LAMMPS runs on single processors or in
parallel using message-passing techniques and a spatial-decomposition of the simulation domain.
The code is designed to be easy to modify or extend with new functionality.[20]
The standard Lennard-Jones liquid benchmark, provided with the LAMMPS, was used to profile
the application. The input was tuned and scaled up to 70M atoms to make the runtime close to
10 minutes.

2.2.4.BLAS libraries

There are many BLAS implementations available on the market, and each implementation deliver
different level of performance. If using a different algorithm to solve the same problem leads to
difference performance, it means also that its implementation is able to exploit better (or worse) the
underlying hardware. As a consequence, the power consumption, and therefore the energy
efficiency, must be impacted too by this different distribution of the resources' utilization.
This study aimed to identify such difference.

This evaluation included the reference BLAS from Netlib, the automatically tuned implementation,
ATLAS, the proprietary and closed-source Intel MKL version, and the OpenBLAS
highly-optimized free and open-source implementation. The compilation was performed using gcc
compiler and standard optimization flags have been applied. No further tune was done at
compilation phase.

2.2.4.BLAS libraries 12

PLASMA[17] was also tested, but it relies on a 3rd party BLAS library, and it can be compiled and
linked against any of the aforementioned BLAS implementations. Beside providing its own
implementation of many BLAS and LAPACK routines, PLASMA acts simply as a wrapper for
many others (in some cases still optimizing their access and utilization). In this case, though, it
turned out that the performance achieved using PLASMA was the very same achieved by the
underlying BLAS library it was linked to, hence the BLAS routines invoked by HPL were just
passed-through. PLASMA was therefore excluded from further analysis.

2.2.4.BLAS libraries 13

2.3.Technology

This section provides some technical details concerning the technology surrounding the power
management of the microprocessor, the hardware counters and the performance events used and
discussed in this work. This section reports also the challenges and difficulties in accessing and
interpreting low-level data and the issues faced during the tests and the analysis phase.

2.3.1.Frequency scaling

Microprocessors have seen a continuous evolution during the years, racing to reach higher clock
frequencies. The frequency increment, though, led as well to higher power consumption and
dissipation. Various solutions have been adopted in order to reduce these factors while maintaining
the performance. Aggressive power saving policies have been implemented in order to reduce the
power consumption when a resource is not in use or when the highest computing power is not
required.

The Advanced Configuration and Power Interface (ACPI) defines sleeping states (S-states), power
states (C-states) and performance states (P-states) in order to dynamically configure and monitor the
power consumption. All these features are implemented at hardware level by the microprocessors
and configurable by compliant motherboard's BIOS and, dynamically, at runtime by the operating
system.

Some of these solutions involved methods like the Dynamic Voltage and Frequency Scaling
(DVFS), Run Fast Then Stop (RFTS) mechanisms and power/clock gating. Intel processors, in
particular, supports Enhanced Intel SpeedStep (EIST) and Turbo Boost technologies, by means of
voltage and frequency scaling, internal power capping mechanisms and deep sleep states.

Intel Turbo Boost Technology is a feature that allows the processor to opportunistically and
automatically run faster than its rated operating frequency if it is operating below power,
temperature, and current limits. The result is increased performance.
The processor's rated frequency assumes that all execution cores are running an application at the
thermal design power (TDP). However, under typical operation, not all cores are active. Therefore
most applications are consuming less than the TDP at the rated frequency. To take advantage of the
available TDP headroom, the active cores can increase their operating frequency.
To determine the highest performance frequency amongst active cores, the processor takes the
following into consideration:
• The number of cores operating in the C0 state.
• The estimated current consumption.
• The estimated power consumption.
• The die temperature.
Any of these factors can affect the maximum frequency for a given workload. If the power, current,
or thermal limit is reached, the processor will automatically reduce the frequency to stay with its
TDP limit.[47]

DVFS is a technique that allows to reduce the power consumption by acting on the frequency at
which the CPU is clocked, or its voltage, or both (typically). Lowering the clock frequency, though,
usually increases the time-to-solution or walltime (or runtime) of an application. This work aims to
verify the influence of this fact on CPU-bound, memory-bound and real-life scientific applications.

2.3.1.Frequency scaling 14

CPU frequency scaling enables the operating system to scale the CPU frequency up or down in
order to save power. CPU frequencies can be scaled automatically depending on the system load, in
response to ACPI events, or manually by user-space programs.

The Dynamic CPU frequency scaling infrastructure implemented in the Linux kernel is called
CPUfreq[48]. CPUfreq is demanded to enforce specific frequency scaling policies, which consist of
(configurable) frequency limits (min,max) and CPUfreq governor to be used (power schemes for the
CPU). Available governors are:
powersave: sets the CPU statically to the lowest frequency within the borders of scaling_min_freq

and scaling_max_freq (/sys/devices/system/cpu/cpu*/cpufreq/scaling_{min,max}_freq)
performance: sets the CPU statically to the highest frequency within the borders of scaling_min_freq

and scaling_max_freq.
ondemand: dynamically sets the CPU depending on the current usage. Sampling rate (how often the

kernel must look at the CPU usage and make decisions on what to do about the frequency) and
threshold (average CPU usage between the samplings needed for the kernel to make a decision
on whether it should increase the frequency, e.g.: average usage > 95%, CPU frequency needs to
be increased) can be defined.

conservative: like the "ondemand" governor. It differs in behavior in that it gracefully increases and
decreases the CPU speed rather than jumping to max speed the moment there is any load on the
CPU. Available parameters are similar to "ondemand".

userspace: allows the (super)user to set the CPU to a specific frequency by making a sysfs file
"scaling_setspeed" available in the CPU-device directory.
 (/sys/devices/system/cpu/cpu*/cpufreq/scaling_setspeed)

The combination of the running kernel (2.6.32-358.23.2.el6.x86_64) and the IVB-EP processor in
use on the test platform allows to select the governors ondemand, userspace or performance
(/sys/devices/system/cpu/cpu9/cpufreq/scaling_available_governors).

The frequencies that can be selected using the “userspace” governor are (in kHz): 2701000
(Turbo Boost), 2700000 (nominal frequency), 2400000, 2200000, 2000000, 1800000 1600000,
1400000, 1200000 (/sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies).

At hardware-level, the frequency is controlled by the processor itself and the P-states exposed to
software are related to performance levels. Even if the scaling driver selects a single P-state the
actual frequency the processor will run at is selected by the processor itself. In order to reduce
energy costs, the processor may also shift one (or more) core and memory into lower power states
(higher C-state) when idle, despite a P-state was selected by the OS. C-states available on the
IVB-EP are C0 (active), C1 (halt), C3 (deep-sleep), C6 (deep power down). This phenomenon is
observed in Appendix D.2.

2.3.1.Frequency scaling 15

2.3.2.Hardware performance counters

Most modern microprocessors provide hardware counters that monitor and report the count of
hardware-related events concerning the CPU and its activity, including information like the elapsed
clock ticks, instructions issued and retired, cache hits/misses, memory accesses and I/O read/write
operations, which allow to obtain various derived metrics.
These hardware counters, called Performance Monitoring Counters (PMC), can be accessed using
low-level calls to specific Configuration Space Registers (CSR), and can be used for the monitoring
of the performance of the system, profiling of applications and their tuning. Various types of
performance counter are implemented, covering different performance interests. Some counters can
provide information regarding each single core of the CPU, some provide socket-wide information.
“Socket” and “package” are sometimes used interchangeably, but relate to the same concept:
everything available on the processor die. Other distinctions will be discussed in the following
sections.

The IVB-EP processors support the following configuration register types:
• PCI Configuration Space Registers (CSR): chipset specific registers that are located at PCI

defined address space.
• Machine Specific Registers (MSR), accessible by specific read and write instructions (rdmsr,

wrmsr) accessible by OS ring 0 (the kernel mode with the highest privilege) and BIOS.
• Memory-mapped I/O (MMIO) registers: accessible by OS drivers.

The followings are the counters available on IVB-EP and directly or indirectly used in this work:
- per-core counters:

• 3 fixed-purpose counters, each can measure only one specific event:
Counter name Event name
FIXC0 INSTR_RETIRED_ANY
FIXC1 CPU_CLK_UNHALTED_CORE
FIXC2 CPU_CLK_UNHALTED_REF

• 4 general-purpose counters, PMC<0-3>, each can be configured to report a specific event.
• 1 thermal counter which reports the current temperature of the core.

- socket-wide counters:
• Energy counters: provide measurements of the current energy consumption through the

RAPL interface (see section 2.3.3).
Counter name Event name
PWR0 PWR_PKG_ENERGY
PWR1 PWR_PP0_ENERGY
PWR2 PWR_PP1_ENERGY (not available on IVB-EP)
PWR3 PWR_DRAM_ENERGY

• Home Agent counters (BBOX<0,1>C<0-3>): protocol side of memory interactions, memory
reads/writes ordering (modular ring to IMC)

• LLC-QPI fixed and general-purpose counters (SBOX<0,1,2>FIX, SBOX<0,1,2>C<0-3>): LLC
snooping/forwarding and LLC-to-QPI related activities.

• LLC counters (CBOX<0-15>C<0-3>): LLC coherency engine
• UNCORE counters (UBOXFIX, UBOX<0,1>): measurements of the management box in the

uncore (frequency of the uncore, physical read/write of distributed registers across physical
processor using the Message Channel, interrupts handling)

• Power control unit (PCU) fixed and general-purpose counters (WBOX<0,1>FIX, WBOX<0-3>):
measurements of the power control unit (PCU) in the uncore (core/uncore power and
thermal management, socket power states)

2.3.2.Hardware performance counters 16

• Memory controller fixed and general-purpose counters (MBOX<0-7>FIX, MBOX<0-7>C<0-3>):
DRAM related events (clock frequency, memory access, ...)

• Other Ring related counters: Ring to QPI (RBOX<0,1,2>C<0-2>), Ring to PCIe (PBOX<0-3>)
• IRP box counters IBOX<0,1>C<0,1>

Some of the aforementioned counters can be accessed through the MSR interface, for which Linux
provide a specific driver and device, others through specific PCI or MMIO interfaces.

While per-core counters can be read from each core of the socket, socket-wide counters, like RAPL,
can be accessed only from one of the cores (any one). msr-statd, the utility used to obtain the power
consumption, was modified in order to use the PMU of the first core of each socket as source for
socket-wide RAPL counters.

The general-purpose counters can be configured to read one of the hundreds of events supported by
the processor[49]. Since there are 4 general-purpose counter available, only 4 events can be
monitored at the same time (besides the fixed counters which are always available but not
configurable).
In order to overcome this limitation, some utilities like perf, implement a multiplexing method that
allows to switch the monitored events (PMU events only). With multiplexing, an event is not
monitored continuously, but only for some repeated timed intervals, sharing the counter during the
measuring period. At the end of the run, the aggregated event count is scaled for the complete
period, thus providing an estimate of what the count could have been if it was measured for the
whole run. Hence, scaled results are not completely reliable, as some blind spots may hide spikes,
providing misleading results.

Counts reported by the fixed counters can be also obtained from equivalent configurable
performance events on the general-purpose counters. Unfortunately, though, because of many
factors, the values obtained differ, and this was one of the elements of confusion experienced during
the test phase.

Each performance event is represented by an event number and a mask. In section 3 and appendices
B and C, for all the events taken into exam, either the event name, the aliases or the hex flags (or
all) may be reported.

Unfortunately, each generation of processors, and even different variants of the same model, can
provide different counters and many different events. Sometimes new events are introduced,
sometimes are removed, sometimes not implemented, and sometimes measure something different
for each version. In the official documentation, sometimes the same metric is represented with
multiple names and not always consistently. All this, and the differences introduced in the name
spaces implemented in various monitoring and profiling software, make extremely difficult to
pinpoint the exact meaning and usage of a specific event. Moreover, different utilities use different
events claiming the same purpose. For sure, keeping such kind of software up-to-date for each new
variant of processor and new innovation require a lot of efforts, and results can be only as accurate
as the details available in the official documentation.
In order to provide a generic interface common for all the processors, Linux Perf/Kernel developers
implemented some “aliases” for common events (unfortunately not always correct across different
platforms), but kept open the possibility for a final user to specify explicitly an event to monitor.
This feature was widely used in this work.

2.3.2.Hardware performance counters 17

2.3.3.RAPL

Recent generations of Intel processors offer specific registers and counters which report, among
thousands things, the power consumption of the CPU based on its main areas and functionality, like
DRAM, CORE and UNCORE sub-systems. The UNCORE, called System Agent since Sandy
Bridge, collects the functions of the microprocessor that are not in the CORE, but are essential for
its performance. See figures 2.3.3:1 and 2.3.3:2.

Depending on the family/model, the sub-systems and the functions associated to each of them may
vary. According to various (sometimes fuzzy) documentation[50][51][52][47][53], on Intel Ivy
Bridge EP the sub-systems are divided as following:
• CORE: components of the processor involved in executing instructions, including ALU, FPU,

L1, L2 and L3 cache;(*)

• UNCORE or System Agent: integrated memory controller (IMC), QuickPath interconnection
(QPI), power control unit (PCU), ring interconnect, misc I/O (DMI, PCI-Express, ...).(*)

For desktop and mobile models, the Ivy Bridge processors may also include the Display Engine
(included in the UNCORE/System Agent) and the integrated graphics processor (IGP).

The Figure 2.1:1 in section 2.1 (Hardware), shows the CPU internal topology (Core, L1i, L1d, L2,
L3, DRAM) as reported by lstopo (hwloc).
Figure 2.3.3:1 shows the system topology.

In RAPL[54], platforms are divided into domains for fine grained reports and control. A RAPL
domain is a physically meaningful domain for power management. The specific RAPL domains
available in a platform vary across product segments. Ivy Bridge platforms targeting server segment
support the following RAPL domain hierarchy:

• Power Plane 0 (PP0): all cores and L1/L2/L3 caches on the package/die/socket (CORE)
• Package (PKG): processor die (PP0 + anything else on the package/die/socket (UNCORE))
• DRAM: directly-attached RAM

From the above, can be derived that UNCORE=PKG-PP0.
Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs.

(*) for the acronyms, please refer to Appendix A.

2.3.3.RAPL 18

RAPL “interfaces” consist of non-architectural MSRs. Each RAPL domain supports a set of
capabilities:

• Power limit: MSR interfaces to specify power limit, time window, ...
• Energy Status: power metering interface providing energy consumption information
• Perf Status: interface providing information on the performance effects (regression) due to

power limits (domain specific duration metric that measures the power limit effect in the
respective domain).

• Power Info: Interface providing information on the range of parameters for a given domain,
minimum power, maximum power etc.

• Policy: 4-bit priority information which is a hint to hardware for dividing budget between
sub-domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed
in Watts, Time is expressed in Seconds and Energy is expressed in Joules.

The “power info” RAPL interface reports the following power ranges for the platform tested:

PKG domain DRAM domain
Thermal Design Power: 130 Watt Thermal Design Power: 24.5 Watt
Minimum Power: 64 Watt Minimum Power: 9 Watt
Maximum Power: 130 Watt Maximum Power: 24.5 Watt

The “energy status” interface will be queried for power consumption information during the
simulations described in the following sections (msr-statd).

The thermal design power (TDP), reported above, represents the maximum amount of power the
cooling system in a computer is required to dissipate (if the cooling system is capable of dissipating
that much heat, the chip will operate as intended). This is the power budget under which the system
needs to operate. But this is not the same as the maximum power the processor can consume. It is
possible for the processor to consume more than the TDP power for a short period of time without it
being "thermally significant". Using basic physics, heat will take some time to propagate, so a short
burst may not necessarily violate TDP. [13] [Figure D:8]

2.3.3.RAPL 19

2.3.4.Top-down characterization - TMAM

This section covers the Top-down Microarchitecture Analysis Method (TMAM)[55][56], a
performance tuning technique which uses performance monitoring events specific to the Intel
processors.

Modern microarchitectures implements what is called instruction-level parallelism. The CPU can
execute multiple micro operations concurrently, in the same clock cycle, as long as they are busy in
a different stage of the computation (traditionally fetch, decode, execute, memory access,
write-back, but the stages are now many more).
In order to fill the pipeline and be efficient, each step must complete without stalling.

 (image from [57])

If the front-end is unable to fill the pipeline by supplying enough instructions to satisfy the requests
of the back-end, some clock cycles will be wasted without computing new micro-ops, therefore this
situation is called front-end stall, and the execution is said to be Front-End bound.

If the back-end, instead, is unable to accept more micro-operations, the back-end stalls and the
execution is said to be Back-End bound. The back-end can be delayed, for instance, by memory
accesses. If the required data can be found and fetched from high-level caches, the delay can be
minimal (few clock cycles), but if the data requires a fetch operation from the main memory, the
back-end stalls, and this impacts the performance as the pipeline may be blocked.

Furthermore, in order to exploit the pipeline and avoid execution stalls, modern microprocessors
implements two techniques called branch prediction and out-of-order execution, allowing to execute
instructions speculatively ahead, just "guessing" what will be the outcome of the execution
workflow.

 (image from [57])

Bad speculation is said to happen when this guess is wrong, and in this case the cycles are wasted,
as the result of those operation won't be used and is therefore discarded. When this happens, the
pipeline must be flushed, wasting even more clock cycles.

When an instructions completes this process without being bottlenecked is said to be retiring.

Hierarchically, the execution opportunities described above can be logically divided as illustrated in
Figure 2.3.4:1. In greater details, Figure 2.3.4:2 exposes the complete characterization of
microarchitectural issues.

By using the performance counters related to the execution flow, it is possible to estimate the
amount of execution slots spent in each category, hence identify which is more likely the area of
microarchitecture to investigate for bottlenecks.

Very good and comprehensive explanation of the methodology can be found at [58] [57] [59] [56].

2.3.4.Top-down characterization - TMAM 20

To summarize, a program can be bound to I/O (memory, storage, network), or can be bound to the
CPU or other components, such as the GPU. Being bottlenecked by the front-end means that the
pipeline can't be filled, being back-end bound means that for some reasons the pipeline is stalling,
usually waiting for data from the memory. Bad speculation is basically due to the branch
misprediction. The retired instructions are those that completed successfully.
In this work, this analysis will be used to identify memory-bound and CPU-bound applications.

According to [59], depending on the kind of workload, different range of pipeline slots can be
expected for each category. The following table reports the typical distribution for a well-tuned
HPC application:

Retiring 30-70%
Back-End Bound 20-40%
Fronte-End Bound 5-10%
Bad Speculation 1-5%

In Appendix B. details on how to compute the pipeline slots are provided.

2.3.4.Top-down characterization - TMAM 21

Figure 2.3.4:1: Pipeline Slot Classification Flow Chart [55]

Figure 2.3.4:2: General TMAM Hierarchy for
Out-of-Order Microarchitectures [55]

2.3.5.Tools

A large variety of tools, utilities, frameworks and libraries have been developed in the last few years
which permit to read and act on the CPU registers or allow to enable user-space applications to offer
power and performance monitoring capabilities.
Citing few relevant ones among those investigated in a preliminary study for this project:

• perf[41][60] (Linux profiling with performance counters) is a performance analyzing tool in
Linux which provides user-space controlling utility, an event-driven interface in kernel
space, and it is capable of statistical profiling of the entire system (both kernel and userland
code), supporting hardware/software performance counters, tracepoints, and dynamic
probes.

• LIKWID[34][61] (lightweight performance tools for x86 multicore environments) can probe
thread/cache topology of a shared-memory node, enforce thread-core affinity on a program,
measure performance counter metrics, access RAPL counters and query Turbo mode steps
on Intel processor (likwid-powermeter, likwid-perfctr).

• libpfm4 (perfmon2)[62] is a helper library to help encode Performance Events to use with
operating system kernels performance monitoring interfaces (perf).

• pmu-tools[63] is a collection of tools for profile collection and performance analysis on Intel
CPUs on top of Linux perf.

• PAPI[64] (Performance Application Programming Interface) aims to provide a generic
abstraction layer in order to interface user-space applications to the performance counter
hardware, relating software performance and processor events, and collecting components
that expose performance measurement opportunities across the hardware and software stack.

Other tools include: msr-tools[65], perfmon[66], powertop[67], turbostat[68], cpupowerutils[69]
and cpuspeed[70].

Bypassing this tools, sometimes necessary, requires specific code to be written using low-level
system calls and passing utterly cryptic flags and parameters only reported (although not always
explained in details) on microprocessor's development manuals.

In order to enrich the poor environment of perf (see command “perf list”), which implements 49
shortcuts over thousands flags, some efforts was taken during this project to convert automatically
LIKWID, libpfm and pmu-tools specific flags (over one thousand) into a format compatible as input for
perf. This operation led to the discovery of repeated event flags accessed using different event
names, or the same event name mapped to different event flags in different programs.

It must be noted that Linux Perf implementation in recent kernels exposes RAPL to user-space
(through perf and sysfs), as well as part of the top-down analysis (perf). Unfortunately, due to a
large number of dependencies, upgrading the kernel in a production cluster is not always feasible,
like it wasn't in this case.

2.3.5.Tools 22

3. Results

In this section a selected collection of the results produced during this work will be exposed and
commented in separate subsections, each devoted to specific tests and relative analysis. Several
plots accompany the most relevant results obtained.

This work deals with an almost unmanageable number of degrees of freedom because of all the
performance events, metrics, and measures gathered. Not all the data collected could be presented
and a large amount had to be ignored or discarded. Additional plots deemed not-essentials, even
though cited, are available in Appendix E., while Appendix D.3. gives a brief and rough idea of the
data collected and the kind of information that can be extracted.

Energy measurements are performed and discussed in this section and it is therefore important to
specify which kind of the metrics and quantities can be observed and measured. This is the goal of
section 3.1.

The following table provides a concise overview of the test performed and exposed in the following
sections, to offer a guidance to the reader through the chapter.
The table does not include additional tests performed only on some specific benchmark, analysis of
which will be presented and discussed in appropriate sections.

category test
HPL

HPCG QE LAMMPS
Netlib ATLAS OpenBLAS MKL

energy
efficiency

basic analysis & tuning (*) x x x x x x x

frequency scaling (**) x x x x x x

problem size scaling (**) x x x x x

performance
counters (*)

top-down analysis x x x x x x x

cache-miss, branch mispr. x x x x x x x

FLOPS from counters x x x x

exp. cache-miss (***) x x x x

(*) with ondemand governor (automatic frequency scaling w/ Turbo Boost)
(**) only for memory size 1/4 and 1/8
(***) experimental tests using various combinations of cache-related performance events (Appendix F.)

Section 3.2 reports the extensive analysis performed on the HPL benchmark. As previously
discussed, HPL was chosen due to the relative simplicity and for the detailed information it
provides. However, by just changing external BLAS libraries, a wealth of measurements are
possible, thus enriching the power measurement analysis and its comprehension.

Section 3.3 reports the analysis on HPCG. HPCG is a fairly new tool, not widely used yet, but it
aims to become an alternative benchmark to HPL for performance assessment and ranking. Unlike

3.Results 23

HPL, which may need hours to complete (Netlib test), HPCG can be told to run for a specific
amount of time. Limiting energy waste and allowing for a larger number of tests, it still gives
reliable results even for short runs of one or few minutes.

Sections 3.4 and 3.5 review the same methods applied to two representative real-world applications
used by the scientific community, Quantum ESPRESSO and LAMMPS. The input file for QE is
part of a research currently undertaken by CNR-IOM scientific research group. Concerning
LAMMPS, one of the benchmarks provided by the software package was chosen, the
Lennard-Jones liquid benchmark[71], even though it was scaled up from the original in order to
exploit the available memory and CPU resources.

Some selected results of above sections are then collected in section 3.6.3, which concludes this
chapter, where a detailed comparison among different benchmarks sessions is conducted.

It should be remarked that all the benchmarks reported in this section use a single computing node.
Due to the lack of additional sensors and devices able to indicate reliable power consumption
measurements of surrounding devices, this study focused on RAPL readings obtained from the two
processors available on each node. Multinode testing (Appendix D.1.2.) shown that MPI
communication indeed impacts the walltime. Properly estimating how this communication may
affect the overall energy consumption, though, would require additional metrics concerning
network-related activities and power consumption measurements of adapter cards and network
devices.

3.Results 24

3.1.Energy measurement

Although many metrics exist to describe various aspect of the energy efficiency, this works focused
on the followings:

Overall energy (J)
Average power (W)
FLOPS per Watt
FLOPS per Joule

The relationship between energy and power is of course given by:

Etot = Pavg * walltime

Pavg = Etot / walltime

Here, walltime is intended as the total running time of the application, as reported by the application
itself, when implemented, or by the wrapper program (msr-statd, gpu-statd, perf, bash time,
/usr/bin/time).

The RAPL interface provides incremental readings in Joule, for each RAPL domain, for each
socket. msr-statd collects these readings in a timely manner and save this raw data into a file for
later analysis. By post-processing the produced log file, it is possible to obtain the total energy, the
runtime period, and from these derive the average power (for each socket). Additional metrics, less
relevant in this case, include core temperature, frequency and load. A brief overview of the ignored
metrics are reported in Appendix D.
In the results exposed in this work, the aggregate energy and power for both sockets is considered,
even though split by RAPL domains.
Unless otherwise stated, all the benchmarks were run considering a single node, using both the
available sockets and all 24 cores. For the performance counters analysis and top-down
characterization, the ondemand frequency scaling governor was active and Turbo Boost enabled. The
energy efficiency study was conducted with the userspace frequency scaling governor and fixed
imposed frequency. Hyper-threading (SMT) was always disabled.

It has to be remarked that the software benchmarked was considered a black-box, no investigation
has been done on the algorithms, nor on the time-based evolution of power-consumption (although
possible as reported in Appendix D.3.). The analysis performed in this work was meant to be a
proof of concept for an unattended procedure integrated into an energy-aware scheduler.

Finally, it has to be noted that:

1. HPL reports the performance obtained (GFLOPS) and the time-to-solution (seconds). After
the actual computation, though, it performs an additional check in order to validate the
results (not counted in the values reported). This operation increases the walltime as
detected by external wrappers, thus it affects the analysis. The overhead of this operation is
minimal in respect of the walltime, but it is large enough to alter the results when used in
conjunction with the reported FLOPS. In order to overcome this issue, due to the negligible

3.1.Energy measurement 25

impact on the energy consumption represented by the final check over the whole run time, it

was deemed reasonable to consider the Pavg as a reliable estimation and use the
time-to-solution (as reported by HPL) in order to obtain the overall energy consumed:

Pavg = Etot / walltime

energy-to-solution = Pavg * time-to-solution

2. QE and LAMMPS don't provide the achieved performance in FLOPS. Experimenting with
performance counters, an attempt to estimate this metric was made by using the performance
events and formulas shown in Appendix C.

In order to identify the effects of fluctuations due to load and OS environment "noise", various
benchmark were run multiple times. Effects of fluctuation was observed and deemed negligible for
HPL and HPCG tests. QE and LAMMPS shown larger fluctuations, hence the average of 10 runs is
reported. The error bar is estimated within a few percent for HPL and HPCG, 7% (max) on total
walltime of Quantum ESPRESSO, 20% (max) on total walltime of LAMMPS.

3.1.Energy measurement 26

3.2.HPL

This section examines performance, power consumption and energy efficiency of HPL compiled
against four different implementations of BLAS as provided by the following libraries:

• Netlib, reference library, accurate but not optimized;

• ATLAS, auto-tuned library, optimized;

• OpenBLAS, highly optimized open-source version;

• Intel MKL, proprietary and closed-source version, highly optimized for Intel processors.

Should be noted that this analysis does not aim to provide a full-fledged comparison of the entire
libraries or all BLAS routines, only the BLAS functions invoked by HPL are relevant in this case,
with a net predominance of the GEMM family.

The first step in this phase was a tuning session in order to identify which are the best parameters in
terms of problem sizes (Ns), block sizes (NBs) and grid distributions (Ps, Qs), that provide the best
performance.

The best performing set of parameters turned out to be the following for all the libraries:
Ns = 81920
NBs = 176
Ps = 6
Qs = 4

which corresponds roughly to 54 GB of RAM utilization (problem size = N2 * 8).
These settings allowed to obtain 480 GFLOPS (using HPL+MKL) over a theoretical peak
performance of 518.4 GFLOPS (92.6%).

The parameters identified in this tuning runs are then used for all the runs later reported in this
section unless otherwise specified.

The same methodology was adopted for the tuning of all the benchmarks tested, where a
preliminary session was devoted to obtain significant data sets, possibly with acceptable runtimes
(<30 minutes), and later adopted for the size and frequency scaling analysis.

3.2.HPL 27

3.2.1.Comparing BLAS implementations

The graph in Figure 3.2.1:1 reports the performance, walltime, average power, total energy and
energy efficiency, expressed as GLOFPS/W and MFLOPS/J, for the four implementations. This plot
reports a stacked view of the contribution given by each CPU sub-systems. As a reminder, the CPU
package/socket (PKG RAPL domain) is made by CORE (PP0 RAPL domain) and UNCORE
(PKG – PP0). DRAM is the physical memory.

Figure 3.2.1:1 clearly indicates that the delivered performance is very different. The walltime of
course influences the overall energy consumption, but as well the CPU utilization affects the
efficiency: the denser the computation is in the CPU (less stalls due to memory access), the larger
the efficiency (MFLOPS/W).

Walltime and power consumption of Netlib are 2 order of magnitude greater than the optimized
versions, which makes it the least performing and the least energy efficient library.
MKL and OpenBLAS, though, are quite close to each other. The average power is the same, but the
slightly different performance, and therefore larger walltime of OpenBLAS, influences the total
amount of energy consumed, and thus the efficiency.

The results have been further split by CPU sub-systems (DRAM, PKG, CORE, UNCORE) and the
plots reported in Appendix E.1.
Figure 3.2.1:2 reports a detailed view of the energy distribution by sub-systems.

3.2.1.Comparing BLAS implementations 28

It can be observed that using different implementations may lead to a different distribution of the
power consumption. Netlib, for instance, appears to be more memory-bound than the others, hence
the calculation consumes more power on the DRAM domain. Because of this pattern, the average
overall-power is lower, as the CPU is probably idling longer while waiting for data. OpenBLAS and
MKL, on the other end, are very effective at core level, denoting a more efficient utilization of the
memory hierarchy.
More details on this phenomenon can be obtained by performing a deeper analysis of the issue
using the performance counters and a top-down characterization, which allows to identify the stalls
and bottlenecks in the pipeline. This will be performed in the following subsections.

3.2.1.Comparing BLAS implementations 29

3.2.2.Top-down characterization

Here, the results of the top-down characterization are presented. The purpose of this analysis is to
identify the bottlenecks in the instruction pipeline.

As explained in section 2.3.4, the optimal BE-bound value for an HPC application is expected to be
within 20% and 40%.

Looking at Figure 3.2.2:1, the following observations can be made:

• Netlib reaches the 75% on the BE-bound value. From this analysis is clear how Netlib is
back-end bound, which implies a problem related to the memory access that is bottlenecking
the application. Probably, a sub-optimal memory access pattern makes it unable to take
advantage of the new architecture's caches, hence preventing it to exploit the pipeline
efficiently.

• the other implementations, are comfortably inside the optimal limits for a typical HPC
application.

3.2.2.Top-down characterization 30

3.2.3.Performance counters

The following analysis compares the readings gathered from the performance counters using perf.
The metrics considered relevant for this first analysis are:

• cpu-cycles
• instructions
• cache-references
• cache-misses
• branch-instructions
• branch-misses

The last 4 parameters of the list permit to obtain 2 derived metrics, the cache-miss ratio and the
branch-misprediction ratio. The first is an index of how well the application exploits the cache
hierarchy. The second concerns the efficiency in guessing what will be the next instruction to
execute in case of conditional jumps (branch). In order to exploit the superscalar characteristics of
the pipeline, the CPU preemptively fill the pipeline and executes instructions from multiple
branches (or just guesses one), long before the branch true execution path is known. If the next
instruction is guessed wrong (the conditional statement eventually pointed to another branch), the
result will be discarded and some CPU cycles wasted.

Figure 3.2.3:1 compares both raw counters (left panel) and derived metrics (right panel) for each
BLAS version.

As can be seen, the branch misprediction ratio (the green bar in the rightmost graph) maintains
constant across all the implementations. The behavior is probably related to the main algorithm, not
to the actual portion of code devoted to the computation. Further investigation is in any case
required, but time constraints made the study focus on other more significant metrics.

The red bar in the right panel of 3.2.3:1, presents the cache-miss ration. At first sight, OpenBLAS
cache-miss ratio is astounding, showing an incredibly effective utilization of cache accesses. The
test was repeated twice in order to verify such results, confirming the behavior, but it looked
suspicious nonetheless.

3.2.3.Performance counters 31

By reading thoroughly various sources of documentation2, it turned out that the parameters named
“cache-misses” and “cache-references” used by perf, are translated to the following performance
events in Intel processors:

 perf | event
alias (u-space) define (k-space) hexcode|code mask name
cache-misses PERF_COUNT_HW_CACHE_MISSES 0x412e |2Eh 41h L3_LAT_CACHE.MISS
cache-references PERF_COUNT_HW_CACHE_REFERENCES 0x4f2e |2Eh 4Fh L3_LAT_CACHE.REFERENCE

Accordingly to Intel's manual[74] (tables 19-17 and 19-19):

2EH 41H L3_LAT_CACHE.MISS
This event counts each cache miss condition for references to the last level cache.
The event count may include speculative traffic but excludes cache line fills due to L2 hardware-prefetches.

2EH 4FH L3_LAT_CACHE.REFERENCE
This event counts requests originating from the core that reference a cache line in the last level cache.
The event count includes speculative traffic but excludes cache line fills due to a L2 hardware-prefetch.

And for both:
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to

estimate performance differences is not recommended.

Thus, it seems that using LLC references for the overall cache-miss ratio is not accurate as it
represents only the memory accesses that hit LLC while does not include cache hits in L1 and L2.

Looking at raw counters (left panel of Figure 3.2.3:1), it appears like L3 references in OpenBLAS
increase by an order of magnitude over MKL and ATLAS, while L3 misses decrease by almost an
order of magnitude, thus leading to the 1% of cache-miss ratio versus the 22% delivered by MKL.
Consequences of this may be one of the following:

1. L3_LAT_CACHE events cannot be thoroughly trusted;
2. OpenBLAS is optimized to exploit L3 locality, storing to and fetching from the LLC.

Various tests, briefly reported as a few plots in Appendix F., were later performed in order to obtain
alternative performance events from which L1/L2/L3 cache-miss ratios can be derived.
Unfortunately, various combinations adopted by various tools (LIKWID, PAPI, libpfm) or found on the
web and tested here, led to completely different results for what should represent the same metric.
Many factors should be taken into account, though:
• some hardware counters offer speculative counting of performance events (instead of real);
• perf multiplexing and scaling cannot report exact readings when too many events are

concurrently monitored (because only 4 configurable hardware counters are available);
• the documentation sometimes reports about counters that are reliable for some specific

architecture, but does not explicitly mention whether they are reliable too for other architectures
(and sometimes it is not consistent) -- inheritance should (or should not) be blindly assumed;

• some applications (and web forums) take for granted that what was working on a specific
processor can be extended to the same family of processors;

• workarounds are sometimes needed to deal with errata.[75][76][77][78][79][80][81]

It is therefore really hard to tell which combination can be trusted, and on which platform, since
there's no other mean to verify the results.

2 Intel's processors developers manuals[50][51][52] and the source code of perf (both user-space[72] and
kernel-space[73]), PAPI, LIKWID, libpfm4 and pmu-tools.

3.2.3.Performance counters 32

3.2.4.Frequency scaling

This section compares the behavior of the application when the CPU operating frequency is scaled.

Figure 3.2.4:1. shows a comparison of the performance of HPL+MKL by imposing different
frequencies.
In this case, the processor supports frequencies from 1.2 GHz to 2.7 GHz. The additional label 2.7+
represents the Turbo Boost, which can span from 2.8 to 3.5 GHz depending on the core temperature
and the number of cores active:

3500 MHz (1 core) 3200 MHz (4 cores)
3400 MHz (2 cores) 3100 MHz (5 cores)
3300 MHz (3 cores) 3000 MHz (6 or more cores)

For HPL, being a CPU-bound application, when the frequency is increased the performance
increases too, and as can be seen, the increase is almost linear. This means that the application
benefits from running at higher frequencies. The power consumption, though, increases too.
Two interesting observations can be done looking at power efficiency (panel 5) and energy
efficiency (panel 6). Power efficiency reaches the maximum at nominal speed of the processor
(2.7 GHz), while when Turbo Boost is enabled there is a small drop. However this drop in power
efficiency is not present when energy efficiency metric is considered: in this case, Turbo Boost
allows to run faster without impacting the energy efficiency because the performance rises at the
same rate of the overall energy consumption.

The results for the other BLAS implementations are almost identical. Frequency scaling plots for
Netlib, ATLAS and OpenBLAS are available in Appendix E.3.

3.2.4.Frequency scaling 33

3.2.5.Problem size scaling

In this test the problem was scaled down to 1/2, 1/4 and 1/8 of the memory used by the best
performing combination (~54 GB, ~83% of the total RAM).

The goal was to identify whether varying the amount of memory used would change the distribution
of energy consumption during the run and therefore the energy-efficiency.

HPL is expected to deliver worse performance when the size is decreased. With the size, though,
also the time-to-completion decreases. This, combined with the lower utilization of the CPU, may
lead to a lower average power, and lower overall energy consumption. If the power consumption
decreases faster than the performance, the energy-efficiency may be higher for less performing runs.

As can be seen from Appendix E.2., HPL behaves as expected. The distribution doesn't appear to
change, in fact CORE, UNCORE and DRAM contributions appear to be the same for all the runs.
Nonetheless, the average power is slightly different, as it decreases for the CORE when decreasing
the size. The large difference in the time-to-completion impacts the total energy, and this the
energy-efficiency.

ATLAS, MKL and OpenBLAS behave more or less the same, and exhibit a better average power
efficiency (GFLOPS/W) with the larger size. Netlib, shows instead the opposite. Once again, this
behavior is probably related to the memory access pattern, as it delivers the best performance with
the smallest size.

Nevertheless, once again the time-to-solution affects the final outcome. Along with the decrease in
size, there is a very small decrease in the average power consumption, but the walltime decreases
faster than the performance, therefore the overall energy efficiency (expressed as MFLOPS/J) is
higher with the smaller size. For Netlib, this increment is even larger than for the other libraries.

The same test was performed also by scaling the frequency, confirming the behavior observed in the
previous tests and already described. The plots are available in Appendix E.3.

3.2.5.Problem size scaling 34

3.2.6.HPL + GPU

An exploratory testing was performed by using the hybrid CPU/GPU version of HPL as supplied by
NVidia. The goal was to observe the effects of the CPU frequency scaling on the overall power
consumption, including the 2 GPUs. GPU frequency scaling was not approached.

Power consumption information of the GPUs was obtained by means of the NVidia Management
Library (NVML)[35]. A python script (gpu-statd), part of the Eurora monitoring framework, was
adapted and used to retrieve the data.

Various tests pointed out the best performing inputs, obtaining 2.3 TFLOPS out of the combined
(CPU+GPU) 2.8 TFLOPS peak performance (~82%):

Ns = 85000
NBs = 896
Ps = 2
Qs = 1

Should be noted that many other combinations, even though performing better, consistently failed
the final validation check, and were therefore discarded.

This version of HPL allows to define the portion of computation to perform in the GPU. A wrapper
script was written for the correct setup of the environment.
In order to avoid migrations and optimize the hybrid parallelism using MPI/OMP and the GPU, 2
MPI processes was used, each bound to a specific CPU (using numactl from inside the wrapper
script instead of mpirun --bind-to). Each MPI process spawned 12 OMP threads (1 for each core of
the CPU). Only one GPU was made visible to each MPI process. 90% of the computation was
requested to be run on the GPU.

Figure 3.2.6:1 reports the aggregated power consumption of the 2 GPU only (no CPU).
Figure 3.2.6:2 reports the overall power consumption, including the CPUs.
The idle power measured on each GPUs was 41 W, the total power reached during the setup phase
and the following tests was 192 W.

In Figure 3.2.6:1, these tests evidenced the fact that the frequency at which the CPU operates can
affect as well the performance obtained on the GPU. In this case, the CPU cannot feed adequately
the GPU, which stalls, hence the larger walltime when running at lower frequencies. The almost
uniform average power consumption makes again the total energy dependent on the
time-to-solution. Nonetheless, it can be noted that at 2.2 GHz and 2.4 GHz the efficiency is close or
even larger that what can be obtained at 2.7 GHz. This is even more evident in the aggregated report
in Figure 3.2.6:2.

3.2.6.HPL + GPU 35

As can be noted, from 3.2.6:2, more than 60% of the overall power is consumed by the GPUs. The
effects of the frequency scaling on the power consumption of the CPUs is added to what observed
before in 3.2.6:1. The runs at 2.2 GHz and 2.4 GHz appear to be the more convenient from the
energy-efficiency point of view, as the energy-to-solution is lower than what can be obtained at any
other frequency.
In terms of pure performance, by running at 2.4 GHz less than 3% is lost, but in terms of energy, the
6% is spared.

3.2.6.HPL + GPU 36

Should be noted that the peak performance obtained, 2.292 TFLOPS with a power consumption of
592 W, would be ranked at the 4th position of the Green500 (Nov 2015) with 3.87 GFLOPS/W.
Unfortunately, the power measure took into account only the CPUs and the GPUs of a single node,
but even considering twice as much power (unlikely), it would be still ranked 82nd.
The cluster ranked at the 500th position of the Green500, QUARTETTO[8], in order to deliver the
same performance would have consumed 43 kW, a 73 times larger power consumption.

Oddly enough, the most energy-efficient combination was not the best performing run. By running
at a lower CPU frequency (2.4 GHz) and obtaining a slightly worse performance (2.23 TFLOPS),
the average power consumption was smaller (541.8 W), 50 W less than the best performing run
(10%).

3.2.7.Summary of HPL investigation

The results of the HPL investigation can be summarized as follow:

• MKL and OpenBLAS delivered the best performance, even though the pattern found in the
cache-miss ratio looks quite different;

• using an unoptimized library (Netlib in this case) may lead to catastrophic results, both in
terms of overall performance and energy-efficiency;

• not surprisingly, for a CPU-bound application the performance achieved is linear with the
frequency scaling;

• GPU performance are unexpectedly driven by CPU operating frequency;
• problem size scaling behavior of Netlib is in counter tendency in respect to the other

libraries;
• 4th position in the Green500!!! Almost...

3.2.7.Summary of HPL investigation 37

3.3.HPCG

In this section results from HPCG are presented.
During the setup phase various test were conducted to check the best performing combination and
validate the results. HPCG, unlike HPL, allows to set the desired walltime, thus simplifying the
calibration. The runtimes tested were 30, 60, 120, 180, 240 and 300 seconds. The problem size was
scaled up from 100 MB to 215 GB, using X=8, 16, 32, 64, 104 (total size = X3 * 8 * NP).
As for HPL, the frequency was scaled for each step allowed by the CPU.

As previously observed for HPL+Netlib, a memory-bound application doesn't benefit of the peak
performance of the processor. Hence, lowering the operating frequency of the cores should not
impact the overall performance of the application, while the energy consumption can be reduced.
The goal of this set of benchmarks was to obtain a power consumption pattern bound to the problem
size and CPU frequency, and figure out whether a trade-off between frequency, performance and
power consumption can be observed, thus highlighting a more efficient approach from the energy
point of view.

3.3.1.Frequency and problem size scaling

HPCG shows that there's a trade-off point, where rising the frequency is not convenient anymore.

The walltime in this case is almost constant, as it is imposed as an input parameter.

The performance obtained with increased frequencies doesn't change much, and it doesn't change at
all in some cases, as the CPU cannot be fed with new instructions until the data needed for the
computation is retrieved from the memory, fact that bottlenecks the application.
Running HPCG at the lowest frequencies, gives a better performance-per-consumed-energy ratio.
Increasing the frequency does not improve the performance, but increases a lot the power
consumption without any benefit.

This means that running memory-bound applications at high frequencies is just a waste of energy,
and from this point of view, may be more convenient lowering the frequency of the CPU when this
kind of applications are supposed to be run. This, of course, is a matter of study for resource
management software.

The plots in Appendix E.4. exhibit the results obtained on the run with the various sizes mentioned
above, for all the frequency steps. The imposed runtime is 300 seconds. Should be noted that,
excluding the runtimes shorter than 60 seconds which presented various anomalies, especially with
the larger sizes (probably due to allocation/initialization issues), the results with runtime above
90 seconds reported consistent results. Only the size 64 (Figure E:35) is reported in this section as
Figure 3.3.1:1.

The plots denoted a clear trend. Increasing the frequency leads to better performance, but leads to
larger power consumption at the same time. From the energy-efficiency point of view, there is no
benefit in running HPCG at the highest frequencies. The best compromise seems to be in the range
1.5 - 2 GHz. It is also evident that the best performing results are obtained with the Turbo Boost
enabled, but they are affected by the largest power consumption, making this combination less
efficient than running at the minimum frequency, 1.2 GHz. In case the energy-to-solution has the
precedence over the time-to-solution, the lower frequencies represent the most convenient choice.

3.3.1.Frequency and problem size scaling 38

3.3.2.Top-down characterization

Figure 3.3.2:1 reports the various sizes for the 300 seconds run. The plot clearly shows that HPCG
is a back-end bound application. As already stated before, this means that there might be an issue
with memory accesses (LLC misses), which will be confirmed by the performance counters
analysis. For small sizes, where the problem fits better in cache and memory accesses are less
frequently needed, the application denotes a smaller dependency on the back-end, but it is still
outside the optimal range nonetheless.

3.3.2.Top-down characterization 39

3.3.3.Performance counters

The analysis of the basic performance counters confirms that HPCG presents a large cache-miss
ratio, and that for small sizes, this ratio is lower, as the required data can be found a little more often
in cache.

3.3.4.Summary of HPCG investigation

The results of the HPCG investigation can be summarized as follow:

• although HPCG is a memory-bound application, higher CPU operating frequencies still play
an important role on the time-to-solution and the performance obtained by the benchmark;

• when the energy-to-solution becomes a predominant factor (e.g. under power capping
policies), HPCG results more energy-efficient at lower frequencies;

• the minimum frequency supported (1.2 GHz), is far more energy-efficient than Turbo Boost;
this notable result can be used to tune/implement careful energy aware policies on HPC
infrastructure;

• problem size scaling doesn't seem to affect the energy consumption of HPCG, nonetheless,
the results shown by TMAM analysis and the performance counters analysis constitutes a
basis for the comparison with other applications.

3.3.4.Summary of HPCG investigation 40

3.4.Quantum ESPRESSO

For real-world applications, identifying a trade-off for the energy efficiency is a non-trivial task.
The performance (FLOPS) is usually not reported, hence the efficiency as defined before
(FLOPS/W, FLOPS/J) cannot be easily computed. The performance counters allows to roughly
estimate the number of floating point operations executed during the run of a monitored application.
It was observed, by comparing the performance reported by HPL and other trivial
matrix-multiplication codes, that the FLOPS count obtained by using the performance counters is
smaller. Consistently on these tests, it appeared that measured FLOPS were a factor 1.2 smaller than
what reported by the applications, although online documentation often reports over-counting
associated to this technique.[82][83][75][77][78][79][80][81]

The performance measure reported in the following plots, was obtained by applying the results of
these observations.

In order to exclude the effect of fluctuations, each test was repeated 10 times and the average is
reported.

Figure 3.4:1 shows that shorter time-to-solution can be achieved by increasing the frequency. At the
same time, the lower average power obtained with the lower frequencies allow to keep almost
constant the energy-to-solution, thus highlighting how this benchmark benefits from higher
computing speed.

3.4.Quantum ESPRESSO 41

The top-down analysis shows that this benchmark is a borderline case, concerning the optimal
values, placed in the middle of what was observer from HPCG and HPL. Even though the larger
FE-bound and retiring slots are still within the optimal range, BE-bound slots is close to the limit.
Within the limits expressed by HPL and HPCG, this kind of pattern is often expected to be found
for standard applications.

The performance counters analysis doesn't show anything relevant, relatively small cache-miss ratio
compared to HPCG, and a slightly higher branch misprediction.

3.4.Quantum ESPRESSO 42

3.5.LAMMPS

In this subsection, LAMMPS is tested using the Lennard-Jones liquid benchmark. Both frequency
scaling (Figure 3.5:1) and problem size scaling (Figure 3.5:2) have been performed. Even though
the same input was used for all these tests and the same random seed was used to initialize the data,
some fluctuations were observed and therefore the reported results represent the average of 10 runs.

Figure 3.5:1, reporting the frequency scaling, depicts an energy-to-solution with small fluctuations,
showing that running this benchmark at low frequencies won't be advantageous neither for the
overall energy consumption nor for the time-to-solution. Running at the nominal frequency, though,
seems to be more convenient than having the Turbo Boost enabled.

3.5.LAMMPS 43

The problem size scaling, Figure 3.5:2, shows a large difference in the DRAM consumption. Small
sizes fit in cache, hence increasing the CORE consumption while decreasing DRAM accesses and
the power required. At a certain point in size, the data are becoming too large to fit in cache, and the
pattern shows the DRAM power rising again.

3.5.LAMMPS 44

Figure 3.5:3 exhibits the expected behavior in respect of the problem size scaling. For very small
sizes, the application is FE-bound, memory accesses are directed towards the cache, and the
instructions cannot be fed fast enough to fill the pipeline. Unlike any other benchmark examined
before, bad-speculation slots are larger than in any other test. This is likely due to the algorithm.
The performance counters analysis should evidence this behavior through the branch misprediction
ratio.

Increasing the size, again the application becomes memory-bound, although the bad-speculation is
not affected.

For this benchmark, a further rough analysis of the impact of mpirun was performed on the top-down
characterization and the performance counters analysis by using two combinations of commands:

• perf stat -a ... mpirun -np 24 ... (a single perf instance collects counters from all cores)

• mpirun -np 24 ... perf stat ... (mpirun spawns 24 perf instances, each collecting counters
for one process bound to one core)

The latter, is the method used for most of the benchmarks presented so far.

The Figure 3.5:4, shows the effects that mpirun has on the TMAM considering both the benchmark
program and mpirun altogether. By comparing Figure 3.5:3 and Figure 3.5:4, it can be noted that
although for the smallest size 10% of the slots are moved from being BE-bound to FE-bound, no
particular impact is evident. Hence, for future tests, changing the order of mpirun/perf execution
shouldn't relevantly affect the collected readings.

3.5.LAMMPS 45

As expected, figure Figure 3.5:5 shows that a relatively large branch misprediction affects the
benchmarks. The cache-miss ratio becomes relevant at size 160, where almost half the cache
accesses don't get satisfied by a hit. For the other sizes, cache-misses are still relevant, making these
results closer to the one obtained by HPCG than HPL's, showing again how HPL is far from being
representative of real-world applications.

Finally, Figure 3.5:6, compared to Figure 3.5:5, shows that mpirun doesn't seem to affect the results
of analysis that include it together with the targeted application.

3.5.LAMMPS 46

3.6.Comparison

In this section, some selected results are compared and reviewed, for each of the three main analysis
described in this document:

• energy efficiency vs. frequency scaling (3.6.1);

• top-down characterization (3.6.2);

• cache-miss and branch misprediction ratios using performance counters (3.6.3).

3.6.1.Energy efficiency and frequency scaling

The analysis performed on the frequency scaling behavior of the power consumption is summarized
in Figure 3.6.1:1, which reports the energy efficiency, expressed as MFLOPS/J, in respect of the
operating frequency of the CPUs.

Due to the large difference in efficiency, the results for each benchmark are presented on a different
panel (1-5) with different scales for the Y axis, while the last panel on the right (6) compares the
same numbers in log scale.

Must be noted that for HPL+Netlib, due to the extremely long runtime (>10 h), the only data
available for the full frequency range was from the tests with 1/4 and 1/8 of the problem size (see
Appendix E.3.). For the largest size, the energy-efficiency of HPL+Netlib should be 1 order of
magnitude smaller (0.005 for the only full run with ondemand governor, reported in Figure 3.2.1:1).

From Figure 3.6.1:1 a clear pattern can be noticed. For CPU-bound applications (panels 1-3), the
efficiency increases almost linearly with the frequency, as the shorter time-to-solution makes
irrelevant the difference in average power consumption given by running at lower frequencies. For

3.6.1.Energy efficiency and frequency scaling 47

memory-bound applications (panels 4-5), the trend is almost the opposite, as the CPUs cannot
compute enough data to exploit the additional performance provided by the higher frequencies.

As can be seen from the comparison on panel 6, the efficiency spans over 4 orders of magnitude.
The cost of having a memory-bound application, or an unoptimized application that could have
been tuned or been written better to be more CPU-dense, is therefore proportional.

This final analysis shown that real-world applications are not well represented by HPL, and
therefore tuning hardware specifications and choosing architectural features exclusively on HPL
performance, may not be necessarily wise. HPL still represents the most that a system can possibly
achieve. Unfortunately, HPCG does not represent the worst that can be achieved.

3.6.2.Top-down characterization

This section collects the most significant results obtained from the top-down characterization of
HPL+MKL, Quantum ESPRESSO, LAMMPS, HPL+Netlib and HPCG. These tests were conducted
with the ondemand governor and Turbo Boost enabled. The raw counters were collected using perf, and
the data post-processed by means of gnuplot by using the formula described in Appendix B.

In Figure 3.6.2:1, not surprisingly, the applications known to be memory-bound appear to be
back-end bound. Surprisingly, though, HPL+Netlib behaves the opposite of HPL linked to any other
library, actually closer to HPCG, explicitly designed to be memory-bound.

It is also evident that real-world applications, with complex algorithms and implementations,
present a larger waste of resources due to bad speculation, while the benchmarks initially tested
didn't expose any influence derived from branch prediction.

3.6.2.Top-down characterization 48

Besides the neat profiling and optimization aid that this procedure provides, this kind of analysis
shown also that a “black-box” program can be categorized as CPU or memory-bound application in
a nonintrusive and unattended way, just by wrapping the application and collecting performance
counters out-of-band. In a vision of building an internal database for an energy-aware scheduler,
this kind of information may be considered as an additional attribute, as long as it can be related to
application and input file or memory utilization. As it was evident from the problem size scaling
analysis, the very same application with a different problem size or input file may give completely
different results concerning both performance and power consumption. The reliability of this
attribute would be therefore debatable.

3.6.3.Performance counters

Figure 3.6.3:1 reports a comparison of the cache-miss and branch misprediction ratios of
HPL+MKL, Quantum ESPRESSO, LAMMPS, HPL+Netlib and HPCG. As for the top-down
characterization, these tests were conducted with the ondemand governor and Turbo Boost enabled.

Once again, the trend is clear and doesn't need further comment, but something must be noted. For
an application, being dependent on large amounts of memory does not necessarily relate to being
memory-bound too. HPL, even though it is using more than 80% of the available memory in these
tests, can be extremely efficient in fetching the data, as the algorithm allows to exploit the cache
levels and data locality. Of course, many algorithms cannot be further optimized and the problem of
sparse data cannot be efficiently addressed, but for sure, a large amount of programs still can be
optimized to take advantage of the new architectures and the new features, increasing drastically
both the performance and the energy efficiency. The performance counters proved to be an
important tool in this respect, as a simple analysis can give lots of hidden information and deep
insights concerning a program that might not be noticed by reading, or writing, the code.

3.6.3.Performance counters 49

4. Conclusions

This section briefly summarizes the activity performed in this research project, highlights the results
obtained and the lessons learned. It also addresses some possible future directions and ideas that
could be further investigated.

A careful and in-depth performance/energy analysis has been conducted on a set of HPC workloads:
two standard and well known benchmarks and two scientific application widely used.
Several important results have been achieved:

• It was evidenced how HPL and HPCG currently represent two extremes of HPC
applications. One largely CPU-bound, one memory-bound.

• Other benchmarks shown that real-world applications are in between these two border cases.
QE and LAMMPS, at least for the input data and benchmarks tested, appeared as 2 typical
applications, with complex algorithms, lying within the range described by HPC and HPCG.

• HPL was tested and studied using different libraries and it was clearly shown that both
performance and energy impact can be largely affected by the kind of library. Netlib, even
though considered the reference BLAS and LAPACK implementation, if used for HPC
applications can lead to bad performance and wasted resources, while other libraries (not
necessarily commercial implementations) could provide better and more efficient
alternatives.

This study, despite the limited amount of time used, provides some clear indications about what can
be done and how it can be used for energy-efficiency optimization.

It was observed that the energy-efficiency of memory-bound applications actually benefits from
running at lower CPU frequency. Deciding to downclock an application in order to spare few watts,
though, is not always feasible nor useful.
Nevertheless, under a regime of power capping, knowing how an application behaves and reacts
may be useful to understand whether to run the application anytime, with a lower clock frequency
limiting the overall power consumption, or wait for available resources and run it at the fastest
speed possible for a shorter time. It was evident that what largely influences the energy-efficiency is
the time-to-solution more than the instant power consumption, as a greater performance for a
shorter time may be more convenient than a lower performance for a longer time.

On the technical side it could be noted the following:
• RAPL turned out to be a great feature, allowing to monitor the power consumption of a

system. Maybe not really meaningful for a single computer, in a large infrastructure and
coupled to a resource manager it can provide deep and accurate insight about how hardware
and software behave and interact.

• Performance counters represent a huge resource for code profiling and optimization. Many
caveats are hidden in this area, and often this doesn't immediately appear at first sight, often
taking for granted what standard tools report.

What was exposed in this work is just the tip of an iceberg, what lies underwater is impressive. For
example, an attempt (not fully documented) was made to figure out the best performance counters
in order to obtain L1i/L1d/L2/L3/TLB. Despite the efforts, it was extremely difficult to figure out
whether a measure was reliable or not. Most counters offer speculative counts, not real hardware
counts. Some include or exclude particular corner cases, or some specific metrics. Often, the

4.Conclusions 50

available documentation is not detailed, or a particular feature is undocumented or kept hidden.
Even the same performance events are reported differently depending on the microarchitecture, and
the documentation often doesn't keep up with these changes.
The potential is therefore great, and in this thesis we just started exploiting it.

Moreover this project have produced several tools that could have a significant impact on the
efficient energy management of an HPC infrastructure.
Here are the most important achievements:

• The monitoring software was improved (hwloc, numactl, sysconf, command line options).
• New pductl utility for remote command line based control and monitoring of the PDU.
• All the tools used were made available on HPC cluster for further study, many also as

loadable modules.
• LIKWID and pmu-tools data structures have been interfaced to perf, allowing greater

flexibility.
• The platform was benchmarked with greater results than those officially given.

All these tools are planned to be made available soon in a public git repository as open-source
software.

4.1.Future Perspectives

This investigation opened the Pandora's box. A huge amount of data was collected and analyzed in
many aspects. Some of the metrics obtained and a large portion of data had to be ignored, and many
other metrics could have been used for completely different analysis.

The performance counters can be used for a huge variety of different microbenchmarks and deeper
analysis of software and hardware behavior. For instance, in order to estimate the number of
floating-point operations per seconds of QE and LAMMPS, many counters have been collected.
These counters, could have led to a study about how an application uses or not vectorization.

This study unveiled a wide range of opportunities for further investigation. Among these, some have
been already scheduled in the near future.

1. Lots of efforts have been spent on understanding performance counters, their meaning,
identifying the most useful ones, the (un)availability and/or (un)reliability of many of them
depending on the architecture, and especially how different tools and libraries handle them.
A deeper analysis may expose performance events not only useful for code profiling and
optimization, but also for providing metrics to be integrated into resource management
systems, schedulers, and monitoring tools. Intel's official profiling tool, VTune[84], wasn't
used in this study, but could provide some useful insights about official Intel's strategies on
handling performance monitoring events.

2. Due to time constraints, the analysis of GPU power consumption was only explored enough
to give a hint about what could be the influence of moving the calculation from the CPU to
the accelerator, GPU DVFS wasn't approached at all. Exploring means to measure the power

4.1.Future Perspectives 51

consumption on MIC and GPGPU is therefore deemed important for the forthcoming
generations of “accelerated” codes. Moreover, performance counters and frequency scaling
are planned to be investigated also on these platforms.

3. The current evolution of HPC technologies (and market trends) are making of
energy-efficiency the new hot-topic. Large infrastructures requires fine-grained monitoring
of the resources, and as well, a wiser and more energy-friendly approach to resource
management. Integration of energy profiling features and power capping policies in queue
managers and schedulers is rapidly evolving. The experience gained during this work offers
a new opportunity to enhance these features, and to apply similar methodologies to a
production environment in order to deepen the insights already acquired with real-world
usage.

4. This project focused on exploratory testing, and challenged advanced and innovative
methods of investigation of application-level performance and energy-efficiency. In this
work some representative applications were benchmarked, therefore studying a broader
spectrum of applications may lead to even more relevant insights. Testing different scientific
workload and different real-world applications will allow to create, in an unattended or
semiautomatic way, a database of energy efficiency for HPC clusters/infrastructures.

5. An attempt was made to gather external power readings from various devices. Even though
it didn't provide accurate nor usable results on the tested platform, this strategy still
represents a good approach for other infrastructures. Many other devices available on HPC
systems may provide useful information for a wider and more accurate analysis of the
system (network, storage, fans, power supplies, motherboard and overall node power
consumption), and multinode scaling analysis may identify the impact of network-based
communication on the overall energy consumption of an application. A study on this respect
will be also evaluated.

4.1.Future Perspectives 52

5. Acknowledgments

I would like to express my gratitude to all the people who made this project possible.

I wish to thank COSINT for providing the infrastructure on which this research project was based.

I appreciate the support from CNR-IOM DEMOCRITOS that allowed me to participate to the
MHPC and granted me the time to conduct the research discussed in this dissertation.

My deepest gratitude to Dr. Andrea Bartolini (Micrel Lab) and Dr. Stefano Cozzini (MHPC), my
research supervisors, for their advice and assistance in keeping my progress on schedule.

I am grateful to all the teachers of the Master, for their patient guidance, enthusiastic encouragement
and useful critiques. I would like to acknowledge Dr. Christopher Dahnken (Intel, MHPC), whose
lectures inspired the performance counters analysis discussed in this dissertation.

Assistance provided throughout the Master by Giuseppe Piero Brandino, a.k.a. Pino, was greatly
appreciated.

I wish to extend my greatest and deepest appreciation and infinite gratitude to all the FOSS software
developers, system administrators and technical forums contributors all over the world, for the huge
amount and variety of software and helpful documentation made available on the web, making very
complex and extremely obscure tasks few clicks away from anyone's knowledge.

Thanks to Intel, for the great manuals and documentation, but please, next time make it grep'able
and parsable from the command line.

I also wish to thank the fellow students of the MHPC 2014-2015, for the help provided and for
keeping me sane through all the difficulties of this intense year.

Finally, I would like to express my heart-felt gratitude to Giorgia, for her support, understanding
and patience.

I would also like to apologize to all mankind and planet Earth for the huge amount of resources
wasted to accomplish this research project on... well... energy-efficiency. Sorry.

5.Acknowledgments 53

6. Bibliography

1: Eurotech, Aurora Systems, http://www.eurotech.com/en/hpc/hpc+solutions/data+center+hpc/Aurora+Systems

2: CO.S.IN.T., Consorzio per lo Sviluppo Industriale di Tolmezzo, http://www.cosint.it

3: Eurora, EURopean many integrated cORe Architecture, http://www.top500.org/system/178077

4: CINECA, http://www.cineca.it/

5: Green500, 2013/06, http://www.green500.org/lists/green201306

6: Top500, http://www.top500.org/

7: Thiane2, http://www.top500.org/system/177999

8: QUARTETTO, http://www.top500.org/system/178251

9: K. Bergman, et al., Exascale computing study: Technology challenges in achieving exascale systems., 2008,
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

10: Green500, http://www.green500.org/

11: Shoubu, http://www.top500.org/system/178542

12: Borghesi A., Conficoni C., Lombardi M. and Bartolini A., MS3: A Mediterranean-style job scheduler for
supercomputers - do less when it's too hot!, International Conference on High Performance Computing & Simulation
(HPCS), 2015, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7237025

13: Srinivas Pandruvada, Running Average Power Limit - RAPL,
https://01.org/blogs/tlcounts/2014/running-average-power-limit-%E2%80%93-rapl

14: Netlib, http://www.netlib.org/blas/

15: ATLAS, http://math-atlas.sourceforge.net/

16: OpenBLAS, http://www.openblas.net/

17: PLASMA, http://icl.cs.utk.edu/plasma/

18: MKL, https://software.intel.com/en-us/intel-mkl

19: QE, http://www.quantum-espresso.org/

20: LAMMPS, http://lammps.sandia.gov/

21: SLURM, http://slurm.schedmd.com/

22: Intel, Intel Xeon Processor E5-2697 v2 (30M Cache, 2.70 GHz),
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz

23: hwloc, Portable Hardware Locality, http://www.open-mpi.org/projects/hwloc/

24: CentOS, https://www.centos.org/

25: gcc, https://gcc.gnu.org/

26: OpenMPI, http://www.open-mpi.org/

27: PBSPro, PBS-Pro, http://www.pbsworks.com/

28: Yiannis Georgiou, David Glesser, Krzysztof Rzadca and Denis Trystram, Introducing Energy based fair-share
scheduling, 2014, http://slurm.schedmd.com/SUG14/energetic_fair_share.pdf

29: Yiannis Georgiou, Enhancing Slurm with Energy Consumption Monitoring and Control Features, 2012,
http://slurm.schedmd.com/slurm_ug_2012/Energy_Accounting-BULL-SUG2012.pdf

6.Bibliography 54

30: Bartolini, Andrea, et al., Unveiling eurora-thermal and power characterization of the most energy-efficient
supercomputer in the world., Proceedings of the conference on Design, Automation & Test in Europe. European Design
and Automation Association, 2014, http://www.date-conference.com/files/proceedings/2014/pdffiles/10.3_2.pdf

31: Micrel, Micrel Lab, http://www-micrel.deis.unibo.it/sitonew/

32: UNIBO, Università di Bologna, http://www.unibo.it/

33: numactl, numactl/libnuma, http://oss.sgi.com/projects/libnuma/

34: LIKWID, https://code.google.com/p/likwid/

35: NVML, NVidia Management Library, https://developer.nvidia.com/nvidia-management-library-nvml

36: nvidia-smi, NVIDIA System Management Interface,
https://developer.nvidia.com/nvidia-system-management-interface

37: snmp-utils, Net-SNMP, http://www.net-snmp.org/

38: IPMItool, http://sourceforge.net/projects/ipmitool/

39: cpufrequtils, https://www.kernel.org/pub/linux/utils/kernel/cpufreq/

40: sysfs, https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

41: perf, https://perf.wiki.kernel.org/

42: Gnuplot, http://www.gnuplot.info/

43: HPL, http://www.netlib.org/benchmark/hpl/

44: HPCG, https://software.sandia.gov/hpcg/about.php

45: Jack Dongarra, Piotr Luszczek and Michael Heroux, Toward a new (another) metric for ranking High Performance
Computing systems, 2014, http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140331/Dongarra.pdf

46: Jack Dongarra, ICSC 2014 Architecture-aware Algorithms and Software for Peta and Exascale Computing, 2014,
http://icsc2014.sjtu.edu.cn/wp-content/uploads/2014/05/ICSC2014-Jack.pdf

47: Intel, "Intel Xeon Processor E5 v2 Product Family, 1/2, Datasheet - Volume One of Two", March 2014,
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf

48: CPUfreq, https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

49: Intel, "Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 3B: System Programming Guide,
Part 2", September 2015,
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

50: Intel, Intel 64 and IA-32 Architectures Software Developer Manuals,
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

51: Intel, "Intel 64 and IA-32 Architectures Optimization Reference Manual", September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

52: Intel, "Intel Xeon Processor E5 v2 and E7 v2 Product Families Uncore Performance Monitoring Reference
Manual", February 2014,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf

53: Intel, "Intel Xeon Processor E5 v2 Product Family, 2/2, Datasheet - Volume Two: Registers", March 2014,
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-2.pdf

54: Intel, "Chapter 14, 14.9.2 POWER AND THERMAL MANAGEMENT: RAPL", September 2015,
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

55: Intel, "APPENDIX B: USING PERFORMANCE MONITORING EVENTS", September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

6.Bibliography 55

56: Alexander Supalov, Andrey Semin, Michael Klemm and Christopher Dahnken, Optimizing HPC Applications with
Intel Cluster Tools: Hunting Petaflops, 2014,

57: Andi Kleen, Measuring workloads with toplev -- TopDown High level overview,
https://github.com/andikleen/pmu-tools/wiki/toplev-manual

58: Intel, Appendix B: Using performance monitoring events -- B.1 Top-down analysis method, September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

59: Jackson Marusarz, How to Tune Applications Using a Top-Down Characterization of Microarchitectural Issues,
https://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectu
ral-issues

60: Aman Singh and Anup Buchke, A Study of Performance Monitoring Unit, perf and perf_events subsystem,
http://rts.lab.asu.edu/web_438/project_final/CSE_598_Performance_Monitoring_Unit.pdf

61: Treibig, J. and Hager, G. and Wellein, G., LIKWID: A lightweight performance-oriented tool suite for x86 multicore
environments, Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, 2010, http://arxiv.org/abs/1004.4431

62: libpfm, libpfm4/perfmon2, http://perfmon2.sourceforge.net/

63: pmu-tools, https://github.com/andikleen/pmu-tools

64: PAPI, http://icl.cs.utk.edu/papi/

65: msr-tools, https://01.org/msr-tools

66: perfmon, https://download.01.org/perfmon/

67: powertop, https://01.org/powertop

68: turbostat, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/power/x86/turbostat

69: cpupowerutils, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/power/cpupower

70: cpuspeed, http://carlthompson.net/Software/CPUSpeed

71: LAMMPS Lennard-Jones benchmark, http://lammps.sandia.gov/bench.html#lj

72: Linux Perf sources, user-space, https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/

73: Linux Perf sources, kernel-space,
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/arch/x86/kernel/cpu/

74: Intel, "[SDM3B2] Chapter 19, Performance Monitoring Events", September 2015,
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

75: Intel, "BT257. Performance Monitor Instructions Retired Event May Not Count Consistently", "Intel Xeon
Processor E5 Product Family Specification Update", page(s) 87, January 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-family-spec-update.pdf

76: Intel, Memory and Cache Profiling Erratum on Intel Xeon processor E5 family,
https://software.intel.com/en-us/articles/performance-monitoring-on-intel-xeon-processor-e5-family

77: Intel, "Desktop 3rd Generation Intel CoreTM Processor Family Specification Update", April 2015,
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

78: Intel, "BV98. Performance Monitor Counters May Produce Incorrect Results", "Desktop 3rd Generation Intel
CoreTM Processor Family Specification Update", page(s) 48, April 2015,
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

79: Intel, "BU1. Performance Monitor Instructions Retired Event May Not Count Consistently", "Desktop 3rd
Generation Intel CoreTM Processor Family Specification Update", page(s) 52, April 2015,
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

6.Bibliography 56

80: Intel, "BV112. Performance Monitor Instructions Retired Event May Not Count Consistently", "Desktop 3rd
Generation Intel CoreTM Processor Family Specification Update", page(s) 52, April 2015,
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

81: Linux Kernel Mailing List, https://lkml.org/lkml/2015/3/23/417

82: PAPI, Counting Floating Point Operations on Intel Sandy Bridge and Ivy Bridge,
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

83: Intel forum, Interpreting the AVX counter results,
https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe/topic/277877

84: VTune, https://software.intel.com/en-us/intel-vtune-amplifier-xe

85: Intel, Avoiding and Identifying False Sharing Among Threads,
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

86: Jackson Marusarz, Cache Miss Rates in Intel VTune Amplifier XE,
https://software.intel.com/en-us/articles/cache-miss-rates-in-intel-vtune-amplifier-xe

87: Peter Wang, Estimate the penalty of Cache Miss more accurate on Ivy-bridge?,
https://software.intel.com/en-us/blogs/2013/07/01/estimate-the-penalty-of-cache-miss-more-accurate-on-ivy-bridge

88: Georgios Bitzes and Andrzej Nowak, The overhead of profiling using PMU hardware counters, 2014,
http://openlab.web.cern.ch/sites/openlab.web.cern.ch/files/technical_documents/TheOverheadOfProfilingUsingPMUhar
dwareCounters.pdf

89: Intel, Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 1: Basic Architecture,
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

90: Intel, Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 3 (3A, 3B, 3C & 3D): System
Programming Guide,
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

91: Intel, "Chapter 19, Performance Monitoring Events", September 2015,
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

92: Intel, "B.3.2: Locating Stalls in the Microarchitecture Pipeline", September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

93: Intel, "B.3.3.1: Precise Memory Access Events", September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

94: Intel, "B.4.2: Hierarchical Top-Down Performance Characterization Methodology and Locating Performance
Bottlenecks", September 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

95: Intel, "Intel Xeon Processor E5 Product Family Specification Update", January 2015,
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-family-spec-update.pdf

6.Bibliography 57

7. Appendices

Appendix A. List of Acronyms

AC: Alternating Current
ACPI: Advanced Configuration and Power Interface
ALU: Arithmetic Logic Unit
AMBER(MD): Assisted Model Building with Energy Refinement (Molecular Dynamics) package
API: Application Program Interface
APM: Advanced Power Management
ATLAS: Automatically Tuned Linear Algebra Software
AVX: Advanced Vector Extensions
BE: Back-End
BIOS: Basic Input-Output System
BLAS: Basic Linear Algebra Subprograms
CPI: Clock/Cycles Per Instruction
CPU: Central Processing Unit
CSR: Configuration Space Registers
DC: Direct Current
DMI: Direct Media Interface
DP: Double Precision
DRAM: Dynamic Random-Access Memory
DVFS: Dynamic Voltage and Frequency Scaling
EIST: Enhanced Intel SpeedStep
ESPRESSO: opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization
ER: Embedded Controller
EURORA: EURopean many integrated cORe Architecture
FE: Front-End
FLOPS: Floating-Point Operations Per Second
FMA: Fused Multiply-Add
FOSS: Free and Open-Source Software
FP: Floating Point
FPU: Floating-Point Unit
GEMM: GEneral Matrix Multiplication
(GP)GPU: (General-Purpose) Graphics Processing Unit
HPC: High Performance Computing
HPCG: High Performance Conjugate Gradient
HPL: High Performance Linpack
IGP: Integrated Graphics Processor
IMC: Integrated Memory Controller
IOH: Input/Output Hub
IPC: Instructions Per Cycle
IPMI: Intelligent Platform Management Interface
IVB: IVy Bridge
L1/L2/L3: Level 1/2/3 cache
L1d / L1i: Level 1 Data cache / Level 1 Instruction cache
LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator
LAPACK: Linear Algebra PACKage
LIKWID: Like I Knew What I am Doing
LLC: Last Level Cache / Longest Latency Cache
MIC: Many Integrated Core
MKL: (Intel) Math Kernel Library
MMIO: Memory Mapped I/O

Appendix A.List of Acronyms 58

MPI: Message Passing Interface
MSR: Machine/Model-Specific Register
NUMA: Non-Uniform Memory Access
OMP: OpenMP
OpenMP: Open Multi-Processing
OpenMPI: Open Message Passing Interface
OS: Operating System
PAPI: Performance Application Programming Interface
PBS: Portable Batch System
PCH: Platform Controller Hub
PCI: Peripheral Component Interconnect
PCM: Performance Counter Monitor
PCU: Power/Package/Platform Control Unit
PDU: Power Distribution Unit
PECI: Platform Environment Control Interface
PEBS: Precise Event Based Sampling
PLASMA: Parallel Linear Algebra for Scalable Multi-core Architectures
PMC: Performance Monitoring Counter
PMI: Performance Monitoring Interrupt
PMU: Performance Monitoring Unit
PWscf: Plane-Wave Self-Consistent Field
QE: Quantum ESPRESSO
QoS: Quality of Service
QPI: QuickPath Interconnect
RAM: Random-Access Memory
RAPL: Running Average Power Limit
RFTS: Run Fast Then Stop
SDM: (Intel) Software Developer's Manual
SIMD: Single Instruction, Multiple Data
SLURM: Simple Linux Utility for Resource Management
SNMP: Simple Network Management Protocol
(NVidia-)SMI: System Management Interface
SMT: Simultaneous MultiThreading (Hyper-Threading)
SoC: System-on-Chip
SP: Single Precision
SSE: Streaming SIMD Extensions
sysfs: system filesystem
SVID: Serial Voltage ID
TCO: Total Cost of Ownership
TSC: Time Stamp Counter
TDP: Thermal Design Power / Thermal Design Point
TLB: Translation Lookaside Buffer
TMAM: Top-Down Microarchitecture Analysis Method
Uop: Micro-Operation
VM: Virtual Machine
VR: Voltage Regulator

CINECA: Consorzio INteruniversitario per il Calcolo Automatico
CNR-IOM: Consiglio Nazionale delle Ricerche - Istituto per l'Officina dei Materiali
CO.S.IN.T./COSINT: COnsorzio per lo Sviluppo INdustriale di Tolmezzo
DEMOCRITOS: DEMOCRITOS MOdeling Center for Research In aTOmistic Simulation
MHPC: Master In High Performance Computing
Micrel lab: MICroELectronic Laboratory
SISSA: Scuola Internazionale Superiore di Studi Avanzati
UNIBO: UNIversity of BOlogna

Appendix A.List of Acronyms 59

Appendix B. TMAM formulas and performance events

The following formulas, extracted from [59], can be used in order to obtain the pipeline slots:

SLOTS = PIPELINE_WIDTH * CPU_CLK_UNHALTED_THREAD
Front-End Bound = IDQ_UOPS_NOT_DELIVERED_CORE / SLOTS
Retiring = UOPS_RETIRED_RETIRE_SLOTS / SLOTS
Bad Speculation = (UOPS_ISSUED_ANY - UOPS_RETIRED_RETIRE_SLOTS +
 PIPELINE_WIDTH * INT_MISC_RECOVERY_CYCLES) / SLOTS
Back-End Bound = 1-(Front-End Bound + Retiring + Bad Speculation)

PIPELINE_WIDTH for Intel Ivy Bridge is 4.

The performance events names can be translated to the following hex flags:

Event Event Event Event
Code Mask Hexcode name

3Ch 00h 0x003C CPU_CLOCK_UNHALTED_THREAD_P
9Ch 01h 0x019C IDQ_UOPS_NOT_DELIVERED_CORE
C2h 02h 0x02C2 UOPS_RETIRED_RETIRE_SLOTS
0Eh 01h 0x010E UOPS_ISSUED_ANY
0Dh 03h 0x030D INT_MISC_RECOVERY_CYCLES

In the TMAM analysis exposed in this work, the aforementioned performance events have been
obtained using the hex flags by means of perf, and the calculation was demanded to gnuplot.

Appendix B.TMAM formulas and performance events 60

Appendix C. FLOPS from performance counters

--
Event Event Event Event
Code Mask Hexcode name
--
10h 01h 0x0110 FP_COMP_OPS_EXE.X87 [1]
10h 10h 0x1010 FP_COMP_OPS_EXE.SSE_FP_PACKED_DOUBLE [2]
10h 20h 0x2010 FP_COMP_OPS_EXE.SSE_FP_SCALAR_SINGLE [3]
10h 40h 0x4010 FP_COMP_OPS_EXE.SSE_PACKED_SINGLE [4]
10h 80h 0x8010 FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE [5]
11h 01h 0x0111 SIMD_FP_256.PACKED_SINGLE [6]
11h 02h 0x0211 SIMD_FP_256.PACKED_DOUBLE [7]
--

--
Scalar SP FP_COMP_OPS_EXE.SSE_FP_SCALAR_SINGLE
Scalar DP FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE
Packed SP (FP_COMP_OPS_EXE.SSE_PACKED_SINGLE * 4) +

(SIMD_FP_256.PACKED_SINGLE * 8)
Packed DP (FP_COMP_OPS_EXE.SSE_FP_PACKED_DOUBLE * 2) +

(SIMD_FP_256.PACKED_DOUBLE * 4)
Tot SP Scalar SP + Packed SP
Tot DP Scalar DP + Packed DP
GFLOPS (Tot SP + Tot DP) / 1e9 / elapsed_time
GFLOPS #2 (Tot SP + Tot DP + FP_COMP_OPS_EXE.X87) / 1e9 / elapsed_time
--

By calibrating the obtained results testing known algorithms, it appeared that the obtained count of
floating point operations was smaller by a factor 1.2, which was then considered as a multiply factor
to obtain the final estimation.
Although the performance results reported for QE and LAMMPS have been obtained and based
upon these concepts, further study should be considered to broadly verify this assumption.
Various sources confirm that floating-point performance counters are not reliable, though. [83]
[82] [34]

[1] Counts number of X87 uops executed (traditional 8087 style 80bit floating point operations) [negligible impact]
[2] Counts number of SSE* or AVX-128 double precision FP packed uops executed (2x 64bit DP packed into 128 bit register)
[3] Counts number of SSE* or AVX-128 single precision FP scalar uops executed (1x SP operation)
[4] Counts number of SSE* or AVX-128 single precision FP packed uops executed (4x 32bit SP packed into 128 bit register)
[5] Counts number of SSE* or AVX-128 double precision FP scalar uops executed (1x DP operation)
[6] Counts 256-bit packed single-precision floating-point instructions (8x 32bit SP packed into 256 bit register)
[7] Counts 256-bit packed double-precision floating-point instructions (4x 64bit DP packed into 256 bit register)

Appendix C.FLOPS from performance counters 61

Appendix D. Unused metrics

This appendix briefly presents the results of the exploratory testing attempted in order to obtain
additional power readings concerning the whole system (chassis, blades, network devices) from the
external power supply. Reliability and granularity of these readings were assessed (D.1.1).
Additional analysis (D.1.2) included a multinode test to validate the power readings obtained by the
rectifiers, and a scaling analysis aimed to identify any influence of network-based communication
on the overall power consumption.

Moreover, in Appendix D.2., the idle power of the CPUs was measured for each available
performance state. In conclusion, the plot reported in Appendix D.3. exposes some of the metrics
collected in this project that had to be ignored.

Appendix D.1. Power rectifiers

In a preliminary phase, the monitoring sensors of the 3 power rectifiers available upstream of each
chassis were meant to be used in order to detect the power consumption of an entire chassis, the
single blades and network devices.
The management interface of the power supply, accessible via SNMP, among several metrics
reports the current and the voltage of both the AC input and the DC output, hence the energy
absorbed and the power consumption of the system.
Unfortunately, these readings didn't turn out to be accurate enough, and were therefore ignored in
the subsequent tests. The following subsection describes and shows the outcome of this test phase.

Even though this test didn't lead to the expected results, the scripts written to query and manage the
rectifiers are now part of the management software suite of the infrastructure, now at disposal of the
vendor and the system administrators.

Appendix D.1.1. Power consumption detected by the power rectifiers

Some scripts and wrappers were written in order to query the power supply at fixed intervals while
performing various sequential operations, in particular the following stages were analyzed:

1. all off;
2. management rootcard powered on;
3. blade #1 on;
4. blade #2 on (#1 on but in idle);
5. ...
6. blade #N on (all previous blades powered on but in idle).

The graph 3.6.1 reports the average power consumption detected on each stage during the power up
of the components of the chassis #1, which contains 6 blades (without GPUs).

Appendix D.1.Power rectifiers 62

As can be seen from the data obtained, Figure D:1, the power increments almost linearly with the
number of blades. Nonetheless, in detail it is possible to observe that the consumption of each blade
is different, as reported in the plot at the bottom of D:1, which means that either an average power
must be assumed for all the blades or that each one has to be considered on its own.

The rootcard and the chassis components appear to use 50 to 100 W. Each blade powered on,
though, does not increase the total for the same amount, as the increments span from 50 to 80 W per
blade. Although the boot-up was already completed when each set of data was collected, the
reliability of this readings may be of course affected by spurious load of the operating system.

It can also be noted that input and output load of the rectifiers don't appear to be so strictly related,
fact that will be more evident in the following test.

For the second chassis, which contains 4 blades with 2 GPUs on each of them, more frequent
readings were considered, and various stages of the boot-up reported as well on the graph:

1. hardware power on;
2. IPMI interface booted and accessible;
3. OS still booting, but already replying at ping (network configured);
4. OS boot-up completed (ssh access and all services up & running, no load beside normal

activity).

Appendix D.1.Power rectifiers 63

In Figure D:2, although the output power of the rectifiers was increased by the power-on of the
rootcard and the first 2 blades, the input power didn't change at all, even though the power
consumption of the rootcard and the blades was around 90 W each. An increment can be noticed
only when the 3rd blade was switched on.

Should be noted that on the second chassis the blades were not installed on adjacent slots, some
slots were left empty and thus the load may not be distributed evenly, hence the surprising result.

Despite the fact that one chassis hosts 6 blades while the second only 4, the overall power
consumption is quite close, but the idle power of the 8 GPUs should be taken into account together
with the 4 nodes.

Appendix D.1.2. Detecting network devices power consumption using
the rectifiers

One of the measures expected to be obtained by using the rectifiers was the power consumption of
the network devices (InfiniBand host adapters).
The idea was to detect the power consumption of one or more nodes while running a benchmark
(HPL) loading the machine(s) but without any communication, then measure again when running
the benchmark in parallel on multiple nodes with communication. The difference was expected to
give a rough idea of the consumption demanded by the communication.

Appendix D.1.Power rectifiers 64

This test was performed only on chassis #2 using the 4 blades (#1 had to go back in production),
and included the following runs:

• single instance of HPL (24 MPI processes) on a single blade, while the others were in idle
state, repeated for each of the 4 blades (24 cores busy overall);

• single instance of HPL (24 MPI processes) on 2 blades at the same time, while the
remaining 2 were idling (paired as b21/b22 and b23/b24) (48 cores busy);

• single instance of HPL (24 MPI processes) on 4 blades at the same time (all 96 cores busy);
• single instance of HPL with 48 processes (2 nodes: b21/b22, b23/b24) (48 cores busy);
• single instance of HPL with 96 processes (4 nodes: b21,b22,b23,b24) (all 96 cores busy);
• 2 instances of HPL with 48 processes (2+2 nodes, b21/b22, b23/b24) (all 96 cores busy).

The size of the HPL input was scaled in order to use always the same amount of memory for each
MPI process and each node (~54 GB RAM).

The HPL executable used for this test was compiled against MKL. As discussed in section 3.2,
MKL delivered the highest performance and the shortest walltime, which was the most important
feature required to run such large amount of tests.

In the graph 3.6.2, just for the sake of comparison, each instance of a job spread on multiple nodes
is followed by an entry for each single blade involved, computed as the average for the run in
question. Furthermore, for the runs with single contemporary instances, the aggregated result is
reported too, so that the run with 4 single contemporary instances can be compared to the 2+2 and
the 4 parallel instances. Besides giving an idea of the scaling, the difference between this last sets
should have led to some insights concerning the power consumption due to the MPI communication
over the network.

As expected, the first plot, Figure D:3 top-left, which reports the contributions in percentage for the
3 main CPU sub-systems (CORE, UNCORE, DRAM) shows more or less identical results for all
the runs, since the the operations performed are basically the same independently of the number of

Appendix D.1.Power rectifiers 65

MPI processes. The contribution is distributed as 18% from the DRAM, 71% from the CORE and
11% the UNCORE.
The third plot, Figure D:3 top-right, confirms that the CPU is 100% loaded and the
computation/utilization pattern is exactly the same for all the instances.
The second plot, Figure D:3 top-center, reports the total energy consumed (kJoules), which is
computed as the average power consumption multiplied by the walltime. This plot confirms that
what defines the total energy consumption for a CPU-bound application is the time-to-completion.

The forth and fifth plots, Figure D:3 center row, shows the performance in GFLOPS and the
walltime as reported by HPL. As expected, the aggregate performance of 4 independent instances is
larger than 2 instances of a MPI run spread on 2 nodes, which is in turn larger than a single instance
of MPI on all 4 nodes. This difference is obviously due to the communication and the data
distribution across nodes, which affect as well the walltime.

Concerning the energy efficiency, expressed as GFLOPS/W in the sixth plot, Figure D:3
bottom-left, there's not much to say. Again, MPI on 4 nodes is less efficient than any other
combination due to the overhead of the communication. Plot Figure D:3 bottom-center, express the
efficiency as MFLOPS/J, and here, again, multinode MPI jobs result to be less efficient only
because of the larger walltime.

Finally, the last plot, Figure D:3 bottom-right, confirms once again that the values extracted from
the rectifiers cannot provide any evidence of the power consumption related to the communication,
nor give detailed information concerning the single blades. Between single-x4, mpi-2x2 and
mpi-1x4, in fact, no significant difference can be highlighted.

The graphs in Figure D:4 report the data acquired from the rectifiers.

Appendix D.1.Power rectifiers 66

Appendix D.2. Idle power consumption of the system

This section reports the power consumption of the CPUs detected when the system is idling.

Despite the fact that a specific frequency was imposed through the Linux frequency scaling
governor, Figure D:5, shows that the aggressive power saving policies of the CPU uniform the
power consumption by putting the unused cores in some sleep state (C-state 1, 3 or 6). The only
notable difference is that when Turbo Boost is explicitly chosen as performance state, the power
consumption of the DRAM gets slightly higher (+4 W, ~+20%). The ondemand governor, 1st bar of
both left and right panels, was running the CPU at the minimum frequency (1.2 GHz).

Figure D:6 reports the consumption when a single single-threaded application is demanding the
100% of one core (while the load on the other cores is still <0.3%) . The behavior is closer to what
would be expected in case of frequency scaling: the power consumption decreases when the
frequency does.
An important thing is highlighted by this test. The ondemand governor forces only one core to run at
the highest frequency with the Turbo Boost enabled. Nonetheless, the power consumption is lower
than what obtained when the Turbo Boost is imposed system-wide. The small delta in power
consumption is because in the latter case, also the second socket has the Turbo Boost enabled and
therefore presents the same delta observable for DRAM in Figure D:5 in respect of the other
frequencies.

Appendix D.2.Idle power consumption of the system 67

Figure D:7 confirm this hypothesis. By running two single-threaded applications, each bound to one
of the two sockets, ondemand highest performance state and userspace imposed Turbo Boost show the
same power consumption.

Appendix D.2.Idle power consumption of the system 68

Appendix D.3. msr-statd (omitted) metrics

Appendix D.3.msr-statd (omitted) metrics 69

Appendix E. Additional plots

Appendix E.1. HPL: power consumption by CPU sub-systems

Appendix E.1.HPL: power consumption by CPU sub-systems 70

Appendix E.1.HPL: power consumption by CPU sub-systems 71

Appendix E.2. HPL: problem size scaling

Appendix E.2.1. BLAS comparison

Appendix E.2.HPL: problem size scaling 72

Appendix E.2.2. Top-down characterization

Appendix E.2.HPL: problem size scaling 73

Appendix E.2.3. Performance counters

Appendix E.2.HPL: problem size scaling 74

Appendix E.3. HPL: problem size and frequency scaling

Appendix E.3.1. ATLAS

Appendix E.3.HPL: problem size and frequency scaling 75

Appendix E.3.2. MKL

Appendix E.3.HPL: problem size and frequency scaling 76

Appendix E.3.3. OpenBLAS

Appendix E.3.HPL: problem size and frequency scaling 77

Appendix E.3.4. Netlib

Note: due to the (extremely) long runtime of HPL+Netlib, no additional tests were performed for
1/1 and 1/2 size.

Appendix E.3.HPL: problem size and frequency scaling 78

Appendix E.4. HPCG: problem size and frequency scaling

Appendix E.4.HPCG: problem size and frequency scaling 79

Appendix E.4.HPCG: problem size and frequency scaling 80

Appendix F. Playing with performance counters

event mask hexcode mnemonic

CBh 01h 0x01CB MEM_LOAD_RETIRED.L1D_HIT

CBh 02h 0x02CB MEM_LOAD_RETIRED.L2_HIT

CBh 04h 0x04CB MEM_LOAD_RETIRED.L3_UNSHARED_HIT

D0h 81h 0x81D0 MEM_UOPS_RETIRED.LOADS

D1h 02h 0x02D1 MEM_LOAD_UOPS.RETIRED_L2_HIT

D1h 04h 0x04D1 MEM_LOAD_UOPS.RETIRED_L3_HIT

D1h 10h 0x10D1 MEM_LOAD_UOPS.RETIRED_L2_MISS

D1h 12h 0x12D1 MEM_LOAD_UOPS.RETIRED_L2_ALL

D1h 20h 0x20D1 MEM_LOAD_UOPS.RETIRED_L3_MISS

D1h 24h 0x24D1 MEM_LOAD_UOPS.RETIRED_L3_ALL

D1h 7Fh 0x7FD1 MEM_LOAD_UOPS.RETIRED_ALL

D2h 01h 0x01D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_MISS

D2h 02h 0x02D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HIT

D2h 04h 0x04D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HITM

D2h 08h 0x08D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_NONE

D3h 01h 0x01D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_LOCAL_DRAM

D3h 0Ch 0x0CD3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_DRAM

D3h 10h 0x10D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_HITM

D3h 20h 0x20D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_FWD

F0h 80h 0x80F0 L2_TRANS.ALL_REQUESTS

2Eh 41h 0x412E L3_LAT_CACHE.MISS (perf "cache-misses")

2Eh 4Fh 0x4F2E L3_LAT_CACHE.REFERENCE (perf "cache-references")

24h 01h 0x0124 L2_RQSTS.ALL_DEM_AND_DATA_RD_HIT

24h 03h 0x0324 L2_RQSTS.ALL_DEM_AND_DATA_RD

24h AAh 0xAA24 L2_RQSTS.MISS

40h 01h 0x0140 L1D_CACHE_LD.I_STATE

40h 02h 0x0240 L1D_CACHE_LD.S_STATE

40h 04h 0x0440 L1D_CACHE_LD.E_STATE

40h 08h 0x0840 L1D_CACHE_LD.M_STATE

40h 0Fh 0x0F40 L1D_CACHE_LD.MESI

80h 01h 0x0180 ICACHE.HITS

80h 02h 0x0280 ICACHE.MISSES

80h 03h 0x0380 ICACHE.ACCESSES

80h 04h 0x0480 ICACHE.IFETCH_STALL

Various attempts at cache-miss ratio:
L3_ALL = MEM_LOAD_UOPS.RETIRED_L3_HIT + MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HIT +
 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HITM + MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_HITM +
 MEM_LOAD_UOPS.RETIRED_L3_MISS
perf L3 = L3_LAT_CACHE.MISS / L3_LAT_CACHE.REFERENCE
L1d = L1D_CACHE_LD.I_STATE / L1D_CACHE_LD.MESI
L2 = MEM_LOAD_UOPS.RETIRED_L2_MISS / MEM_LOAD_UOPS.RETIRED_L2_ALL
L3 = MEM_LOAD_UOPS.RETIRED_L3_MISS / MEM_LOAD_UOPS.RETIRED_L3_ALL
likwid L1i = ICACHE.MISSES / ICACHE.ACCESSES
likwid L2 = L2_RQSTS.MISS / L2_TRANS.ALL_REQUESTS
forum L2 = 1 - (L2_RQSTS.ALL_DEM_AND_DATA_RD_HIT / L2_RQSTS.ALL_DEM_AND_DATA_RD)
forum L2 = L3_ALL / L2_RQSTS.ALL_DEM_AND_DATA_RD
forum L3 = MEM_LOAD_UOPS.RETIRED_L3_MISS / L3_ALL

Appendix F.Playing with performance counters 81

Appendix F.Playing with performance counters 82

Appendix F.Playing with performance counters 83

	1. Introduction
	1.1. The energy problem in HPC
	1.2. Motivation and approach

	2. Testbed
	2.1. Hardware
	2.2. Software
	2.2.1. General overview
	2.2.2. Power management and acquisition software
	2.2.3. Benchmarks
	2.2.4. BLAS libraries

	2.3. Technology
	2.3.1. Frequency scaling
	2.3.2. Hardware performance counters
	2.3.3. RAPL
	2.3.4. Top-down characterization - TMAM
	2.3.5. Tools

	3. Results
	3.1. Energy measurement
	3.2. HPL
	3.2.1. Comparing BLAS implementations
	3.2.2. Top-down characterization
	3.2.3. Performance counters
	3.2.4. Frequency scaling
	3.2.5. Problem size scaling
	3.2.6. HPL + GPU
	3.2.7. Summary of HPL investigation

	3.3. HPCG
	3.3.1. Frequency and problem size scaling
	3.3.2. Top-down characterization
	3.3.3. Performance counters
	3.3.4. Summary of HPCG investigation

	3.4. Quantum ESPRESSO
	3.5. LAMMPS
	3.6. Comparison
	3.6.1. Energy efficiency and frequency scaling
	3.6.2. Top-down characterization
	3.6.3. Performance counters

	4. Conclusions
	4.1. Future Perspectives

	5. Acknowledgments
	6. Bibliography
	7. Appendices
	Appendix A. List of Acronyms
	Appendix B. TMAM formulas and performance events
	Appendix C. FLOPS from performance counters
	Appendix D. Unused metrics
	Appendix D.1. Power rectifiers
	Appendix D.1.1. Power consumption detected by the power rectifiers
	Appendix D.1.2. Detecting network devices power consumption using the rectifiers

	Appendix D.2. Idle power consumption of the system
	Appendix D.3. msr-statd (omitted) metrics

	Appendix E. Additional plots
	Appendix E.1. HPL: power consumption by CPU sub-systems
	Appendix E.2. HPL: problem size scaling
	Appendix E.2.1. BLAS comparison
	Appendix E.2.2. Top-down characterization
	Appendix E.2.3. Performance counters

	Appendix E.3. HPL: problem size and frequency scaling
	Appendix E.3.1. ATLAS
	Appendix E.3.2. MKL
	Appendix E.3.3. OpenBLAS
	Appendix E.3.4. Netlib

	Appendix E.4. HPCG: problem size and frequency scaling

	Appendix F. Playing with performance counters

