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Abstract.  This  thesis  aims  to  explore  feasible  methods  to  profile,  from the 
energy  efficiency  point  of  view,  scientific  applications  by  means  of  the 
performance counters and the model-specific registers provided by Intel family 
microprocessors.  The  Aurora  HPC  system[1] used  as  testbed  was  made 
available by courtesy of CO.S.IN.T.[2], and it belongs to the same family of 
machines that enabled the Eurora[3] cluster hosted at Cineca[4] to reach the 1st 

rank  in  the  2013  Green500[5].  Retrieving  power  consumption  information 
through NVIDIA accelerators and external monitoring and management devices 
on such platform is explored too.
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1. Introduction

In this section, the main concepts and the motivation behind this work will be introduced.

1.1.The energy problem in HPC

Energy-consumption is one of the main limiting factors for the development of High Performance 
Computing (HPC1)  systems into the so-called "exascale"  computing,  which consists  of systems 
capable of at least one exaFLOPS. Indeed, the Top500 project[6], which ranks and details the 500 
most powerful computer systems in the world, already reports power consumption in the order of 
the  thousands  kilo  Watts  for  systems  with  “few”  petaFLOPS  of  computational  power.  As  of 
2015/11,  212  supercomputers  declare  a  total  power  of  over  1 MW,  3  of  which  over  10 MW: 
"Tianhe-2"[7], the supercomputer currently ranked at the top of the list with 34 PFLOPS, requires 
17.8 MW, and "QUARTETTO"[8],  a  cluster  ranked  “only”  67th with  1 PFLOPS,  requires  even 
more,  19.4 MW.  Following  this  trend,  an  exascale  supercomputer  built  with  the  technology 
available today would demand a power budget in the order of 500 MW, sustainable only with a 
dedicated power plant.  For this reason feasible exascale supercomputers will  have to fulfill  the 
20 MW power budget.[9] Reaching this target will require an energy-efficiency of 50 GFLOPS/W, 
one order of magnitude higher than today's greenest supercomputer. In fact, the Green500[10] list, 
which sorts the Top500 by energy-efficiency, ranks Tianhe-2 only 90th and QUARTETTO 499th. The 
greenest computer as of 2015/11, “Shoubu”[11], is capable to deliver 7 GFLOPS/W (ranked 135th in 
the Top500), which would still need 143 MW if scaled up to exascale.

Several power management strategies  can increase dynamically  the final energy-efficiency of a 
supercomputer  by  keeping  the  power  consumption  under  control  or  by  assessing  the  energy 
efficiency online. Practical examples can span from the power capping features of a job scheduler,  
to the (unattended) energy profiling of an application, tasks taken into exam with the project hereby 
presented.

In addition, due to energy cost and availability, power consumption of data centers is facing as one 
of the rising problems, thus energy efficiency is rapidly becoming a hot topic, especially moving 
towards  exascale  systems.  "Green"  computing  is  now  often  coupled  to  high-performance 
computing, introducing a new concept of "high-efficiency" computing, especially due to the fact 
that the total cost of ownership (TCO) of a HPC infrastructure is largely impacted by the power 
consumption during its life cycle.

This growing interest in energy efficiency is leading to new approaches to HPC as well as new 
hardware requirements. Sysadmins, engineers, decision makers (and eventually users) are becoming 
aware of the energy problem. There's a growing need for energy-aware resource management and 
scheduling,  in  order  to  implement  and  enforce  power  capping  constraints.  Doing  this,  though, 
requires probes and tools for monitoring the power consumption of a system and change the power 
consumption of the hardware at  run-time. To accomplish this,  hardware/software sensors report 
near-real-time  power  consumption.  The  software  interfaces  for  accessing  this  information  at 
run-time are rapidly evolving and more often integrated in high-end infrastructures.

1 Many acronyms will be used throughout this document. Their explanation and expansion can be found in Appendix A.
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At the monitoring level, novel concepts are emerging to increase the final user awareness on the 
energy efficiency. Energy-to-solution can be used to account the energy dissipated by the execution 
of the user code while energy profiling of the application provides more details about the "cost in 
energy" of running a specific code on a specific machine, and using a specific library.

At the power management level, several methods can be taken into account in order to reduce the 
power consumption of HPC resources by adapting their performance level to the workload demand.

Power wasted by idle resources can be reduced by mean of software power management policy, 
which will automatically put the idle resource into power saving modes (sleep, standby, power-off), 
and will power on/wake up the nodes when new workload is available. PDU power off can be used 
to further reduce the total power consumption.

Some hardware capabilities  can be exploited too,  for instance the Advanced Configuration and 
Power Interface (ACPI) defines sleeping states (S-states), power states (C-states) and performance 
states (P-states, for instance by means of Dynamic Voltage and Frequency Scaling (DVFS), Turbo 
Boost technology, RFTS mechanisms and power/clock gating) in order to dynamically configure 
and monitor the power consumption. All these features, which are implemented at hardware level 
by the CPUs, can be enabled by compliant motherboard's BIOS and exposed as a control knob to 
the operating system for run-time power-optimization.

While dynamic power management approaches, which trade-off performance for energy efficiency, 
may affect the final user QoS on the supercomputer infrastructure, emerging power capping policies 
[12] allows to constraint the total power consumption of the supercomputer by admitting only the 
jobs which fulfill a required power budget. A run-time-enforced reduced power budget saves energy 
by avoiding cooling over-provisioning. In addition by selecting the highest performance-per-watt 
resources first the overall energy-efficiency can be improved.

All the above strategies are now granting a lot of attentions, and a significant effort from the HPC 
industry  and  research  community  is  focused  on  the  development  of  energy-aware  resource 
management systems and schedulers.

All these techniques, to be effective, require run-time access to the system and power consumption 
status. Recent generations of microprocessors introduced specific registers that allow to measure the 
power consumption of  different  sub-systems (logical  and physical  areas)  of  the CPU with fine 
granularity.  For the Intel  family of processors, these metrics can be obtained accessing specific 
hardware counters through the Model-Specific Register (MSR) interface, in particular the so-called 
Running Average Power Limit (RAPL), which allows to monitor, control, and get notifications on 
System-on-Chip (SoC) power consumption (platform level power capping, monitoring and thermal 
management). RAPL is not an analog power meter, but rather estimates current energy usage based 
on a model driven by hardware performance counters, temperature and leakage models, and makes 
this information accessible through a set of counters[13].

In  addition,  large  infrastructures  can  count  on  several  sensors  and  devices,  for  instance  local 
machine hardware sensors, power distribution units (PDU), power grid counters, external hardware 
dependent probes and sensors. High-end machines offers out-of-band management and monitoring 
capabilities  (independently  of  the  host  system's  CPU,  firmware,  OS),  through  the  so-called 
Intelligent  Platform  Management  Interface  (IPMI),  which  allows  the  monitoring  of  system 
temperatures, voltages, fans, and power supplies.
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Other external devices can be instead accessed via various standard network-based protocols, like 
the Simple Network Management Protocol (SNMP), or proprietary protocols and connections.

Additional  local  hardware probes  and sensors interfaced to  the motherboard (depending on the 
vendor and models) can be queried using  lm-sensors (Linux monitoring sensors), which provides 
tools and drivers for monitoring temperatures, voltage, humidity and fans. The fam15h_power driver, 
for instance, permits to read the CPU registers providing power information of AMD Family 15h 
processors, similarly to what RAPL does for Intel microprocessors, although without the same level 
of granularity.

1.2.Motivation and approach

Power capping capabilities, energy-based policies and energy-aware scheduling, all require some 
insights concerning the power consumption of the system. Choices concerning the evolution of such 
systems must be based on the ability to estimate the power consumption of a specific job depending 
on the resources requested and the kind of task or calculation that will be performed. CPU-bound 
application will  draw more power from the CPU, and probably less from memory and storage. 
Memory-bound applications will demand more activity from memory and storage than from the 
CPU, thus moving the larger  power consumption to  other  sub-systems, while  the CPU will  be 
probably idling most of the time.  Real world applications are often a combination of both, and 
identifying which part will prevail may be an indication of what the power consumption could be.

Therefore, the capability of collecting application-based energy profiles and monitoring the power 
consumption of the entire system, will allow an energy-aware scheduler to predict the trend based 
on the applications that are queued for execution, and hence schedule the jobs in a way that allow to 
respect imposed power capping constraints.

The  purpose  of  the  first  phase  of  this  project  was  to  determine  an  energetic  profile  for  some 
well-known scientific applications, by identifying, in particular, the power consumption relative to 
some specific routines or hardware activities. Furthermore, this profiling included the comparison 
between different BLAS implementations, as supplied by widely used mathematical libraries, for 
the  same  application,  thus  highlighting  how  different  implementations  of  the  same  family  of 
routines can affect the power consumption in order to solve the very same problem.

Most  of  the  tests  in  this  phase  involved  the  High  Performance  Linpack  (HPL)  and  the  High 
Performance  Conjugate  Gradient  (HPCG) benchmarks.  Besides  being  well-known applications, 
used to characterize and rank the clusters of the Top500, these tools were chosen because the first is  
a CPU-bound application, while the second is memory-bound, difference that allowed to perform a 
study of the trade-off between energy consumption and performance by changing the frequency of 
the CPUs (DVFS).

HPL was compiled in several versions making possible to compare the performance delivered by 
various  BLAS  implementations,  in  particular  Netlib[14],  ATLAS[15],  OpenBLAS[16], 
PLASMA[17], Intel MKL[18].
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In  the  second  phase  of  this  project,  a  couple  of  real-world  scientific  applications  was  tested, 
Quantum  ESPRESSO[19] and  LAMMPS[20].  All  the  methods  used  to  analyze  the  previous 
benchmarks were then used on these applications. A lot of efforts was dedicated to the analysis of 
the performance counters and the top-down characterization, issues explained in details in section 
2.3 and throughout section 3.

With the exception of Intel's MKL, only Free and Open-Source Software (FOSS) was employed in 
this study. NVidia's CUDA accelerated Linpack was also used in this research, even though not 
strictly open.

The outline of this work is as follows: in section 2 the testbed will be explained both at hardware 
and  software  level,  including  the  technological  issues  and  solutions  explored  and  eventually 
adopted, as well as the way the benchmarks were chosen. In section 3, the results obtained will be 
exposed and discussed in details, for each type of analysis performed throughout this work. Finally, 
section 4 is devoted to the conclusions and the future perspectives that this research stimulated.

A rich set of appendices complete the work. Some specific details concerning analysis methods are 
reported in Appendix B. and Appendix C., while the results of exploratory testing are presented in 
Appendix D. Finally, many of the plots produced and cited in this document have been collected in 
Appendix E. and Appendix F.
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2. Testbed

In  this  section,  the  development  platform  will  be  introduced  and  detailed.  In  particular,  the 
hardware,  the  software  and  the  technological  peculiarities  of  the  approach  are  explained  in 
dedicated subsections.

2.1.Hardware

The basic requirements to perform this work were:

• super-user's privileges;

• dedicated master node + at least 2 computing nodes;

• Intel family processors supporting RAPL.

The  infrastructure  in  production  at  COSINT  (Amaro,  UD,  Italy)  was  able  to  fulfill  all  the 
requirements, and offered even more. The available platform, an Aurora[1] system developed by 
Eurotech  S.p.A.,  was  an  ideal  platform for  this  kind  of  analysis  since  it  belongs  to  the  same 
architecture that reached the 1st position in the 2013 Green500[5], the “greenest” platform, with 
3.2 GFLOPS/W.

Full control over a virtual machine (VM), used for testing  SLURM[21], and a computing node was 
initially granted full-time for the whole period covered by this project. Few more computing nodes 
were made available occasionally for scaling tests,  and external  monitoring devices were made 
accessible too.

The Aurora computing nodes under exam are equipped with 2 Intel Xeon Ivy Bridge processors 
with 12 cores each at 2.7 GHz, 64 GB of RAM, and 2 NVidia K20 GPUs.

In detail, the tests on this platform involved the following machines:

• 1x masternode / access node;

• 1x AURORA chassis with 6 blade (no accelerators);

• 1x AURORA chassis with 4 blade (2x NVIDIA GPU K20 on each blade);

• 10x blades with 2x 12-cores CPU Intel Ivy Bridge @2.7 GHz, and 64 GB of RAM;

• 1x virtual machine installed and configured as SLURM server;

• 2x blades configured as SLURM compute nodes.

The chassis used for most of the tests may be reported in plots and tables as "chassis 2".

The blade used for most of the tests is "b21" ('b'lade node, chassis #2, blade #1).

Unfortunately,  the  original  design  of  the  Aurora  platform,  developed  with  the  clear  intent  of 
providing an innovative and energy-friendly system (successfully), presents some side effects too. 
Due to the peculiar experimental nature of the platform (in between a technology demonstration and 
a production-ready architecture), some tools and sensors often available and used on mass-produced 
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high-end platforms are not available or just not implemented yet. For instance, the IPMI interface 
that manages the blades cannot be queried in order to obtain temperature and power readings, and 
the system does not offer any alternative interface or remotely-accessible sensor for this purpose.

Nevertheless, the external power supply can be queried via SNMP and it is able to provide real-time 
voltage, current, and temperature readings from the monitoring sensors of its 6 power rectifiers 
(electrical  devices  that  convert  alternating  current  (AC) to  direct  current  (DC)).  Each of  the  2 
available chassis of blades are directly powered by 3 of these 6 rectifiers. By combining the data 
collected from the 3 rectifiers connected upstream, it is possible to derive the total power absorbed 
by  all the blades of a chassis, although this value includes the chassis itself (rootcard controller, 
fans, ...). The granularity and precision are clearly suboptimal, but the idea was to obtain differential 
readings in order to exclude the background power consumption of the chassis and idling blades.

In order to obtain as much data as possible for the study of the power consumption, some tests 
hence included the reading obtained querying these devices while the benchmarks were running on 
one or more nodes at the same time (while the other nodes were idling). The analysis of these 
readings is reported in Appendix D.1.

Most of the analysis  hereby presented are based upon the microprocessor and its features.  The 
processor in use on the test platform is the Intel Xeon Ivy Bridge EP E5-2697 v2 @ 2.70 GHz[22], 
with 30 MB of L3 cache, in a dual-sockets server platform configuration (code-named Romley).

Section 2.3 will reveal additional details concerning the features of this family of processors.

The Figure 2.1:1 shows the internal topology of the processor as reported by lstopo (hwloc[23]).
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2.2.Software

This section provides all the details concerning the software layers of the test environment. The 
needs, and the software tested, developed, and eventually adopted will be discussed.

2.2.1.General overview

The operating system used is Linux, in particular a CentOS distribution [24], version 6.5, with the 
stock  kernel  2.6.32-358.23.2.el6.x86_64  and  default  utilities.  Additional  packages,  detailed  in 
sections 2.2.2 and 2.3, have been installed to perform low-level operations, like handling the power 
governor, the frequency scaling, and the performance counters.

The  libraries  and  executables  were  compiled  using  the  GNU  compiler  version  4.8.3  [25] and 
OpenMPI version  1.8.3  [26].  A license  for  Intel  compilers  and  MPI  was  not  available  on  the 
platform used.  Any  difference  in  performance,  though,  was  deemed  irrelevant  for  the  kind  of 
analysis meant to be performed on the system and on the software stack.

Even though the cluster was configured to use PBS-Pro[27] as resource manager and job scheduler, it 
was not involved during most of the tests, as direct access to the computing nodes was preferred 
(avoiding  cpusets and other unwanted features).  PBS-Pro doesn't currently support out-of-the-box 
energy-based scheduling policies, power capping mechanisms and per-job energy reports.
SLURM[21], though, an open-source workload manager, is rapidly evolving in this direction, already 
allowing  to  enable  the  report  of  per-job  power  consumption,  and  it  is  rapidly  moving  toward 
implementing and providing power capping capabilities and energy-based fair-sharing too.[28][29]
A virtual  machine  and  a  couple  of  computing  nodes  were  temporary  dedicated  to  setup  such 
framework (SLURM 14.11.7),  and some tests  have been conducted to investigate its  features.  The 
per-job energy reports, in particular, were used to compare the results obtained by the means of 
other monitoring utilities.

The  Eurora  Monitoring  Framework  [30],  a  set  of  scripts  and  utilities  developed  by  Micrel 
Lab[31]/UNIBO[32]/CINECA[4] and used for similar analysis on the Eurora cluster[3], was used in 
order to access the hardware performance counters and record the power consumption of a node 
during the run of the application under exam.
In the setup phase, the framework was adapted and improved. Some utilities, in particular the one 
which acquires the MSR/RAPL counters, called  msr-statd, and the one devoted to filter the data 
(msr-filter), have been modified in order to work on the COSINT cluster, and virtually, anywhere 
else  too.  In  particular,  these  utilities  have  been interfaced to  hwloc and  numactl[33] in  order  to 
automatically detect the hardware configuration at runtime (number of sockets, number of cores, 
core-to-socket map), and many command-line options have been added in order to modify at will all 
the vital parameters, hardcoded at compile-time in the original version.
The  overhead  of  this  utility  was  considered  negligible  as  its  CPU-time  was  measured  in 
1.2 milliseconds for each reading performed at regular intervals of 10 or 5 seconds. Should be noted 
that, due to the size of the registers and the frequency these registers are updated by the CPU, the  
interval  must  be  kept  reasonably  short  (<30 s),  as  some  counters  regularly  overflows  and  the 
software must be able to notice this and handle it to compensate.

The  modified  code  was  then  compared  to  the  energy  readings  obtained  through  SLURM and 
LIKWID[34]. From a first analysis, by detecting the power consumption of a run of HPL, the values 

2.2.1.General overview 7



reported by SLURM and msr-statd resulted to be compatible and reliable,  likwid-powermeter, though, 
reported values that wasn't possible to associate clearly to specific resources utilization. By using 
LIKWID versions 3.1.3 and 4.0.0, the values reported were not even compatible with each other. After 
these results,  LIKWID was not used for further testing. Should be noted, though, that at the time of 
this writing, the current git version of LIKWID (as retrieved the 2015/10/16) reports values compatible 
with the readings obtained with SLURM and the msr-statd utility.
At the end of this comparison, the software developed by Micrel Lab was chosen as it suited best all 
the requirements, as it is stand-alone, out-of-band (no instrumentation of the tested code is needed), 
flexible, easy to use and to adapt.

Performance monitoring events represent a powerful tool for the profiling and improvement of the 
performance of an application. Some of these performance events permit to understand whether an 
application is memory-bound or CPU-bound, or maybe bound to other components such as the 
GPU. This allows to identify where the application is bottlenecked and possibly indicate how to 
improve it.
A preliminary phase was devoted to study the available Linux utilities, libraries and APIs for the 
management  and  monitoring  of  system  performance  and  energy  consumption,  as  well  as 
programming techniques for low-level access to CPU performance counters and registers.
The  various  tools  and  techniques  that  have  been  used  to  retrieve  and  analyze  such  kind  of 
information will be illustrated and discussed throughout this document.

Several ad-hoc scripts and utilities were developed in order to collect other pieces of information 
and useful data for the analysis. Some of these scripts were used to access, for instance, the power 
rectifiers via  SNMP, while  many others were just  wrapper  scripts  for “perf” and other utilities 
(msr-statd,  cpufreq, ...), in order to automate the simulations by varying many of the parameters 
(core frequency, problem size, performance counters, ...). Many others were written and used to 
collect, parse and filter the huge amount and variety of data obtained. All these tools have been 
collected in a git repository and will be soon published as open-source software.

2.2.2.Power management and acquisition software

Various software was investigated, tested and used in order to acquire and collect the information 
needed, as well as for managing the environment. This section briefly reviews them, giving also 
some usage examples.

As mentioned in the previous section, the software developed by Micrel Lab/UNIBO on their study 
of the Eurora cluster, was modified and widely used to obtain RAPL power readings from the CPU.
msr-statd is  a  MSR/RAPL acquisition  software  written  in  C,  linked to  hwloc and  numactl,  that 
requires super-user's privileges in order to access the MSR kernel module interface (/dev/cpu/*/msr).
Usage example:

msr-statd --hwloc --background --path $PWD --prefix xhpl.openblas --interval 5 --truncate
msr-filter --input xhpl.openblas.msr.log > xhpl.openblas.msr.log.report
msr-compact.pl < xhpl.openblas.msr.log.report > xhpl.openblas.msr.log.summary

Concerning GPU power readings, a python script named gpu-statd (as well part of the Micrel Lab's 
Eurora  Monitoring  framework)  interfaced  to  the  NVidia  Management  Library  (NVML)[35] 
provided power consumption and load of the GPUs. Similar readings, even though with a far larger 
overhead, can be obtained by using the utility nvidia-smi[36].
Usage example:

gpu-statd start --path $PWD --prefix xhpl.nvidia --ts 5
gpu-filter.py --input xhpl.nvidia.gpu.log --gpus 2 > xhpl.nvidia.gpu.log.report
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Additional power consumption information was supposed to be collected by accessing the rectifiers 
and the power management of the Aurora blades. SNMP utils[37] and IPMI tools[38] were used in 
order to access the external power rectifiers and the IPMI management interface of the blades.
Some ad-hoc utilities were written in order to setup and poll the power supply and get readings at  
regular intervals.
Usage example:

ipmitool -H sp-b21 -U foo -P bar power status
ipmiwrap.sh b21 sensor list
snmpwalk -mALL -v2c -cfoobar pdu .1.3.6.1.4.1.10520.2.1.5.6.1.8
snmpbulkwalk -mALL -v2c -cfoobar pdu .1.3.6.1.4.1.10520.2.1.5.6.1.10
pductl -f status all
pductl -f pout 2

cpufreq-utils[39], a user-space utility provide by the kernel tools, was used to query and modify the 
frequency scaling governor and the CPU frequency, even though it  was wrapped by a script to 
simplify and modularize the utilities used.
(setting frequency and governor requires super-user's privileges).

cpufreq-info 
seq 0 23 | xargs -t -i cpufreq-set -r -c {} -g userspace
seq 0 23 | xargs -t -i cpufreq-set -r -c {} -f 2700000

Direct access to  sysfs[40] was exploited too for the same tasks.  Sysfs is a virtual filesystem on 
Linux, which provides user-space access to kernel objects, like data structures and their attributes. It 
is  possible  to  read  and write  various  flags,  which  will  be applied  by  the  kernel  to  the  proper 
sub-system or device.
(setting frequency and governor requires super-user's privileges).
Usage example:

read and set scaling governor:
grep . /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_governors
grep . /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor | sort -tu -k3n,3
echo userspace | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

read and set frequency:
grep . /sys/devices/system/cpu/cpu0/cpufreq/scaling_available_frequencies
grep . /sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq | sort -tu -k3n,3
echo 2700000 | tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_cur_freq

Beside the Eurora framework,  SLURM energy plugins (acct_gather_energy) and utilities provided by 
LIKWID (likwid-powermeter and likwid-perfctr) were tested to evaluate their capabilities of reporting 
energy consumption of a job/process, A comparison was performed to verify the power readings 
obtained and their  reliability,  in  order  to  figure  out  the  most  complete  and flexible  alternative 
(msr-statd was eventually chosen).
(may require super-user's privileges for some metrics)
Usage example:

likwid-powermeter 
likwid-perfctr -f -c 0-23 -C 0-23 -g ENERGY mpirun --np 24 xhpl
likwid-perfctr -f -c 1 -C 1 -g BRANCH /bin/ls

Linux Perf[41] was extensively used in order to collect the performance counters, needed also to 
perform the top-down characterization. Perf is a native Linux utility that interfaces its kernel-space 
layer (perf_events) to the user-space, allowing to access, read and collect the performance counters 
during the run time of a process. Perf_events interacts with the model-specific registers (MSR) and 
the performance monitoring unit  (PMU) of the CPUs through the  msr kernel  module.  The data 
collected can be post-processed in order to perform a deeper analysis and extract derived metrics, 
obtaining low-level runtime information about the software under exam, its performance, and its 
bottlenecks.
(may require super-user's privileges for some metrics)
Usage example:

perf stat sleep 1
perf stat -e branch-instructions,branch-misses /bin/ls
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perf stat -o ./perf.log -x, -e r03c,r19c,r2c2,r10e,r30d /bin/ls
perf stat -a -x, -o ./perf.log \

-e cpu/config=0x003C,name=CPU_CLOCK_UNHALTED_THREAD_P/ \
-e cpu/config=0x019C,name=IDQ_UOPS_NOT_DELIVERED_CORE/ \
-e cpu/config=0x02C2,name=UOPS_RETIRED_RETIRE_SLOTS/ \
-e cpu/config=0x010E,name=UOPS_ISSUED_ANY/ \
-e cpu/config=0x030D,name=INT_MISC_RECOVERY_CYCLES/ \
mpirun --np 24 xhpl

Finally, a huge number of ad-hoc scripts, filters, parsers and wrappers to run the benchmarks and 
collect and analyze the data were written in bash, awk, sed, perl, python, C, gnuplot[42].
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2.2.3.Benchmarks

Four  different  applications  were  used  in  this  work:  two  HPC  standard  benchmarks  and  two 
scientific applications in materials science. All the four packages are well-known in their respective 
scientific domain.

High Performance Linpack benchmark and the High Performance Conjugate Gradient benchmark.
have been used in the first phase to investigate and calibrate the profiling methods.

High  Performance  Linpack  (HPL)  is  a  portable  implementation  of  the  High  Performance 
Computing Linpack Benchmark widely used to benchmark and rank supercomputers for the Top500 
list.
HPL is CPU and memory intensive with non-ignorable communication.  HPL generates a linear 
system of equations of order n and solves it using LU decomposition with partial row pivoting. It 
requires installed implementations of MPI and makes use of the Basic Linear Algebra Subprograms 
(BLAS) libraries for performing basic vector and matrix operations.
The HPL package provides a testing and timing program to quantify the accuracy of the obtained 
solution as well as the time it took to compute it. The best performance achievable by this software 
on a system depends on a large variety of factors. The algorithm is scalable in the sense that its  
parallel efficiency is maintained constant with respect to the per-processor memory usage.[43]

The second benchmark tested is HPCG, the High Performance Conjugate Gradient, a benchmark 
designed  to  validate  the  performance  of  a  supercomputer  by  simulating  an  utilization  of  the 
resources closer to the real-world applications, often bound to frequent and sparse memory accesses 
and inter-node communication more than CPU dense computation.
High Performance Conjugate Gradient (HPCG) is a self-contained benchmark that generates and 
solves a synthetic 3D sparse linear system using a local symmetric Gauss-Seidel preconditioned 
conjugate gradient method. The HPCG Benchmark project is an effort to create a more relevant 
metric for ranking HPC systems than the HPL benchmark. Reference implementation is written in 
C++ with MPI and OpenMP support.[44]
Jack  Dongarra,  presenting  the  benchmark[45][46],  talks  about  a  “Performance  shock”.  The 
performance observed with HPCG can be even less than 1% of the peak performance of a system,  
far away from those obtained with HPL based mainly on the computing power of the CPU.

The fact that the algorithm is known, the applications are reliable, the input finely configurable, and 
both provide performance and timing, made of these tools the perfect samples to profile and later 
use as a reference for comparison. Beside these reasons, HPL is a CPU-bound application, while 
HPCG is memory-bound. This simple and basic difference permits to figure out how much being 
dense (or not) in the CPU influences the power consumption of an application.

HPL  was  tested  by  linking  various  BLAS  implementations,  and  for  each  of  them,  various 
performance counters were collected and later used for further analysis.
The power consumption  of  HPL was also monitored changing frequency scaling governor  and 
forcing different CPU frequencies for each run.
Another test was performed to investigate the hybrid CPU+GPU implementation (optimized and 
precompiled by NVidia), in order to verify the impact in terms of energy efficiency of moving the 
computation from the CPU to the GPU and scaling down the CPU frequency.
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The tests performed on HPCG include the power consumption by varying CPU frequency, problem 
size scaling test, as well as performance counters analysis and top-down characterization.

These two benchmarks were largely investigated in order to obtain reliable basis to study additional 
applications,  whose  behavior  could  be  unknown,  but  likely  residing  within  the  “extremes” 
represented by HPL and HPCG.

The next stage was dedicated to the analysis of two scientific applications commonly used in HPC, 
taken as real-world examples of actual calculations performed on the cluster under exam: Quantum 
ESPRESSO and LAMMPS.

Quantum  ESPRESSO  is  a  software  suite  for  ab-initio  quantum  chemistry  methods  of 
electronic-structure calculation and materials modeling. It is based on Density Functional Theory, 
plane  wave  basis  sets,  and  pseudopotentials.  The  core  plane  wave  DFT functions  of  QE  are 
provided  by  the  PWscf  (Plane-Wave  Self-Consistent  Field)  component,  a  set  of  programs  for 
electronic structure calculations within density functional theory and density functional perturbation 
theory, using plane wave basis sets and pseudopotentials.[19]
The data set used for Quantum ESPRESSO (pw.x in particular) is a scaled down input taken from a 
real simulation performed by a user of the cluster. In this test a Palladium surface is modeled, using 
a slab geometry. Most of the computational time is therefore spent in linear algebra operations such 
as matrix-vector multiplications, as well as in fast Fourier transforms.

LAMMPS is a classical molecular dynamics code. LAMMPS has potentials for solid-state materials 
(metals,  semiconductors)  and  soft  matter  (biomolecules,  polymers)  and  coarse-grained  or 
mesoscopic systems. It  can be used to  model  atoms or,  more generically,  as a parallel  particle 
simulator  at  the  atomic,  meso,  or  continuum scale.  LAMMPS runs  on  single  processors  or  in 
parallel using message-passing techniques and a spatial-decomposition of the simulation domain. 
The code is designed to be easy to modify or extend with new functionality.[20]
The standard Lennard-Jones liquid benchmark, provided with the LAMMPS, was used to profile 
the application. The input was tuned and scaled up to 70M atoms to make the runtime close to 
10 minutes.

2.2.4.BLAS libraries

There are many BLAS implementations available on the market, and each implementation deliver 
different level of performance. If using a different algorithm to solve the same problem leads to 
difference performance, it means also that its implementation is able to exploit better (or worse) the 
underlying  hardware.  As  a  consequence,  the  power  consumption,  and  therefore  the  energy 
efficiency, must be impacted too by this different distribution of the resources' utilization.
This study aimed to identify such difference.

This evaluation included the reference BLAS from Netlib, the automatically tuned implementation, 
ATLAS,  the  proprietary  and  closed-source  Intel  MKL  version,  and  the  OpenBLAS 
highly-optimized free and open-source implementation. The compilation was performed using gcc 
compiler  and  standard  optimization  flags  have  been  applied.  No  further  tune  was  done  at 
compilation phase.
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PLASMA[17] was also tested, but it relies on a 3rd party BLAS library, and it can be compiled and 
linked  against  any  of  the  aforementioned  BLAS  implementations.  Beside  providing  its  own 
implementation of many BLAS and LAPACK routines,  PLASMA acts simply as a wrapper for 
many others (in some cases still  optimizing their access and utilization). In this case, though, it 
turned out  that  the  performance achieved using  PLASMA was  the  very same achieved by the 
underlying BLAS library it was linked to, hence the BLAS routines invoked by HPL were just  
passed-through. PLASMA was therefore excluded from further analysis.
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2.3.Technology

This  section  provides  some technical  details  concerning the  technology surrounding the  power 
management of the microprocessor, the hardware counters and the performance events used and 
discussed in this work. This section reports also the challenges and difficulties in accessing and 
interpreting low-level data and the issues faced during the tests and the analysis phase.

2.3.1.Frequency scaling

Microprocessors have seen a continuous evolution during the years, racing to reach higher clock 
frequencies.  The  frequency  increment,  though,  led  as  well  to  higher  power  consumption  and 
dissipation. Various solutions have been adopted in order to reduce these factors while maintaining 
the performance. Aggressive power saving policies have been implemented in order to reduce the 
power consumption when a resource is not in use or when the highest computing power is not 
required.

The Advanced Configuration and Power Interface (ACPI) defines sleeping states (S-states), power 
states (C-states) and performance states (P-states) in order to dynamically configure and monitor the 
power consumption. All these features are implemented at hardware level by the microprocessors 
and configurable by compliant motherboard's BIOS and, dynamically, at runtime by the operating 
system.

Some  of  these  solutions  involved  methods  like  the  Dynamic  Voltage  and  Frequency  Scaling 
(DVFS),  Run Fast Then Stop (RFTS) mechanisms and power/clock gating.  Intel  processors,  in 
particular, supports Enhanced Intel SpeedStep (EIST) and Turbo Boost technologies, by means of 
voltage and frequency scaling, internal power capping mechanisms and deep sleep states.

Intel  Turbo  Boost  Technology  is  a  feature  that  allows  the  processor  to  opportunistically  and 
automatically  run  faster  than  its  rated  operating  frequency  if  it  is  operating  below  power, 
temperature, and current limits. The result is increased performance.
The processor's rated frequency assumes that all execution cores are running an application at the 
thermal design power (TDP). However, under typical operation, not all cores are active. Therefore 
most applications are consuming less than the TDP at the rated frequency. To take advantage of the 
available TDP headroom, the active cores can increase their operating frequency.
To determine  the  highest  performance frequency amongst  active  cores,  the  processor  takes  the 
following into consideration:
• The number of cores operating in the C0 state.
• The estimated current consumption.
• The estimated power consumption.
• The die temperature.
Any of these factors can affect the maximum frequency for a given workload. If the power, current, 
or thermal limit is reached, the processor will automatically reduce the frequency to stay with its 
TDP limit.[47]

DVFS is a technique that allows to reduce the power consumption by acting on the frequency at  
which the CPU is clocked, or its voltage, or both (typically). Lowering the clock frequency, though, 
usually increases the time-to-solution or walltime (or runtime) of an application. This work aims to 
verify the influence of this fact on CPU-bound, memory-bound and real-life scientific applications.
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CPU frequency scaling enables the operating system to scale the CPU frequency up or down in 
order to save power. CPU frequencies can be scaled automatically depending on the system load, in 
response to ACPI events, or manually by user-space programs.

The  Dynamic  CPU frequency  scaling  infrastructure  implemented  in  the  Linux kernel  is  called 
CPUfreq[48].  CPUfreq is demanded to enforce specific frequency scaling policies, which consist of 
(configurable) frequency limits (min,max) and CPUfreq governor to be used (power schemes for the 
CPU). Available governors are:
powersave: sets the CPU statically to the lowest frequency within the borders of  scaling_min_freq 

and scaling_max_freq (/sys/devices/system/cpu/cpu*/cpufreq/scaling_{min,max}_freq)
performance: sets the CPU statically to the highest frequency within the borders of scaling_min_freq 

and scaling_max_freq.
ondemand: dynamically sets the CPU depending on the current usage. Sampling rate (how often the 

kernel must look at the CPU usage and make decisions on what to do about the frequency) and 
threshold (average CPU usage between the samplings needed for the kernel to make a decision 
on whether it should increase the frequency, e.g.: average usage > 95%, CPU frequency needs to 
be increased) can be defined.

conservative: like the "ondemand" governor. It differs in behavior in that it gracefully increases and 
decreases the CPU speed rather than jumping to max speed the moment there is any load on the 
CPU. Available parameters are similar to "ondemand".

userspace: allows the (super)user to set the CPU to a specific frequency by making a  sysfs file 
"scaling_setspeed" available in the CPU-device directory.
 (/sys/devices/system/cpu/cpu*/cpufreq/scaling_setspeed)

The combination of the running kernel (2.6.32-358.23.2.el6.x86_64) and the IVB-EP processor in 
use  on  the  test  platform  allows  to  select  the  governors  ondemand,  userspace or  performance 
(/sys/devices/system/cpu/cpu9/cpufreq/scaling_available_governors).

The  frequencies  that  can  be  selected  using  the  “userspace”  governor  are  (in  kHz):  2701000 
(Turbo Boost),  2700000  (nominal  frequency),  2400000,  2200000,  2000000,  1800000  1600000, 
1400000, 1200000 (/sys/devices/system/cpu/cpu*/cpufreq/scaling_available_frequencies).

At hardware-level, the frequency is controlled by the processor itself and the P-states exposed to 
software are related to performance levels. Even if the scaling driver selects a single P-state the 
actual frequency the processor will run at is selected by the processor itself.  In order to reduce 
energy costs, the processor may also shift one (or more) core and memory into lower power states 
(higher  C-state) when idle,  despite a P-state was selected by the OS. C-states  available on the 
IVB-EP are C0 (active), C1 (halt), C3 (deep-sleep), C6 (deep power down). This phenomenon is 
observed in Appendix D.2.
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2.3.2.Hardware performance counters

Most modern  microprocessors  provide  hardware  counters  that  monitor  and report  the  count  of 
hardware-related events concerning the CPU and its activity, including information like the elapsed 
clock ticks, instructions issued and retired, cache hits/misses, memory accesses and I/O read/write 
operations, which allow to obtain various derived metrics.
These hardware counters, called Performance Monitoring Counters (PMC), can be accessed using 
low-level calls to specific Configuration Space Registers (CSR), and can be used for the monitoring 
of  the  performance  of  the  system,  profiling  of  applications  and  their  tuning.  Various  types  of 
performance counter are implemented, covering different performance interests. Some counters can 
provide information regarding each single core of the CPU, some provide socket-wide information. 
“Socket”  and  “package”  are  sometimes  used  interchangeably,  but  relate  to  the  same  concept: 
everything available on the processor die.  Other  distinctions will  be discussed in the following 
sections.

The IVB-EP processors support the following configuration register types:
• PCI  Configuration  Space  Registers  (CSR):  chipset  specific  registers  that  are  located  at  PCI 

defined address space.
• Machine Specific Registers (MSR), accessible by specific read and write instructions (rdmsr, 

wrmsr) accessible by OS ring 0 (the kernel mode with the highest privilege) and BIOS.
• Memory-mapped I/O (MMIO) registers: accessible by OS drivers.

The followings are the counters available on IVB-EP and directly or indirectly used in this work:
- per-core counters:

• 3 fixed-purpose counters, each can measure only one specific event:
Counter name Event name
FIXC0 INSTR_RETIRED_ANY
FIXC1 CPU_CLK_UNHALTED_CORE
FIXC2 CPU_CLK_UNHALTED_REF

• 4 general-purpose counters, PMC<0-3>, each can be configured to report a specific event.
• 1 thermal counter which reports the current temperature of the core.

- socket-wide counters:
• Energy  counters:  provide  measurements  of  the  current  energy  consumption  through  the 

RAPL interface (see section 2.3.3).
Counter name Event name
PWR0 PWR_PKG_ENERGY
PWR1 PWR_PP0_ENERGY
PWR2 PWR_PP1_ENERGY (not available on IVB-EP)
PWR3 PWR_DRAM_ENERGY

• Home Agent  counters  (BBOX<0,1>C<0-3>):  protocol  side  of  memory  interactions,  memory 
reads/writes ordering (modular ring to IMC)

• LLC-QPI  fixed  and  general-purpose  counters  (SBOX<0,1,2>FIX,  SBOX<0,1,2>C<0-3>):  LLC 
snooping/forwarding and LLC-to-QPI related activities.

• LLC counters (CBOX<0-15>C<0-3>): LLC coherency engine
• UNCORE  counters  (UBOXFIX,  UBOX<0,1>):  measurements  of  the  management  box  in  the 

uncore (frequency of the uncore, physical read/write of distributed registers across physical 
processor using the Message Channel, interrupts handling)

• Power  control  unit  (PCU) fixed  and general-purpose  counters  (WBOX<0,1>FIX,  WBOX<0-3>): 
measurements  of  the  power  control  unit  (PCU)  in  the  uncore  (core/uncore  power  and 
thermal management, socket power states)
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• Memory  controller  fixed  and  general-purpose  counters  (MBOX<0-7>FIX,  MBOX<0-7>C<0-3>): 
DRAM related events (clock frequency, memory access, ...)

• Other Ring related counters: Ring to QPI (RBOX<0,1,2>C<0-2>), Ring to PCIe (PBOX<0-3>)
• IRP box counters IBOX<0,1>C<0,1>

Some of the aforementioned counters can be accessed through the MSR interface, for which Linux 
provide a specific driver and device, others through specific PCI or MMIO interfaces.

While per-core counters can be read from each core of the socket, socket-wide counters, like RAPL, 
can be accessed only from one of the cores (any one). msr-statd, the utility used to obtain the power 
consumption, was modified in order to use the PMU of the first core of each socket as source for 
socket-wide RAPL counters.

The general-purpose counters can be configured to read one of the hundreds of events supported by 
the  processor[49].  Since  there  are  4  general-purpose  counter  available,  only  4  events  can  be 
monitored  at  the  same  time  (besides  the  fixed  counters  which  are  always  available  but  not 
configurable).
In order to overcome this limitation, some utilities like perf, implement a multiplexing method that 
allows to  switch  the  monitored  events  (PMU events  only).  With  multiplexing,  an  event  is  not 
monitored continuously, but only for some repeated timed intervals, sharing the counter during the 
measuring period. At the end of the run, the aggregated event count is scaled for the complete 
period, thus providing an estimate of what the count could have been if it was measured for the 
whole run. Hence, scaled results are not completely reliable, as some blind spots may hide spikes, 
providing misleading results.

Counts  reported  by  the  fixed  counters  can  be  also  obtained  from  equivalent  configurable 
performance  events  on  the  general-purpose  counters.  Unfortunately,  though,  because  of  many 
factors, the values obtained differ, and this was one of the elements of confusion experienced during 
the test phase.

Each performance event is represented by an event number and a mask. In section 3 and appendices 
B and C, for all the events taken into exam, either the event name, the aliases or the hex flags (or  
all) may be reported.

Unfortunately, each generation of processors, and even different variants of the same model, can 
provide  different  counters  and  many  different  events.  Sometimes  new  events  are  introduced, 
sometimes are removed, sometimes not implemented, and sometimes measure something different 
for each version.  In the official  documentation,  sometimes the same metric  is  represented with 
multiple names and not always consistently. All this, and the differences introduced in the name 
spaces  implemented  in  various  monitoring  and  profiling  software,  make  extremely  difficult  to 
pinpoint the exact meaning and usage of a specific event. Moreover, different utilities use different 
events claiming the same purpose. For sure, keeping such kind of software up-to-date for each new 
variant of processor and new innovation require a lot of efforts, and results can be only as accurate 
as the details available in the official documentation.
In order to provide a generic interface common for all the processors, Linux Perf/Kernel developers 
implemented some “aliases” for common events (unfortunately not always correct across different 
platforms), but kept open the possibility for a final user to specify explicitly an event to monitor. 
This feature was widely used in this work.
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2.3.3.RAPL

Recent generations of Intel processors offer specific registers and counters which report, among 
thousands things, the power consumption of the CPU based on its main areas and functionality, like 
DRAM,  CORE and  UNCORE sub-systems.  The  UNCORE,  called  System Agent  since  Sandy 
Bridge, collects the functions of the microprocessor that are not in the CORE, but are essential for 
its performance. See figures 2.3.3:1 and 2.3.3:2.

Depending on the family/model, the sub-systems and the functions associated to each of them may 
vary.  According  to  various  (sometimes  fuzzy)  documentation[50][51][52][47][53],  on  Intel  Ivy 
Bridge EP the sub-systems are divided as following:
• CORE: components of the processor involved in executing instructions, including ALU, FPU, 

L1, L2 and L3 cache;(*)

• UNCORE or  System Agent:  integrated  memory controller  (IMC),  QuickPath  interconnection 
(QPI), power control unit (PCU), ring interconnect, misc I/O (DMI, PCI-Express, ...).(*)

For desktop and mobile models, the Ivy Bridge processors may also include the Display Engine 
(included in the UNCORE/System Agent) and the integrated graphics processor (IGP).

The Figure 2.1:1 in section 2.1 (Hardware), shows the CPU internal topology (Core, L1i, L1d, L2, 
L3, DRAM) as reported by lstopo (hwloc).
Figure 2.3.3:1 shows the system topology.

In RAPL[54], platforms are divided into domains for fine grained reports and control. A RAPL 
domain is a physically meaningful domain for power management. The specific RAPL domains 
available in a platform vary across product segments. Ivy Bridge platforms targeting server segment 
support the following RAPL domain hierarchy:

• Power Plane 0 (PP0): all cores and L1/L2/L3 caches on the package/die/socket (CORE)
• Package (PKG): processor die (PP0 + anything else on the package/die/socket (UNCORE))
• DRAM: directly-attached RAM

From the above, can be derived that UNCORE=PKG-PP0.
Each level of the RAPL hierarchy provides respective set of RAPL interface MSRs.

(*) for the acronyms, please refer to Appendix A.
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RAPL “interfaces”  consist  of  non-architectural  MSRs.  Each  RAPL domain  supports  a  set  of 
capabilities:

• Power limit: MSR interfaces to specify power limit, time window, ...
• Energy Status: power metering interface providing energy consumption information
• Perf Status: interface providing information on the performance effects (regression) due to 

power limits (domain specific duration metric that measures the power limit effect in the 
respective domain).

• Power Info: Interface providing information on the range of parameters for a given domain, 
minimum power, maximum power etc.

• Policy: 4-bit priority information which is a hint to hardware for dividing budget between 
sub-domains in a parent domain.

Each of the above capabilities requires specific units in order to describe them. Power is expressed 
in Watts, Time is expressed in Seconds and Energy is expressed in Joules.

The “power info” RAPL interface reports the following power ranges for the platform tested:

PKG domain DRAM domain
Thermal Design Power: 130 Watt Thermal Design Power: 24.5 Watt
Minimum Power: 64 Watt Minimum Power: 9 Watt
Maximum Power: 130 Watt Maximum Power: 24.5 Watt

The  “energy  status”  interface  will  be  queried  for  power  consumption  information  during  the 
simulations described in the following sections (msr-statd).

The thermal design power (TDP), reported above, represents the maximum amount of power the 
cooling system in a computer is required to dissipate (if the cooling system is capable of dissipating 
that much heat, the chip will operate as intended). This is the power budget under which the system 
needs to operate. But this is not the same as the maximum power the processor can consume. It is  
possible for the processor to consume more than the TDP power for a short period of time without it 
being "thermally significant". Using basic physics, heat will take some time to propagate, so a short  
burst may not necessarily violate TDP. [13] [Figure D:8]
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2.3.4.Top-down characterization - TMAM

This  section  covers  the  Top-down  Microarchitecture  Analysis  Method  (TMAM)[55][56],  a 
performance  tuning  technique  which  uses  performance  monitoring  events  specific  to  the  Intel 
processors.

Modern microarchitectures implements what is called instruction-level parallelism. The CPU can 
execute multiple micro operations concurrently, in the same clock cycle, as long as they are busy in 
a  different  stage  of  the  computation  (traditionally  fetch,  decode,  execute,  memory  access, 
write-back, but the stages are now many more).
In order to fill the pipeline and be efficient, each step must complete without stalling.

 (image from [57])

If the front-end is unable to fill the pipeline by supplying enough instructions to satisfy the requests  
of the back-end, some clock cycles will be wasted without computing new micro-ops, therefore this  
situation is called front-end stall, and the execution is said to be Front-End bound.

If the back-end, instead, is unable to accept more micro-operations, the back-end stalls and the 
execution is said to be  Back-End bound. The back-end can be delayed, for instance, by memory 
accesses. If the required data can be found and fetched from high-level caches, the delay can be 
minimal (few clock cycles), but if the data requires a fetch operation from the main memory, the 
back-end stalls, and this impacts the performance as the pipeline may be blocked.

Furthermore, in order to exploit the pipeline and avoid execution stalls, modern microprocessors 
implements two techniques called branch prediction and out-of-order execution, allowing to execute 
instructions  speculatively  ahead,  just  "guessing"  what  will  be  the  outcome  of  the  execution 
workflow.

 (image from [57])

Bad speculation is said to happen when this guess is wrong, and in this case the cycles are wasted, 
as the result of those operation won't be used and is therefore discarded. When this happens, the 
pipeline must be flushed, wasting even more clock cycles.

When an instructions completes this process without being bottlenecked is said to be retiring.

Hierarchically, the execution opportunities described above can be logically divided as illustrated in 
Figure  2.3.4:1.  In  greater  details,  Figure  2.3.4:2 exposes  the  complete  characterization  of 
microarchitectural issues.

By using the performance counters related to  the execution flow,  it  is  possible  to  estimate the 
amount of execution slots spent in each category, hence identify which is more likely the area of 
microarchitecture to investigate for bottlenecks.

Very good and comprehensive explanation of the methodology can be found at [58] [57] [59] [56].
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To summarize, a program can be bound to I/O (memory, storage, network), or can be bound to the 
CPU or other components, such as the GPU. Being bottlenecked by the front-end means that the 
pipeline can't be filled, being back-end bound means that for some reasons the pipeline is stalling, 
usually  waiting  for  data  from  the  memory.  Bad  speculation  is  basically  due  to  the  branch 
misprediction. The retired instructions are those that completed successfully.
In this work, this analysis will be used to identify memory-bound and CPU-bound applications.

According to  [59], depending on the kind of workload, different range of pipeline slots can be 
expected for each category. The following table reports the typical distribution for a well-tuned 
HPC application:

Retiring 30-70%
Back-End Bound 20-40%
Fronte-End Bound 5-10%
Bad Speculation 1-5%

In Appendix B. details on how to compute the pipeline slots are provided.
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Figure 2.3.4:2: General TMAM Hierarchy for 
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2.3.5.Tools

A large variety of tools, utilities, frameworks and libraries have been developed in the last few years 
which permit to read and act on the CPU registers or allow to enable user-space applications to offer 
power and performance monitoring capabilities.
Citing few relevant ones among those investigated in a preliminary study for this project:

• perf[41][60] (Linux profiling with performance counters) is a performance analyzing tool in 
Linux  which  provides  user-space  controlling  utility,  an  event-driven  interface  in  kernel 
space, and it is capable of statistical profiling of the entire system (both kernel and userland 
code),  supporting  hardware/software  performance  counters,  tracepoints,  and  dynamic 
probes.

• LIKWID[34][61] (lightweight performance tools for x86 multicore environments) can probe 
thread/cache topology of a shared-memory node, enforce thread-core affinity on a program, 
measure performance counter metrics, access RAPL counters and query Turbo mode steps 
on Intel processor (likwid-powermeter, likwid-perfctr).

• libpfm4 (perfmon2)[62] is a helper library to help encode Performance Events to use with 
operating system kernels performance monitoring interfaces (perf).

• pmu-tools[63] is a collection of tools for profile collection and performance analysis on Intel 
CPUs on top of Linux perf.

• PAPI[64] (Performance  Application  Programming  Interface)  aims  to  provide  a  generic 
abstraction layer in order to interface user-space applications to the performance counter 
hardware, relating software performance and processor events, and collecting components 
that expose performance measurement opportunities across the hardware and software stack.

Other  tools  include:  msr-tools[65],  perfmon[66],  powertop[67],  turbostat[68],  cpupowerutils[69] 
and cpuspeed[70].

Bypassing this  tools,  sometimes necessary,  requires  specific code to be written using low-level 
system calls and passing utterly cryptic flags and parameters only reported (although not always 
explained in details) on microprocessor's development manuals.

In order to enrich the poor environment of perf (see command “perf list”), which implements 49 
shortcuts over thousands flags, some efforts was taken during this project to convert automatically 
LIKWID, libpfm and pmu-tools specific flags (over one thousand) into a format compatible as input for 
perf.  This operation led to the discovery of repeated event flags accessed using different event 
names, or the same event name mapped to different event flags in different programs.

It  must be noted that Linux Perf implementation in recent kernels exposes RAPL to user-space 
(through  perf and  sysfs), as well as part of the top-down analysis (perf). Unfortunately, due to a 
large number of dependencies, upgrading the kernel in a production cluster is not always feasible, 
like it wasn't in this case.
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3. Results

In this section a selected collection of the results produced during this work will be exposed and 
commented in separate subsections,  each devoted to specific tests and relative analysis. Several 
plots accompany the most relevant results obtained.

This work deals with an almost unmanageable number of degrees of freedom because of all the 
performance events, metrics, and measures gathered. Not all the data collected could be presented 
and a large amount had to be ignored or discarded. Additional plots deemed not-essentials, even 
though cited, are available in Appendix E., while Appendix D.3. gives a brief and rough idea of the 
data collected and the kind of information that can be extracted.

Energy measurements are performed and discussed in this section and it is therefore important to 
specify which kind of the metrics and quantities can be observed and measured. This is the goal of 
section 3.1.

The following table provides a concise overview of the test performed and exposed in the following 
sections, to offer a guidance to the reader through the chapter.
The table does not include additional tests performed only on some specific benchmark, analysis of 
which will be presented and discussed in appropriate sections.

category test
HPL

HPCG QE LAMMPS
Netlib ATLAS OpenBLAS MKL

energy
efficiency

basic analysis & tuning (*) x x x x x x x

frequency scaling (**) x x x x x x

problem size scaling (**) x x x x x

performance 
counters (*)

top-down analysis x x x x x x x

cache-miss, branch mispr. x x x x x x x

FLOPS from counters x x x x

exp. cache-miss (***) x x x x

(*) with ondemand governor (automatic frequency scaling w/ Turbo Boost)
(**) only for memory size 1/4 and 1/8
(***) experimental tests using various combinations of cache-related performance events (Appendix F.)

Section  3.2 reports  the  extensive  analysis  performed  on  the  HPL benchmark.  As  previously 
discussed,  HPL was  chosen  due  to  the  relative  simplicity  and  for  the  detailed  information  it 
provides.  However,  by  just  changing  external  BLAS  libraries,  a  wealth  of  measurements  are 
possible, thus enriching the power measurement analysis and its comprehension.

Section 3.3 reports the analysis on HPCG. HPCG is a fairly new tool, not widely used yet, but it 
aims to become an alternative benchmark to HPL for performance assessment and ranking. Unlike 
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HPL, which may need hours to complete (Netlib test),  HPCG can be told to run for a specific 
amount of time. Limiting energy waste and allowing for a larger number of tests,  it  still  gives 
reliable results even for short runs of one or few minutes.

Sections 3.4 and 3.5 review the same methods applied to two representative real-world applications 
used by the scientific community, Quantum ESPRESSO and LAMMPS. The input file for QE is 
part  of  a  research  currently  undertaken  by  CNR-IOM  scientific  research  group.  Concerning 
LAMMPS,  one  of  the  benchmarks  provided  by  the  software  package  was  chosen,  the 
Lennard-Jones liquid benchmark[71], even though it was scaled up from the original in order to 
exploit the available memory and CPU resources.

Some selected results of above sections are then collected in section  3.6.3, which concludes this 
chapter, where a detailed comparison among different benchmarks sessions is conducted.

It should be remarked that all the benchmarks reported in this section use a single computing node. 
Due to  the lack  of  additional  sensors  and devices  able  to  indicate  reliable  power  consumption 
measurements of surrounding devices, this study focused on RAPL readings obtained from the two 
processors  available  on  each  node.  Multinode  testing  (Appendix  D.1.2.)  shown  that  MPI 
communication indeed impacts the walltime.  Properly estimating how this  communication may 
affect  the  overall  energy  consumption,  though,  would  require  additional  metrics  concerning 
network-related  activities  and  power  consumption  measurements  of  adapter  cards  and network 
devices.
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3.1.Energy measurement

Although many metrics exist to describe various aspect of the energy efficiency, this works focused 
on the followings:

Overall energy (J)
Average power (W)
FLOPS per Watt
FLOPS per Joule

The relationship between energy and power is of course given by:

Etot = Pavg * walltime

Pavg = Etot / walltime

Here, walltime is intended as the total running time of the application, as reported by the application 
itself,  when  implemented,  or  by  the  wrapper  program  (msr-statd, gpu-statd,  perf,  bash  time, 
/usr/bin/time).

The  RAPL interface  provides  incremental  readings  in  Joule,  for  each  RAPL domain,  for  each 
socket.  msr-statd collects these readings in a timely manner and save this raw data into a file for 
later analysis. By post-processing the produced log file, it is possible to obtain the total energy, the 
runtime period, and from these derive the average power (for each socket). Additional metrics, less 
relevant in this case, include core temperature, frequency and load. A brief overview of the ignored 
metrics are reported in Appendix D.
In the results exposed in this work, the aggregate energy and power for both sockets is considered, 
even though split by RAPL domains.
Unless otherwise stated, all the benchmarks were run considering a single node, using both the 
available  sockets  and  all  24  cores.  For  the  performance  counters  analysis  and  top-down 
characterization, the ondemand frequency scaling governor was active and Turbo Boost enabled. The 
energy efficiency study was conducted with the  userspace frequency scaling governor and fixed 
imposed frequency. Hyper-threading (SMT) was always disabled.

It has to be remarked that the software benchmarked was considered a black-box, no investigation 
has been done on the algorithms, nor on the time-based evolution of power-consumption (although 
possible as reported in  Appendix D.3.). The analysis performed in this work was meant to be a 
proof of concept for an unattended procedure integrated into an energy-aware scheduler.

Finally, it has to be noted that:

1. HPL reports the performance obtained (GFLOPS) and the time-to-solution (seconds). After 
the actual  computation,  though,  it  performs an additional  check in  order to  validate  the 
results  (not  counted  in  the  values  reported).  This  operation  increases  the  walltime  as 
detected by external wrappers, thus it affects the analysis. The overhead of this operation is 
minimal in respect of the walltime, but it is large enough to alter the results when used in 
conjunction with the reported FLOPS. In order to overcome this issue, due to the negligible 
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impact on the energy consumption represented by the final check over the whole run time, it 

was  deemed  reasonable  to  consider  the  Pavg as  a  reliable  estimation  and  use  the 
time-to-solution (as reported by HPL) in order to obtain the overall energy consumed:

Pavg = Etot / walltime

energy-to-solution = Pavg * time-to-solution

2. QE and LAMMPS don't provide the achieved performance in FLOPS. Experimenting with 
performance counters, an attempt to estimate this metric was made by using the performance 
events and formulas shown in Appendix C.

In order to identify the effects of fluctuations due to load and OS environment "noise", various 
benchmark were run multiple times. Effects of fluctuation was observed and deemed negligible for 
HPL and HPCG tests. QE and LAMMPS shown larger fluctuations, hence the average of 10 runs is  
reported. The error bar is estimated within a few percent for HPL and HPCG, 7% (max) on total  
walltime of Quantum ESPRESSO, 20% (max) on total walltime of LAMMPS.
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3.2.HPL

This section examines performance, power consumption and energy efficiency of HPL compiled 
against four different implementations of BLAS as provided by the following libraries:

• Netlib, reference library, accurate but not optimized;

• ATLAS, auto-tuned library, optimized;

• OpenBLAS, highly optimized open-source version;

• Intel MKL, proprietary and closed-source version, highly optimized for Intel processors.

Should be noted that this analysis does not aim to provide a full-fledged comparison of the entire 
libraries or all BLAS routines, only the BLAS functions invoked by HPL are relevant in this case,  
with a net predominance of the GEMM family.

The first step in this phase was a tuning session in order to identify which are the best parameters in 
terms of problem sizes (Ns), block sizes (NBs) and grid distributions (Ps, Qs), that provide the best  
performance.

The best performing set of parameters turned out to be the following for all the libraries:
Ns = 81920
NBs = 176
Ps = 6
Qs = 4

which corresponds roughly to 54 GB of RAM utilization (problem size = N2 * 8).
These  settings  allowed  to  obtain  480 GFLOPS  (using  HPL+MKL)  over  a  theoretical  peak 
performance of 518.4 GFLOPS (92.6%).

The parameters identified in this tuning runs are then used for all the runs later reported in this 
section unless otherwise specified.

The  same  methodology  was  adopted  for  the  tuning  of  all  the  benchmarks  tested,  where  a 
preliminary session was devoted to obtain significant data sets, possibly with acceptable runtimes 
(<30 minutes), and later adopted for the size and frequency scaling analysis.

3.2.HPL 27



3.2.1.Comparing BLAS implementations

The graph in  Figure 3.2.1:1 reports the performance, walltime, average power, total energy and 
energy efficiency, expressed as GLOFPS/W and MFLOPS/J, for the four implementations. This plot 
reports a stacked view of the contribution given by each CPU sub-systems. As a reminder, the CPU 
package/socket  (PKG  RAPL domain)  is  made  by  CORE (PP0  RAPL domain)  and  UNCORE 
(PKG – PP0). DRAM is the physical memory.

Figure 3.2.1:1 clearly indicates that the delivered performance is very different. The walltime of 
course  influences  the  overall  energy  consumption,  but  as  well  the  CPU  utilization  affects  the 
efficiency: the denser the computation is in the CPU (less stalls due to memory access), the larger  
the efficiency (MFLOPS/W).

Walltime and power consumption of Netlib are 2 order of magnitude greater than the optimized 
versions, which makes it the least performing and the least energy efficient library.
MKL and OpenBLAS, though, are quite close to each other. The average power is the same, but the 
slightly different performance,  and therefore larger walltime of OpenBLAS, influences the total 
amount of energy consumed, and thus the efficiency.

The results have been further split by CPU sub-systems (DRAM, PKG, CORE, UNCORE) and the 
plots reported in Appendix E.1.
Figure 3.2.1:2 reports a detailed view of the energy distribution by sub-systems.
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It can be observed that using different implementations may lead to a different distribution of the 
power consumption. Netlib, for instance, appears to be more memory-bound than the others, hence 
the calculation consumes more power on the DRAM domain. Because of this pattern, the average 
overall-power is lower, as the CPU is probably idling longer while waiting for data. OpenBLAS and 
MKL, on the other end, are very effective at core level, denoting a more efficient utilization of the 
memory hierarchy.
More details on this phenomenon can be obtained by performing a deeper analysis of the issue 
using the performance counters and a top-down characterization, which allows to identify the stalls 
and bottlenecks in the pipeline. This will be performed in the following subsections.
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3.2.2.Top-down characterization

Here, the results of the top-down characterization are presented. The purpose of this analysis is to 
identify the bottlenecks in the instruction pipeline.

As explained in section 2.3.4, the optimal BE-bound value for an HPC application is expected to be 
within 20% and 40%.

Looking at Figure 3.2.2:1, the following observations can be made:

• Netlib reaches the 75% on the BE-bound value. From this analysis is clear how Netlib is 
back-end bound, which implies a problem related to the memory access that is bottlenecking 
the application.  Probably,  a  sub-optimal  memory access  pattern makes it  unable to  take 
advantage  of  the  new  architecture's  caches,  hence  preventing  it  to  exploit  the  pipeline 
efficiently.

• the  other  implementations,  are  comfortably  inside  the  optimal  limits  for  a  typical  HPC 
application.
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3.2.3.Performance counters

The following analysis compares the readings gathered from the performance counters using perf. 
The metrics considered relevant for this first analysis are:

• cpu-cycles
• instructions
• cache-references
• cache-misses
• branch-instructions
• branch-misses

The last 4 parameters of the list permit to obtain 2 derived metrics, the  cache-miss ratio and the 
branch-misprediction ratio. The first is an index of how well the application exploits the cache 
hierarchy.  The second concerns  the  efficiency in  guessing  what  will  be the  next  instruction  to 
execute in case of conditional jumps (branch). In order to exploit the superscalar characteristics of 
the  pipeline,  the  CPU  preemptively  fill  the  pipeline  and  executes  instructions  from  multiple 
branches (or just guesses one), long before the branch true execution path is known. If the next 
instruction is guessed wrong (the conditional statement eventually pointed to another branch), the 
result will be discarded and some CPU cycles wasted.

Figure 3.2.3:1 compares both raw counters (left panel) and derived metrics (right panel) for each 
BLAS version.

As can be seen, the branch misprediction ratio (the green bar in the rightmost graph) maintains 
constant across all the implementations. The behavior is probably related to the main algorithm, not 
to  the  actual  portion  of  code  devoted  to  the  computation.  Further  investigation  is  in  any case 
required, but time constraints made the study focus on other more significant metrics.

The red bar in the right panel of 3.2.3:1, presents the cache-miss ration. At first sight, OpenBLAS 
cache-miss ratio is astounding, showing an incredibly effective utilization of cache accesses. The 
test  was repeated  twice  in  order  to  verify  such results,  confirming the  behavior,  but  it  looked 
suspicious nonetheless.
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By reading thoroughly various sources of documentation2, it turned out that the parameters named 
“cache-misses” and “cache-references” used by  perf, are translated to the following performance 
events in Intel processors:

                       perf                            |    event
alias (u-space)  define (k-space)               hexcode|code mask name     
cache-misses     PERF_COUNT_HW_CACHE_MISSES     0x412e |2Eh  41h  L3_LAT_CACHE.MISS
cache-references PERF_COUNT_HW_CACHE_REFERENCES 0x4f2e |2Eh  4Fh  L3_LAT_CACHE.REFERENCE

Accordingly to Intel's manual[74] (tables 19-17 and 19-19):

2EH 41H L3_LAT_CACHE.MISS
This event counts each cache miss condition for references to the last level cache.
The event count may include speculative traffic but excludes cache line fills due to L2 hardware-prefetches.

2EH 4FH L3_LAT_CACHE.REFERENCE
This event counts requests originating from the core that reference a cache line in the last level cache.
The event count includes speculative traffic but excludes cache line fills due to a L2 hardware-prefetch.

And for both:
Because cache hierarchy, cache sizes and other implementation-specific characteristics; value comparison to  

estimate performance differences is not recommended.

Thus,  it  seems that  using LLC references  for  the overall  cache-miss  ratio  is  not  accurate  as it 
represents only the memory accesses that hit LLC while does not include cache hits in L1 and L2.

Looking at raw counters (left panel of Figure 3.2.3:1), it appears like L3 references in OpenBLAS 
increase by an order of magnitude over MKL and ATLAS, while L3 misses decrease by almost an 
order of magnitude, thus leading to the 1% of cache-miss ratio versus the 22% delivered by MKL.
Consequences of this may be one of the following:

1. L3_LAT_CACHE events cannot be thoroughly trusted;
2. OpenBLAS is optimized to exploit L3 locality, storing to and fetching from the LLC.

Various tests, briefly reported as a few plots in Appendix F., were later performed in order to obtain 
alternative performance events from which L1/L2/L3 cache-miss ratios can be derived. 
Unfortunately, various combinations adopted by various tools (LIKWID, PAPI, libpfm) or found on the 
web and tested here, led to completely different results for what should represent the same metric.
Many factors should be taken into account, though:
• some hardware counters offer speculative counting of performance events (instead of real);
• perf multiplexing  and  scaling  cannot  report  exact  readings  when  too  many  events  are 

concurrently monitored (because only 4 configurable hardware counters are available);
• the  documentation  sometimes  reports  about  counters  that  are  reliable  for  some  specific 

architecture, but does not explicitly mention whether they are reliable too for other architectures 
(and sometimes it is not consistent) -- inheritance should (or should not) be blindly assumed;

• some  applications  (and  web  forums)  take  for  granted  that  what  was  working  on  a  specific 
processor can be extended to the same family of processors;

• workarounds are sometimes needed to deal with errata.[75][76][77][78][79][80][81]

It is therefore really hard to tell which combination can be trusted, and on which platform, since 
there's no other mean to verify the results.

2 Intel's processors developers manuals[50][51][52] and the source code of perf (both user-space[72] and 
kernel-space[73]), PAPI, LIKWID, libpfm4 and pmu-tools.
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3.2.4.Frequency scaling

This section compares the behavior of the application when the CPU operating frequency is scaled.

Figure  3.2.4:1.  shows  a  comparison  of  the  performance  of  HPL+MKL by  imposing  different 
frequencies.
In this case, the processor supports frequencies from 1.2 GHz to 2.7 GHz. The additional label 2.7+ 
represents the Turbo Boost, which can span from 2.8 to 3.5 GHz depending on the core temperature 
and the number of cores active:

3500 MHz (1 core) 3200 MHz (4 cores)
3400 MHz (2 cores) 3100 MHz (5 cores)
3300 MHz (3 cores) 3000 MHz (6 or more cores)

For  HPL,  being  a  CPU-bound  application,  when  the  frequency  is  increased  the  performance 
increases too, and as can be seen, the increase is almost linear. This means that the application 
benefits from running at higher frequencies. The power consumption, though, increases too.
Two  interesting  observations  can  be  done  looking  at  power  efficiency  (panel  5)  and  energy 
efficiency (panel  6).  Power efficiency reaches the maximum at nominal speed of the processor 
(2.7 GHz), while when Turbo Boost is enabled there is a small drop. However this drop in power 
efficiency is not present when energy efficiency metric is considered: in this case, Turbo Boost 
allows to run faster without impacting the energy efficiency because the performance rises at the 
same rate of the overall energy consumption.

The results for the other BLAS implementations are almost identical.  Frequency scaling plots for 
Netlib, ATLAS and OpenBLAS are available in Appendix E.3.
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3.2.5.Problem size scaling

In this  test  the problem was scaled down to 1/2,  1/4 and 1/8 of the memory used by the best  
performing combination (~54 GB, ~83% of the total RAM).

The goal was to identify whether varying the amount of memory used would change the distribution 
of energy consumption during the run and therefore the energy-efficiency.

HPL is expected to deliver worse performance when the size is decreased. With the size, though, 
also the time-to-completion decreases. This, combined with the lower utilization of the CPU, may 
lead to a lower average power, and lower overall energy consumption. If the power consumption 
decreases faster than the performance, the energy-efficiency may be higher for less performing runs.

As can be seen from Appendix E.2., HPL behaves as expected. The distribution doesn't appear to 
change, in fact CORE, UNCORE and DRAM contributions appear to be the same for all the runs. 
Nonetheless, the average power is slightly different, as it decreases for the CORE when decreasing 
the  size.  The  large  difference  in  the  time-to-completion  impacts  the  total  energy,  and  this  the 
energy-efficiency. 

ATLAS, MKL and OpenBLAS behave more or less the same, and exhibit a better average power 
efficiency (GFLOPS/W) with the larger size. Netlib, shows instead the opposite. Once again, this 
behavior is probably related to the memory access pattern, as it delivers the best performance with 
the smallest size.

Nevertheless, once again the time-to-solution affects the final outcome. Along with the decrease in 
size, there is a very small decrease in the average power consumption, but the walltime decreases 
faster than the performance, therefore the overall energy efficiency (expressed as MFLOPS/J) is 
higher with the smaller size. For Netlib, this increment is even larger than for the other libraries.

The same test was performed also by scaling the frequency, confirming the behavior observed in the 
previous tests and already described. The plots are available in Appendix E.3.
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3.2.6.HPL + GPU

An exploratory testing was performed by using the hybrid CPU/GPU version of HPL as supplied by 
NVidia. The goal was to observe the effects of the CPU frequency scaling on the overall power 
consumption, including the 2 GPUs. GPU frequency scaling was not approached.

Power consumption information of the GPUs was obtained by means of the NVidia Management 
Library (NVML)[35]. A python script (gpu-statd), part of the Eurora monitoring framework, was 
adapted and used to retrieve the data.

Various tests pointed out the best performing inputs, obtaining 2.3 TFLOPS out of the combined 
(CPU+GPU) 2.8 TFLOPS peak performance (~82%):

Ns = 85000
NBs = 896
Ps = 2
Qs = 1

Should be noted that many other combinations, even though performing better, consistently failed 
the final validation check, and were therefore discarded.

This version of HPL allows to define the portion of computation to perform in the GPU. A wrapper 
script was written for the correct setup of the environment.
In order to avoid migrations and optimize the hybrid parallelism using MPI/OMP and the GPU, 2 
MPI processes was used, each bound to a specific CPU (using  numactl from inside the wrapper 
script instead of mpirun --bind-to). Each MPI process spawned 12 OMP threads (1 for each core of 
the CPU). Only one GPU was made visible to each MPI process. 90% of the computation was 
requested to be run on the GPU.

Figure 3.2.6:1 reports the aggregated power consumption of the 2 GPU only (no CPU).
Figure 3.2.6:2 reports the overall power consumption, including the CPUs.
The idle power measured on each GPUs was 41 W, the total power reached during the setup phase 
and the following tests was 192 W.

In Figure 3.2.6:1, these tests evidenced the fact that the frequency at which the CPU operates can 
affect as well the performance obtained on the GPU. In this case, the CPU cannot feed adequately 
the GPU, which stalls, hence the larger walltime when running at lower frequencies. The almost 
uniform  average  power  consumption  makes  again  the  total  energy  dependent  on  the 
time-to-solution. Nonetheless, it can be noted that at 2.2 GHz and 2.4 GHz the efficiency is close or 
even larger that what can be obtained at 2.7 GHz. This is even more evident in the aggregated report 
in Figure 3.2.6:2.
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As can be noted, from 3.2.6:2, more than 60% of the overall power is consumed by the GPUs. The 
effects of the frequency scaling on the power consumption of the CPUs is added to what observed 
before in  3.2.6:1. The runs at 2.2 GHz and 2.4 GHz appear to be the more convenient from the 
energy-efficiency point of view, as the energy-to-solution is lower than what can be obtained at any 
other frequency.
In terms of pure performance, by running at 2.4 GHz less than 3% is lost, but in terms of energy, the 
6% is spared.
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Should be noted that the peak performance obtained, 2.292 TFLOPS with a power consumption of 
592 W, would be ranked at the 4th position of the Green500 (Nov 2015) with 3.87 GFLOPS/W. 
Unfortunately, the power measure took into account only the CPUs and the GPUs of a single node, 
but even considering twice as much power (unlikely), it would be still ranked 82nd.
The cluster ranked at the 500th position of the Green500, QUARTETTO[8], in order to deliver the 
same performance would have consumed 43 kW, a 73 times larger power consumption.

Oddly enough, the most energy-efficient combination was not the best performing run. By running 
at a lower CPU frequency (2.4 GHz) and obtaining a slightly worse performance (2.23 TFLOPS), 
the average power consumption was smaller (541.8 W), 50 W less than the best performing run 
(10%).

3.2.7.Summary of HPL investigation

The results of the HPL investigation can be summarized as follow:

• MKL and OpenBLAS delivered the best performance, even though the pattern found in the 
cache-miss ratio looks quite different;

• using an unoptimized library (Netlib in this case) may lead to catastrophic results, both in 
terms of overall performance and energy-efficiency;

• not surprisingly, for a CPU-bound application the performance achieved is linear with the 
frequency scaling;

• GPU performance are unexpectedly driven by CPU operating frequency;
• problem size  scaling  behavior  of  Netlib  is  in  counter  tendency  in  respect  to  the  other 

libraries;
• 4th position in the Green500!!! Almost...
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3.3.HPCG

In this section results from HPCG are presented.
During the setup phase various test were conducted to check the best performing combination and 
validate the results. HPCG, unlike HPL, allows to set the desired walltime, thus simplifying the 
calibration. The runtimes tested were 30, 60, 120, 180, 240 and 300 seconds. The problem size was 
scaled up from 100 MB to 215 GB, using X=8, 16, 32, 64, 104 (total size = X3 * 8 * NP).
As for HPL, the frequency was scaled for each step allowed by the CPU.

As previously observed for HPL+Netlib, a memory-bound application doesn't benefit of the peak 
performance of the processor.  Hence,  lowering the operating frequency of the cores should not 
impact the overall performance of the application, while the energy consumption can be reduced.
The goal of this set of benchmarks was to obtain a power consumption pattern bound to the problem 
size and CPU frequency, and figure out whether a trade-off between frequency, performance and 
power consumption can be observed, thus highlighting a more efficient approach from the energy 
point of view.

3.3.1.Frequency and problem size scaling

HPCG shows that there's a trade-off point, where rising the frequency is not convenient anymore.

The walltime in this case is almost constant, as it is imposed as an input parameter.

The performance obtained with increased frequencies doesn't change much, and it doesn't change at 
all in some cases, as the CPU cannot be fed with new instructions until the data needed for the 
computation is retrieved from the memory, fact that bottlenecks the application.
Running HPCG at the lowest frequencies, gives a better performance-per-consumed-energy ratio. 
Increasing  the  frequency  does  not  improve  the  performance,  but  increases  a  lot  the  power 
consumption without any benefit.

This means that running memory-bound applications at high frequencies is just a waste of energy, 
and from this point of view, may be more convenient lowering the frequency of the CPU when this 
kind of applications  are  supposed to  be run.  This,  of  course,  is  a  matter  of  study for  resource 
management software.

The plots in Appendix E.4. exhibit the results obtained on the run with the various sizes mentioned 
above,  for  all  the frequency steps.  The imposed runtime is  300 seconds.  Should be noted that, 
excluding the runtimes shorter than 60 seconds which presented various anomalies, especially with 
the larger sizes  (probably due to  allocation/initialization issues),  the results  with runtime above 
90 seconds reported consistent results. Only the size 64 (Figure E:35) is reported in this section as 
Figure 3.3.1:1.

The plots denoted a clear trend. Increasing the frequency leads to better performance, but leads to 
larger power consumption at the same time. From the energy-efficiency point of view, there is no 
benefit in running HPCG at the highest frequencies. The best compromise seems to be in the range 
1.5 - 2 GHz. It is also evident that the best performing results are obtained with the Turbo Boost 
enabled,  but  they are affected by the largest power consumption,  making this  combination less 
efficient than running at the minimum frequency, 1.2 GHz. In case the energy-to-solution has the 
precedence over the time-to-solution, the lower frequencies represent the most convenient choice.
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3.3.2.Top-down characterization

Figure 3.3.2:1 reports the various sizes for the 300 seconds run. The plot clearly shows that HPCG 
is a back-end bound application. As already stated before, this means that there might be an issue 
with  memory  accesses  (LLC  misses),  which  will  be  confirmed  by  the  performance  counters 
analysis.  For small  sizes,  where the problem fits  better  in cache and memory accesses are less 
frequently needed, the application denotes a smaller dependency on the back-end, but it  is  still 
outside the optimal range nonetheless.
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3.3.3.Performance counters

The analysis of the basic performance counters confirms that HPCG presents a large cache-miss 
ratio, and that for small sizes, this ratio is lower, as the required data can be found a little more often 
in cache.

3.3.4.Summary of HPCG investigation

The results of the HPCG investigation can be summarized as follow:

• although HPCG is a memory-bound application, higher CPU operating frequencies still play 
an important role on the time-to-solution and the performance obtained by the benchmark;

• when  the  energy-to-solution  becomes  a  predominant  factor  (e.g.  under  power  capping 
policies), HPCG results more energy-efficient at lower frequencies;

• the minimum frequency supported (1.2 GHz), is far more energy-efficient than Turbo Boost; 
this  notable result can be used to tune/implement careful energy aware policies on HPC 
infrastructure;

• problem size scaling doesn't seem to affect the energy consumption of HPCG, nonetheless, 
the results shown by TMAM analysis and the performance counters analysis constitutes a 
basis for the comparison with other applications.
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3.4.Quantum ESPRESSO

For real-world applications, identifying a trade-off for the energy efficiency is a non-trivial task. 
The  performance  (FLOPS)  is  usually  not  reported,  hence  the  efficiency  as  defined  before 
(FLOPS/W, FLOPS/J) cannot be easily computed.  The performance counters  allows to roughly 
estimate the number of floating point operations executed during the run of a monitored application. 
It  was  observed,  by  comparing  the  performance  reported  by  HPL  and  other  trivial 
matrix-multiplication codes, that the FLOPS count obtained by using the performance counters is 
smaller. Consistently on these tests, it appeared that measured FLOPS were a factor 1.2 smaller than 
what  reported  by  the  applications,  although  online  documentation  often  reports  over-counting 
associated to this technique.[82][83][75][77][78][79][80][81]

The performance measure reported in the following plots, was obtained by applying the results of 
these observations.

In order to exclude the effect of fluctuations, each test was repeated 10 times and the average is  
reported.

Figure 3.4:1 shows that shorter time-to-solution can be achieved by increasing the frequency. At the 
same time, the lower average power obtained with the lower frequencies allow to keep almost 
constant  the  energy-to-solution,  thus  highlighting  how  this  benchmark  benefits  from  higher 
computing speed.
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The top-down analysis  shows that  this  benchmark is  a borderline case,  concerning the optimal 
values, placed in the middle of what was observer from HPCG and HPL. Even though the larger 
FE-bound and retiring slots are still within the optimal range, BE-bound slots is close to the limit.  
Within the limits expressed by HPL and HPCG, this kind of pattern is often expected to be found 
for standard applications.

The performance counters analysis doesn't show anything relevant, relatively small cache-miss ratio 
compared to HPCG, and a slightly higher branch misprediction.
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3.5.LAMMPS

In this subsection, LAMMPS is tested using the Lennard-Jones liquid benchmark. Both frequency 
scaling (Figure 3.5:1) and problem size scaling (Figure 3.5:2) have been performed. Even though 
the same input was used for all these tests and the same random seed was used to initialize the data, 
some fluctuations were observed and therefore the reported results represent the average of 10 runs.

Figure 3.5:1, reporting the frequency scaling, depicts an energy-to-solution with small fluctuations, 
showing that running this  benchmark at  low frequencies won't  be advantageous neither  for the 
overall energy consumption nor for the time-to-solution. Running at the nominal frequency, though, 
seems to be more convenient than having the Turbo Boost enabled.
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The problem size scaling, Figure 3.5:2, shows a large difference in the DRAM consumption. Small 
sizes fit in cache, hence increasing the CORE consumption while decreasing DRAM accesses and 
the power required. At a certain point in size, the data are becoming too large to fit in cache, and the 
pattern shows the DRAM power rising again.
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Figure 3.5:3 exhibits the expected behavior in respect of the problem size scaling. For very small 
sizes,  the  application  is  FE-bound,  memory  accesses  are  directed  towards  the  cache,  and  the 
instructions cannot be fed fast enough to fill the pipeline. Unlike any other benchmark examined 
before, bad-speculation slots are larger than in any other test. This is likely due to the algorithm. 
The performance counters analysis should evidence this behavior through the branch misprediction 
ratio.

Increasing the size, again the application becomes memory-bound, although the bad-speculation is 
not affected.

For this benchmark, a further rough analysis of the impact of mpirun was performed on the top-down 
characterization and the performance counters analysis by using two combinations of commands:

• perf stat -a ... mpirun -np 24 ... (a single perf instance collects counters from all cores)

• mpirun -np 24 ... perf stat ... (mpirun spawns 24 perf instances, each collecting counters 
for one process bound to one core)

The latter, is the method used for most of the benchmarks presented so far.

The Figure 3.5:4, shows the effects that mpirun has on the TMAM considering both the benchmark 
program and  mpirun altogether. By comparing  Figure 3.5:3 and  Figure 3.5:4, it can be noted that 
although for the smallest size 10% of the slots are moved from being BE-bound to FE-bound, no 
particular impact is evident. Hence, for future tests, changing the order of  mpirun/perf execution 
shouldn't relevantly affect the collected readings.
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As expected,  figure  Figure 3.5:5 shows that  a  relatively large branch misprediction affects  the 
benchmarks.  The  cache-miss  ratio  becomes  relevant  at  size  160,  where  almost  half  the  cache 
accesses don't get satisfied by a hit. For the other sizes, cache-misses are still relevant, making these 
results closer to the one obtained by HPCG than HPL's, showing again how HPL is far from being 
representative of real-world applications.

Finally, Figure 3.5:6, compared to Figure 3.5:5, shows that mpirun doesn't seem to affect the results 
of analysis that include it together with the targeted application.

3.5.LAMMPS 46



3.6.Comparison

In this section, some selected results are compared and reviewed, for each of the three main analysis 
described in this document:

• energy efficiency vs. frequency scaling (3.6.1);

• top-down characterization (3.6.2);

• cache-miss and branch misprediction ratios using performance counters (3.6.3).

3.6.1.Energy efficiency and frequency scaling

The analysis performed on the frequency scaling behavior of the power consumption is summarized 
in  Figure 3.6.1:1, which reports the energy efficiency, expressed as MFLOPS/J, in respect of the 
operating frequency of the CPUs.

Due to the large difference in efficiency, the results for each benchmark are presented on a different 
panel (1-5) with different scales for the Y axis, while the last panel on the right (6) compares the 
same numbers in log scale.

Must  be  noted  that  for  HPL+Netlib,  due to  the extremely long runtime (>10 h),  the only data 
available for the full frequency range was from the tests with 1/4 and 1/8 of the problem size (see 
Appendix E.3.).  For the largest size, the energy-efficiency of HPL+Netlib should be 1 order of 
magnitude smaller (0.005 for the only full run with ondemand governor, reported in Figure 3.2.1:1).

From Figure 3.6.1:1 a clear pattern can be noticed. For CPU-bound applications (panels 1-3), the 
efficiency  increases  almost  linearly  with  the  frequency,  as  the  shorter  time-to-solution  makes 
irrelevant the difference in average power consumption given by running at lower frequencies. For 
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memory-bound applications  (panels  4-5),  the trend is  almost  the opposite,  as the CPUs cannot 
compute enough data to exploit the additional performance provided by the higher frequencies.

As can be seen from the comparison on panel 6, the efficiency spans over 4 orders of magnitude. 
The cost of having a memory-bound application, or an unoptimized application that could have 
been tuned or been written better to be more CPU-dense, is therefore proportional.

This  final  analysis  shown  that  real-world  applications  are  not  well  represented  by  HPL,  and 
therefore tuning hardware specifications and choosing architectural features exclusively on HPL 
performance, may not be necessarily wise. HPL still represents the most that a system can possibly 
achieve. Unfortunately, HPCG does not represent the worst that can be achieved.

3.6.2.Top-down characterization

This  section collects  the most  significant  results  obtained from the  top-down characterization  of 
HPL+MKL, Quantum ESPRESSO, LAMMPS, HPL+Netlib and HPCG. These tests were conducted 
with the ondemand governor and Turbo Boost enabled. The raw counters were collected using perf, and 
the data post-processed by means of gnuplot by using the formula described in Appendix B.

In  Figure  3.6.2:1,  not  surprisingly,  the  applications  known to  be  memory-bound  appear  to  be 
back-end bound. Surprisingly, though, HPL+Netlib behaves the opposite of HPL linked to any other 
library, actually closer to HPCG, explicitly designed to be memory-bound.

It  is  also  evident  that  real-world  applications,  with  complex  algorithms  and  implementations, 
present a larger waste of resources due to bad speculation, while the benchmarks initially tested 
didn't expose any influence derived from branch prediction.
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Besides the neat profiling and optimization aid that this procedure provides, this kind of analysis 
shown also that a “black-box” program can be categorized as CPU or memory-bound application in 
a nonintrusive and unattended way, just by wrapping the application and collecting performance 
counters out-of-band. In a vision of building an internal database for an energy-aware scheduler, 
this kind of information may be considered as an additional attribute, as long as it can be related to 
application  and input file or memory utilization. As it was evident from the problem size scaling 
analysis, the very same application with a different problem size or input file may give completely 
different  results  concerning  both  performance  and  power  consumption.  The  reliability  of  this 
attribute would be therefore debatable.

3.6.3.Performance counters

Figure  3.6.3:1 reports  a  comparison  of  the  cache-miss  and  branch  misprediction  ratios  of 
HPL+MKL,  Quantum  ESPRESSO,  LAMMPS,  HPL+Netlib  and  HPCG.  As  for  the  top-down 
characterization, these tests were conducted with the ondemand governor and Turbo Boost enabled.

Once again, the trend is clear and doesn't need further comment, but something must be noted. For 
an application, being dependent on large amounts of memory does not necessarily relate to being 
memory-bound too. HPL, even though it is using more than 80% of the available memory in these 
tests, can be extremely efficient in fetching the data, as the algorithm allows to exploit the cache 
levels and data locality. Of course, many algorithms cannot be further optimized and the problem of 
sparse data cannot be efficiently addressed, but for sure, a large amount of programs still can be 
optimized to take advantage of the new architectures and the new features, increasing drastically 
both  the  performance  and  the  energy  efficiency.  The  performance  counters  proved  to  be  an 
important tool in this respect, as a simple analysis can give lots of hidden information and deep 
insights concerning a program that might not be noticed by reading, or writing, the code.
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4. Conclusions

This section briefly summarizes the activity performed in this research project, highlights the results 
obtained and the lessons learned. It also addresses some possible future directions and ideas that 
could be further investigated.

A careful and in-depth performance/energy analysis has been conducted on a set of HPC workloads: 
two standard and well known benchmarks and two scientific application widely used.
Several important results have been achieved:

• It  was  evidenced  how  HPL  and  HPCG  currently  represent  two  extremes  of  HPC 
applications. One largely CPU-bound, one memory-bound.

• Other benchmarks shown that real-world applications are in between these two border cases. 
QE and LAMMPS, at least for the input data and benchmarks tested, appeared as 2 typical 
applications, with complex algorithms, lying within the range described by HPC and HPCG.

• HPL was tested and studied using different libraries and it  was clearly shown that both 
performance and energy impact can be largely affected by the kind of library. Netlib, even 
though considered  the  reference  BLAS and LAPACK implementation,  if  used  for  HPC 
applications can lead to bad performance and wasted resources, while other libraries (not 
necessarily  commercial  implementations)  could  provide  better  and  more  efficient 
alternatives.

This study, despite the limited amount of time used, provides some clear indications about what can 
be done and how it can be used for energy-efficiency optimization.

It was observed that the energy-efficiency of memory-bound applications actually benefits from 
running at lower CPU frequency. Deciding to downclock an application in order to spare few watts, 
though, is not always feasible nor useful.
Nevertheless, under a regime of power capping, knowing how an application behaves and reacts 
may be useful to understand whether to run the application anytime, with a lower clock frequency 
limiting the overall power consumption, or wait for available resources and run it at the fastest 
speed possible for a shorter time. It was evident that what largely influences the energy-efficiency is 
the  time-to-solution  more  than  the  instant  power  consumption,  as  a  greater  performance  for  a 
shorter time may be more convenient than a lower performance for a longer time.

On the technical side it could be noted the following:
• RAPL turned out to be a great feature, allowing to monitor the power consumption of a 

system. Maybe not really meaningful for a single computer, in a large infrastructure and 
coupled to a resource manager it can provide deep and accurate insight about how hardware 
and software behave and interact.

• Performance counters represent a huge resource for code profiling and optimization. Many 
caveats are hidden in this area, and often this doesn't immediately appear at first sight, often 
taking for granted what standard tools report.

What was exposed in this work is just the tip of an iceberg, what lies underwater is impressive. For 
example, an attempt (not fully documented) was made to figure out the best performance counters 
in order to obtain L1i/L1d/L2/L3/TLB. Despite the efforts, it was extremely difficult to figure out 
whether a measure was reliable or not. Most counters offer speculative counts, not real hardware 
counts.  Some  include  or  exclude  particular  corner  cases,  or  some  specific  metrics.  Often,  the 
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available documentation is not detailed, or a particular feature is undocumented or kept hidden.
Even the same performance events are reported differently depending on the microarchitecture, and 
the documentation often doesn't keep up with these changes.
The potential is therefore great, and in this thesis we just started exploiting it.

Moreover  this  project  have  produced several  tools  that  could  have  a  significant  impact  on the 
efficient energy management of an HPC infrastructure.
Here are the most important achievements:

• The monitoring software was improved (hwloc, numactl, sysconf, command line options).
• New pductl utility for remote command line based control and monitoring of the PDU.
• All  the tools  used were made available  on HPC cluster  for further  study,  many also as 

loadable modules.
• LIKWID and  pmu-tools data  structures  have  been  interfaced  to  perf,  allowing  greater 

flexibility.
• The platform was benchmarked with greater results than those officially given.

All these tools are planned to be made available soon in a public git repository as open-source 
software.

4.1.Future Perspectives

This investigation opened the Pandora's box. A huge amount of data was collected and analyzed in 
many aspects. Some of the metrics obtained and a large portion of data had to be ignored, and many 
other metrics could have been used for completely different analysis.

The performance counters can be used for a huge variety of different microbenchmarks and deeper 
analysis  of  software  and  hardware  behavior.  For  instance,  in  order  to  estimate  the  number  of 
floating-point operations per seconds of QE and LAMMPS, many counters have been collected. 
These counters, could have led to a study about how an application uses or not vectorization.

This study unveiled a wide range of opportunities for further investigation. Among these, some have 
been already scheduled in the near future.

1. Lots  of  efforts  have  been  spent  on  understanding performance counters,  their  meaning, 
identifying the most useful ones, the (un)availability and/or (un)reliability of many of them 
depending on the architecture, and especially how different tools and libraries handle them. 
A deeper analysis may expose performance events not only useful for code profiling and 
optimization,  but  also  for  providing metrics  to  be  integrated  into  resource  management 
systems, schedulers, and monitoring tools. Intel's official profiling tool, VTune[84], wasn't 
used in this study, but could provide some useful insights about official Intel's strategies on 
handling performance monitoring events.

2. Due to time constraints, the analysis of GPU power consumption was only explored enough 
to give a hint about what could be the influence of moving the calculation from the CPU to 
the accelerator, GPU DVFS wasn't approached at all. Exploring means to measure the power 
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consumption  on  MIC  and  GPGPU  is  therefore  deemed  important  for  the  forthcoming 
generations of “accelerated” codes. Moreover, performance counters and frequency scaling 
are planned to be investigated also on these platforms.

3. The  current  evolution  of  HPC  technologies  (and  market  trends)  are  making  of 
energy-efficiency the new hot-topic. Large infrastructures requires fine-grained monitoring 
of  the  resources,  and  as  well,  a  wiser  and  more  energy-friendly  approach  to  resource 
management. Integration of energy profiling features and power capping policies in queue 
managers and schedulers is rapidly evolving. The experience gained during this work offers 
a  new  opportunity  to  enhance  these  features,  and  to  apply  similar  methodologies  to  a 
production environment in order to deepen the insights already acquired with real-world 
usage.

4. This  project  focused  on  exploratory  testing,  and  challenged  advanced  and  innovative 
methods  of  investigation  of  application-level  performance  and  energy-efficiency.  In  this 
work  some  representative  applications  were  benchmarked,  therefore  studying  a  broader 
spectrum of applications may lead to even more relevant insights. Testing different scientific 
workload and different  real-world applications  will  allow to create,  in  an unattended or 
semiautomatic way, a database of energy efficiency for HPC clusters/infrastructures.

5. An attempt was made to gather external power readings from various devices. Even though 
it  didn't  provide  accurate  nor  usable  results  on  the  tested  platform,  this  strategy  still 
represents a good approach for other infrastructures. Many other devices available on HPC 
systems may provide  useful  information  for  a  wider  and more  accurate  analysis  of  the 
system  (network,  storage,  fans,  power  supplies,  motherboard  and  overall  node  power 
consumption),  and multinode scaling analysis  may identify the impact of network-based 
communication on the overall energy consumption of an application. A study on this respect 
will be also evaluated.

4.1.Future Perspectives 52



5. Acknowledgments

I would like to express my gratitude to all the people who made this project possible.

I wish to thank COSINT for providing the infrastructure on which this research project was based.

I  appreciate  the  support  from CNR-IOM DEMOCRITOS that  allowed me to  participate  to  the 
MHPC and granted me the time to conduct the research discussed in this dissertation.

My deepest gratitude to Dr. Andrea Bartolini (Micrel Lab) and Dr. Stefano Cozzini (MHPC), my 
research supervisors, for their advice and assistance in keeping my progress on schedule.

I am grateful to all the teachers of the Master, for their patient guidance, enthusiastic encouragement 
and useful critiques. I would like to acknowledge Dr. Christopher Dahnken (Intel, MHPC), whose 
lectures inspired the performance counters analysis discussed in this dissertation.

Assistance provided throughout the Master by Giuseppe Piero Brandino, a.k.a. Pino, was greatly 
appreciated.

I wish to extend my greatest and deepest appreciation and infinite gratitude to all the FOSS software 
developers, system administrators and technical forums contributors all over the world, for the huge 
amount and variety of software and helpful documentation made available on the web, making very 
complex and extremely obscure tasks few clicks away from anyone's knowledge.

Thanks to Intel, for the great manuals and documentation, but please, next time make it grep'able 
and parsable from the command line.

I also wish to thank the fellow students of the MHPC 2014-2015, for the help provided and for 
keeping me sane through all the difficulties of this intense year.

Finally, I would like to express my heart-felt gratitude to Giorgia, for her support, understanding 
and patience.

I would also like to apologize to all mankind and planet Earth for the huge amount of resources 
wasted to accomplish this research project on... well... energy-efficiency. Sorry.

5.Acknowledgments 53



6. Bibliography

1: Eurotech, Aurora Systems, http://www.eurotech.com/en/hpc/hpc+solutions/data+center+hpc/Aurora+Systems

2: CO.S.IN.T., Consorzio per lo Sviluppo Industriale di Tolmezzo, http://www.cosint.it

3: Eurora, EURopean many integrated cORe Architecture, http://www.top500.org/system/178077

4: CINECA, http://www.cineca.it/

5: Green500, 2013/06, http://www.green500.org/lists/green201306

6: Top500, http://www.top500.org/

7: Thiane2, http://www.top500.org/system/177999

8: QUARTETTO, http://www.top500.org/system/178251

9: K. Bergman, et al., Exascale computing study: Technology challenges in achieving exascale systems., 2008, 
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf

10: Green500, http://www.green500.org/

11: Shoubu, http://www.top500.org/system/178542

12: Borghesi A., Conficoni C., Lombardi M. and Bartolini A., MS3: A Mediterranean-style job scheduler for 
supercomputers - do less when it's too hot!, International Conference on High Performance Computing & Simulation 
(HPCS), 2015, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7237025

13: Srinivas Pandruvada, Running Average Power Limit - RAPL, 
https://01.org/blogs/tlcounts/2014/running-average-power-limit-%E2%80%93-rapl

14: Netlib, http://www.netlib.org/blas/

15: ATLAS, http://math-atlas.sourceforge.net/

16: OpenBLAS, http://www.openblas.net/

17: PLASMA, http://icl.cs.utk.edu/plasma/

18: MKL, https://software.intel.com/en-us/intel-mkl

19: QE, http://www.quantum-espresso.org/

20: LAMMPS, http://lammps.sandia.gov/

21: SLURM, http://slurm.schedmd.com/

22: Intel, Intel Xeon Processor E5-2697 v2 (30M Cache, 2.70 GHz), 
http://ark.intel.com/products/75283/Intel-Xeon-Processor-E5-2697-v2-30M-Cache-2_70-GHz

23: hwloc, Portable Hardware Locality, http://www.open-mpi.org/projects/hwloc/

24: CentOS, https://www.centos.org/

25: gcc, https://gcc.gnu.org/

26: OpenMPI, http://www.open-mpi.org/

27: PBSPro, PBS-Pro, http://www.pbsworks.com/

28: Yiannis Georgiou, David Glesser, Krzysztof Rzadca and Denis Trystram, Introducing Energy based fair-share 
scheduling, 2014, http://slurm.schedmd.com/SUG14/energetic_fair_share.pdf

29: Yiannis Georgiou, Enhancing Slurm with Energy Consumption Monitoring and Control Features, 2012, 
http://slurm.schedmd.com/slurm_ug_2012/Energy_Accounting-BULL-SUG2012.pdf

6.Bibliography 54



30: Bartolini, Andrea, et al., Unveiling eurora-thermal and power characterization of the most energy-efficient 
supercomputer in the world., Proceedings of the conference on Design, Automation & Test in Europe. European Design 
and Automation Association, 2014, http://www.date-conference.com/files/proceedings/2014/pdffiles/10.3_2.pdf

31: Micrel, Micrel Lab, http://www-micrel.deis.unibo.it/sitonew/

32: UNIBO, Università di Bologna, http://www.unibo.it/

33: numactl, numactl/libnuma, http://oss.sgi.com/projects/libnuma/

34: LIKWID, https://code.google.com/p/likwid/

35: NVML, NVidia Management Library, https://developer.nvidia.com/nvidia-management-library-nvml

36: nvidia-smi, NVIDIA System Management Interface, 
https://developer.nvidia.com/nvidia-system-management-interface

37: snmp-utils, Net-SNMP, http://www.net-snmp.org/

38: IPMItool, http://sourceforge.net/projects/ipmitool/

39: cpufrequtils, https://www.kernel.org/pub/linux/utils/kernel/cpufreq/

40: sysfs, https://www.kernel.org/doc/Documentation/filesystems/sysfs.txt

41: perf, https://perf.wiki.kernel.org/

42: Gnuplot, http://www.gnuplot.info/

43: HPL, http://www.netlib.org/benchmark/hpl/

44: HPCG, https://software.sandia.gov/hpcg/about.php

45: Jack Dongarra, Piotr Luszczek and Michael Heroux, Toward a new (another) metric for ranking High Performance 
Computing systems, 2014, http://science.energy.gov/~/media/ascr/ascac/pdf/meetings/20140331/Dongarra.pdf

46: Jack Dongarra, ICSC 2014 Architecture-aware Algorithms and Software for Peta and Exascale Computing, 2014, 
http://icsc2014.sjtu.edu.cn/wp-content/uploads/2014/05/ICSC2014-Jack.pdf

47: Intel, "Intel Xeon Processor E5 v2 Product Family, 1/2, Datasheet - Volume One of Two", March 2014, 
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-1.pdf

48: CPUfreq, https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt

49: Intel, "Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 3B: System Programming Guide, 
Part 2", September 2015, 
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

50: Intel, Intel 64 and IA-32 Architectures Software Developer Manuals, 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

51: Intel, "Intel 64 and IA-32 Architectures Optimization Reference Manual", September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

52: Intel, "Intel Xeon Processor E5 v2 and E7 v2 Product Families Uncore Performance Monitoring Reference 
Manual", February 2014, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/xeon-e5-2600-v2-uncore-manual.pdf

53: Intel, "Intel Xeon Processor E5 v2 Product Family, 2/2, Datasheet - Volume Two: Registers", March 2014, 
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v2-datasheet-vol-2.pdf

54: Intel, "Chapter 14, 14.9.2 POWER AND THERMAL MANAGEMENT: RAPL", September 2015, 
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

55: Intel, "APPENDIX B: USING PERFORMANCE MONITORING EVENTS", September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

6.Bibliography 55



56: Alexander Supalov, Andrey Semin, Michael Klemm and Christopher Dahnken, Optimizing HPC Applications with 
Intel Cluster Tools: Hunting Petaflops, 2014, 

57: Andi Kleen, Measuring workloads with toplev -- TopDown High level overview, 
https://github.com/andikleen/pmu-tools/wiki/toplev-manual

58: Intel, Appendix B: Using performance monitoring events -- B.1 Top-down analysis method, September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

59: Jackson Marusarz, How to Tune Applications Using a Top-Down Characterization of Microarchitectural Issues, 
https://software.intel.com/en-us/articles/how-to-tune-applications-using-a-top-down-characterization-of-microarchitectu
ral-issues

60: Aman Singh and Anup Buchke, A Study of Performance Monitoring Unit, perf and perf_events subsystem, 
http://rts.lab.asu.edu/web_438/project_final/CSE_598_Performance_Monitoring_Unit.pdf

61: Treibig, J. and Hager, G. and Wellein, G., LIKWID: A lightweight performance-oriented tool suite for x86 multicore 
environments, Proceedings of PSTI2010, the First International Workshop on Parallel Software Tools and Tool 
Infrastructures, 2010, http://arxiv.org/abs/1004.4431

62: libpfm, libpfm4/perfmon2, http://perfmon2.sourceforge.net/

63: pmu-tools, https://github.com/andikleen/pmu-tools

64: PAPI, http://icl.cs.utk.edu/papi/

65: msr-tools, https://01.org/msr-tools

66: perfmon, https://download.01.org/perfmon/

67: powertop, https://01.org/powertop

68: turbostat, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/power/x86/turbostat

69: cpupowerutils, http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/tools/power/cpupower

70: cpuspeed, http://carlthompson.net/Software/CPUSpeed

71: LAMMPS Lennard-Jones benchmark, http://lammps.sandia.gov/bench.html#lj

72: Linux Perf sources, user-space, https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/

73: Linux Perf sources, kernel-space, 
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/arch/x86/kernel/cpu/

74: Intel, "[SDM3B2] Chapter 19, Performance Monitoring Events", September 2015, 
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

75: Intel, "BT257. Performance Monitor Instructions Retired Event May Not Count Consistently", "Intel Xeon 
Processor E5 Product Family Specification Update", page(s) 87, January 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-family-spec-update.pdf

76: Intel, Memory and Cache Profiling Erratum on Intel Xeon processor E5 family, 
https://software.intel.com/en-us/articles/performance-monitoring-on-intel-xeon-processor-e5-family

77: Intel, "Desktop 3rd Generation Intel CoreTM Processor Family Specification Update", April 2015, 
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

78: Intel, "BV98. Performance Monitor Counters May Produce Incorrect Results", "Desktop 3rd Generation Intel 
CoreTM Processor Family Specification Update", page(s) 48, April 2015, 
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

79: Intel, "BU1. Performance Monitor Instructions Retired Event May Not Count Consistently", "Desktop 3rd 
Generation Intel CoreTM Processor Family Specification Update", page(s) 52, April 2015, 
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

6.Bibliography 56



80: Intel, "BV112. Performance Monitor Instructions Retired Event May Not Count Consistently", "Desktop 3rd 
Generation Intel CoreTM Processor Family Specification Update", page(s) 52, April 2015, 
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/specification-updates/3rd-gen-core-desktop-specif
ication-update.pdf

81: Linux Kernel Mailing List, https://lkml.org/lkml/2015/3/23/417

82: PAPI, Counting Floating Point Operations on Intel Sandy Bridge and Ivy Bridge, 
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

83: Intel forum, Interpreting the AVX counter results, 
https://software.intel.com/en-us/forums/intel-vtune-amplifier-xe/topic/277877

84: VTune, https://software.intel.com/en-us/intel-vtune-amplifier-xe

85: Intel, Avoiding and Identifying False Sharing Among Threads, 
https://software.intel.com/en-us/articles/avoiding-and-identifying-false-sharing-among-threads

86: Jackson Marusarz, Cache Miss Rates in Intel VTune Amplifier XE, 
https://software.intel.com/en-us/articles/cache-miss-rates-in-intel-vtune-amplifier-xe

87: Peter Wang, Estimate the penalty of Cache Miss more accurate on Ivy-bridge?, 
https://software.intel.com/en-us/blogs/2013/07/01/estimate-the-penalty-of-cache-miss-more-accurate-on-ivy-bridge

88: Georgios Bitzes and Andrzej Nowak, The overhead of profiling using PMU hardware counters, 2014, 
http://openlab.web.cern.ch/sites/openlab.web.cern.ch/files/technical_documents/TheOverheadOfProfilingUsingPMUhar
dwareCounters.pdf

89: Intel, Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 1: Basic Architecture, 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

90: Intel, Intel 64 and IA-32 Architectures -- Software Developer's Manual -- Volume 3 (3A, 3B, 3C & 3D): System 
Programming Guide, 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

91: Intel, "Chapter 19, Performance Monitoring Events", September 2015, 
http://www.intel.it/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-3
b-part-2-manual.pdf

92: Intel, "B.3.2: Locating Stalls in the Microarchitecture Pipeline", September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

93: Intel, "B.3.3.1: Precise Memory Access Events", September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

94: Intel, "B.4.2: Hierarchical Top-Down Performance Characterization Methodology and Locating Performance 
Bottlenecks", September 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

95: Intel, "Intel Xeon Processor E5 Product Family Specification Update", January 2015, 
http://www.intel.com/content/dam/www/public/us/en/documents/specification-updates/xeon-e5-family-spec-update.pdf

6.Bibliography 57



7. Appendices

Appendix A. List of Acronyms

AC: Alternating Current
ACPI: Advanced Configuration and Power Interface
ALU: Arithmetic Logic Unit
AMBER(MD): Assisted Model Building with Energy Refinement (Molecular Dynamics) package
API: Application Program Interface
APM: Advanced Power Management
ATLAS: Automatically Tuned Linear Algebra Software
AVX: Advanced Vector Extensions
BE: Back-End
BIOS: Basic Input-Output System
BLAS: Basic Linear Algebra Subprograms
CPI: Clock/Cycles Per Instruction
CPU: Central Processing Unit
CSR: Configuration Space Registers
DC: Direct Current
DMI: Direct Media Interface
DP: Double Precision
DRAM: Dynamic Random-Access Memory
DVFS: Dynamic Voltage and Frequency Scaling
EIST: Enhanced Intel SpeedStep
ESPRESSO: opEn-Source Package for Research in Electronic Structure, Simulation, and Optimization
ER: Embedded Controller
EURORA: EURopean many integrated cORe Architecture
FE: Front-End
FLOPS: Floating-Point Operations Per Second
FMA: Fused Multiply-Add
FOSS: Free and Open-Source Software
FP: Floating Point
FPU: Floating-Point Unit
GEMM: GEneral Matrix Multiplication
(GP)GPU: (General-Purpose) Graphics Processing Unit
HPC: High Performance Computing
HPCG: High Performance Conjugate Gradient
HPL: High Performance Linpack
IGP: Integrated Graphics Processor
IMC: Integrated Memory Controller
IOH: Input/Output Hub
IPC: Instructions Per Cycle
IPMI: Intelligent Platform Management Interface
IVB: IVy Bridge
L1/L2/L3: Level 1/2/3 cache
L1d / L1i: Level 1 Data cache / Level 1 Instruction cache
LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator
LAPACK: Linear Algebra PACKage
LIKWID: Like I Knew What I am Doing
LLC: Last Level Cache / Longest Latency Cache
MIC: Many Integrated Core
MKL: (Intel) Math Kernel Library
MMIO: Memory Mapped I/O
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MPI: Message Passing Interface
MSR: Machine/Model-Specific Register
NUMA: Non-Uniform Memory Access
OMP: OpenMP
OpenMP: Open Multi-Processing
OpenMPI: Open Message Passing Interface
OS: Operating System
PAPI: Performance Application Programming Interface
PBS: Portable Batch System
PCH: Platform Controller Hub
PCI: Peripheral Component Interconnect
PCM: Performance Counter Monitor
PCU: Power/Package/Platform Control Unit
PDU: Power Distribution Unit
PECI: Platform Environment Control Interface
PEBS: Precise Event Based Sampling
PLASMA: Parallel Linear Algebra for Scalable Multi-core Architectures
PMC: Performance Monitoring Counter
PMI: Performance Monitoring Interrupt
PMU: Performance Monitoring Unit
PWscf: Plane-Wave Self-Consistent Field
QE: Quantum ESPRESSO
QoS: Quality of Service
QPI: QuickPath Interconnect
RAM: Random-Access Memory
RAPL: Running Average Power Limit
RFTS: Run Fast Then Stop
SDM: (Intel) Software Developer's Manual
SIMD: Single Instruction, Multiple Data
SLURM: Simple Linux Utility for Resource Management
SNMP: Simple Network Management Protocol
(NVidia-)SMI: System Management Interface
SMT: Simultaneous MultiThreading (Hyper-Threading)
SoC: System-on-Chip
SP: Single Precision
SSE: Streaming SIMD Extensions
sysfs: system filesystem
SVID: Serial Voltage ID
TCO: Total Cost of Ownership
TSC: Time Stamp Counter
TDP: Thermal Design Power / Thermal Design Point
TLB: Translation Lookaside Buffer
TMAM: Top-Down Microarchitecture Analysis Method
Uop: Micro-Operation
VM: Virtual Machine
VR: Voltage Regulator

CINECA: Consorzio INteruniversitario per il Calcolo Automatico
CNR-IOM: Consiglio Nazionale delle Ricerche - Istituto per l'Officina dei Materiali
CO.S.IN.T./COSINT: COnsorzio per lo Sviluppo INdustriale di Tolmezzo
DEMOCRITOS: DEMOCRITOS MOdeling Center for Research In aTOmistic Simulation
MHPC: Master In High Performance Computing
Micrel lab: MICroELectronic Laboratory
SISSA: Scuola Internazionale Superiore di Studi Avanzati
UNIBO: UNIversity of BOlogna
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Appendix B. TMAM formulas and performance events

The following formulas, extracted from [59], can be used in order to obtain the pipeline slots:

SLOTS            = PIPELINE_WIDTH * CPU_CLK_UNHALTED_THREAD
Front-End Bound  = IDQ_UOPS_NOT_DELIVERED_CORE / SLOTS
Retiring         = UOPS_RETIRED_RETIRE_SLOTS / SLOTS
Bad Speculation  = (UOPS_ISSUED_ANY - UOPS_RETIRED_RETIRE_SLOTS +
                   PIPELINE_WIDTH * INT_MISC_RECOVERY_CYCLES) / SLOTS
Back-End Bound   = 1-(Front-End Bound + Retiring + Bad Speculation)

PIPELINE_WIDTH for Intel Ivy Bridge is 4.

The performance events names can be translated to the following hex flags:

---------------------------------------------------
Event Event Event Event
Code Mask Hexcode name
---------------------------------------------------
3Ch 00h 0x003C CPU_CLOCK_UNHALTED_THREAD_P
9Ch 01h 0x019C IDQ_UOPS_NOT_DELIVERED_CORE
C2h 02h 0x02C2 UOPS_RETIRED_RETIRE_SLOTS
0Eh 01h 0x010E UOPS_ISSUED_ANY
0Dh 03h 0x030D INT_MISC_RECOVERY_CYCLES
---------------------------------------------------

In the TMAM analysis exposed in this work, the aforementioned performance events have been 
obtained using the hex flags by means of perf, and the calculation was demanded to gnuplot.
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Appendix C. FLOPS from performance counters

----------------------------------------------------------------
Event Event Event Event
Code Mask Hexcode name
----------------------------------------------------------------
10h 01h 0x0110 FP_COMP_OPS_EXE.X87 [1]
10h 10h 0x1010 FP_COMP_OPS_EXE.SSE_FP_PACKED_DOUBLE [2]
10h 20h 0x2010 FP_COMP_OPS_EXE.SSE_FP_SCALAR_SINGLE [3]
10h 40h 0x4010 FP_COMP_OPS_EXE.SSE_PACKED_SINGLE [4]
10h 80h 0x8010 FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE [5]
11h 01h 0x0111 SIMD_FP_256.PACKED_SINGLE [6]
11h 02h 0x0211 SIMD_FP_256.PACKED_DOUBLE [7]
----------------------------------------------------------------

------------------------------------------------------------------------------
Scalar SP FP_COMP_OPS_EXE.SSE_FP_SCALAR_SINGLE
Scalar DP FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE
Packed SP (FP_COMP_OPS_EXE.SSE_PACKED_SINGLE * 4) +

(SIMD_FP_256.PACKED_SINGLE * 8)
Packed DP (FP_COMP_OPS_EXE.SSE_FP_PACKED_DOUBLE * 2) +

(SIMD_FP_256.PACKED_DOUBLE * 4)
Tot SP Scalar SP + Packed SP
Tot DP Scalar DP + Packed DP
GFLOPS (Tot SP + Tot DP) / 1e9 / elapsed_time
GFLOPS #2 (Tot SP + Tot DP + FP_COMP_OPS_EXE.X87) / 1e9 / elapsed_time
------------------------------------------------------------------------------

By calibrating the obtained results testing known algorithms, it appeared that the obtained count of 
floating point operations was smaller by a factor 1.2, which was then considered as a multiply factor 
to obtain the final estimation.
Although the performance results reported for QE and LAMMPS have been obtained and based 
upon these concepts, further study should be considered to broadly verify this assumption.
Various  sources  confirm that  floating-point  performance counters  are  not  reliable,  though.  [83]
[82] [34]

[1] Counts number of X87 uops executed (traditional 8087 style 80bit floating point operations) [negligible impact]
[2] Counts number of SSE* or AVX-128 double precision FP packed uops executed (2x 64bit DP packed into 128 bit register)
[3] Counts number of SSE* or AVX-128 single precision FP scalar uops executed (1x SP operation)
[4] Counts number of SSE* or AVX-128 single precision FP packed uops executed (4x 32bit SP packed into 128 bit register)
[5] Counts number of SSE* or AVX-128 double precision FP scalar uops executed (1x DP operation)
[6] Counts 256-bit packed single-precision floating-point instructions        (8x 32bit SP packed into 256 bit register)
[7] Counts 256-bit packed double-precision floating-point instructions        (4x 64bit DP packed into 256 bit register)
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Appendix D. Unused metrics

This appendix briefly presents the results of the exploratory testing attempted in order to obtain 
additional power readings concerning the whole system (chassis, blades, network devices) from the 
external  power  supply.  Reliability  and  granularity  of  these  readings  were  assessed  (D.1.1). 
Additional analysis (D.1.2) included a multinode test to validate the power readings obtained by the 
rectifiers, and a scaling analysis aimed to identify any influence of network-based communication 
on the overall power consumption.

Moreover,  in  Appendix  D.2.,  the  idle  power  of  the  CPUs  was  measured  for  each  available 
performance state. In conclusion, the plot reported in  Appendix D.3. exposes some of the metrics 
collected in this project that had to be ignored.

Appendix D.1. Power rectifiers

In a preliminary phase, the monitoring sensors of the 3 power rectifiers available upstream of each 
chassis were meant to be used in order to detect the power consumption of an entire chassis, the 
single blades and network devices.
The  management  interface  of  the  power  supply,  accessible  via  SNMP,  among  several  metrics 
reports  the current  and the voltage of both the AC input  and the DC output,  hence the energy 
absorbed and the power consumption of the system.
Unfortunately, these readings didn't turn out to be accurate enough, and were therefore ignored in 
the subsequent tests. The following subsection describes and shows the outcome of this test phase.

Even though this test didn't lead to the expected results, the scripts written to query and manage the 
rectifiers are now part of the management software suite of the infrastructure, now at disposal of the 
vendor and the system administrators.

Appendix D.1.1. Power consumption detected by the power rectifiers

Some scripts and wrappers were written in order to query the power supply at fixed intervals while 
performing various sequential operations, in particular the following stages were analyzed:

1. all off;
2. management rootcard powered on;
3. blade #1 on;
4. blade #2 on (#1 on but in idle);
5. ...
6. blade #N on (all previous blades powered on but in idle).

The graph 3.6.1 reports the average power consumption detected on each stage during the power up 
of the components of the chassis #1, which contains 6 blades (without GPUs).
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As can be seen from the data obtained, Figure D:1, the power increments almost linearly with the 
number of blades. Nonetheless, in detail it is possible to observe that the consumption of each blade 
is different, as reported in the plot at the bottom of D:1, which means that either an average power 
must be assumed for all the blades or that each one has to be considered on its own.

The rootcard and the chassis  components  appear  to  use 50 to  100 W. Each blade powered on, 
though, does not increase the total for the same amount, as the increments span from 50 to 80 W per 
blade.  Although  the  boot-up  was  already  completed  when  each  set  of  data  was  collected,  the 
reliability of this readings may be of course affected by spurious load of the operating system.

It can also be noted that input and output load of the rectifiers don't appear to be so strictly related,  
fact that will be more evident in the following test.

For the second chassis,  which contains 4 blades with 2 GPUs on each of them, more frequent 
readings were considered, and various stages of the boot-up reported as well on the graph:

1. hardware power on;
2. IPMI interface booted and accessible;
3. OS still booting, but already replying at ping (network configured);
4. OS boot-up completed (ssh access and all services up & running, no load beside normal 

activity).
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In  Figure D:2, although the output power of the rectifiers was increased by the power-on of the 
rootcard  and  the  first  2  blades,  the  input  power  didn't  change  at  all,  even  though  the  power 
consumption of the rootcard and the blades was around 90 W each. An increment can be noticed 
only when the 3rd blade was switched on.

Should be noted that on the second chassis the blades were not installed on adjacent slots, some 
slots were left empty and thus the load may not be distributed evenly, hence the surprising result.

Despite  the  fact  that  one  chassis  hosts  6  blades  while  the  second  only  4,  the  overall  power  
consumption is quite close, but the idle power of the 8 GPUs should be taken into account together 
with the 4 nodes.

Appendix D.1.2. Detecting network devices power consumption using 
the rectifiers

One of the measures expected to be obtained by using the rectifiers was the power consumption of 
the network devices (InfiniBand host adapters).
The idea was to detect the power consumption of one or more nodes while running a benchmark 
(HPL) loading the machine(s) but without any communication, then measure again when running 
the benchmark in parallel on multiple nodes with communication. The difference was expected to 
give a rough idea of the consumption demanded by the communication.
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This test was performed only on chassis #2 using the 4 blades (#1 had to go back in production), 
and included the following runs:

• single instance of HPL (24 MPI processes) on a single blade, while the others were in idle  
state, repeated for each of the 4 blades (24 cores busy overall);

• single  instance  of  HPL (24  MPI  processes)  on  2  blades  at  the  same  time,  while  the 
remaining 2 were idling (paired as b21/b22 and b23/b24) (48 cores busy);

• single instance of HPL (24 MPI processes) on 4 blades at the same time (all 96 cores busy);
• single instance of HPL with 48 processes (2 nodes: b21/b22, b23/b24) (48 cores busy);
• single instance of HPL with 96 processes (4 nodes: b21,b22,b23,b24) (all 96 cores busy);
• 2 instances of HPL with 48 processes (2+2 nodes, b21/b22, b23/b24) (all 96 cores busy).

The size of the HPL input was scaled in order to use always the same amount of memory for each 
MPI process and each node (~54 GB RAM).

The HPL executable used for this test was compiled against MKL. As discussed in section  3.2, 
MKL delivered the highest performance and the shortest walltime, which was the most important 
feature required to run such large amount of tests.

In the graph 3.6.2, just for the sake of comparison, each instance of a job spread on multiple nodes 
is followed by an entry for each single blade involved, computed as the average for the run in 
question.  Furthermore,  for the runs with single contemporary instances, the aggregated result  is 
reported too, so that the run with 4 single contemporary instances can be compared to the 2+2 and 
the 4 parallel instances. Besides giving an idea of the scaling, the difference between this last sets 
should have led to some insights concerning the power consumption due to the MPI communication 
over the network.

As expected, the first plot, Figure D:3 top-left, which reports the contributions in percentage for the 
3 main CPU sub-systems (CORE, UNCORE, DRAM) shows more or less identical results for all  
the runs, since the the operations performed are basically the same independently of the number of 
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MPI processes. The contribution is distributed as 18% from the DRAM, 71% from the CORE and 
11% the UNCORE.
The  third  plot,  Figure  D:3 top-right,  confirms  that  the  CPU  is  100%  loaded  and  the 
computation/utilization pattern is exactly the same for all the instances.
The  second plot,  Figure  D:3 top-center,  reports  the  total  energy  consumed (kJoules),  which  is 
computed as the average power consumption multiplied by the walltime. This plot confirms that 
what defines the total energy consumption for a CPU-bound application is the time-to-completion.

The  forth  and fifth  plots,  Figure  D:3 center  row,  shows the  performance in  GFLOPS and the 
walltime as reported by HPL. As expected, the aggregate performance of 4 independent instances is  
larger than 2 instances of a MPI run spread on 2 nodes, which is in turn larger than a single instance  
of  MPI  on  all  4  nodes.  This  difference  is  obviously  due  to  the  communication  and  the  data 
distribution across nodes, which affect as well the walltime.

Concerning  the  energy  efficiency,  expressed  as  GFLOPS/W  in  the  sixth  plot,  Figure  D:3 
bottom-left,  there's  not  much  to  say.  Again,  MPI  on  4  nodes  is  less  efficient  than  any  other 
combination due to the overhead of the communication. Plot Figure D:3 bottom-center, express the 
efficiency  as  MFLOPS/J,  and here,  again,  multinode  MPI  jobs  result  to  be  less  efficient  only 
because of the larger walltime.

Finally, the last plot,  Figure D:3 bottom-right, confirms once again that the values extracted from 
the rectifiers cannot provide any evidence of the power consumption related to the communication, 
nor  give  detailed  information  concerning  the  single  blades.  Between  single-x4,  mpi-2x2  and 
mpi-1x4, in fact, no significant difference can be highlighted.

The graphs in Figure D:4 report the data acquired from the rectifiers.
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Appendix D.2. Idle power consumption of the system

This section reports the power consumption of the CPUs detected when the system is idling.

Despite  the  fact  that  a  specific  frequency  was  imposed  through  the  Linux  frequency  scaling 
governor,  Figure D:5, shows that the aggressive power saving policies of the CPU uniform the 
power consumption by putting the unused cores in some sleep state (C-state 1, 3 or 6). The only 
notable difference is that when Turbo Boost is explicitly chosen as performance state, the power 
consumption of the DRAM gets slightly higher (+4 W, ~+20%). The ondemand governor, 1st bar of 
both left and right panels, was running the CPU at the minimum frequency (1.2 GHz).

Figure D:6 reports the consumption when a single single-threaded application is demanding the 
100% of one core (while the load on the other cores is still <0.3%) . The behavior is closer to what  
would  be  expected  in  case  of  frequency  scaling:  the  power  consumption  decreases  when  the 
frequency does.
An important thing is highlighted by this test. The ondemand governor forces only one core to run at 
the highest frequency with the Turbo Boost enabled. Nonetheless, the power consumption is lower 
than  what  obtained  when  the  Turbo  Boost  is  imposed  system-wide.  The  small  delta  in  power 
consumption is because in the latter case, also the second socket has the Turbo Boost enabled and 
therefore  presents  the  same delta  observable  for  DRAM in  Figure  D:5 in  respect  of  the  other 
frequencies.
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Figure D:7 confirm this hypothesis. By running two single-threaded applications, each bound to one 
of the two sockets, ondemand highest performance state and userspace imposed Turbo Boost show the 
same power consumption.
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Appendix D.3. msr-statd (omitted) metrics
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Appendix E. Additional plots

Appendix E.1. HPL: power consumption by CPU sub-systems
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Appendix E.2. HPL: problem size scaling

Appendix E.2.1. BLAS comparison
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Appendix E.2.2. Top-down characterization
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Appendix E.2.3. Performance counters
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Appendix E.3. HPL: problem size and frequency scaling

Appendix E.3.1. ATLAS

Appendix E.3.HPL: problem size and frequency scaling 75



Appendix E.3.2. MKL
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Appendix E.3.3. OpenBLAS
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Appendix E.3.4. Netlib

Note: due to the (extremely) long runtime of HPL+Netlib, no additional tests were performed for 
1/1 and 1/2 size.

Appendix E.3.HPL: problem size and frequency scaling 78



Appendix E.4. HPCG: problem size and frequency scaling
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Appendix F. Playing with performance counters

event mask hexcode mnemonic

CBh 01h 0x01CB MEM_LOAD_RETIRED.L1D_HIT

CBh 02h 0x02CB MEM_LOAD_RETIRED.L2_HIT

CBh 04h 0x04CB MEM_LOAD_RETIRED.L3_UNSHARED_HIT

D0h 81h 0x81D0 MEM_UOPS_RETIRED.LOADS

D1h 02h 0x02D1 MEM_LOAD_UOPS.RETIRED_L2_HIT

D1h 04h 0x04D1 MEM_LOAD_UOPS.RETIRED_L3_HIT

D1h 10h 0x10D1 MEM_LOAD_UOPS.RETIRED_L2_MISS

D1h 12h 0x12D1 MEM_LOAD_UOPS.RETIRED_L2_ALL

D1h 20h 0x20D1 MEM_LOAD_UOPS.RETIRED_L3_MISS

D1h 24h 0x24D1 MEM_LOAD_UOPS.RETIRED_L3_ALL

D1h 7Fh 0x7FD1 MEM_LOAD_UOPS.RETIRED_ALL

D2h 01h 0x01D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_MISS

D2h 02h 0x02D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HIT

D2h 04h 0x04D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HITM

D2h 08h 0x08D2 MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_NONE

D3h 01h 0x01D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_LOCAL_DRAM

D3h 0Ch 0x0CD3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_DRAM

D3h 10h 0x10D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_HITM

D3h 20h 0x20D3 MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_FWD

F0h 80h 0x80F0 L2_TRANS.ALL_REQUESTS

2Eh 41h 0x412E L3_LAT_CACHE.MISS (perf "cache-misses")

2Eh 4Fh 0x4F2E L3_LAT_CACHE.REFERENCE (perf "cache-references")

24h 01h 0x0124 L2_RQSTS.ALL_DEM_AND_DATA_RD_HIT

24h 03h 0x0324 L2_RQSTS.ALL_DEM_AND_DATA_RD

24h AAh 0xAA24 L2_RQSTS.MISS

40h 01h 0x0140 L1D_CACHE_LD.I_STATE

40h 02h 0x0240 L1D_CACHE_LD.S_STATE

40h 04h 0x0440 L1D_CACHE_LD.E_STATE

40h 08h 0x0840 L1D_CACHE_LD.M_STATE

40h 0Fh 0x0F40 L1D_CACHE_LD.MESI

80h 01h 0x0180 ICACHE.HITS

80h 02h 0x0280 ICACHE.MISSES

80h 03h 0x0380 ICACHE.ACCESSES

80h 04h 0x0480 ICACHE.IFETCH_STALL

Various attempts at cache-miss ratio:
L3_ALL     = MEM_LOAD_UOPS.RETIRED_L3_HIT + MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HIT +
             MEM_LOAD_UOPS.LLC_HIT_RETIRED_XSNP_HITM + MEM_LOAD_UOPS.LLC_MISS_RETIRED_REMOTE_HITM +
             MEM_LOAD_UOPS.RETIRED_L3_MISS
perf L3    = L3_LAT_CACHE.MISS / L3_LAT_CACHE.REFERENCE
L1d        = L1D_CACHE_LD.I_STATE / L1D_CACHE_LD.MESI
L2         = MEM_LOAD_UOPS.RETIRED_L2_MISS / MEM_LOAD_UOPS.RETIRED_L2_ALL
L3         = MEM_LOAD_UOPS.RETIRED_L3_MISS / MEM_LOAD_UOPS.RETIRED_L3_ALL
likwid L1i = ICACHE.MISSES / ICACHE.ACCESSES
likwid L2  = L2_RQSTS.MISS / L2_TRANS.ALL_REQUESTS
forum L2   = 1 - (L2_RQSTS.ALL_DEM_AND_DATA_RD_HIT / L2_RQSTS.ALL_DEM_AND_DATA_RD)
forum L2   = L3_ALL / L2_RQSTS.ALL_DEM_AND_DATA_RD
forum L3   = MEM_LOAD_UOPS.RETIRED_L3_MISS / L3_ALL
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