NHPC
M‘\“ﬂ Computing MASTER IN HIGH PERFORMANCE COMPUTING

Master’s Thesis

A COMPUTATIONAL ECOSYSTEM
FOR
NEAR REAL-TIME
SATELLITE DATA PROCESSING

AUTHOR: SUPERVISOR:
Stefano PIANI Dr. Stefano C0OzzINI

Academic Year 20142015

Contents

Introduction
1 The physical problem

2 The processing system

2.1 The overall software structure
2.2 Where we start from L.
2.3 The parallel algorithm
2.4 The final goal: an end-to-end processing system
2.5 The Piasilibrary L.
2.6 Ourtools

2.6.1 A version control system (Git)

2.6.2 A suite for continuous integration (Jenkins)

2.6.3 A proficient documentation (Sphinx)

3 Improving the processor performances
3.1 Step 1: matrix-matrix multiplication bottleneck
3.2 Step 2: transformation phase improvement
3.3 Step 3: matrix structure identification
3.4 Step 4: exploiting diagonal properties.
3.5 Step 5: optimization of SVD algorithm
3.6 Step 6: SuperLU library
3.7 Anoverall view e
3.8 Thediagonalcase.
3.9 OpenBLASvs MKL

4 The computational ecosystem
4.1 Theoveralldesign
4.1.1 Features and requirements

111

-3 ot Ot

02¢)

10
12
13
14
14
14

15
17
18
19
21
22
24
25
26
26

412 Docker.
4.1.3 Slurm
4.1.4 The overall ecosystem
4.1.5 The logging system
4.2 The instrument serviceo
4.2.1 operativemode
4.2.2 The reprocessing mode
4.3 Theworker
4.4 The monitoring system
4.5 Benchmarking the infrastructure

5 Conclusions

Acknowledgement

Bibliography

v

39

43

45

Introduction

The main goal of this work is the development of a computational ecosystem
for nearly real-time inversion of high spectral resolution infrared data coming
from meteorological satellites.

The overall ecosystem has been designed and developed as nearly real-time
demonstration project to consolidate the quality and completeness of the
envisaged level 2 products derived from the Meteosat Third (MTG) infrared
hyperspectral sounder (IRS) measurements. Within this project, ITAST [2] , and
CrIS [4] observations, used as proxies for MTG-IRS, are processed by the Level
2 Validation and Demonstration Processor (L2VDP). The products derived
from these observations are distributed for further analysis by operational
forecasters or ingested in global or regional scale data assimilation systems
[1, 3]. L2VDP is a prototype processor compliant to the processing foreseen by
the operational MTG-IRS Level 2 Processor Facility (L2PF) as documented
in [13]. Hence the L2VDP is a so-called end-to-end processor, meaning that
it is a complete chain consisting of prototypes of all the processing modules
foreseen for the operational processor.

L2VDP consists of many different processing modules developed in col-
laborative way by many scientists and assembled under the supervision of
EUMETSAT. The inversion module (High Performance Level 2 Validation
and Demonstration Processor) represents the evolution of the UWPHYS-
RET/MIRTO package, the OSS RTM [5] (developed at A.E.R.) is the fast
radiative model, the ECMWF forecast transformation module (developed
by at ECMWF) represents the a-priori component of the system, and the
scene classification (developed at the University of Basilicata) and the post
processing (developed by EUMETSAT) are key elements for the generation
of Level 2 products tailored for data assimilation purposes.

Scientific background and relevance of the project are presented and
discussed in chapter 1, where details about the instruments and satellites
along with an estimate of the size of the data to be processed is given. The
chapter also provides a general overview of the challenges of near real-time
processing along with the implemented solutions.

e

The project was developed along three main lines of activities strictly
inter-connected which required a significant programming effort.

The first activity featured a complete software re-engineering of one of
the segment of the processing system responsible of the computation of the
scientific product to be disseminated. This activity is described in details in
chapter 2. This chapter also explains why the Python language was chosen
for the overall development of the processor.

The second activity was to provide, within a precise time period of two
months, an optimised version of the inversion module above mentioned. The
overall optimisation journey is illustrated in details in chapter 3.

Finally, in the third phase a complete computational ecosystem was
designed and developed around the core inversion component re-arranged
and optimised. This infrastructure allows the near real-time processing of the
input data. The final product has been tested on some computational nodes
embedded in EUMETSAT’s Technical Computational Environment (TCE),
which is a demonstrational computational facility. In chapter 4 estimate of
the amount of computational resources needed to operate in near real-time
processing for TASI instruments is also provided.

It has to be noted that the whole work was performed under a contract
which imposed strict deadlines that had to be respected and specific deliver-
ables to be submitted. For all the three activities discussed it was possible
to successfully fullfill the requirements posed by the contractor.

VI

CHAPTER 1

The physical problem

MetOp-A (launched on 19 October 2006) and MetOp-B (launched on 17
September 2012) are two satellites in a lower polar orbit, at an altitude of
817 kilometres, with the aim of providing detailed observations of the global
atmosphere, oceans and continents. The two satellites will operate in parallel
for as long as MetOp-A’s available capacities bring benefits to users. An
analogous satellite, MetOp-C, is due to be launched in 2017. They form the
space segment component of the overall EUMETSAT Polar System (EPS).

EPS has brought about a new era in the way the Earth’s weather, climate
and environment are observed and has significantly improved operational
meteorology, particularly Numerical Weather Prediction (NWP).

The data generated by the instruments carried by Metop can be assim-
ilated directly into NWP models to compute forecasts ranging from a few
hours up to 10 days ahead. Measurements from infrared and microwave
radiometers and sounders on board Metop provide NWP models with crucial
information on the global atmospheric temperature and humidity structure,
with a high vertical and horizontal resolution. EPS also ensures continuity
in the long-term monitoring of factors known to play an important role in
climate change, e.g. changing patterns in the distribution of global cloud,
snow and ice cover, and ocean surface temperatures and winds.

Metop carries a set of “heritage” instruments provided by the United
States and a new generation of European instruments that offer improved
remote sensing capabilities to both meteorologists and climatologists. These
instruments augment the accuracy of temperature humidity measurements,
readings of wind speed and direction, and atmospheric ozone profiles. One of
the instruments that flies exclusively on the MetOp satellites is the Infrared
Atmospheric Sounding Interferometer (IASI) which has the ability to detect

1

and accurately measure the levels and circulation patterns of gases that are
known to influence the climate, such as carbon dioxide.

Currently the elaborated products of the data collected from MetOp
satellites by TASI instruments include temperature and humidity profiles with
a vertical accuracies of 1 degree Kelvin and 10% per 1-km layer respectively,
trace gases, and the cloud cleared radiances (CCR) on a global scale and
these products are publicly available!.

These results are the final product of a long chain of elaborations that,
starting from the satellite data, produces the final output. The various steps
of this elaboration are subdivided by levels. Level 0 represents the raw data
collected by the interferometer. In the level 1 the same data is integrated
with corrections and additional metrics (like the position). In particular, the
level 1 is divided in three sublevels:

e LI1A: the radiances are geolocated and calibrated
e L1B: the radiances are geolocated, calibrated and resampled
e L1C": the radiances are geolocated, calibrated, resampled and apodised

Finally, in the level 2 we have the final output (the retrievals), with the
physical profiles of the atmosphere.

It is also clear that the elaborated data has to be made available to the
users in the shortest time possible: the closer in time the elaborated data are
to the moment they were recorded, the more valuable they are for the user.

One of the main goal of this thesis is to supply a processing system, named
L2VDP, i.e. a software chain capable of produce level 2 TASI data starting
from the level 1C data, which will implement a different algorithm compared
to the one already implemented in the ESP project. This processing system
will then be embedded in a framework in order to perform a massive near
real-time analysis of all the incoming data.

Our main starting point is the High Performance Level 2 Prototype
Demonstration and Validation Processor (HPL2VDP) [7]. This software
package has been designed and implemented to invert high spectral resolu-
tion infrared observations of the Earth into atmospheric state parameters:
vertical profiles of temperature, water vapor concentration, ozone concentra-
tion, surface temperature and surface emissivity. The code, written in Python,
was developed from a baseline package named MIRTO, a Python conversion
of the MATLAB retrieval system built at the Space Science Engineering
Center of the University of Wisconsin, UWPHYSRET|[6]. HPL2VDP has
been embedded in a more general package which allows to compute from
IASI L1 Data the final outcome ready for dissemination.

Another requirement of our project is to be able to elaborate, with just
minor difference on the same algorithm, also the data coming from CrIS,

!See for instance http://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

http://www.ospo.noaa.gov/Products/atmosphere/soundings/iasi

METOF-f FREDICTED FASSE: MEER (ALL TIMES IN LTC) McIOAS

Figure 1.1: The orbit of MetOp-A satellite on 19th of November 2015

another interferometer flying on the Suomi NPP satellite. While the number
of channels of CrIS is smaller compared to the IASI one (and therefore the
data it generates do not require an additional effort from a computational
point of view), it requires some degrees of flexibility in the overall software
structure to be able to handle the different data sources.

The peculiar type of the problem requires the elaboration of the TASI
data to be close in time to the acquisition. Because of the amount of data
collected, this is not a trivial task. Indeed, the data from the IASI instruments
on board of satellites come subdivided in granula or FDU (Fundamental
Data Unit). All data of a single FDU is contained inside a specific file whose
name is the name of the granula. A single IASI FDU consists of 3 minutes of
observations. Each FDU contains 23 scan lines, and each scan line has 120
Fields Of View (FOVs). Hence each FDU has 2760 FOVs and there are 480
FDU per 24 hours. Combining these numbers there are 1.324.800 FOV per
day. If a FOV is declared cloudy, then it is impossible to extract information
from it and must be therefore discarded. Assuming that on average half of
the FOV will be declared cloudy and removed from further processing, then
on a 24 hour time scale there will be 662.400 FOV to be processed.

The above numbers show clearly that an infrastructure should be able to
operate at rough speed of at least 662400/86400 = 7.6 FOV per second to
keep the processing in real-time.

Moreover, beside the L1 TASI data file, L2ZVDP requires some background
information extracted from the ECMWF? ensamble data assimilation system.
A preprocessing phase is thus required to prepare and collect all the physical
informations required by the algorithm (for example, the ground-type of the
FOV). All these tasks should also be taken in consideration to prepare a
suitable environment to elaborate the L1 TASI files.

2European Centre for Medium-Range Weather Forecasts

3

In the next chapter we will explain in more details all these phases and
the overall structure of the software we developed.

CHAPTER 2

The processing system

In this chapter we present the software engineering activities which had the
goal to integrate in one single package all the components needed to elaborate
the L1 TASI data. The software techniques we adopted to reach this goal are
also presented and discussed.

As briefly mentioned in the introduction, we used Python as a glue
language among the different components. Moreover, due to the fact that
HPL2VDP was also written in Python, in this thesis this programming
language is not only used as a script language but also as a scientific pro-
gramming tool to address HPC problems. In the conclusions we will discuss
about the pros and cons of this choice.

2.1 The overall software structure

In this section we will briefly describe the steps needed to perform
an analysis of the satellite data and to produce a valid retrieval for each
observation. Such retrievals are computed by means of optimal estimation
theory.

The overall computation can be split in two main sections: preprocessing
and processing. A graphical representation of these two phases is given in
picture 2.1.

In the preprocessing part (composed by several steps) we prepare all the
data needed to perform the actual processing phase.

The first one is to generate an a priori information accordingly to the
optimal estimation theory mentioned above: this is required for both surface
emissivity, surface temperature and atmospheric component. For the surface
emissivity of the ground we compute, for every channel of the instrument, the

5

mean emissivity of the ground and the statistical deviation from the possible
values from the mean.

For the atmospheric component, we use as first guess the forecast produced
in the past by a theoretical model. Therefore, the preprocessor should look
for a weather forecast which refers to the observation time and interpolate it
on the position of the observation. The forecasts that we use come from the
ECMWF (European Centre for Medium-Range Weather Forecasts) forecast
model and the interpolated data is produced by ECMWEF Bgerr software.

The last preliminary step is the scene analysis. If during the survey
the field is cloudy then it is impossible to obtain correct results using our
algorithms. For this reason it is important to detect the cloudy observations
and remove them to avoid to waste computational resources.

After all these steps, we have prepared all the information needed to
elaborate the satellite observations and we are ready to enter in the core of
our system: the processor.

This processor phase is furthermore subdivided in three parts: the in-
version (which is inherited from HPL2VDP), the transformation (that was
improved as discussed in section 3.2) and the quality control.

For the inversion, L2VDP exploit a particular implementation of the
Marquardt-Levemberg [11] method.

In order to compute the values of the radiances that we expect to measure
starting from a particular physical condition, we rely on a proprietary software
provided by Atmospheric and Environmental Research Institute written in
Fortran that is performing the Optimal Spectral Sampling. We will refer
to this software as “Forward Model” because it resolves the direct problem
(compute the radiances starting from the physical values) while we are
interested in the inverse one (compute the physical values starting from the
radiances).

The embedding is realized using the F2Py library, which provides a
connection between Python and Fortran languages.

The inversion is a delicate phase. First of all, there is no guarantee that
the convergence will be reached. Even if it is reached, it is still possible that
the convergence point is not the real value we were looking for because, in
principle, different physical configuration could produce the same observation
from the satellite.

During the inversion, we divide the atmosphere in some layers identified
by some pressure intervals.

After this phase, we have finally computed a complete profile with the
values of the desired physical quantities (usually the temperature, the concen-
tration of water vapour and the concentration of the ozone). Unfortunately,
we can not completely rely on the values we have found: in principle, it is
possible that we have converged in a point that is not reasonable (maybe
because it is simply too far from the first guess or maybe because the values
it contains are not reasonably plausible) but it could also be that we reached

6

a local minimum. For this reason a quality control software has been imple-
mented. Such a software try to estimate the quality of the final retrieval and
mark these observations as not reliable.

[N

o N

P :
Read '
r satellite data : Y P
e . ' Inversion r
i Y :
Generate ' . (0}
r ground emissivity . Y o
o . . Transformation e
c L :
Generate , . S
€ first guess : Y s
S . ' Quality control o
. Y :
fo) Scene analysis . '

N

- /

Figure 2.1: The overall structure of L2VDP

N

2.2 Where we start from

At the beginning of our activity, the software packages needed to perform
all the actions above described were not fully integrated and no optimized
procedures were available to accomplish the overall task.

As a matter of fact, the user had to invoke several different programs
in order to obtain a retrieval for an observation starting from the native
files and, in addition, most of the software required a lot of arguments from
the command line (up to 12). Moreover, most of the times, the output of
one program was not compatible to be used as input for another one and,
therefore, other scripts had to necessarily be invoked to convert the files from
one format to another. Some parameters were supposed to be submitted
manually by the user to different programs, and it was therefore extremely
easy to make mistakes by simply changing a parameter in one piece of
software and forgetting to apply the same change to the others. Last but not
least, a small modification in one of the programs could reflect in the need
to perform many modifications as well in the source of other programs.

7

To set up a structure able to glue together all the software, EUMETSAT
supplied us a prototype code written in Python which allowed us to identify
the major steps of the computation. A substantial amount of work was
therefore spent to integrate all the previous software inside the prototype
and to modify it to full satisfy all the requirements.

2.3 The parallel algorithm

In this section, we want to describe the parallel algorithm that was
available in the HPL2VDP implementation. Figure 2.2 gives an overview
of the implementation. This is particularly relevant in the next chapter,
where performance improvements of the processor are discussed. Since the
operations performed by the preprocessor are strictly related to input and
output, it is worth noting that there is not such a great need of parallelize also
that part of the code. Although it could produce some gain in performances,
the effort needed to rewrite all the software embedded in the preprocessor
would make the operation not convenient.

The parallel approach of the processor, instead, is based on a master/slave
paradigm where there is a main process which spawns several others processes,
namely:

e reader, which reads all the observations and then distributes them to
the computing processes

e scribe, which collects data from computing processes and then writes
the results into a file

o computing, which performs the actual computation (mainly linear alge-
bra kernels), receiving the main process data (i.e. observations) to be
processed.

A parallel approach on multicore architecture is implemented using mul-
tiprocessing [24], a Python module that allows to spawn as many computing
processes as the number of cores. Another level of parallelism is provided by
the BLAS libraries which numpy is linked to (for example, a multithreaded
version of the MKL libraries or the OpenBLAS library): all the linear algebra
kernels could potentially be performed by a multithreaded algorithm pro-
vided by the library itself and completely transparent to the program. Every
process is therefore able to spawn multiple threads during the execution.
Of course, excessive concurrency shall be avoided, hence the product of the
number of threads-per-process and processes shall not be greater than the
number of the cores.

We have performed some tests to establish the right ratio between pro-
cesses and threads. From these benchmarks, we discover that the best per-
formance is achieved using just one thread and maximizing the number of
processes.

Create an
inverter

Spawn the data
reader process

Read the
initial data

Spawn the
scriba process

Create netcdf
output data

objects files

Spawn all the
computing processes

Get all data processed
and write it to
the output file

1
1
1
1
1
1
1
1
Opening netcdf data :
1
1
1
1
1
1

Read some initial values
needed by scriba to -
create output files

Check if computing
processes are running
until reader stops

Until the main process told
you to stop, repete the

Send data needed for previsious step

the i" observation

Tell to the computing
processes to stop as soon
as they finish the already
loaded computations

Wait that all
the computing
processes end

Tell to the scriba
process to stop
as soon as it finishes
the already loaded jobs

Figure 2.2: The parallel work-flow of the processor

I/0 is confined in the initialization phase and then overlaps with com-
putation (reader and scribe processes). These implementation features a
Master/Slave approach where all processes take data independently from
each other. Communication overhead partially overlaps with computation.
We note that the Python language enforces several different limitations to the
parallel implementation. One of the most noticeable is a non-straightforward
approach to the shared memory exploitation, which requires the use of low
level libraries like ctypes [15]. This could limit or hinder the overall scalability
and the performance.

2.4 The final goal: an end-to-end processing system

As requirement posed by the contractor, the system we developed has to
be at the same time coherent and modular. With coherent we mean that all
the settings and the parameters are specified in one single file which describes
the structure of the whole system. The configuration file has a structure
similar to what is found in Microsoft Windows INI files and, as such, has a
high human readability and it is self explanatory.

The main object of our program is the chain-executor. This object super-
vises every step of the processing system (including the preprocessor). To be
constructed, it requires the path of a configuration file; its constructor then
builds a preprocessor object and a processor object and saves a reference for
them inside the chain-executor object. The constructor of the preprocessor
object, in turn, create one object for each elaboration phase described in the
picture 2.1. In the same way, the processor constructor creates an object for
each of its own phases. When a native file, generated from a interferometer,
should be elaborated the path of this file is passed to the chain-executor
which calls an opportune method of the preprocessor first and of the processor
afterwards. Every section is expected to produce a certain amount of data
and save it in some files in a specific binary format called FBF (Flat Binary
File) which is a quite common format in the meteorology field. The processor
and preprocessor objects share the position and the name of the files between
the various phases of the system. An example of the file generated and read
in by the current configuration of the preprocessor of L2VDP is exposed in
the picture 2.3

This structure guarantees a high degree of modularity in the system.
Additional freedom is also guaranteed by the fact that every user can write
and develop his or her own components and integrate them in the system.
Indeed, in the configuration file there is a section where the user can specify
the type of class to use for every phase of the system. The code, using some
reflection techniques, will check whether a class that can be used to satisfy
the user request has been implemented for that particular phase. If this is
the case, then this class will be used and referenced when needed. In this
way, there is no need to change any line of code to implement a new kind of

10

| sea emissivity mean | |

sea emissivity eof

sea emissivity eigenvalues

sea emissivity wavenumber

sea emissivity windspeed grid |

sea emissivity zenith angle grid

| |

| land emissivity mean | |

land emissivity eof

land emissivity eigenvalues

land emissivity wavenumber

land emissivity IGBP index

IGBP Map

Native IASI file

satellite reader

Longitude

»{ Emissivity

Latitude |

Radiance

zenith angle

solar zenith angle

solar azimuth angle

avhrr cloud fraction

land fraction

observation date day

observation date msec

wavenumber

(I

Atmospheric Generator

t XXX_LXXX.dat

| YYYYMMDD_hhmm_3_surface.grib

| YYYYMMDD_hhmm_3_ses_errors.grib

| YYYYMMDD_hhmm_3_fields.grib

Amplitude

error covari
basefunctions.
mean

wavenumber

IGBP class

xa pressure

xa skt

xa temperature

<

xa ozone

xa zps

correlation matrix temperature

i

3

correlation matrix specific humidity |

correlation matrix ozone

2qsatbg

zterr

zrherr

zo3err

pieut]

Scene Analyzer

m

I

Figure 2.3: The files generated and read by the preprocessor

scene analyser, a different algorithm for the emissivity or a new reader for
the ECMWF forecasts.

Currently, there are two readers for the satellite data (one for CrIS data
and one for TASI). The first one is a wrapper around a C code (which is
called as an external software) supplied to us by EUMETSAT while, for TASI,
a dedicated library has been implemented in Python for reading the binary
data. This library will be described in details in the section 2.5.

For what concerns the emissivity, an algorithm implemented in Python
is available. Beside some small changes to integrate the algorithm in our
software, the code was entirely written by EUMETSAT and was supplied to
us in order to be integrated in the L2VDP project.

The default generation of the first guess, instead, is a wrapper around a
Fortran code we received from EUMETSAT and written by the ECMWF.
This software is simply called as an external utility by a Python routine.

Finally, there are three different classes that can be used as scene analyser:
the first one allows to completely exclude the scene analysis and create a
place-holder object. This is useful especially for debugging purposes. The
second one uses some code written in Octave (which is integrated in the
software using the Oct2Py library of Python) and the third class, which is
also the default one, is a code written in C++ and called as an external
executable. This software implements the algorithms described in [8] and
has been written by the authors of the paper.

2.5 The Piasi library

The piasi reader library (Python IASI) is a library that we developed
with the intent to provide users a way to manage and manipulate the content
of the native binary files produced by the TASI instruments. This library has
been released with the GNU LGPL license.

The IASI native files are written in a binary format which is efficient to
store the data but not at all straightforward to read. Although a Fortran code
able to read and extract data from the native TASI files already exists and
was supplied to us by EUMETSAT, the piasi library offers several advantages.
The first one is related with the Python integration: being completely written
in Python, the piasi library integrates very well with our project. Thanks to
this library, we could avoid to call another external software. Another benefit
is in term of performance: the previous Fortran code was compelled to read
the file byte by byte because of a Fortran limitation regarding binary I/0O.
The problem does not exist in Python and it is hence possible to achieve
better performances.

The main and best advantage, though, is that the piasi library allows
to manipulate the IASI files in many ways and does not just convert their
format. Indeed, this library provides objects which are abstractions around
the IASI native file. In this way, it is possible to write Python scripts that take

12

decisions based on the content of the IASI files. Moreover, this opportunity
can also be exploited using python in in interactive way.

To better understand this idea, we will present a small script that returns
the name of the IASI files that contains observations regarding Europe inside
a specific folder given as command line argument.

from os import listdir
from sys import argv
from numpy import any

from piasi_reader.iasi_llc_native_file import IasiL1cNativeFile

These are the coordinates of a square that contains the Europe
EUROCPE_MIN_LAT = -40
EUROPE_MAX_LAT =10

EUROPE_MIN_LON = 30
EUROPE_MAX_LON =75

for filename in listdir(argv([1]):
iasifile = lasiL.1cNativeFile(filename)

latitudes = iasifile.get _latitudes()
longitudes = iasifile.get_longitudes()

good_latitudes = (latitudes > EUROPE_MIN_LAT) \
* (latitudes < EUROPE_MAX_LAT)
good_longitudes = (longitudes > EUROPE_MIN_LON) \
* (longitudes < EUROPE_MAX_LON)

good_observation = good__latitudes * good_longitudes

if any(good_observation):
print(filename)

Even though this script has been written for a demonstration purpose
only, it shows clearly how, combining the powerful syntax of Python and
the piasi library, it is possible to obtain interesting informations about the
native IASI file in just a few lines of code.

2.6 Our tools

In this section we will present the modern software tools we used in the
course of the software re-engineering activity performed. We consider useful

13

to provide a short description of each of them and highlight the advantages
they provide us. All the tools have been implemented inside the eXact-lab
computational resources.

© 2.6.1 A version control system (Git)

Git is a free and open source distributed version control system designed to
handle everything from small to very large projects. Git is incredibly efficient
in storing the complete history of a project, allowing to create branches,
moving trough different versions and undoing eventually wrong edits. Git
was incredibly useful for our intents in comparing performances and results
of different software versions and keeping track of the many changes we made
on the code.

© 2.6.2 A suite for continuous integration (Jenkins)

Taking into account the complex structure of the code, we decided to use
Jenkins to test the code during the development. Jenkins is a continuous
integration and continuous delivery application that is able to build and test
a software project continuously, making it easier for developers to integrate
changes to the project. We required Jenkins to test our code using a reference
set of observations: at every git commit, Jenkins was in charge of checking
that the results of the new code on the reference test was the same than in
the previous version. These tests were executed using different versions of
Python (2.7 and 3.3) ensuring that the code was fully compatible with both
the versions. In case any problem was detected, Jenkins was able to send an
email to the developer and report the observed discrepancy.

© 2.6.3 A proficient documentation (Sphinx)

To make the software easy to use for the final users, we provided a complete
documentation of its functions. For accomplish this aim, we decided to
integrate the documentation with the docstrings that describe the functions
and the classes in Python. In order to achieve this result, we used Sphinz,
a tool that can manage documentation written in rst (ReStructuredText),
combine it with the docstrings of the Python modules and produce several
kind of outputs, like pdf or html. This allowed us to expose the documentation
online through a web server (Apache) installed on purpose and dedicated to
this project. Moreover, the server automatically retrieves and updates the
source tree of the project and rebuild the documentation at regular intervals
(every 10 minutes). This way the documentation can be updated as soon as
new modifications are submitted to the source tree, with almost no effort for
the programmer (beside properly writing the docstrings).

14

CHAPTER 3

Improving the processor performances

Here we present the optimization activities performed on the processor
with the goal of improving its performance. In this chapter, with the word
“processor” we refer just to the “inverter* and to the “transformer* subsections
of the overall procedure. We focused on these two sections because these are
the most intensive from the computational point of view.

The procedure we adopted to optimize the software is based on the
closed-loop approach as described in [12]. The basic idea of this methodology
is to establish a clear workload (baseline) for the application to be optimize
and then run several times the following steps:

1. Run the the application and profile it to identify the most time con-
suming parts (routines and/or sections of the code)

2. Understand how to resolve the issues and implement the enhancements
3. Test the results and check whether performances improve

4. Restart the cycle to identify the next bottleneck

Clearly, the number of needed iterations is dictated by the improvement
one wants to reach.

Before starting it is important to establish a baseline performance on
a clear and well identified workload. This workload has to be maintained
constant during the whole procedure. In our case we select a set of 358
different observations coming from a IASI granula. This sample is sufficiently
big to be considered statistically significant to evaluate the performance of the
code. In the next sections, all the results are reported taking in consideration
that sample.

15

As testing machine, we used a multicore architecture made available by
eXact-lab, equipped with two Intel Xeon E5-2697 v2 (12 core) working at
2.7 Ghz for a total of 24 cores and 64 GB RAM.

Profiling was done by means of cProfile Python library and for our baseline
we identified the three most time consuming sections within the code:

o Matriz matrix multiplications: L2ZVDP performs a lot of matrix mul-
tiplications. Even if the dimensions of the matrices are quite small,
the operation is performed so many times that it become extremely
relevant in the overall execution.

o Singular value decompositions: L2VDP performs several SVD during
the transformation process (2 for every convergent iteration), which
are well-known to be time consuming operations.

o Forward Model: The Fortran part of the code. A more accurate de-
scription of this part of the code is written in the section 2.1. We were
explicitly required to not modify this part of the code in any way.

A graphical representation of the time used by every section is given
figure 3.1 which clearly shows that matrix matrix multiplication is the first
bottleneck to tackle with.

mSVD

B Matrix multiplication
Forward model

u Other

Figure 3.1: The most time-consuming operations in L2VDP

In the following subsection we will discuss in details the seven steps we
performed in the optimization procedure and, for each of them,all the tech-
niques, methods and tricks adopted will be described and the improvements
evaluated.

16

3.1 Step 1: matrix-matrix multiplication bottleneck

The first step is focused on matrix-matrix multiplication bottleneck. The
table 3.1 shows exactly the matrix multiplications performed by L2VDP and
which ones are the most time-consuming. From the same table is also clear
that almost all the time spent during the matrix multiplications is absorbed
in just two of them.

Matrix dimension Tot. time Calls Avg. time
(3306, 3306) x (3306, 3306) x (3306, 417) 1263.77 326 3.877
(417,3306) x (3306, 3306) 1057.88 2323 0.455
(417,3306) x (3306,417) 156.45 2649 0.0591
(3306) x (3306, 3306) x (3306) 25.52 2323 0.0110
(3306,417) x (417,417) 21.12 326 0.0647
(417,417) x (417,3306) 20.39 326 0.0625
(417,3306) x (3306,417) x (417) 19.46 326 0.0597
(417,417) x (417,417) x (417,417) 16.13 978 0.0165
(417,3306) x (3306) 3.07 2323 0.00132
(1200,5) x (5) 1.80 5264 0.00034
(417,417) x (417) 1.00 4618 0.00022
(20,417) x (417,417) 0.27 326 0.00084
(417) x (417) 0.07 2295 0.00003
(20,20) x (20,20) x (20,417) x (417) 0.04 326 0.00011
(20,20) x (20,417) 0.03 326 0.00008
(20,20) x (20,20) 0.01 326 0.00004
(20,417) x (417) 0.01 326 0.00003
(20) x (20) 0.01 326 0.00002

Table 3.1: The time spent for each matrix multiplication in the baseline

In particular, the first line shows a multiplication of three matrices per-
formed 326 times, a relatively small numbers if compared with other opera-
tions. However the average time of each execution is noticeably greater than
any other matrix multiplication. It is worth to perform a brief analysis of
the number of the floating point operations that are performed during that
operation to better understand the reason of the time spent.

Let A be the first matrix, B the second and C' the third, so that the most
time consuming matrix matrix multiplication is

A-B-C
which was performed in the following order.
(A-B)-C

In a matrix multiplication of a m - n matrix with a n - [matrix is quite
obvious that we perform n multiplications and n — 1 sums for every entry of

17

the resulting matrix; the total number of floating point operations is therefore
m - (2n — 1) - . Consequently, the A - B operation requires

3306 - 3306 - (2- 3306 — 1) ~ 7.2 - 10'°

This matrix multiplication produce a new 3306 - 3306 matrix and, therefore,
multiply this matrix with C' requires

3306 - 417 - (23306 — 1) ~ 9.1 - 10°
and the overall operation requires
7.2-10" +9.1- 10 =8.1- 10"
We decided to take advantage of the associativity of the matrix product:
(A-B)-C=A-(B-0C)
In this way, the number of operations required to compute B - C' is still
3306 - 417 - (23306 — 1) ~ 9.1 - 10°

but we can now multiply A with a matrix that is 3306 times 417 big and
so we spend again 9.1 - 10? floating point operations. Totally this operation
requires

9.1-10° +9.1-10° = 1.8 - 10"

Compared to the previous one, the number of the floating point operations
is reduced by a factor of 4.5.

Starting from this considerations, we implemented a simple reordering
in the matrix multiplications. Our above estimate in the number of floating
point operations does not take into account either the memory bandwidth or
the locality of the data. However we still expect to see an improvement of at
least 4 times in this section. Furthermore, we realized that part of the data
we computed where not useful for the model: for the transformation, just
the first 274 values (instead of 417) were needed. In this way, we reduced the
columns of the third matrix from from 417 to 274. After all these changes,
the time needed to execute the multiplication of the first line reported in
table 3.1 decreased to 210.43 seconds with an overall gain in time of about
6 times. The overall times consumed by the matrix matrix multiplication
operation is reduced to 58% of what it was before and the execution of the
whole program is 1.35 times faster.

3.2 Step 2: transformation phase improvement

In the second step we mainly improved the transformation part imple-
menting a completely new approach. This improvement was done for scientific

18

reasons and was not intended to improve performance. This however means
that some lines of the table 3.1 could be different for this version because
of the different approach. For this reason, in the table 3.2 we reported all
the new matrix multiplications and we considered these numbers as a new
baseline.

Matrix dimension Tot. time Calls Avg. time
(417,3306) x (3306, 3306) 1082.21 2323 0.466
(3306, 3306) x (3306, 3306) x (3306, 274) 196.74 307 0.641
(417,3306) x (3306,417) 140.09 2323 0.0603
(3306) x (3306,3306) x (3306) 30.13 2323 0.0130
(274, 274)x(274, 20)x(20, 20)x(20, 3306) 1111 307 0.0362
(3306,274) x (274,274) 9.94 307 0.0324
(274, 274) x (274,274) x (274, 274) 473 921 0.00514
(417,3306) x (3306) 3.62 2323 0.00156
(1200, 5) x (5) 1.80 5264 0.00034
(417,417) x (417) 1.20 4618 0.00026
(274,3306) x (3306,274) x (274) 0.78 307 0.00254
(20,20) x (20,274) x (274,274) 0.15 307 0.00050
(20,20) x (20,274) x (274,274) x (274) 0.07 307 0.00023
(417) x (417) 0.07 2295 0.00003

Table 3.2: The time spent for every matrix multiplication (new baseline)
after improvements of step 2

In this step also a small bug was identified and removed. The code was
computing (without saving the results) the transformation phase even for
some non-convergent inversions. This means that the expensive matrix mul-
tiplication optimized in step one was called uselessly several times. We fixed
this problem and indeed on our workload only 307 observations converged and
therefore require transformation. In table 3.2 our new baseline is reported.
The number of times we perform that specific matrix operation is decreased
from 326 times to 307, which is the correct number of converged inversions.
We note that the bug was just affecting the execution time and not the
scientific correctness of the final results.

The total execution time, however, reduced only by a factor that is less
than 1%.

3.3 Step 3: matrix structure identification

The table 3.2 indicated clearly that in step 3 we need to optimize the other
really time consuming matrix multiplication which is from step 2 onward the
most consuming one. This is the multiplication among a (417,3306) matrix
and the inverse of an input matrix A of dimension (3306, 3306). Based on
some physical consideration we know that the A matrix could be of three

19

different kinds: a dense matrix, a block banded matrix or, in the best case, a
diagonal one. For this reason, we implemented in the software the opportunity
to exploit the structure of the matrix in a transparent way for the software.
We therefore developed a wrapper around the input matrix which offers
some methods like multiply or inverse_multiply. For every kind of structure
(general, banded, diagonal) it is possible to create a subclass of the general
wrapper and implement algorithms that exploit the properties of the matrix.

In the current implementation, the software reads the matrix from a
netcdf file. In that file there is also a specific metadata field which indicates
what kind of structure the input matrix has. In case the metadata reports
that the input matrix is diagonal then the inverse matrix is still a diagonal
matrix whose diagonal elements are just the inverse of the elements on the
diagonal of the input matrix. In that case, the function multiply in just
a function that multiplies the i-th row of a matrix by the element in the
position (i,7) of the input matrix A; the inverse_multiply, instead, divides
every row by its corresponding element on the diagonal.

More interesting is the case of the block banded matrix. Unfortunately, the
banded structure is not preserved while computing the inverse. A much more
useful property is to be a block matrix along the diagonal; the reason why
this is useful is that this property is also present in the inverse. Therefore it is
possible to implement a specific algorithm that discover the block structure
of that matrix and of its inverse. To perform a matrix multiplication with
the block matrix or with its inverse, we use the following algorithm: in
the initialization of the software, we compute the inverse for every block
of the matrix and we save them in the memory; when we have to perform
a multiplication with a given matrix M, we divide M in vertical bands of
the same dimension of the side of the diagonal square blocks of the block
matrix. Then we multiply each band by the respective block of A if we are
executing multiply or by the inverse of the blocks we have computed before
if we are performing inverse_ multiply. Therefore, we put the results side by
side into a new matrix which is, exactly, the result of all the multiplication.
The algorithm is represented in the figure 3.2.

This improvement reduces the multiplication time by almost a factor of
three (from 1082.21 to 376.00) in the table 3.2; the total improvement in the

overall code is of about 137%.

Figure 3.2: The block algorithm we used to improve matrix multiplication.
The parts with the same color are multiplied together

20

3.4 Step 4: exploiting diagonal properties

Step 4 deals again with the matrix multiplication we optimised in step 1
by applying associative property. This operation is still consuming 196.74
seconds (see the second row in table 3.2) and it is worth trying to further
improve the performance. An inspection of the code shows that the second
matrix is diagonal (because it is obtained from a SVD) and the first one
must have the same block structure of the block matrix with discussed about
in the section 3.3. So we rewrote the matrix multiplication with the diagonal
matrix just as a loop that multiplies rows, and then we reimplemented the
same block algorithm implemented in step 3. The overall result is that the
time spent by the matrix multiplication goes from 196.74 seconds to 40.13
seconds with a 5x gain. Unfortunately, such a large improvement in this
section does not impact similarly on the overall code performance due to
the fact that matrix multiplication is no more so dominant compared to the
others. In any case, with this changes, the code runs 1.06 times faster than
the previous version.

4500

4000

3500
16%

3000

u Other
Forward model

_ W Matrix multiplication

ESVD

2500

2000

1500

37%

1000

500

Version 0 Version 4

Figure 3.3: Comparison of the time distribution between the original code
and the code of step 4

At this point, it is worth looking at how the computation weight moved in
the program after all the changes. In picture 3.3, we compare the distribution
of computational times of the different sections at the baseline and after four
rounds of optimisation. At this stage the forward model is the most time
consuming section, matrix multiplication is following and SVD is consuming
almost the 20% of all the time. Due to the fact that the Forward model must
not be optimised, the target of our next optimisation step is the SVD section.

21

3.5 Step 5: optimization of SVD algorithm

In order to help us describing how the SVD routines have been optimised
within the code we recall here the basic mathematical concept about the
Singular Value Decomposition (SVD). Given a (real) matrix M, a singular
value decomposition for M are three matrix U, D and V such that

« U is a orthogonal matrix (U~ = UT)

 V is a orthogonal matrix (V1 = V7)

e D is a diagonal matrix with non-negative elements on the diagonal
e U-D- V=M

The diagonal entries of D are known as the singular values of M. From
now on, we will assume that they are ordered, which means that

D11 > Do > ... > Dy

The rows of U are called “right-singular vectors” of M, while the columns of
V' are called “left-singular vectors” of M.

A truncated (or partial) SVD of order k of M are three matrix U, D, V such
that

o U is made of the first k rows of U

e D is a diagonal matrix with the first k£ singular values of M as diagonal
entries

e V is made of the first k columns of V

®\
U D ()

Figure 3.4: The dimension of the SVD of the matrix M

In the code, we perform a singular value decomposition twice for each
convergent observation. In particular, the first one we perform is on a square
matrix of dimension (274, 274) and the second one is on a matrix of dimension

22

(3306, 274). The time needed to perform the first SVD is negligible if compared
to the time required to perform the second one because of the different
dimensions of the matrix. Table 3.3 shows how much time is required for
both the operations after the fourth step of the optimisation. .

Matrix dimension Tot. time N. of times Avg. time
(3306, 274) 378.25 307 1.232
(274,274) 7.41 307 0.024

Table 3.3: The SVD operation performed in the code

Focusing on the most time consuming SVD operation and analysing
carefully the code we note that a complete SVD operation was performed but
just the first 20 singular values were used later-on by the code. A possible
optimisation strategy is therefore to perform a truncated SVD instead of a
complete one by means of some existing and hopefully optimised scientific
library. We note however that the code needs both the first 20 left-singular
vectors and the first 20 right-singular vectors.

We tested several different libraries to perform the truncated SVD in
Python and, at the end, the best library we found was the gensim library
which uses a stochastic algorithm as exposed in [10].

Unfortunately, gensim library only returns the left-singular vectors. It is
however possible to compute the first 20 right-singular vectors by means of
a few more matrix multiplications as described here below.

From the relation

U-D- V=M

and because of the fact that, being U orthogonal, it is not singular, we have
D-V=U"1M
Therefore
D-V=U"M
Let A be the matrix D -V of dimension (3306,274) (the same of M). For
every index ¢ and j, considering that D is diagonal, we have that
Aij = Dj; - Vij
if 7 is less than 274 (0 otherwise). It is also true that

3306
Aij = > UMy,
=1

Let now consider a truncated decomposition of order k and let suppose
that k is so small that
Di; #0

23

for every ¢ < k. For the same indices, the previous equation is still true
because it is all contained inside the truncated SVD:

3306
Dj; - Vi = Z Ui My
=1

and therefore .
7. 2?3%6~UliMlj
Y D;;

The previous relationship can be rewritten in a matrix format in the following
way
V=0T M D!

We note that D is a diagonal matrix and therefore computing D~ is not
a demanding operation.

We implemented in the code the usage of the gemsim library and the
additional matrix operations needed to compute the right singular vectors.
Table 3.4 shows the time spent in computing Single value decompositions
after the improvement.

Matrix dimension Tot. time N. of times Avg. time
(3306,274) 777 307 0.253
(274, 274) 7.41 307 0.024

Table 3.4: The SVD operation performed by the code after the improvement

The gain in the SVD section is in the order of five times, and this makes
the overall code 1.25 faster than previous version.

3.6 Step 6: SuperLU library

In this step we went back to the matrix multiplication sections and we
focused again on the multiplication by the inverse that is shown in the first
line of the table 3.2 and that we already improved during step 3. Indeed,
we exploited the block structure but we did not exploit the fact that the
matrix was banded. Taking into account this property, instead of multiply
by the inverse we compute an LU decomposition of the matrix and solve the
linear system. This will be particular efficient if we use a special library like
SuperLU for Python that can take advantage of the sparse structure (banded
matrix) of the original matrix. In this way we can perform the decomposition
before starting the computation and then use it to compute the multiplication
by the inverse. Of course, we still exploit the block structure of the matrix.
This means that we compute one LU factorization for every block of the

24

sparse matrix. The only problem we had to deal with is the fact that the
library is only able to find a vector x such that

A-z=0b

where A is the observation error matrix. Working column by column, the
library is also able to solve the problem

A-X=B

where X and B are now matrices. This means that X is A~'B and so we
were able to compute the product of the inverse of A with another matrix B
without actually compute the inverse pf A. Unfortunately, for our problem
we need to compute B - A~! and so we need to solve

X -A=B

which the library is unable to handle. In order to solve the problem, we
exploited the fact that (AB)T = BT AT in the following way. First we
compute BT from B and then we solve the problem

A-XT=pT

to find X7 In this way, X7 = A~ BT, Because of the fact that A = AT we
have -
X" = A" BT = (BA™Y)

and so X = A~!'B which was exactly what we wanted to obtain.

This approach requires two transpositions (one for B and one for X).
While the transpositions are usually computationally heavy, due to the fact
that these matrices are considerably smaller than A the time spent computing
transpositions is not so relevant in the overall computation of X.

We therefore implemented this new approach based on the superLU
library. The time required to perform the particular matrix multiplication
is reduced by a half. The overall weight of matrix-matrix multiplications is
finally reduced of about 18%.

3.7 An overall view

Picture 3.5 shows the improvements along the optimisation steps per-
formed. As a final result of this optimisation effort, the code is more than
three times faster than it was in the first version. We also reached the overall
goal set at the beginning: reduced the dominant computational load of the
linear algebra sections to less than one half of the total time. At the end of
our work now the dominant section is the forward model we were asked not
to modify in any way. The final time distribution is clearly reported in the

25

4500

u Other

Forward model
B Matrix multiplication
mSVD

Figure 3.5: The time spent by the different sections trough the different steps

plot 3.6. The overall optimisation procedure was very successful: the code
sections we optimised are now running 5.3 times faster. More in details the
matrix multiplication section has been improved by a factor of 7.2 while
for SVD the improvement is 4.6. We underline that the this activity was
conducted in less than two months period time (May/June 2015) with a
clear deadline indicated by the customer.

3.8 The diagonal case

In the section 3.3 we described that a particular input matrix could be
banded or diagonal. So far, we always described the banded case, as it is the
most common one. In particular circumstances, though, the matrix can be
diagonal. In this case, the software can exploit some dedicated algorithms
increasing even more the speed. Unfortunately, it is difficult to compare the
software performance for diagonal and banded matrix, as the underlying
physic is different. Furthermore the diagonal case requires more iterations
to reach a convergent point. What we can compare is instead the weight
distribution of the section in the two codes. From the graphic 3.7 it is clear
that in the diagonal case, the Forward Model is even more predominant than
in the banded case.

3.9 OpenBLAS vs MKL

In this last subsection we discuss the role of different highly optimised
library that can be used by numpy. All the above results has been performed

26

m SVD

B Matrix multiplication
Forward model

H Other

51%

Figure 3.6: The time distribution of the final version

800 e 64%
700 [e
600 e
500 e
uSVD
W Matrix multiplication
400 [e
Forward model
 Other
300 e
200 R 15% 14%

Figure 3.7: The time distribution in the diagonal case

by a numpy library exploiting MKL intel library [23]. It is however worth to
show the difference in time using another highly optimised library and freely
available: OpenBlas [25]. Picture 3.8 shows the difference in time among the
difference steps of the optimisation procedures.

MKL vs OpenBlas

200r

150

Time (s)

50

— MKL

— OpenBlas
0 1 2 3 4 5 6
Version

Figure 3.8: The time required using MKL or using OpenBLAS

It is interesting to note how, till step 4, there is a huge gap in the
performance among the two libraries. Such gap disappears from step 5
onwards. The explanation for this behaviour is related to the fact that at the
beginning of the code development we relied on the MKL libraries mainly for
two operations: the matrix multiplication and the SVD. All our optimisation
steps try to decrease the impact of these linear algebra operations computed
by means of standard algorithms. In particular in step 5 we used a specific
library (gensim) to perform the SVD that not even rely on MKL. With respect
to matrix multiplication, our optimisation procedures which involve block
techniques have the result of performing matrix-matrix multiplications on
smaller matrices. This approach favours the usage of OpenBLAS library due
to the fact that the gap in performance in the matrix matrix multiplication
between OpenBLAS and MKL is proportional to the size of the matrix. We
can therefore conclude that, for the current version of the code, there is no
good reason to prefer MKL to OpenBLAS.

28

CHAPTER 4

The computational ecosystem

The goal of this chapter is to illustrate the design of an infrastructure able
to process all the data coming from the various satellites in nearly real-time.
We refer to such infrastructure with the name “computational ecosystem” to
underline the complexity of the overall architecture. As a matter of fact, near
real-time processing means that we should be able to process an FDU in
less than three minutes without any interruption. To tackle such a challenge
it is clear that the L2VDP software should be executed on more than one
computational node. The computational system here described takes care
to complete this task. An important requirement is to keep the possibility
to run L2VDP as a standalone software in a single machine; therefore the
ecosystem should be completely transparent to the L2VDP package.

4.1 The overall design

© 4.1.1 Features and requirements

The framework has been designed with the following features in mind:

e Independence: the components of the framework that are in charge
of elaborating data from an instrument should not interfere with the
others. In this way, a failure in one instrument is not relevant for the
others;

e Isolation: the components of the framework should be isolated from
the other software of the environment where the framework is running
and should not interfere with it;

29

o Maintainability: in case of issues, it should be easy to isolate the problem.
Moreover, it should be possible to replace any single component and
bring it back to the original working state;

e Flasticity: the framework should be able to handle some small changes
in the underling environment (like adding or removing a node) with
just some minor effort and without interrupting the execution;

e Fasy to deploy: the framework should require a minimum amount of
requirements to be installed. The installation procedure should be
similar in every environment and should be as much automated as
possible.

Beside these above features, it has to be noted that it was known from
the beginning that the deployment on EUMETSAT TCE had to be done as
user (i.e. without having root privileges).

& 4.1.2 Docker

All the above requirements motivated us to implement the ecosystem by
using Docker [17], an open platform for distributed applications which offers
several advantages.

To better understand why Docker is a efficient solution, it is worthy to
spend a few words about how Docker works. The main idea is to completely
isolate a selected process from the system where this process is running. To
achieve this result, Docker takes advantage of a technology called namespaces.
In this way, Docker provides isolation from the network, from the other
processes, from the filesystem and even from the Unix Timesharing System.
This means, for example, that the isolated process has not access to the disk
beside a specific dedicated part. Inside the docker, the process can spawn
others processes that will share with it the environment and that will still
be isolated from the processes that are not running inside that docker.

Being completely isolated, a process inside a docker has no access to the
libraries and utilities that are installed on the machine. For that reason, it is
common to replicate the installation of a minimal system in the dedicated
space that the process has access to. Such a minimal collection of libraries
and tools that the isolated process will find on its disk is called image. A this
point it could be tempting to think a docker as some sort of virtual machine:
we prepare an image with an operating system and start it such a way that
it is isolated from the system. In fact, the analogy ends here. While a virtual
machine is a process that simulates other processes, in docker the isolated
process is really running on the bare metal. When a process that is running
inside a virtual machine attempts a system call, it submits a request to the
kernel of the virtual machines. The supervisor, which is in charge of run the
virtual machines, will therefore translate the request for the real machine

30

and, if necessary, the request will be forwarded to the real kernel machine.
Instead, a process that runs inside a docker can submit a system call directly
to the kernel machine. Because of the absence of a supervisor, the docker
processes have almost no overhead compared to the native processes and this
is one of the main reason why we prefer docker instead of a virtual machine.

Another advantage is related with the time needed to start our ecosystem.
If we had used virtual machines, we would not have been able to avoid the
time required to start them. With docker, this is not even an issue. Indeed,
while the docker images usually contains an entire operating system, this
operating system is there just in case the isolated processes need one of its
files; no kernel should be loaded, no services should be initialised and so
on. While this dramatically reduce the time required to start the overall
ecosystem, it also means that we remove all the redundant system service
that a virtual operating system needs. In docker, we run just the process
that we really need.

What instead is shared with a virtual machine approach is a completely
deterministic environment. Though we depend on the kernel of the machine
where docker is running, we do not relay on any library or software in the
userspace. For this reason, our system it is easy to deploy and does not
require a lot of dependencies to be installed.

To orchestrate all the docker infrastructure, we used Dockerops [18]. We
rely on this software for starting and stopping the dockers in a consistent
way and managing the network links between different dockers.

¢ 4.1.3 Slurm

Once the dockers have been deployed, we have to face the problem of handling
the distribution of the workload. Being the algorithm embarrassingly parallel
and considering that the computational effort to compute one single granula
is quite relevant, a master/slave architecture can respond efficiently to the
needs of out project. Indeed, the elaboration of each granula on a slave does
not imply any communication with the master (beside the initial one to
start the computation and assign the granula) and, therefore, it is mostly
unlikely that the master would not be able to manage smoothly the whole
system because of the excessive workload (at least for a rather small number
of nodes). Of course, to keep the elaboration of the data generated by each
instrument independent to the others, it will be necessary to deploy three
different masters, each one with its own set of slaves.

In order to allow the master of distributing the granula computations for
the slaves, it would have been extremely inefficient to implement by ourself
a small queue system because of the time required to write, debug and test
such a complex set-up. Our key idea is to leverage on a robust queue system
package to distribute the computations on multiple nodes. We identified
slurm [26] as the right tool capable of handling multiple jobs and offering

31

moreover detailed logging information about the status of the resources.
The computational nodes can also be added without too much burden and
therefore elasticity requirement is also satisfied.

¢ 4.1.4 The overall ecosystem

Node 1

Master Node

Node 2

|o||0||0|

Node 3

Shared Filesystem

A
\/

L2VDP config input dirs ECMWF data

Node 4 \ /

Figure 4.1: A possible architecture for the L2VDP framework

Figure 4.1 gives a graphical view how the ecosystem L2VPD is designed
and then deployed on a cluster. The whole infrastructure is composed by
several services (each of one managed by a different docker). On one node
(identified as the master) there are 6 different services (dockers) that are
not computationally intensive. The central core of the infrastructure is the
slurm-master service which manages all the intensive computational tasks
(i.e. various instances of the L2VDP processor described before, each of one
acting on subsequent FDU arriving) and dispatch them on worker services.
Interaction among such service is done by means of slurm clients which
are installed on the dockers where L2VDP shall run (the workers). Three
different services (one for each of three different instruments) are taking care of
processing the flux of data coming by the instruments and send computational
requests to the slurm-master. Every times the instrument-services want to
submit a job in their partition of the cluster, they send the request to the

32

slurm-master which will delegate the job to one of the nodes as soon as a
free one is found. A monitoring services is in charge of collecting logs from
the other dockers and to analyse them to generate some statistics about the
usage of the nodes and the executions. Finally an internal DNS service is also
provided to allow the dockers to recognize themselves and their companions
as “standalone” machine with their own IP addresses and names. This, as
well, facilitates both the deployment and the installation.

Slurm queue system is configured with three different partitions (again
one for each of the three instruments) and each worker docker is assigned to
one of them. We remark here that each worker docker is hosted on its own
separate node of the cluster.

The master control docker provides a simple (in this present release)
control panel which provides a managing interface for the whole the framework
allowing the users to start and stop the instrument services.

As clearly indicated by the picture 4.1, we expect to have a shared
filesystem among the nodes of the cluster. Such a shared file system allows
an unique location for all the files needed by L2VDP package running on the
worker dockers: the emissivity files, the ECMWF files, the satellite native
files and so on. This constraint could also be removed, but at the moment a
shared filesystem offers a robust and simple solution.

¢ 4.1.5 The logging system

Such a complex architecture requires a sophisticated logging system to
provide users with a complete understanding of what is happening inside
all the components. We therefore developed a logging mechanism where
every component of the infrastructure logs (in a very specific file) a set of
information. Logs file are written (using the Python logging library) in a
way that makes them easy to be parsed with some regular expressions. In
particular, every line of the logs reports the name of the instrument that
the granula is related to, the current date in UTC, the name of the Python
module that generated that line and the severity level of that line. If the line
is related to a particular granula (which is true for all the logs beside the
ones that were generated by the instrument services), also the name of that
granula is reported. We also tag (by means of a random tag) any single run
of the instrument service to be able to recognize, for every granula, which
instrument service submitted the job that elaborated it. This tag is reported
in every line of the instrument service log. Moreover the tag is also sent to
every worker trough the job: indeed, the script that slurm submits sets a
particular environment variable with the content of the tag. When the worker
starts, it checks for this variable and, if present, it reports it in every line of
the logs.

As a side effect, however, log entries are extremely long and difficult to
read for a human being. It is however simple to overcome this limitation by

33

writing a small script able to translate the long and cumbersome message in
a human readable format for instance reporting only selected information
related to particular granula and/or filtering only specific errors. So, with a
minimum effort, it is possible to achieve a great readability compared to the
standard logs. One of the main advantage in writing the logs file this way
will be exposed in the section 4.4.

In the following we will discuss more in detail all the services.

4.2 The instrument service

The instrument service is the starting point of all the process that, starting
from a native file, produce the desired output. This docker is a machine
with slurm installed (to be able to submit the job) that runs a script called
instrument _service.py. The instrument service monitors a directory (usually
the one where the input data from the satellite will be saved) and it can
run in two different modes: the operative one and the reprocessing one. The
former is the standard way while the latter is used in case some data have
to be processed again not in real time.

© 4.2.1 operative mode

In operative mode, the instrument__service.py runs as a demon, continuously
checking if new FDU files are stored in a specific directory (that could be
specified in the overall configuration file). Once a new file appears, the
instrument service checks whether the file is a correct FDU file: such a check
is performed examining its filename. If this is the case, the instrument service
then checks if any theoretical data are available to be used as “first guess”.

Sometimes, it is possible that some data could not be elaborated simply
because there is no forecast close enough to the date of the FDU we are
processing. The instrument service, in that case, will discard that granula
and will not submit any job. If a suitable forecast is found, instead, then the
instrument service asks the slurm system whether there are free resources
to run the calculation: in case of negative answer, no job is submitted and
the FDU is simply discarded. The motivation behind this choice is that, in
operative mode, we do not want to create a queue because this will generate
a delay in the delivery of the final results of all the system. It is therefore
more advisable to lose some granula but keep the delivery of the data in
near real-time. In case of positive answer from slurm (i.e. free resources are
available) the job is submitted to the system and no other actions will be
performed by the instrument service on that granula.

© 4.2.2 The reprocessing mode

The reprocessing mode is an alternative way of working for the instrument
service.

34

It can be selected in the configuration file and allows a user to reprocess
her or his data, for instance to use a different forecast or to test some new
physical parameters in the model with respect to the first execution. In this
configuration, the instrument service will not act as a demon but will simply
submit a job for every file available in a selected directory when the program
starts. Moreover, in this modality the jobs will be always submitted even
if there are no free nodes available. Finally, the instrument service is also
more strict requiring a forecast close to the data acquisition time (in the
operative mode, it would discard a granula if there is no forecast in a range
of 24 hours, in reprocessing mode the time is reduced to 6 hours). Indeed, we
assume that, if a FDU is not requested to be elaborated in real-time, there
is no reason for which the forecast could be missing, hence a 6 hours time is
the maximum difference in time between two subsequent ECMWF forecasts.

4.3 The worker

This service is hosted within the docker of the L2VDP processor. The
installed slurm client is able to receive the job submitted by the slurm-master.
The execution of the L2VDP processor is actually performed by a bash
script generated by the instrument service. The command line to launch the
processor is exactly the same as in case of a standalone run. This method is
simple but, at the same time, also very efficient because it does not require
to develop a particular interface for the worker.

4.4 The monitoring system

This service provides the users with a set of tools that allow a com-
plete and detailed monitoring of the ecosystem. Moreover a users can also
perform complex queries and extracts many different kind of information.
The monitoring system automatically collects all the logs from the various
services using Fluentd [20], an open source data collector. Fluentd injects
all the logs into an Elasticsearch server installed in the monitoring docker.
Elasticsearch [19] is an open source text search engine based on Lucene. To
perform these operations, Fluentd applies some regexp on the log lines to
identify the fields we discussed in section 4.1.5.

The last step is the visualization of the data. For this purpose we installed
Kibana [22], a tool well integrated with Elasticsearch that allows to produce
graphics based on the data we extracted from the logs. Kibana exposes
all these results through a web interface, giving to the users a nice and
comfortable way to explore what happens inside the system. This solution
works on two levels: for the occasional user, Kibana exposes some common
graphics with some general information. An advanced user, instead, can
take advantage of all the power of Elasticsearch to build new graphics with
her/his own queries. Our Kibana installation has a customized dashboard

35

which shows all the important parameters of the system. A snapshot of this
dashboard is given in figure 4.2.

= g

Figure 4.2: The Kibana framework

4.5 Benchmarking the infrastructure

The infrastructure described above in details has been deployed on some
virtual computational nodes of the EUMETSAT Technical Computing Envi-
ronment (TCE). All central nodes have been deployed on tcsx142, a rather
old multicore machine but well-equipped in term of RAM (72 GB). This was
deemed more than enough to manage for the not so intensive computational
task assigned to the central services. Workers are instead deployed on two
different kinds of nodes:

1. 6 nodes with 8 cores each

2. 3 nodes with 24 cores each

The two set of workers have been assigned to the two different instruments
(iasiA and iasiB) creating thus two different pools of resources that we
benchmarked to assess the amount of computing resources needed to process
in near real-time the data. Several benchmarking runs have been conducted,
simulating the Near Real Time processing. We setup a script that copies
every three minutes a IASI-A and a TASI-B file from their standard location
on TCE on some local directories monitored by an instrument service on the
scratch filesystem and we let both system runs for exactly 45 hours. Table
4.1 shows some of the statistics Kibana provided us.

36

observables JASI-A TASI-B

granula arrived 877 873
granula job submitted 876 836
granula job discarded 1 37
average processing computing time for granula 311 186
max processing computing time for granula 1702 976
min processing computing time for granula 31 37
average pre-processing computing time for granula 102 102
max pre-processing computing time for granula 1333 144
min pre-processing computing time for granula 83 85

Table 4.1: Performance of TASI-A vs IASI-B system

From the table it is evident that the overall efficiency of the TASI-A
subsystem is much better than IASI-B. This is due to the fact that, at the
global speed of the end-to-end processor three nodes are not enough to cope
with the pace of the incoming file, even if these nodes are three time larger
in term of computing power. The first conclusion is that, for the time being
it much more convenient to have a larger number of less powerful nodes than
the opposite situation.

Finally, let us conclude showing how both the configuration where able
to elaborate the data in near real-time. Indeed, the amount of data discarded
because of lack of resources was about the 4% of the total for IASI-B and
less than 2% for the IASI-A. Moreover, in all our test the system has proved
to be stable and capable to run for different days even without any human
supervision. We can therefore claim that our architecture fulfils all the aims
we set at the beginning of the development.

37

CHAPTER b

Conclusions

In this chapter we want to briefly summarize the work performed in this
thesis and the main results achieved. We present also a final analysis of the
current status of the ecosystem we built with the aim to identify and propose
future directions of development and improvements.

The main achievement of the work was the successful deployment of a
complex computational environment where near real-time data processing can
be performed. To reach the above result several intermediate phases of work
have been completed. The first phase deals with a software re-engineering
activity to merge into one unique procedure the different and variegate tools
needed to process the row data. As final result we obtained a Python package
with the following features:

e A complete integration of all the different phases of processing has
been performed using modern software engineering tools. The whole
processing package is now easy to use and a IASI raw data file can be
processed by just one single command line.

o All the configuration parameters are grouped in a single readable file
and all the output is well organised in netcdf format and in well defined
directory paths.

e A modular approach has been chosen to make easy in the future adding
or changing any component, allowing to easily adapt the software to
the future needs.

We can easily state that usability and productivity of the software is
highly improved, even if several weaknesses are still present as we will discuss
later.

39

The second phase dealt with an optimisation procedure on the two most
time consuming sections of the processing software: the inversion and the
integration. An excellent result has been achieved in the limited amount of
time at disposal to complete such complex task. The optimised section of the
code now is three time faster than before and just considering the sections
of code where optimisation procedure and tricks were implemented (i.e.
excluding the Forward Model section that was explicitly requested not to be
optimised) the gain obtained is more than five times. This was achieved thanks
to a detailed profiling of all the matrix-matrix operations performed followed
by a deep analysis of the structure of the matrices involved. This approach
allowed us to implement some dedicated algorithms that exploit the properties
(sparse, banded/diagonal) of those matrices. Some smart algorithms were
also applied to compute SVD operations to reduce its computational cost.
Again this was possible once it was clearly understood how the results of
this operation are used in the rest of the code. We remark here that our
improvement rely mainly on better and more performing algorithm that suit
better the data structures within the code. No attempts were done in other
directions like for instance implementing some algorithms that exploit the
computational power of the accelerators, like GPU and/or intel PHI. Another
opportunity is to use software libraries like cython[16] to compile the code
and therefore gain some extra optimisation.

In the third phase we design and developed the overall ecosystem that
wrapping around the processing package allows to process in near real-time a
large amount of data. The ecosystem, largely benchmarked, has been proved
to be stable and efficient. One successful idea was to rely on a workload
manager like Slurm. This allows us to build in an easy and efficient way a
system which inherits the stability and the efficiency of Slurm. Moreover,
Docker has allowed us to build an ecosystem which is fully deterministic,
easy to deploy and elastic, without having to deal with the overhead of the
virtual machines. The ecosystem is so versatile that it can even deploy and
run on a single machine, if this is needed for testing purpose (for example,
during the development) granting a great level of abstraction between the
virtual ecosystem and the real machines without computational cost.

As anticipated above there are still some weakness that should be ad-
dressed in the future. We discuss all of them now with the intent to suggest
future lines of development.

e Being forced to work within severe deadlines, some sub-optimal techni-
cal choices was done mainly to keep developing time short enough. As
specific examples we mention here the decision to simply embed the
bgerr software in the preprocessor which is a complete serial code.

e Another severe limitation comes by the fact that embedding a lot
of software, written in different languages, make the code difficult to
understand and to debug. If an embedded software raises an exception,

40

it is impossible for the main software to intervene and, therefore, this
decrease the robustness of the system.

e Related to the number of embedded software, there is the problem of
the excessive I/O: the embedded software needs to read its input data
from the file system: so we are forced to write every input on the disk
and to read the output from the same position. While this does not
slow down the execution of the preprocessor in a sensible way, it creates
a lot of useless files that waste disk space and that requires a periodical
cleaning.

All the above points can be addressed in future phase of developments.

41

Acknowledgement

The activities here presented were supported by the European Organiza-
tion for the Exploitation of Meteorological Satellites (EUMETSAT) under
contract number EUM/CO/14/4600001349/SAT. Within such contract the
computational activities were performed by eXact-lab srl, a start-up company
which I would like to express my sincere gratitude to for having sponsored my
participation to the master but also for all the opportunities of professional
growth they have gave me. In particular, I would like to thank my supervisor
Dr. Stefano Cozzini for his guidance and motivation.

Beside my supervisor, my sincere thanks also goes to dr. Paclo Antonelli
for his patience, knowledge and availability and for all the help he gave me
during this project.

I thank my master mates for all the stimulating discussions, for the
sleepless nights we were working together before deadlines chatting on Skype
and for all the fun we have had in this year. In particular, I would like to
thank Moreno for his invaluable help and for all the knowledge he shared
with me during this master.

I would also thank my family and my parents for supporting me through-
out writing this thesis and my life in general.

Last but not the least, I would like to thank Irene for so many reasons
that no thesis could ever contain all of them but, especially, for being there
for me during this year.

43

Bibliography

1]

P. Antonelli, T. Cherubini, T. Auligne, L. Bernardini, S. Businger, and
F. Marzano. The potential of meteosat third generation (mtg) infrared
sounder (irs) level 2 product assimilation in a very short range numerical
weather fore- cast model Final report, EUMETSAT, 2015

D. Blumstein, G. Chalon, T. Carlier, C. Buil, P. Hebert, T. Maciaszek,
G. Ponce, T. Phulpin, B. Tournier, D. Simeoni, P. Astruc, A. Clauss, G.
Kayal, and R. Jegou. Iasi instrument: Technical overview and measured

performances. Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, 5543, 2004.

S. de Haan, G.-J. Marseille, and P. De Valk. The potential of meteosat
third generation (mtg) infrared sounder (irs) level 2 product assimilation
in a very short range numerical weather forecast model. Final report,

EUMETSAT, 2015.

Yong Han, Henry Revercomb, Mike Cromp, Degui Gu, David Johnson,
Daniel Mooney, Deron Scott, Larrabee Strow, Gail Bingham, Lori Borg,
Yong Chen, Daniel DeSlover, Mark Esplin, Denise Hagan, Xin Jin,
Robert Knuteson, Howard Motteler, Joe Predina, Lawrence Suwinski,
Joe Taylor, David Tobin, Denis Tremblay, Chunming Wang, Lihong
Wang, Likun Wang, and Vladimir Zavyalov. Suomi npp cris
measurements, sensor data record algorithm, calibra- tion and validation
activities, and record data quality Journal of Geophysical Research:
Atmospheres, 118(22), 2013JD020344;

Jean-Luc Moncet, Gennady Uymin, Alan E. Lipton, and Hilary E. Snell.
Infrared radiance modeling by optimal spectral sampling Journal of the

Atmospheric Sciences, 65(12), 2014/02/04 2008;

45

[6] P. Antonelli, R. Knuteson, H. Revercomb, R. Garcia, E. Borbas, S.
Bedka, D. Tobin, J. Taylor, W. Smith, UWPHYSRET an SSEC
inversion package for high resolution infrared data based on LBLRTM;

[7] P.Antonelli, Study of a high performance IRS level2 validation and
demonstration prototype: Final Report , 2014;

[8] M. G. Blasi, C. Serio, G. Masiello, S. Venafra, G. Liuzzi, SEVIRI Cloud
mask by Cumulative Discriminant Analysis, Journal of Physics:
Conference Series, Volume 633, conference 1;

[9] D. Coppens, R. Meyer, D. Klaes, F. Montagner, IASI Level 1: Product
Guide, http://www.eumetsat.int/website/wcm/idc/idcplg?
IdcService=GET _FILE&dDocName=pdf_iasi_level _1_prod_
guideé&RevisionSelectionMethod=LatestReleased&Rendition=Web;

[10] N. Halko, P. G. Martinsson, J. A. Tropp, Finding Structure with
Randomness: Probabilistic Algorithms for Constructing Approximate
Matrix Decompositions, SIAM Review, Vol. 53, No. 2, May 2011;

[11] C. D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory
and Practice, World Scientific, 2000;

[12] A. Supalov, A. Semin, M. Klemm, C. Dahnken, Optimising HPC
Applications with Intel Cluster Tools, Apress Open, 2014;

[13] EUMETSAT Algorithm Theoretical Basis Document for Level 2
Processing of the MTG Infra-Red Sounder Data, Technical Report,
EUMETSAT, 2014.
http://www.eumetsat.int/website/wcm/idc/idcplg?ldcService=
GET_FILE&dDocName=pdf_atbd__pro_infrared __sounder&
RevisionSelectionMethod=LatestReleased&Rendition=Web;

[14] CProfile, https://docs.python.org/2/library/profile;

[15] Ctypes, http://docs.python.org/2/library/ctypes;

[16] Cython, http://cython.org;

[17] Docker, www.docker.com;

[18] DockerOps, https://github.com/sarusso/DockerOps;

[19] Elasticsearch, https://www.elastic.co/products/elasticsearch;

[20] Fluentd, http://www.fluentd.org;

46

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_iasi_level_1_prod_guide&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_iasi_level_1_prod_guide&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_iasi_level_1_prod_guide&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_atbd_pro_infrared_sounder&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_atbd_pro_infrared_sounder&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=pdf_atbd_pro_infrared_sounder&RevisionSelectionMethod=LatestReleased&Rendition=Web
https://docs.python.org/2/library/profile
http://docs.python.org/2/library/ctypes
http://cython.org
www.docker.com
https://github.com/sarusso/DockerOps
https://www.elastic.co/products/elasticsearch
http://www.fluentd.org

[21] IASI Level 2: Product Guide ,
http://www.eumetsat.int/website/wcm/idc/idcplg?ldcService=
GET_FILE&dDocName=PDF_IASI_LEVEL_2_ PROD_GUIDE&
RevisionSelectionMethod=LatestReleased&Rendition=Web;

[22] Kibana, https://www.elastic.co/products/kibana;

[23] Intel Math Kernel Library (MKL),
https://software.intel.com/en-us/intel-mkl;

[24] Multiprocessing, https://docs.python.org/2/library/multiprocessing;
[25] OpenBLAS, http://www.openblas.net;

[26] Simple Linux Utility for Resource Management (SLURM),
http://slurm.schedmd.com;

47

http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_IASI_LEVEL_2_PROD_GUIDE&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_IASI_LEVEL_2_PROD_GUIDE&RevisionSelectionMethod=LatestReleased&Rendition=Web
http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_IASI_LEVEL_2_PROD_GUIDE&RevisionSelectionMethod=LatestReleased&Rendition=Web
https://www.elastic.co/products/kibana
https://software.intel.com/en-us/intel-mkl
https://docs.python.org/2/library/multiprocessing
http://www.openblas.net
http://slurm.schedmd.com

	Introduction
	The physical problem
	The processing system
	The overall software structure
	Where we start from
	The parallel algorithm
	The final goal: an end-to-end processing system
	The Piasi library
	Our tools
	A version control system (Git)
	A suite for continuous integration (Jenkins)
	A proficient documentation (Sphinx)

	Improving the processor performances
	Step 1: matrix-matrix multiplication bottleneck
	Step 2: transformation phase improvement
	Step 3: matrix structure identification
	Step 4: exploiting diagonal properties
	Step 5: optimization of SVD algorithm
	Step 6: SuperLU library
	An overall view
	The diagonal case
	OpenBLAS vs MKL

	The computational ecosystem
	The overall design
	Features and requirements
	Docker
	Slurm
	The overall ecosystem
	The logging system

	The instrument service
	operative mode
	The reprocessing mode

	The worker
	The monitoring system
	Benchmarking the infrastructure

	Conclusions
	Acknowledgement
	Bibliography

