

SHYFEM Parallelization:
An innovative task approach for coastal

environment FEM software

Supervisor: Candidate:

Carlo Cavazzoni Eric Pascolo

Co-Supervisor:

Stefano Salon

Georg Umgiesser

To Adele
my little,little,little baby!

Contents

1 Introduction 1
1.1 Shyfem and its use . 1
1.2 Hardware and software stack . 3
1.3 New approch for shared memory computing torward exascale . . . 6

2 Parallelization and Restoration 9
2.1 Software Analysis . 9
2.2 First Parallelization . 11

2.2.1 Subroutine parallelized . 11
2.2.2 Benchmark . 12
2.2.3 Analysis . 14

2.3 Task Parallelization . 18
2.3.1 OpenMP task . 18
2.3.2 New parallel design . 19
2.3.3 Hydrodinamic task . 20
2.3.4 Scalar task . 21

2.4 Another level of parallelism . 22
2.4.1 Refactoring of conz3d . 22
2.4.2 New data distribution . 23
2.4.3 Nested Task . 24

2.5 Debugging . 28

3 Conclusion 31
3.1 Results . 31
3.2 Future developments . 33

A Code 35
A.1 First parallelization . 35

A.1.1 sp256v . 35
A.1.2 conz3d . 35
A.1.3 Simple program . 36

A.2 OpenMP Task . 37
A.2.1 Hydrodynamic task . 37
A.2.2 Scalar Task . 37

A.3 Modern conz3d . 40
A.4 conz3d omp . 40

Chapter 1

Introduction

SHYFEM is a finite element hydrodynamic code [5] written by Georg Umgiesser
in the 80s to model Venice lagoon for his master thesis; its development has been
continued by CNR-ISMAR group. It is one of the few opensource codes for coastal
areas that use a finite element approach. SHYFEM is a very important resource
because it is focused on coastal areas and can be coupled with other software in
order to increase the simulation accuracy in such areas. Coastal areas are strategic
because many human activities are here concentrated. This means that a software
that produces an accurate representation in coastal areas may also advantage
socio-economical activities. SHYFEM has been already and successfully applied
to several coastal and lagoon environments; for example, it is used to produce tidal
forecasts in the Venice lagoon[5] and other lagoons in the Mediterranean sea[6].
It is also used in the Danube Delta[2] and to estimate its effects on the Black Sea,
and in Malta to produce coastal forecasts. The main goal of this work is to obtain
a new version of SHYFEM that may be faster, parallel, capable to use efficiently
modern hardware, and easily coupled with other software.

1.1 Shyfem and its use

SHYFEM 1 is a 3d finite element hydrodynamic model, that includes a wind wave
model and with Eulerian and Lagrangian active tracers transport and diffusion
simulator. The code is hosted on github:

https://github.com/SHYFEM-model/

SHYFEM uses a semi-implicit algorithm for integration in time. It is not com-
pletely unstructured grid in all dimensions, because it uses 2D finite element model
(FEM) grid in the horizontal and simulates z direction with repetitions of the sur-
face grid. It is possible to simulate friction, which is computed introducing the
Strickler formulation, so that the friction coefficient varies with water depth. With
SHYFEM it is possible to simulate turbulences through the model GOTM, that

1www.ismar.cnr.it/shyfem

2 Introduction

is state of the art in this field. Another model coupled with hydrodynamic part
is wind wave model that allows the computation of generation, propagation and
dissipation processes in both coastal areas and open ocean.
In SHYFEM it is possible to specify both open and close boundary conditions;
the open boundary are prescribed in accordance with the Dirichlet condition while
the close boundary have normal velocity set to zero and tangential velocity as free
parameter: in this way the software can solve transport variables systems explic-
itly without solving any linear system.
Another feature often used consists on an Eulerian and a Lagrangian transport
module that simulates the advection and the diffusion of active tracers in the
waters. The two approaches allow to simulate the trajectory and the reaction of
both the dissolved chemicals and the dispersed tracers. This part of software can
be coupled with reactors, in example EUTRO,WASP and BFM.

The software is distributed in various directories, but the part of our interest is
in the fem3d directory. The main file of SHYFEM is shyfem.f and it uses now
a FORTRAN module, but when this work started it used a common block. The
compilation is possible through a Makefile that reads the configuration parameters
in Rules.make file. In Rules.make user can choose:

• FORTRAN and C compilers : users can choose INTEL or GNU

• to activate OpenMP parallelization

• which solver to use for matrix solution (gauss, sparskit, pardiso)

• to activate or not the turbolence model GOTM

• the type of coupled ecosystem model

• debug and optimization flag options

Test case

In order to explain how the software runs, we take in consideration the paper [2].
This is the first study done about a circulation system near Romanian coast. In
this case the use of FEM model increases the spatial resolution and gives a better
representation of the coastline. This is one of the most important cases of success
of SHYFEM . The mesh used as input is reported in figure 1.1: SHYFEM can
use grids with varying resolution: in this case the resolution gradually decreases
as it gets further from coast. The input is not a three dimensional mesh but the
surface is a two dimensional mesh and under water the sea is subdivided in levels
with the same shape of surface, in other words each element is like a big prism
having triangular base, and the base and its vertices are defined by the surface
mesh and the height (or number of levels), depending on bathymetry of basin.
This is a very good set up to explain the work done, since we can observe the
computational step and output. SHYFEM can calculate:

• Hydrodinamic fields, for example current speed field

1.2 Hardware and software stack 3

Figure 1.1: Black Sea, on the left the input mesh, on the right the bathymetry
map (adapted from [2])

• Temperature and Salinity profiles (from here referred to as TS)

• Biogeochemical tracer (from here referred to as tracer)

We can image the software is split at each time step in two parts: the first is
the hydrodinamic part, that it calculates the current field on each element; and
the second one is the scalar part. The second one uses the fields calculated by
the hydrodinamic part as input, and compute for each mesh node temperature,
salinity and biogeochemical tracer (from now on, all of these will be referred to
as ”tracer”, because the computation is the same). In the SHYFEM code, the
computation of T, S and tracer uses the same subroutine, so we can consider all
of them as scalar type. In figure 1.2 we can see the current field plotted and the
salinity plotted as color-map; SHYFEM computed a complete three dimensional
output, and users can obtain both horizontal (upper figures) and vertical (bottom
figures) information about current fields and the salinity profile. Figure 1.3 shows
a case study which allows to better understand which geographical part of the
Danube Delta gives the largest contribution in each year period, it is possible
to do this kind of calculation with the tracer part. With SHYFEM users can
simulate the diffusion of tracers released in a certain point of the mesh. In this
case the authors released three tracers in different outsources: one in Kiliya (blu
trace), one in Sulina (red) and one in Sf.Gheorghe (green). Figure 1.3 shows that
in spring the major contribute to Black Sea is due to Kiliya outsource.

1.2 Hardware and software stack

To develop the new version of SHYFEM we use an HPC Cluster named PICO,
it is located in CINECA, the main Italian supercomputing center. In this section
we want to describe the cluster and software stack used for development.
PICO HPC Cluster is Linux Infiniband cluster composed by 74 nodes not ho-
mogeneous. Each node is design to do a specific task, however in general PICO

4 Introduction

Figure 1.2: Black sea current speed and direction fileds. In color salinity is plotted .
In figure A the values are referred to the surface, in figure B the values are referred
at 12 m depth, in figure C and D two vertical profiles are plotted , at AA’ BB’
(see segment in figure 1.1)

1.2 Hardware and software stack 5

Figure 1.3: This picture shows a study which allows to appreciate and better
distinguish the different contributions of water outlets to Danube Delta. This
kind of estimation can be done with the tracer part.

6 Introduction

is mostly used on High performance computing and data analytics and software
development . PICO is composed by:

• Login nodes :
2 x (2 x Intel Xeon 10 Core E5-2670v2 2.50 GHz, 128 GB mem)

• Compute nodes :
51 x (2 x Intel Xeon 10 Core E5-2670v2 2.50 GHz, 128 GB mem),
14 nodes is reserved to OpenStack

• Visualization node :
2 x (20 core, 128 GB mem, 2 GPU Nvidia K40)
2 x (20 core, 512 GB mem, 1 GPU Nvidia K6000s)

• BigInsights nodes :
4 x (16 core, 64 GB mem, 32TB local disks)

• Big memory nodes :
1 x (32 core, 512 GB mem)
1 x (40 core, 1024 GB mem)

The compute and visualization nodes contain 2 Intel Xeon ten-core processors
(E5-2670 v2) with a clock rate of 2.5 GHz capable of 8 FPO per cycle and Intel
hyper-threading technology is disabled. All the nodes are interconnected through
a Melanox Infiniband FDR 56 Gb/s network , allowing for a low latency/high
bandwidth interconnection. PICO storage system is based on IBM GSS technology
and allows to reach a speed of 40 GB/s. The results of this work have been
obtained on the compute nodes of PICO, except for the performance analysis
obtained by Intel VTune XE , whose GUI is installed only on the Visualization
node. The performance analysis is obtained from Intel VTune 16, SHYFEM was
built using the compiler from Intel Composer XE-2016 (version 16.0.0).

1.3 New approch for shared memory computing

torward exascale

The next generation of High performance computers will possibly reach one ex-
aFLOP: the upcoming era is thus called ”Exascale era”[4]. In order to reach 1
exaFLOP of peak performance the new machines are probably going to have mil-
lions of CPU cores, 1 peta byte of RAM overall and 1 ExaByte/s of aggregated
memory bandwidth; however, there is a constraint on the energy consumed in
order to maintain the economic sustainability of the total cost of ownership. If we
take an optimized and parallelized code (MPI+OpenMP, for example) and we run
it on an exascale cluster, we probably will obtain a very bad performance since
the bandwidth is not sufficient. Furthermore, it is not possible to increase the
bandwidth due to a constraint in energy consumption.
Given such premise, the HPC vendors, and more generally the HPC community
must adopt new parallelization techniques in order to minimize the use of band-

1.3 New approch for shared memory computing torward exascale 7

width and therefore increase the scalability of the code. A promising paradigm
that offers solutions, addressing the reduction of synchronization point in the ap-
plication and latency-hiding, is supported by the task based parallelism, that is
MPMD2 approach. When the software encounters a specific directive, it spawns
a bunch of work named task; this kind of parallelism is a MPMD , because tasks
contain both instruction and data so thus they have a big footprint in memory
but reduces notably the synchronization point, because it is in general loosely
coupled. This kind of parallelism is called unstructured parallelism because, if
the programmer does not specify, the tasks are uncorrelated among them and the
temporal order of execution is not important. Task approach reduces also the
sleep time and the unbalance among cores due to the use of dynamic scheduling
of computational work : this mechanism assigns the work to the cores on the base
of the availability of data for processing, thus producing a directly acyclic graph
with the possibility to explore this graph in many ways without block execution or
putting a core in wait. Until now, the task technology is not enough widespread
since in most cases programmers must rewrite at minimum the code, and in the
worst case the whole algorithm.

2Multiple Program Multiple Data

Chapter 2

Parallelization and Restoration

In this chapter we report about our work that has allowed to obtain a parallel
version of SHYFEM . We started from version 7.1.10 and all change done for
parallelization are implemented in version 7.3.15. The first step of this work is
done in parallel, we analyzed and done the first trial of parallelization, while IS-
MAR group transform the memory management from static with common blocks
to dynamic with modules variable. This modernization permits a easier imple-
mentations of the parallelization. The two first sections of this chapter are referred
to old SHYFEM version with common blocks, while the other section is referred
to the dynamic allocation version. The transformation from static to dynamic
left all variables global because the building of tree structure of memory is out
of scope of this thesis. All modifications implemented have been subject to the
regression test created by ISMAR group in order to maintain the correctness of
scientific results.

2.1 Software Analysis

The initial step was the analysis of SHYFEM version 7.1.10.

The original code was based on procedure paradigm manly in FORTRAN 77 and
FORTRAN 4 but years of programming experience have demonstrated these lan-
guages are not suitable to safely support shared memory programming paradigms.
This is a notable weak point.

In the structure of the code we found other criticalities:

• only two OpenMP parallel regions were present but these are not effective;

• all variables are stored statically in common blocks;

• the software is composed by many different executables;

• the input dataset is split in many file and so it’s error prone;

• IO and computational kernel are mixed together;

10 Parallelization and Restoration

Function Effective Time
conz3d 24.50%
tvd fluxes 11.70%
dgelb 9.20%
vertical flux ie 5.20%
conzstab 4.20%
sp256v intern 3.50%
tvd get upwind c 2.80%
femintp 2.10%
assert min max property 2.00%
is r nan 2.00%
nantest 1.80%
ilut 1.30%
mass conserve 1.30%
loccoo 1.10%
locssp 1.00%
uvtopr 0.90%
....

Table 2.1: Nador bechmark profiling, SHYFEM 7.1.10

We profiled the code with Intel VTune XE using Nador benchmark (not yet
explained, see section 2.2.2) and were able to profile almost all features of the
code. In table 2.1 are reported the results obtained on PICO with a serial run.
Examining the code and considering the data in table 2.1 we can note that there
are 3 parallelizable subroutines:

• conz3d

• conzstab

• sp256v

The most easy strategy to parallelize the code seems to split the elements and
nodes associated of the grid among the PEs1. Inside the subroutines previously
mentioned there is a loop over mesh elements, inside these loops other time con-
suming subroutines are called, for example dgelb in sp256v or tvd fluxes in conz3d.
The only way to improve performance of these nested subroutines is to optimize
them, because there are just in a parallel loop.

1Processing Elements

2.2 First Parallelization 11

2.2 First Parallelization

2.2.1 Subroutine parallelized

First of all we tried to parallelize with OpenMP thread approach the three most
time consuming subroutines mentioned before. The easy and faster solution is to
parallelize the computation over the elements of the mesh because in general each
elements computation is independent to each other. The only problem that we
could encounter is the concurrency access to memory.

sp256v

This subroutine A.1.1 solves an approximate solution to the Navier-Stoke equa-
tions and can be improved in a later stage. In this case we did a trivial paralleliza-
tion on the loop over the elements of the grid (line 6 A.1.1) that contains a call
to the function sp256v intern. This function does not require a synchroniza-
tion call over threads, because for each element the computation is independent.
sp256v intern contains only one call to another subroutine, dgelb, that solves a
band system. dgelb is also one of the major time consuming subroutines, but we
didn’t parallelize it because is yet very fast (10E − 5 − 10E − 7sec) and all type
of parallelization we can add increases the execution time.

conz3d

This subroutine computes new concentrations of tracer for each time step. First
of all, the value for each elements is updated on its nodes, the updated values
compose the linear system solved within the same subroutine. This algorithm is
coded in two loops working on the same four arrays which create data dependencies
among the loops. Therefore, the loop fusion technique to increment computational
intensity of each iteration is not allowed and we enforce parallelism in two loops
as shown in A.1.2. Outside of the parallel section there are only the variable
assignments, while inside the parallel section we have three OpenMP constructs.
The first OpenMP construct is an OMP WORKSHARE that initializes to zero
the shared matrix; the second is an OMP LOOP over the elements; the last one
is an OMP DO over the nodes of the elements of the grid, which solves the linear
system that has been set up in the previous loop. In order to solve the linear
system over the nodes we need to accumulate 4 matrices chigh,cn,cdiag,clow with
an OMP REDUCTION, because each element shares at least one node with other
two elements. It is not easy to parallelize this subroutine, since, in addition to the
synchronization, we had to manage reading and writing on many common blocks,
which are used by the nested functions called from the loop on the elements: the
use of common blocks generates many locks that doesn’t allow the optimized access
to the memory. To minimize data races we use a temporary array for common
block when writing, and use direct read for the others. With regard to the call

12 Parallelization and Restoration

num th time to solution (sec) spin time(% cputime) Speed up
1 35.7 0 1
2 29.38 10 1.2
4 22.02 54 1.6
8 18.99 70 1.8
16 17.40 81 2.0

Table 2.2: Nador time to solution and spin time

of other subroutines, we tried to optimize the tvd fluxes subroutine substituting
four IF statement with arithmetic operations. With this optimization we achieved
to pass from 12 % to 7 % of wall time spent in this function.

conzstab

Conzstab subroutine has the same structure as conz3d, but, unlike this, it has
less workload and hasn’t a function call. The parallelization of this subroutine is
identical to the one explained previously.

2.2.2 Benchmark

In order to profile and understand the performance behavior of SHYFEM we
considered three different benchmarks. We discuss the motivation and results of
each benchmark in the next section.

Nador Benchmark

Nador is a benchmark based on Nador lagoon(Morocco); the dataset of this bench-
mark is pretty small, with 3289 elements, 1890 nodes, 8 levels and 3 trackers and
1481 time steps. In table 2.2 the strong scalability and the spin time are reported,
while figure 2.1 is a screenshot of Intel VTune XE reporting the threads analysis
and the timeline of simulation. In this benchmark the time spent in parallel region
is 60%.

Black Sea Benchmark

The Black sea benchmark has 83938 elements, 43823 nodes, 27 levels, and per-
formed 15 time steps. This benchmark is same describe as test case in section 1.1.
In table 2.3 the strong scalability and spin time data until 8 threads are reported,
in table 2.4 the time to solution and mean duration for each parallel section are
reported. In this benchmark the time spent in parallel region is 39%.

2.2 First Parallelization 13

Figure 2.1: Nador benchmark, run on 4 cores and zoom on timeline

num th time to solution (sec) spin time(% cputime) Speed up
1 46.54 0 1
2 37.06 24 1.3
4 33.68 35 1.4
8 33.10 53 1.4

Table 2.3: Black Sea time to solution and spin time

14 Parallelization and Restoration

CONZ3D (A)
num th time to solution (sec) mean time (ms)
1 12.43 414
2 7.17 262
4 4.94 180
8 4.44 150

CONZSTAB (B)
num th time to solution (sec) mean time (ms)
1 3.55 112
2 2.50 100
4 2.43 90
8 2.32 80

SP256V (C)
num th time to solution (sec) mean time (ms)
1 5.44 360
2 2.78 180
4 1.49 100
8 0.79 52

Table 2.4: Black Sea parallel sections analysis

Big Black Sea benchmark

Big Black Sea benchmark has 268020 elements, 136749 nodes, 32 levels and does
69 time steps. We encountered a problem to execute this benchmark because
with this dimension the software reaches a very large amount of memory. At
the first run the operative system returned a signal 9; we tried to understand this
behavior, but wherever we put a control print command in the main file, we always
obtained the same reply. After deeper analysis we found the cause of the problem:
the bss segment of this program is bigger than the memory that was requested
on nodes. The bss is a portion of memory that is allocated before the call of the
main program: if this memory is bigger than the memory available, the OS return
the KILL signal. So we executed this benchmark on nodes of PICO with a large
amount of memory. In table 2.5 the strong scalability and spin time data until
16 threads are reported. Figure 2.2 reports the thread analysis of 8 threads run:
on the top we can see the CPU time for each thread and on the bottom the time
line, where spin time and computational time are shown. In this benchmark the
time spent in parallel region is 59%.

2.2.3 Analysis

First of all, after the parallelization, we tried to use a small benchmark, Nador,
(2.2.2) in order to see the parallel performance. In table 2.2 the strong scalability
and spin time for each configuration are reported. If we consider that in terms of
computational time we have parallelized 60 % of simulation, we obtained a good

2.2 First Parallelization 15

num th time to solution (sec) spin time(% cputime) Speed up
1 528.8 0 1
2 426.6 10 1.2
4 398.2 26 1.3
8 355.0 45 1.5
16 362.0 61 1.5

Table 2.5: Big Black Sea time to solution and spin time

Figure 2.2: Big Black Sea benchmark Threads analysis

16 Parallelization and Restoration

speed up: for Amdhal’s law we can reach 2.4X as maximum speed up. After the
execution time analysis with Intel VTune XE we tried to understand the causes
of performance degradation. In figure 2.1 you can see the thread analysis (run on
4 threads): on the top it can be seen that there is a big time imbalance on the
threads; on the bottom the time line shows that all threads except the Master
have a large spin time. We also perceived that the parallel section is very short
in terms of time (central zoom in figure 2.1), with 5 ms at most. SHYFEM
on this benchmark has the same results of the below simple program, where the
workload is undersized. In figure 2.3 A is shown the Intel VTune XE analysis of
the simple program, and you can see that the distribution of CPU time and spin
time is similar to SHYFEM ’s. After this result, in order to demonstrate that
the problem is the undersized workload, we tried to put a matrix multiplication
(matrix size 4096x4096) in conz3d and conzstab subroutine: we can see in figure
2.3 B that spin time disappears and the distribution of CPU time among the core
becomes uniform.

As mentioned before we tried a bigger benchmark than nador, Black sea bench-
mark (section 2.2.2). With this benchmark we analysed the global behaviour (table
2.3) and the single parallel section performance(table 2.4). In accordance with
our hypothesis regarding small worksize problem, we obtained a smaller speed up
than Nador but a consistent decrease of spin time; more interesting is the result
of each parallel section. The sp256v (2.2.1) has linear scalability (table 2.4 C
): this behaviour is due to the fact that there aren’t synchronization calls among
threads. In conz3d we haven’t linear scalability and at 8 cores the subroutine
doesn’t scale any more. If we consider conzstab we noted that we don’t have
scalability, probably because, as reported in the last column in table 2.4 B, the
time spent in this section is very small.

Finally we tested Black sea benchmark using a bigger mesh: ”Big Black sea bench-
mark” (section 2.2.2). We can see that effectively in this larger simulation the spin
time decreases even more (figure 2.2); there is a reduction of 20% respect Nador
and 10% respect Black sea benchmark (e.g. in 4 threads run the spin time is
reduced from 64% to 54%). Considering now the serial benchmark, we can see
that the time spent in the parallel region is 59% and, for Amdhal’s law, we must
obtain a speed up of 2.4X. We tested scalability and we obtained the best results
on 8 core, 355,1 sec for 69 iteration. The time to solution for serial run is 528.8
sec, 312.4 spent in parallel region and 216.4 spent in serial region. If we consider
8 core and we apply Amdahl’s law we must obtain 216.4 + (312.4/8) = 255.5sec.
In our run with 8 core we obtain instead 355 sec, the 29% higher than the the-
oretical result. Then we analysed the data referred only to the parallel section
Intel VTune XE , which show that there is 12.5% of potential gain in parallel
section due to spin time and overhead time and 17% due to unbalanced workload
among threads (faster threads: 63.5 CPU sec, slower thread: 75.7 CPU sec). To
reduce this unbalanced workload we tried a different type of OMP SCHEDULE.
The previous analysis is obtained with guided schedule. The best schedule results
is obtained with automatic, and the unbalanced workload is reduced to 7%.

In the end, if we consider Nador benchmark (in other words, the worst case), we

2.2 First Parallelization 17

(a)

(b)

Figure 2.3: Intel VTune XE analysis of (a) Simple program (b) Conz3d with
Matrix multiplication

18 Parallelization and Restoration

compared the initial version 7.1.10 with the modified version (OpenMP parallel
threads + optimization) we obtain a speedup of 2.4X (this calculation has been
done taking the run on 16 core with the new version and the serial run with started
version).

2.3 Task Parallelization

For the reasons explained in previous section we decided to change the paralleliza-
tion strategy. Our problem is that we have a lot of spin time due to a small com-
putational load of SHYFEM. There are two reasons why SHYFEM has currently
a low performance: first of all, it has a low workload; secondly, the paradigm used
hitherto introduces implicit locks on the memory. It is unfortunately impossible
to solve the first reason because is depended to dataset, therefore it is necessary
to try to remove the locks. OpenMP task approach is our best choise meeting the
constrain an because of stability and general availability of this paradigm with all
compiler suite. The task approach is implemented in OpenMp library since 2006
but until now this technology hasn’t had a big diffusion. This choice is aligned
with the ongoing development of new high scalability libraries for multi-core pro-
cessors.

2.3.1 OpenMP task

In this paragraph we describe the OpenMP task [1] technology that was intro-
duced in OpenMP 3.0. Tasks uses an irregular concept of parallelism with respect
to threads, since they encapsulate both the function and the data, i.e. when a
thread encounters a task it can choose to execute it immediately or later, but
the programmer can be sure that the work will be done. To better understand
behavior of task it is worth to review the evolution of programming paradigm
supported by OpenMP. The classic OpenMP approach is shared memory threads
based: when the execution enters in a parallel section it uses a fork-join model to
exploit the parallelism, but every thread accesses a shared memory. In OpenMP
2.5 the workshare directive(parallel,for,sections) is used to distribute work among
threads and the work assigned is executed the thread itself. In OpenMP 3.0 the
bunch of work is named task and there are two kind of this: implicit and ex-
plicit. An implicit task is generated by the workshare construct and executed on
a team of threads initialized by a parallel construct, in the same way as OpenMP
2.0. The implicit tasks have been maintained in order to have compatibility with
OpenMP legacy code since in the future all the old construct will be converted in
implicit task. The new construct task in OpenMP 3.0 generates instead an explicit
task. This kind of task is a portion of work that is defined by the programmer;
after its generation, it will be added to a queue and when the scheduling point
is encountered a scheduling mechanism manages the global task workload among
the threads. The OpenMP directives taskwait and taskgroup specify a wait in
the completion of child task of the current task, in other words this constructs

2.3 Task Parallelization 19

Figure 2.4: Ideal workflow of task programs

specify a scheduling point. It is important to pay attention to difference between
scheduling point and barrier: the scheduling point forces threads to complete all
task generated but doesn’t imply that all threads arrive in the same point of the
software, instead the barrier stops the work until all threads encounter it. In gen-
eral we can think a task program as reported in figure 2.4: only one thread enters
in a single (or master) section and spawns task, when this thread encounters a
scheduling directive, it and all others threads start to execute tasks, when all tasks
are executed only one thread continue the execution of the program. This is like a
opportunistic paradigm where the available computational resources (threads) can
stole the work to do from the queue masking the latency due to locked threads.

2.3.2 New parallel design

The new parallel design of SHYFEM has been conceived to obtain high scalability
and to increase the dimension of the parallel part of the software. SHYFEM, in
time loops, computes first of all the Hydrodinamic part and subsequently all the
other parts, such as temperature, salinity and tracer. Thus, once computed the
hydrodinamic part, all the other computations can be done in parallel. In figure
2.5 is shown the new scheme of parallelization.

20 Parallelization and Restoration

Figure 2.5: Shyfem new parallel design.

This design allows to increase the parallelism in two directions: vertical and hor-
izontal. Horizontal parallelism depends intrinsically on the kind of calculus per-
formed whose implementation activate different parts of SHYFEM . Vertical par-
allelism is based on the possibility to create OpenMP nested regions and nested
tasks that work in parallel over the elements of the grid. We can divide SHYFEM
in two parts, the first one named hydrodinamic part and the second scalar part:
these two parts must be executed sequentially. In the hydrodinamic part there
are two parallelizations possible:

• on the elements of the grid

• on the subroutine that work on the same elements (nested).

In the Scalar part the parallelization is exploitable in this way:

• on the different functions

• on the elements of grid

• on the subroutine that work on the same elements (nested).

Another advantage of this design is the extensibility, i.e. in region after hydrod-
inamic we can add more code in parallel beside T,S, biogeochemical tracer that
only needed hydrodinamic results.

2.3.3 Hydrodinamic task

We implemented taskization on the most time consuming subroutine of hydro-
dinamic part: sp256v. The code reported in A.2.1 is very similar to the code
explained in section 2.2.1 but presents 3 differences:

• In task code we found a single directive because all tasks are generated by
only one thread.

2.3 Task Parallelization 21

Figure 2.6: Sp256v comparison between task(red line) and threads (blu line) effi-
cency, Big Black Sea benchmark with 1072 task, 250 chunk size

• The variable clause is defined in the task directive and not in the parallel
directive, because in the first case the task include work and data.

• The elements loop is divided in two nested loops, since a task must contain
a significant amount of work.

We expected from this subroutine the same scalability obtained from the thread
version of sp256v, but we obtained a surprising result reported in figure 2.6. In
this case the efficiency of tasks is greater than efficiency of threads. For task
version we obtained that, when the number of threads increases, the performance
decreases: this is probably because the time spent in task management increases;
however we obtained a good result for efficiency, since the minimum obtained is
69 %. For threads version we obtained a value of efficiency around 50% for all
threads number. We calculated the speed up on time to solution of whole code:
with one thread we obtain 846,81 s while with 20 threads we obtained 788,72;
thus, speed up is equal to 1.07 X. Using Intel VTune XE we calculated the time
spent in the parallel region, the 9.6% of total: thus, for Amdhal’s law we can reach
a theoretical speedup of 1.1 X.

2.3.4 Scalar task

We implemented until now the task only in the two most time consuming parts
of the scalar part: baroclinic(TS computation) subroutine and tracer subrou-
tine(biogeochemical computation). We confined all this part in new subroutine
scalar in shyfem.f file A.2.2

In this subroutine we activated nested parallelism because in barocl() (A.2.2) and

22 Parallelization and Restoration

in tracer compute() (A.2.2) we opened other two parallel sections and we used
taskgroup directive, because we wanted to be sure that the task and its child
tasks ended. We report barcol() subroutine in A.2.2

In this subroutine the software spawns two tasks, one for temperature and one
for salinity. We set attributed DEFAULT to none because we encountered a lot
of problem to let the compiler decide the value of OpenMP clause if not specify.
Another note: we use IF clause into avoid the generation to empty task in case
that input dataset required the computation of observables involved in the task.
In tracer compute subroutine, the software spawns a number of tasks equal to the
number of tracers, as you can see in the code reported in A.2.2

The time to solution speedup results obtained for the scalar subroutine are re-
ported in figure 2.7; in this figure it is shown the speedup obtained for a certain
number of tracers (T+S+biogeochemical tracer). The speedup is calculated from
the same run on 1 thread and on 20 threads. In the image we can observe an in-
crease of speedup when the number of tasks increases, which is near to theoretical
value when the number of tasks is ten times the number of threads. If we consider
800 tasks, we have a 7,8X speedup, with Intel VTune XE we calculate the time
spent in parallel part and it is 88% of total time. For Amdhal’s law the maximum
speedup we can reach is 8.3X. We can observe that we have a good speedup when
the number of task in ten times or more than number of threads, in other word
we must overload the system. Note that this behavior as already been observed in
other similar approaches like the one implemented in Charm++[3] used by NAMD
code (even if the implementation of Char++ is perform using MPI only), where
it is reported that an overload of a factor of 10 is on average required to mask
latencies and not to impact too much the task management.

2.4 Another level of parallelism

In the previous section the exploitation of the horizontal parallelization has been
explained, allowing the computation of T,S,biogeochemical tracer in parallel. Here
we explain what has been done to add another nested level of parallelization over
the elements of the grid. Whit the aim to increase the speedup even when the
number of tasks is less than the number of threads.

2.4.1 Refactoring of conz3d

Initially we tried to insert the parallelization shown in section 2.2.1 for conz3d;
later we tried to insert a task version of conz3d. Both versions produce a slowing
down of the code: this behaviour is caused by various bugs found both in the code
of the subroutines and in the structure of the algorithm. The structure of the
algorithm causes implicit data races because of the elements sharing the nodes of
the grids: in this way, when we compute in parallel the elements loop, the soft-
ware reads and writes simultaneously in the same cell of memory. We choose to

2.4 Another level of parallelism 23

Figure 2.7: The speedup of whole code (Big Black Sea benchmark) with the benefit
due to Scalar subroutine task parallelism

rewrite the subroutine in FORTRAN 90 and to clean it in order to simplify the
reading to compiler; moreover, we split in two the other subroutine. Now conz3d
calls inside conz3d elements and conz3d nodes; the first subroutine updates for
each element the value on its nodes and the second solves the nodes system to
calculate the new concentration, the code is shown in A.3 The concentration ma-
trix cn,co,cdiag,clow,chigh is now allocated dynamically and it is passed to nested
function. Cn is the only array returned to function caller. This refactoring per se
has not given any improvement but allow us to implement new strategy of data
distribution, as explained below, to solve the problem of data races.

2.4.2 New data distribution

Considering that we need to update the node data using the element computation,
all elements share at least one node with another element creating the data races
condition, that can not be solved by parallelizing in a trivial way the loop over
them. We observe that, it is possible to partition the set of elements into subsets
containing the elements that do not share nodes within of each of this subset
the data races does not exist any longer and all computation can be performed
in parallel. The dependency between different elements is than transformed in a
dependencies among subset so that different subset can’t not be run in parallel
but need to be processed in predefined order depending on the algorithm that
generate the subset. The idea of this concept is represented in 2.8, where we have
a circular mesh and each subset is represented by one color: two triangles with the

24 Parallelization and Restoration

same color does not share nodes. We created a new module in order to implement
this domain decomposition, named mod subset.f , which contains a second array,
independent subset , with a subset in each row. The number of subsets is one
more than the number of sharing elements for node. To implement this we used
a greedy algorithm that produces the following report:

----------- DOMAIN CLUSTERING INFORMATION -----------

NUM NODES = 1890 NUM ELEMENTS = 3289

MAX LINK = 8

SUBSET = 1 LENGTH = 582

SUBSET = 2 LENGTH = 564

SUBSET = 3 LENGTH = 505

SUBSET = 4 LENGTH = 455

SUBSET = 5 LENGTH = 422

SUBSET = 6 LENGTH = 380

SUBSET = 7 LENGTH = 269

SUBSET = 8 LENGTH = 102

SUBSET = 9 LENGTH = 10

NUM ITERATION GREEDY ALGO = 9

SUM SUBSET LENGTH = 3289

MAX LENGTH SUBSET = 582

TIME GREEDY = 0.186847925186157

ALL SUBSETS ARE INDIPENDENT

It is a characteristics of the greedy algorithm to have the firsts subset with more
elements than the others. At the end of the table you can note that there is an
independence test on subsets and the parameter ”SUM SUBSET LENGTH” to
confirm that all element is been assigned in one and just subset. The algorithm
that distribute the data can have an impact on the computational time for a bigger
mesh because it’s complexity is n2 cost (this is the worst case, in our case is never
happen because the connectivity is nearest neighbor).

2.4.3 Nested Task

The subset subdivision permits to complete the vertical parallelization of the
Scalar subroutine. Note that nested task does not require nested parallel region,
indeed this is consider deprecated by the standard described in [1] and subopti-
mal for the performance since with introduce explicit syncronization point wich
are not require a pure task approach 2. The code of new conz3d has been renamed
conz3d omp and put in new file newcon omp.f; the code is reported in appendix
A.4. At line 15 in the code we have split the element loop in two, the first over
the independent subset and the second, nested (line 16), over the elements in a
single subset. Only the computation in a single subset is split in tasks, and the

2This implementation has been also discussed and validated with Federico Massaioli as one
of the member of OpenMP task subcommittee

2.4 Another level of parallelism 25

Figure 2.8: Example of domain decomposition of mesh in disjointed subset, each
subset is represent by one color, there aren’t elements of same color that share a
node of grid.

TASKGROUP directive guarantees the finish of a subset computation before the
begin of the successive. The chunk size of the second loop has been defined at
line 12; in this way the number of tasks is at least ten times of the number of
threads, as mentioned before. At line 18 we specify the task definition and we
define the clause for all variables, in order to guide the compiler to do a better
optimization. Each task executes a fine grain loop on the assigned elements. The
introduction of chunk allow a better control of the computational load for each
task and we can optimize the chunk size to meet the best scalability curve. At line
55 we have the loop over the nodes: this loop is parallelized as the element loop
in the subset described above. We report the speedup result for conz3d omp in
figure 2.9, the blue and red lines are the results obtained with conz3d omp on two
different benchmark: nador (blu) and black sea (red). The orange line is the result
obtained with conz3d threads version on black sea (sec 2.2.2). The results have
been obtained using only one concentration in order to measure only the speed
up of conz3d; given a single concentration only this part spawn tasks. If we take
in consideration the red and orange line we deduce that task paradigm is lighter
than threads approach: the two approaches seems equivalent for a low number of
threads, but when the threads number increases synchronization, locks and waits
become predominant in threads approach, therefore the speedup is limited, espe-
cially as in this case where the memory management is clumsy. Another point in
favor to task approach is shown by the blue line, which tells us even the smallest
benchmark with tasks has better results than the best threads benchmark.

In figure 2.10 we plotted the results concerning the speed up of time to solution

26 Parallelization and Restoration

Figure 2.9: conz3d omp speedup: in blu Nador benchmark, in red black sea bench-
mark and in orange the Black Sea results obtained with conz3d thread versione
tab 2.4 A

for the whole simulation. We reported two cases, one blu line with 4 tracer and
one with 8 tracer. In both cases all task parallel levels are enabled(the number
of tracers is smaller than the number of threads). In both cases we obtained
a increment of speedup due to the last level of parallelization with respect to
theoretical maximum considering only horizontal level of parallelism. As expected
the performance increased when the workload increases:

• performance increase significantly from 4 tracer to 8 tracer

• the increase of speedup when the third task level is active is better in case
of 8 tracer (-26 % in time) than 4 tracer (-19 % in time).

• with 8 tracer we still observe a speedup to pass from 16 to 20 threads.

In figure 2.11 we show the spintime analysis obtained by Intel VTune XE on Black
sea benchmark runned on 16 core. We can note that the spintime is concentrated
in the serial region while in the bigger parallel region the spintime goes down to
zero. The bigger parallel section corresponds to the scalar part and the smaller
corresponds to the hydrodinamic part. In the hydrodinamic part the parallel
section is still too small in time(∼50 ms) to exploit all cores, and then we have a
small spin time, as it can be seen in the upper image of figure 2.12. The bigger
parallel part instead lasts ∼ 700 ms and the software is able to exploit all cores
(see the bottom image of figure 2.12). With Intel VTune XE we also measured the
time spent in every parallel section: it is the 87.5% of the total time and therefore,
so for Amdhal’s law, we can obtain a maximum 8x of theoretical speedup.

2.4 Another level of parallelism 27

Figure 2.10: Time to solution speedup of whole program with three level of nested
tasks implemented. In red the case of Black sea benchmark with 4 tracer, in blu
the same benchmark with 8 tracer

Figure 2.11: Nested task version: time line threads analysis on Black sea bench-
mark. In particular the spintime is displayed in orange.

28 Parallelization and Restoration

Figure 2.12: Nested task version: number of active threads across parallel region
on Black sea benchmark, upper hydrodinamic section(mean 11 threads active),
bottom scalar section(mean 13 threads active)

2.5 Debugging

As it is often the case in this work the most time consuming activity has been
the debugging of the code, both reletad to the implementation of new features
and of the original code containing hidden issues not exploited by the serial run.
This happened because it ’s easy to exploit hidden bug when introducing paral-
lelization into a complex code with a long history of stratification of new features.
We found quite common bugs as uninitialized variables, accesses on arrays out
of bounds, or wrong assignment of formal subroutine’s parameters. Another dif-
ficulty encountered in parallelization is the separation of the calculus part from
the IO part. While we were working on the code, we had the sensation that it
is was difficult for the compiler to untangle and optimize properly the code. In
more than one case performance issues was solved just specify the intent of the
variable , and many bugs have been found to be related to the correct dimension
of arrays. As a proof that compiler is not able to fully optimize the code that it
is we have obtained a large improvement in performace using the so called profile
guided optimization. This optimization is a two steps process:

• compile with prof-gen flag so that at runtime the software generates a diag-
nostic file. You can do more than one run with different test cases could be
done to have a more complete heuristic.

• compile with prof-use flag to generate an optimized executable using the
diagnostic file generated.

We tried this optimization with Nador benchmark on PICO, which has been ran
on 4 threads compiled with -O2 flag, and after the optimization we had a 1.3X of

2.5 Debugging 29

speedup. In terms of time we gain 24% of the total. Other user of ISMAR reported
that they obtained even a greater gain on another benchmark, in the order of 30%
. From common experience this result is very high and shows the difficulties the
compiler has to optimize the code in one time of compilation process.

Chapter 3

Conclusion

3.1 Results

The software we tried to optimize shows its age, the coding style and implemen-
tation reflect older architectures but provides reliable results. Due to the limited
amount of time at our disposal we are satisfied by the results obtained. The
main improvement is a relevant speedup achieved thanks to new parallelization
paradigm by using OpenMP task. We began this work with SHYFEM v 7.1.10,
which presented many bugs, data races and a very complicated structure, as we
described in section 2.1. While ISMAR group was working in order to create a
dynamic allocation version of SHYFEM , we tried to investigate the best way to
parallelize the software. Initially we took in consideration the possibility to use
OpenMP threads approach and we tried to implement it in the three most time-
consuming subroutines: sp256v,conz3d,conzstab 2.2.1. We tested this OpenMP
thread version on three different worksize benchmarks: Nador, Black Sea, Big
Black Sea.
In case of Nador we obtain a smaller speedup in respect theoretical value, and
we found that it is due to spintime, as its shown in figure 2.1. With the simple
program reported in A.1.3 we reproduced the bad behaviour we saw in Nador:
the problem revealed from the simple program is that the work is undersized, in
other words the parallel sections are too fast and OpenMP is not able to exploit
the power of parallelism creating an imbalance workload among the threads (see
figure 2.3 A).
The Black Sea benchmark is bigger than Nador in terms of workload and we
obtained a decrease of the spin time but a very smaller speedup of the time to so-
lution. In this case we also analyzed the single parallel section and we understood
that where it is requested a contention on part of memory when the number of
threads increases the speed up goes down; maybe this behavior is due to a bad
manage of memory done with common blocks.
With the biggest benchmark used, Big Black Sea, we had the best results in terms
of spin time; this means that one of the principal problems is the low workload of
SHYFEM , that is a memory bound program.

32 Conclusion

During this studies we spent a lot of time optimizing serial subroutines and in this
part we obtain a 2.4 x of speed up using Nador benchmark with respect to version
7.1.10. When the dynamic allocation was completed we obtained a new version of
SHYFEM , 7.1.81, with dynamic memory allocation; however, the allocation is
global, which mean that all common blocks became module variables. In this way
the management is lighter, but it does not solve the problem of the many depen-
dencies between subroutines. Considering the previous results we understood that
we need a technology with low impact on threads synchronization and access in
memory in order to use the memory model implemented in SHYFEM 7.1.81. A
good candidate is OpenMP task, but this requires a new design of parallelization
because the tasks use a non structural idea of parallelization.
The new parallel design of SHYFEM divided the algorithm in two sequentially
parts: Hydrodinamic and scalar. Into each part it is possible to use tasks to paral-
lelize the work. In the Hydrodinamic part we used task as a thread in sp256v and
we obtained surprising results, as it is shown in figure 2.6: the same paralleliza-
tion is more efficient using tasks. In the scalar part we can exploit two kind of
parallelizations; temperature, salinity and all tracers can become a task because
it is not important the order of execution and in each of this task we can spawn
other tasks in order to divide the work on elements.
In figure 2.7 we shown the speed up obtained by parallelizing the baroclinic(TS)
and biogeochemical tracer part: we reached almost the theoretical peak, but this
graph shows that the task technology seems to become efficient when the num-
bers of tasks is 10 times the number of threads. The old algorithm implemented
in conz3d permits that a node shared between elements can be computed from
two threads simultaneously, so the computation is serialized and we end up with
many of data races.
In order to solve data races we introduced the domain decomposition (figure 2.8)
explained in section 2.4.2: the algorithm produced a subset of elements disjointed
and allowed the parallel computation into the same subset. The change of dis-
tribution allowed to insert in conz3d another level of parallelism: this step is
fundamental in order to use SHYFEM when the number of tasks is smaller than
the number of threads.
The results of new version of conz3d and parallelization are plotted in figure 2.9
and we can see that Nador, the worst case, with the new implementation is bet-
ter than Black sea with the old implementation. The general behaviour of the
OpenMP version of SHYFEM is reported in 2.10. The results show that one of
the problems in exploiting the parallelism is always the low computational work-
load, but the results show also that the new version of SHYFEM is able to use
all levels of parallelism and so all PEs available at least.
Another proof of this is the result reported in figure 3.1: this run has been per-
formed on PICO’s big memory node 2 on a old 4 socket with 10 cores/socket, the
benchmark is Nador with 8 tracer(T,S and 6 biogeochemical tracer). It can be
seen that the contribution of the grid nested parallelism is fundamental to exploit
all the nodes’s power and using task permits to have a nested tasking with light
overhead.

3.2 Future developments 33

Figure 3.1: Speedup of SHYFEM , Black Sea benchmark with 8 tracers runned
on PICO Big memory node

3.2 Future developments

The OpenMP tasks have resulted very powerful in order to parallelize software
with old memory models, unfortunately even if we have now a dynamic memory
allocation, all variables result global. The first thing to do before we continue the
parallelization is to analyse the whole code, and then:

• create a schema of flowchart of software

• create a dependencies tree for all variable.

• identify old and unused part of code to be cleaned-up

After this action we will be able to rewrite SHYFEM in order to have a cleaner
program that exploits data locality and uses efficiently the cache and the vectoriza-
tion mechanism. As soon as these features will be implemented in the program, we
will be able to perform a full fledged parallelization study and not a trial and error
attempt as we have done so far in the modified subroutines. An interesting idea
to consider is to make SHYFEM become a hybrid program, with MPI+OpenMP
task. To achieve maximum performance, the recommended solution is to imple-
ment two nested levels of parallelism. The highest level is an MPI manager that
distributes the elements of the mesh over HPC nodes while the deepest is the
taskization of the whole program within each the single shared memory node.
Unfortunately, to reach this goal we must spend a lot of time modifying the struc-
ture of the code and while we do this we can convert the whole code to Fortran
90 or later.

34 Conclusion

The actions previously mentioned have been thought in order to have a software
at state of art; however we cannot forget that the development of SHYFEM is
mainly done by scientists, and not HPC programmers: if we want to maintain a
high quality of parallelization it is necessary to invest in HPC training for those
scientists.
In September 2015 in Venice, we had a meeting in order to create a SHYFEM
consortium and we have presented part of this work. Many research centers were
present: OGS,CMCC,ISMAR,UniBo,CINECA and all agreed that SHYFEM is a
very useful tool that will help coastal application in next years, so its paralleliza-
tion and optimization is very important for development the of oceanographic and
biogeochemical modelling sector.

Appendix A

Code

A.1 First parallelization

A.1.1 sp256v

1 !$OMP PARALLEL pr i va t e (num threads , myid , e l do , r e s t do , i n i t do , end do ,
i e)

2 ! $& f i r s t p r i v a t e (bco l in , baroc , az ,am, af , at , radv ,
3 ! $& vismol , rrho0 , dt)
4

5 !$OMP DO schedu le (RUNTIME)
6 do i e =1, ne l
7 c a l l sp256v in t e rn (ie , bco l in , baroc , az ,am, af , at , radv
8 + , vismol , rrho0 , dt)
9

10 end do
11 !$OMP END DO
12 !$OMP BARRIER
13

14 !$OMP END PARALLEL

A.1.2 conz3d

1

2
3

4 !$OMP PARALLEL PRIVATE(k , kn , i i , b , c , aj , aj4 , aj12 , i l e v e l , l , hn , ho ,
5 !$OMP& rk3 , cbm , ccm , i t o t , isum , fw , waux ,
6 !$OMP& wdi f f , rvptop , rvpbot , hmotop , hmobot , hmntop ,
7 !$OMP& hmnbot , fd ,w, f l ux top , f l ux bot ,
8 !$OMP& f l ux t o t 1 , f l u x t o t , f l , i ex t , fnudge , cdummy, hmed ,
9 !$OMP& cconz , q f lux , mflux , loading , l s t a r t , aux ,

10 !$OMP& us , vs , t , myid , bdebug1 , debug , bdebug , berror ,
11 !$OMP& btvd , bgradup , btvdv , az , azt , ad , adt , aa , aat ,
12 !$OMP& rs to t , rso , rsn , r sot , rsnt ,wws , dt ,
13 !$OMP& alow , ahigh , adiag , u , v , i1 , j1 , k1)
14 !$OMP& FIRSTPRIVATE(cn1 l , co1 l , co , aapar , wsink , nthreads)

36 Code

15

16
17

18 !$OMP DO PRIVATE(i e) schedu le (RUNTIME)
19 !$OMP& REDUCTION(+: chigh , cn , cdiag , clow)
20 do i e =1, ne l
21
22 c a l l v e r t i c a l f l u x i e (btvdv , i l e v e l , dt ,wws , c l , wl , hold , v f l ux)
23
24 c a l l t v d f l u x e s (i e , l , i t o t , isum , dt , c l , co1 l , gradxv , gradyv , u , v , f , f l)
25
26 end do
27 !$OMP END DO
28

29

30 !$OMP DO schedu le (RUNTIME)
31 do k=1,nkn
32
33 end do
34 !$OMP END DO
35

36

A.1.3 Simple program

1 PROGRAM main
2

3 use omp lib
4

5 IMPLICIT NONE
6 i n t e g e r : : I
7

8 DO i =1,10E6
9

10 c a l l bad schedu l ing ()
11

12 END DO
13

14 STOP
15

16 END PROGRAM main
17

18 !
19

20 subrout ine bad schedu l ing ()
21

22 use omp lib
23

24 IMPLICIT NONE
25

26 DOUBLE PRECISION,DIMENSION(:) ,ALLOCATABLE : : array
27 INTEGER : : dim , i , j , k , myid , nthreads
28

29 dim = 20
30 ALLOCATE(array (dim))

A.2 OpenMP Task 37

31 !$OMP PARALLEL PRIVATE(myid)
32

33 myid = omp get thread num ()
34

35 !$OMP DO PRIVATE(j)
36 DO j=1,dim
37 array (j) = COS(r e a l (myid))
38 ENDDO
39 !$OMP END DO
40

41 !$OMP END PARALLEL
42

43 end subrout ine bad schedu l ing

A.2 OpenMP Task

A.2.1 Hydrodynamic task

1 !$OMP PARALLEL
2 !$OMP SINGLE
3

4 do i e =1, nel , 250
5 !$OMP TASK FIRSTPRIVATE(ie , bco l in , baroc , az ,am, af , at , radv
6 !$OMP& , vismol , rrho0 , dt) PRIVATE(i e s , iend)
7 !$OMP& SHARED(ne l) DEFAULT(NONE)
8

9 i end = i e+249
10 i f (iend . gt . ne l) iend = ne l
11 do i e s=ie , iend
12

13 c a l l sp256v in t e rn (i e s , bco l in , baroc , az ,am, af , at , radv
14 + , vismol , rrho0 , dt)
15 end do
16 !$OMP END TASK
17 end do
18

19 !$OMP END SINGLE
20 !$OMP END PARALLEL

A.2.2 Scalar Task

scalar

1

2 subrout ine s c a l a r ()
3

4 ! $ use omp lib
5

6 imp l i c i t none
7

8 r e a l getpar
9

10 i n t e g e r : : nsca l , itemp , i s a l t , iconz , i tvd

38 Code

11

12

13 !$OMP PARALLEL
14 !$OMP SINGLE
15

16 ns ca l = 0
17

18 itemp = nint (getpar (” itemp”))
19 i s a l t = nint (getpar (” i s a l t ”))
20 i conz = nint (getpar (” i conz ”))
21 i t vd = nint (getpar (” i tvd ”))
22

23 c a l l t v d i n i t (i tvd)
24

25 i f (itemp . gt . 0) n s ca l = nsca l +1
26 i f (i s a l t . gt . 0) n s ca l = nsca l +1
27 i f (i conz . gt . 0) n s ca l = nsca l + iconz
28

29 ! $ c a l l omp set nested (.TRUE.)
30

31

32 !$OMP TASKGROUP
33

34 !$OMP TASK
35 c a l l ba roc l (1)
36 !$OMP END TASK
37

38 !$OMP TASK
39 c a l l t racer compute
40 !$OMP END TASK
41

42

43 !$OMP END TASKGROUP
44

45 !$OMP END SINGLE
46 !$OMP END PARALLEL
47 end subrout ine

Barocl

1 subrout ine baroc l ()
2 . . .
3

4 !$OMP PARALLEL
5 !$OMP SINGLE
6

7

8 !$OMP TASK PRIVATE(what , dtime) FIRSTPRIVATE(thpar , wsink , robs , itemp , i t
)

9 !$OMP& SHARED(idtemp , tempv , di fhv , d i fv , di fmol , tobsv) DEFAULT(NONE)
10 !$OMP& IF (itemp > 0)
11

12 i f (itemp . gt . 0) then
13 what = ’ temp ’
14 c a l l s ca l adv nudge (what , 0
15 + , tempv , idtemp

A.2 OpenMP Task 39

16 + , thpar , wsink
17 + , di fhv , d i fv , di fmol , tobsv , robs)
18 end i f
19

20 !$OMP END TASK
21

22 ! c a l l openmp get thread num (t i d)
23 ! ! wr i t e (6 ,∗) ’ number o f thread o f s a l t : ’ , t i d
24

25 !$OMP TASK PRIVATE(what , dtime) FIRSTPRIVATE(shpar , wsink , robs , i s a l t , i t
)

26 !$OMP& SHARED(i d s a l t , s a l tv , d i fhv , d i fv , di fmol , sobsv) DEFAULT(NONE)
27 !$OMP& IF (i s a l t > 0)
28

29 i f (i s a l t . gt . 0) then
30 what = ’ s a l t ’
31 c a l l s ca l adv nudge (what , 0
32 + , sa l tv , i d s a l t
33 + , shpar , wsink
34 + , di fhv , d i fv , di fmol , sobsv , robs)
35 end i f
36

37 !$OMP END TASK
38

39 !$OMP END SINGLE
40 !$OMP END PARALLEL
41

42 . . .

tracer compute

1

2 subrout ine tracer compute ()
3 . . .
4

5 !$OMP PARALLEL
6 !$OMP SINGLE
7

8 do i =1,nvar
9

10 !$OMP TASK FIRSTPRIVATE(i , rkpar , wsink , di fhv , d i fv , di fmol , idconz , what ,
11 !$OMP& dt , n lvd i) SHARED(conzv , tauv , massv) DEFAULT(NONE)
12

13 c a l l s c a l adv (what , i
14 + , conzv (1 , 1 , i) , idconz
15 + , rkpar , wsink
16 + , di fhv , d i fv , d i fmol)
17

18 c a l l decay conz (dt , tauv (i) , conzv (1 , 1 , i))
19 c a l l massconc (+1 , conzv (1 , 1 , i) , n lvdi , massv (i))
20

21 !$OMP END TASK
22

23 end do
24

25 !$OMP END SINGLE

40 Code

26 !$OMP END PARALLEL
27

28 . . .

A.3 Modern conz3d

1 subrout ine conz3d
2

3 . . .
4 ALLOCATE(cn (nlvddi , nkn))
5 ALLOCATE(co (nlvddi , nkn))
6 ALLOCATE(cdiag (nlvddi , nkn))
7 ALLOCATE(clow (nlvddi , nkn))
8 ALLOCATE(chigh (nlvddi , nkn))
9

10 DO over e lements
11 c a l l conz3d e lements ()
12 END DO
13

14 . . .
15

16 DO over nodes
17 c a l l conz3d nodes ()
18 END DO
19 . . .
20 cn1 = cn
21 DEALLOCATE(cn)
22 DEALLOCATE(co)
23 DEALLOCATE(cd iag)
24 DEALLOCATE(clow)
25 DEALLOCATE(chigh)
26

27 end subrout ine conz3d

A.4 conz3d omp

1

2 subrout ine conz3d omp ()
3

4 . . .
5

6 nchunk = 1
7 nthreads = 1
8 ! $ nthreads = omp get num threads ()
9

10 do i =1, subset num ! loop over ind ipendent subset
11

12 ! $ nchunk = sub s e t e l (i) / (nthreads ∗ 10)
13

14 !$OMP TASKGROUP
15 do j e l =1, s u b s e t e l (i) , nchunk
16

17 !$OMP TASK FIRSTPRIVATE(j e l , i) DEFAULT(NONE)

A.4 conz3d omp 41

18 !$OMP& PRIVATE(j , i e)
19 !$OMP& SHARED(nlvddi , nlev , i tvd , itvdv , i s t o t , i s a c t , aa , nchunk)
20 !$OMP& SHARED(difmol , robs , wsink , r load , ddt , rkpar , az , ad)
21 !$OMP& SHARED(azt , adt , aat , rso , rsn , r sot , rsnt , dt , nkn)
22 !$OMP& SHARED(cn , co , cdiag , clow , chigh , s ub s e t e l , cn1 , co1)
23 !$OMP& SHARED(subset num , ind ipendent subse t)
24 !$OMP& SHARED(di fhv , cbound , gradxv , gradyv , cobs , load , d i fv , wsinkv)
25

26 do j=j e l , j e l+nchunk−1 ! loop over e lements in subset
27 i f (j . l e . s u b s e t e l (i)) then
28 i e = ind ipendent subse t (j , i)
29

30 c a l l conz3d element (i e , cdiag , clow , chigh , cn , cn1
31 + , dt
32 + , rkpar , d i fhv , d i f v
33 + , difmol , cbound
34 + , itvd , itvdv , gradxv , gradyv
35 + , cobs , robs
36 + ,wsink , wsinkv
37 + , r load , load
38 + , az , ad , aa , azt , adt , aat
39 + , rso , rsn , r sot , r sn t
40 + , nlvddi , n lev)
41 end i f
42 end do ! end loop over e l in subset
43 !$OMP END TASK
44 end do
45

46 !$OMP END TASKGROUP
47

48 end do ! end loop over subset
49

50 ! $ nchunk = nkn / (nthreads ∗ 10)
51

52

53 !$OMP TASKGROUP
54 do knod=1,nkn , nchunk
55 !$OMP TASK FIRSTPRIVATE(knod) PRIVATE(k) DEFAULT(NONE)
56 !$OMP& SHARED(cn , cdiag , clow , chigh , cn1 , cbound , load , nchunk ,
57 !$OMP& rload , ad , aa , dt , nlvddi , nkn)
58 do k=knod , knod+nchunk−1
59 i f (k . l e . nkn) then
60 c a l l conz3d nodes (k , cn , cd iag (: , k) , clow (: , k) , chigh (: , k) ,
61 + cn1 , cbound , load , r load ,
62 + ad , aa , dt , n lvdd i)
63 end i f
64 enddo
65 !$OMP END TASK
66 end do
67

68 !$OMP END TASKGROUP
69

70 cn1 = r e a l (cn)
71

72 DEALLOCATE(cn)
73 DEALLOCATE(co)

42 Code

74 DEALLOCATE(cd iag)
75 DEALLOCATE(clow)
76 DEALLOCATE(chigh)
77

78 end subrout ine conz3d omp

Bibliography

[1] E. Ayguade, N. Copty, A. Duran, J. Hoeflinger, Yuan Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and Guansong Zhang. The design of openmp
tasks. Parallel and Distributed Systems, IEEE Transactions on, 20(3):404–
418, March 2009.

[2] Marco Bajo, Christian Ferrarin, Irina Dinu, Georg Umgiesser, and Adrian
Stanica. The water circulation near the danube delta and the romanian coast
modelled with finite elements. Continental Shelf Research, 78:62 – 74, 2014.

[3] Laxmikant V Kale, Anshu Arya Abhinav Bhatele Abhishek Gupta, Nikhil Jain,
Pritish Jetley Jonathan Lifflander, Phil Miller, Yanhua Sun, and Ramprasad
Venkataraman Lukasz Wesolowski Gengbin Zheng. Charm++ for productivity
and performance. 2012.

[4] Vivek Sarkar, William Harrod, and Allan E Snavely. Software challenges in
extreme scale systems. Journal of Physics: Conference Series, 180(1):012045,
2009.

[5] Georg Umgiesser, Donata Melaku Canu, Andrea Cucco, and Cosimo Solidoro.
A finite element model for the Venice Lagoon. Development, set up, calibration
and validation . Journal of Marine Systems, 51(1–4):123 – 145, 2004. Lagoon
of Venice. Circulation, Water Exchange and Ecosystem Functioning.

[6] Georg Umgiesser, Christian Ferrarin, Andrea Cucco, Francesca De Pascalis,
Debora Bellafiore, Michol Ghezzo, and Marco Bajo. Comparative hydrody-
namics of 10 mediterranean lagoons by means of numerical modeling. Journal
of Geophysical Research: Oceans, 119(4):2212–2226, 2014.

	Introduction
	Shyfem and its use
	Hardware and software stack
	New approch for shared memory computing torward exascale

	Parallelization and Restoration
	Software Analysis
	First Parallelization
	Subroutine parallelized
	Benchmark
	Analysis

	Task Parallelization
	OpenMP task
	New parallel design
	Hydrodinamic task
	Scalar task

	Another level of parallelism
	Refactoring of conz3d
	New data distribution
	Nested Task

	Debugging

	Conclusion
	Results
	Future developments

	Code
	First parallelization
	sp256v
	conz3d
	Simple program

	OpenMP Task
	Hydrodynamic task
	Scalar Task

	Modern conz3d
	conz3d_omp

