Scuola Internazionale Superiore di Studi
Avanzati

Mathematics Area

Master in High Performance Computing

MHPC

Master in High Performance Computing

Towards Exascale BEM simulations:
Hybrid Parallelisation Strategies

for Boundary Element Methods

Advisor:

Dott. Luca HELTAI

Co-Advisor:
Dott. Andrea MoLA

Author:

Nicola GIULIANI

Were it so easy.

Contents

1__Introductionl 9
2 BEM for the Laplace Equation| 11
[2.1 Basic notation and governing equations| 11
[2.2 Boundary Integral Formulation of the |

| governing equations and BEM| 00000000 12
[2.3 Discretization procedure for BIEf. 13
[2.3.1 Geometry and variable representations| 15

[2.3.2 BEM: collocation technique| 16

[2.3.3 Imposition of the Boundary Condition| 17

[2.3.4 Preconditioner for the Linear System| 18
[B_Parallel BEM| 21
[3.1 Implementation Principles| 21
[3.2 Code Description| 22
[3.3 Code parallelisation| 23
(3.3.1 METIS Grid Partitioningl 23

3.3.2 IndexSet Creation|. 24

3.3.3 Trilinos Parallelisationl 25

(3.3.4 BEM Algorithm|. 26

[3.4 Strong Scaling Analysis|. o000 28
[3.4.1 Strong Scalability up to 40 processors|. 28

[3.5 Weak Scaling Analysis| 0. 31
13.5.1 Computational Cost O(N*)[. 31

13.5.2 Computational Cost O(N)[. 33

BE _PETSd. 34
[3.6.1 Sparsity Patterns|o 35

[3.6.2 PETSc Trilinos Comparison on a single processor| 35

(3.6.3 PETSc Scalability{. 36

6 CONTENTS
[4 Parallel FMA with MPI paradigm| 39
[4.1 The Fast Multipole Method| 39
[4.1.1 FMM in a standard N-Body problem| 40
[4.1.2 FMM in Boundary Element Methodl 44
[4.1.3 Description of the Fast Multipole Method| 45

[4.2 Existing Code| 47
[4.2.1 Existing Code Description| 48
[4.2.2 Serial Code Profiling 49

[4.3 Code Parallelisation Strategy| 50
[4.3.1 Close range interactions| 50
[4.3.2 Ascending Phase] L. 51
[4.3.3 Descending Phase| 52
[4.3.4 Preconditioner Setting| 52

[4.4 Strong Scaling Analysis|.o 00000 53
[4.4.1 Preliminary Multiple to Local Operations Work Balance] . . 53
[4.4.2 Strong Scaling up to 40 Processors| 54

[4.5 Nodes per blockl o o 55
[4.5.1 Optimal Nodes per Leaff 56
[4.5.2 Strong Scalability with 60 nodes per leaff 60

[4.6 Memory Consumption| 61
5 Parallel FMA with MPI and TBBI 65
[>.1 Intel TBB Description| 65
[b.1.1 TaskGroup| 66
H.1.2 WorkStream|.o o 67

(5.2 Implementation|o 69
Hb.2.1 Direct Interactionslo 69
[5.2.2 Ascending Phase| o o000 70
[5.2.3 Descending Phase|.o 71
[5.2.4 Final Preconditioner Setting 72

[>.3 Optimal Block Size Analysis| 73
[5.3.1 Theoretical analysis|. 73
Hh.3.2 DBlock Size Resultsl 0. 75

[>.4 Strong Scaling Analysis|. 81
[5.4.1 Strong Scaling with 25350 dofs| 82
[5.4.2 Strong Scaling with 98306 dofs| 84

[5.5 Weak Scaling Analysis| 86
[5.5.1 Computational Cost O(N?)| 86
[.5.2 Computational Cost O(N)| 87

[>.6 Comparison with MPI algorithm| 89

CONTENTS

6__Conclusions|

93

CONTENTS

Chapter 1

Introduction

Many fields of engineering benefit from an accurate and reliable solver for the
Laplace equation. Such an equation is able to model many different phenomena,
and is at the base of several multi-physics solvers.

For example, in nautical engineering, since the Navier-Stokes system has an ex-
tremely high computational cost, many reduced order models are often used to
predict ship performance. Under the assumption of incompressible fluid and irro-
tational flow it is possible to recover a flow field by simply imposing mass conser-
vation, which simplifies to a Laplace equation.

Morevore, the deep theoretical background that surrounds this equation, makes it
ideal as a benchmark to test new numerical softwares.

Over the last decades such equation has often been solved through its Boundary
Integral formulation, leading to Boundary Element Methods. What makes such
methods appealing with respect to a classical Finite Element Method is the fact
that they only require discretisation of the boundary.

The purpose of the present work is to develop an efficient and optimize BEM for
the Laplace equation, designed around the architecture of modern CPUs.

In 1975 Gordon Moore predicted that the number of transistor, and consequently
the computational possibilities, in a dense integrated circuit would double every
two years. In 2015 Intel CEO has confirmed that this tendency has only slowed
down sligthly, by making the doubling period closer to two and a half year. Origi-
nally processors makers kept developing architectures with higher clock rates, but
to manage CPU-Power dissipation they started favouring multicore chip designs.
If we consider a modern High Performance computing facility we need to face dif-
ferent level of parallelism. Firstly we may use different computational nodes that
does not share any logical memory, then on a single node we usually have a mul-
ticore design, and finally we may need to use an accellerator, as a Graphic Power
Unit. Therefore, it is becoming more and more important to include the newest
parallel programming technique to develop an efficient code and fully exploits the

10 CHAPTER 1. INTRODUCTION

possibilities of the newest architectures.

Boundary Element Method can be quite optimally parallelised using the classical
Message Passing Interface. The first goal of the present work is to develop an
efficient parallel BEM for the Laplace equation. We believe that such an imple-
mentation may lead to huge time reductions of a single computation. In order to
develop a reliable, efficient and general code we make good use of existing efficient
library: we couple METIS [6], deal.II [2] and Trilinos[11] to split the computa-
tional effort over different MPI processors. We use instead Intel Threading Build-
ing Block to manage multicore architectures. Similar couplings have already been
successfully applied to achieve high computational efficiency in fluid dynamics, as
demonstrated in the state of the art ASPECT code [12].

An inevitable disadvantage of BEMs is that their computational cost depends
quadratically on the number of unknowns. Thus, in the last decades a lot of
methods have been developed to reduce such a dependency. In particular, we con-
sider the Fast Multiple Method. This algorithm was originally thought for particle
dynamics, but it has been successfully applied to BEMs by Greengard [9]. The
parallelisation of the FMM is non-trivial. Greengard himself proposed a pure mul-
tithreaded version in 1990 [§]. In more recent years, Yokota et alt. developed a
parallel version of the algorithm using hybrid coding techniques [20]. In particular,
it has been assessed that FMMs can behave well in the new Exascale era [3].
Therefore, the second goal of the present work is the coding of a parallel Fast Mul-
tipole Method. Given the relatively small sizes of the problems, and the particular
industrial constraints we usually address, existing libraries are not flexible enough,
and we provide a new version of the Fast Multiple Method through the usage
of the same libraries we successfully employed in our parallel Boundary Element
Method: METIS, deal.II and Trilinos.

We highlight that the increased algorithm complexity, with respect to a classical
BEM, makes it necessary to use hybrid multicore multiprocessor parallelisation
techniques. In particular, we have chosen to use MPI to handle different proces-
sors and Intel Threading Building Blocks to take care of different threads.

We make extensive use of parameter files in both the Boundary Element and Fast
Multipole Methods, through the newborn deal2lkit library, [I7], to properly
handle the parameters.

We benchmark our application considering mixed boundary conditions, and we
analyse both strong and weak scalability performances. In particular we compare
standard Boundary Element Method and our Fast Multipole implementation, and
we discuss optimality conditions for the hybrid BEM-FMA algorithm.

Chapter 2

BEM for the Laplace Equation

This chapter focuses on the Laplace equation and its discretization via the
Boundary Element Method. The Laplace equation is first introduced along with
a set of boundary conditions which ensure the well posedness of the partial dif-
ferential problem in 3D domains. The Laplace equation is then reformulated into
its boundary integral form, and finally we present the discretization strategy. We
follow the formalism of [7].

2.1 Basic notation and governing equations

The Laplace equation can be solved in a closed bounded domain called €2.
Dirichlet and Neumann boundary conditions are imposed on the portions I'p, and

FN of 0Q, such that FDUFN = 89, FDmFN = @, and |FD| 7é .

Ap=0 in Q (2.1a)
g—f/ = h(x) on 'y (2.1b)
o = g(x) on ['p. (2.1c)

Another possibility is to considered the solution over an unbounded region, namely
the space surrounding a region 2. Thus the Laplace equation is solved on R™\(2,
introducing the same decomposition of 02 seen before

Ap=0 in R"\Q (2.2a)

% = h(x) on I'y (2.2b)

¢ = g(x) onI'p (2.2¢)

lim (1) = ¢oo- (2.2d)

|r|—o0

11

12 CHAPTER 2. BEM FOR THE LAPLACE EQUATION

Where h(x), and g(x) represent the boundary values for ¢, and d¢/0n respectively.
The presence of Dirichlet boundary conditions ensures uniqueness to the solution.

2.2 Boundary Integral Formulation of the
governing equations and BEM

Following [4], [7], we exploit the second Green identity and reformulate Laplace

equation as
/Q(—Acb)de:/ —AG)¢dx +/a G ds —/¢—ds—o (2.3)

where n is the outward normal to I while G is the so called free-space Green func-
tion, or fundamental solution of the Laplace equation, also known as the Rankine
source, namely:

1 1

Gx—y)=— . 2.4
-¥) = (24)

The Rankine source satisfies, in a distributional sense, the equation
—AGx—y)=40x—-Yy). (2.5)

Exploiting this property, equation ({2.3) can be rewritten as

/Gx y /(b (x —y)ds, Vx e Q. (2.6)
We point out that equation (2.6)) allows for the computation of the potential

¢ in any point x in the domain if ¢(x) and its normal derivative g—i(x) are

known on the boundary I'. If we move the point x towards the boundary I,
the kernels G(x — y) and %(X —y) become weakly singular (but integrable)
and singular respectively. Considering the Cauchy Principal Value (CPV) of the
singular integral, we can write the boundary integral form of the original problem
as

=Jr Glx— d_¢(x) dsy — FPV ¢(X>%(x —y)ds, onTl (2.7a)
% T Vet on Fbody (27b)
0p U% 0%
an g ox? on Iy, (2.7¢)
% - O on I‘out U Ftank (27(1)
¢=0 on ', (2.7€)

2.3. DISCRETIZATION PROCEDURE FOR BIE 13

where the coefficient «(x) appearing in the left hand side of equation (2.7)) is
obtained from the CPV evaluation of the singular integral on the right hand side,
and represents the fraction of solid angle with which the domain {2 is seen from the
boundary point x. Equation (2.7a)) is also known as Boundary Integral Equation
(BIE).

2.3 Discretization procedure for BIE

A discretization of the Laplace problem based on the BIE obtained in the

previous chapter is here discussed. It leads to a linear system whose solution is an
approximated solution of the original Laplace problem.
Boundary integral formulations only involve functions defined on the boundary I’
of the computational domain 2. In order to solve numerically such a problem, it
suffices to provide an approximation of the surfaces making I' and to define finite
dimensional functional spaces on the boundary only.

We use standard Lagrangian finite element spaces on I' to define both the

geometry and the basis functions for ¢ and %. These basis functions are of
interpolatory type, in the sense that they are defined through a set of support
points x; where they may only be zero or one, and each basis function has value
one in a unique support point.
%, have different mathe-
matical characteristics. While the potential ¢ is a continuos function on I, %
depends on the normal vector n which is discontinuos across the edges of I'. In
order to provide an accurate numerical solution, it is crucial to choose a different
numerical representation for ¢ and g—f. The approximation of the boundary I’
of the domain should be continuos, and we represent it through the same basis
functions that we use for the potential ¢. Our approximation is isoparametric in
both the unknowns ¢, %. We refer to this type of approximation as [soparametric
BEM. The unknowns of the problem are the values of ¢ and % on the respective
set of support points.

The two unknowns of our problem, namely ¢ and

The approximation of the geometry of I' and the choice of the proper spaces
are exploited at the discrete level by an approximation procedure divided in five
main steps:

Computational mesh creation: introduce a computational mesh which is a
regular decomposition I';, of the boundary I' made of quadrilateral cells (here
reqular means that any two cells K, K’ only intersects on common faces, edges or
vertices);

14 CHAPTER 2. BEM FOR THE LAPLACE EQUATION

Definition of the discrete spaces: introduce two (a priori independent) finite
dimensional spaces V}, and @y, E] defined on I'j,, such that

Vi = {¢n € C°(T}) : gnii € Q(K), K € Ty} = span{th;} 1Y (2.92)
Qn = {yn € LA(Th) : myx € Q*(K), K € Ty} = span{w; 1.9, (2.9b)

where on each cell K, located on the boundary, ¢p x, Vs x are polynomial functions
of degree r and s respectively, in each coordinate direction. The corresponding La-
grangian basis functions of the spaces V}, and @), are denoted v); and w; respectively;

Collocation of the Boundary Integral Equations: replace the continuous
functions ¢ and % by their numerical approximations ¢, and =, which represent
the discretised potential and potential normal derivative respectively in V}, and
@n, and collocate the BIE on the correct support ponts on the boundary I'y;

Imposition of the boundary conditions: compute the boundary condition
for ¢y and v, and impose them int the system;

Computation of a proper preconditioner: compute the preconditioner tak-
ing into account the boundary conditions;

Solution of the linear system: the procedure above leads to a (dense) linear
system which is solved iteratively making use of the preconditioner.

! For the integrals in equation ([2.7a)) to be bounded, ¢ and g—i must lie in the spaces V and
@, defined as
Vo= {(b € H%(F)} (2.82)
Q= {7 € H*%(F)} , (2.8b)
where T' = 99. We recall that Hz(I') can be defined as the space of traces on I of functions in

H'(Q), while H=2(T') is its dual space. The spaces Vj, and Q) are constructed as conforming
finite dimensional subspaces of V' and @ respectively.

2.3. DISCRETIZATION PROCEDURE FOR BIE 15

2.3.1 Geometry and variable representations

When the Lagrangian basis functions for V},, and @) are given by 1; and w;
respectively, a finite dimensional approximation of the unknowns ¢ and % reads

gb‘r() ¢h Xh Zi/h Xh X € F, Xp € Fh (210)
9¢
Inlr (%) ~ 7y (xn) sz Xn)7 xel, x,ely. (2.11)

Here {1;} and {w;} have the cardinality Ny and Ng of the corresponding
finite element spaces, and are defined only on the approximated boundary I'y,. In
particular, they can be conveniently expressed in terms of a local coordinate system
(u,v) on each element K, by introducing for both V}, and @y, the set of local basis
functions, a mapping from a reference element to the real geometric element K
and a local to global numbering map k; (see Figure .

X2
X3 <
1
Z
VoA
Xo
3 7 y
Zz:ol/’i(u v) o
R
K
Ko X1 -
0 1 u

Figure 2.1: Transformation from reference to real cell. In this example we have con-
sidered a linear continuous approximation for the geometry, with support points on
the vertices of the quadrilateral. The BEM is isoparametric because the geometry is
described by the same finite element approximation of the potential ¢.

In particular, we can define the approximation of the global basis functions

16 CHAPTER 2. BEM FOR THE LAPLACE EQUATION

restricted on K C I'j, as functions of the reference variables v and v on K:

3
XX (u,0) = b (u,0)xi,, im€{l,....,Ny} (2.12a)
m=0
%f,g

2 (X (u,v)), i% e {l,...,Ny}, me{0,1,2,3} (2.12b)
O (U, 0) = wor (XX (u,v)), ah €{1,...,Ng}, me{0,1,2,3}. (2.12c)

2.3.2 BEM: collocation technique

A discrete form of the BIE (| is obtained by replacing the continuous solu-
tions ¢ and 6¢ ~ by their finite dlmensmnal approximations ¢y and 7y, and imposing
the original boundary integral equation at a sufficient number of collocation points.
Such collocation points are placed in correspondance with the Ny support points
of the V}, space and, with the Ny support points of the @)}, space. Thus we obtain
a system of Ny + Ng algebraic equations which reads respectively,

2 -

¢:{¢17"'7¢NV}77: {’717""7NQ}'

are the vectors containing the unknown values of the the approximated func-
tions ¢; and ~; at each collocation point. In the block system , the matrix
rows in the top blocks are the ones obtained collocating the BIE on the Ny sup-
port points corresponding to the potential degrees of freedom, while the matrix
rows in the bottom blocks are obtained using the N support points of the normal
derivative as collocation points.

where

All integrations are performed on a planar reference domain, i.e. we assume
that each element K; of I';, as a transformation of the reference boundary element
K = [0,1]2, as depicted in Figure .The integrations are performed after a
change of variables from the real element K; to the reference element K.

Given a collocation point P; of the potential ¢, the block matrix entries read

)+ Z/ / (P; — X5 (w, 0))1h; (u, v) T (u,v) dudo, (2.14a)

D,Vb:KZ / / G(P; — XX (u, v))p(u, v) T (u, v) du do, (2.14D)

2.3. DISCRETIZATION PROCEDURE FOR BIE 17

while if Q, is a v collocation point, we have

HQ =a(Q,) + // — XE(u,)1 (u, v)JE (u,v) dudo, (2.14c)

D% = Z/ / G(Qu — X (u,) (u, v)JE (u,v) du dv, (2.14d)

where M is the total number of elements K of the triangulation I';, J¥ is the
Jacobian of the mapping X* in the K-th element and the indices 7, run from
one to Ny, while the indices a, b run from one to Ny.

Due to the possible presence of singular kernels, the integrals in equations
(2.14) require special treatment. In this work, standard Gauss quadrature rules
are used for panels not containing singularities while for panels containing singular
kernel values, we use Telles’ quadrature rule [I8].

Block system is ill posed and cannot be used to obtain a numerical solu-
tion of problem , since i) it does not contain any information about boundary
conditions and ii), it might have identical rows if some support points of ¢ and
~ coincide. Notice that usually, on any given region of I', either ¢ is known and

v = % is unknown, or the opposite.

2.3.3 Imposition of the Boundary Condition

If a Neumann problem is considered, the normal derivative is known so the
system can be rewritten as follows

(HY)¢ = —DV~ =b, (2.15)

where the i-th element of vector « is 7, = h(x;). In case of Dirichlet problem
instead, the value of ¢ is known so the system is rewritten as follows

D%% = —H% =, (2.16)

where the i-th element of ¢ is ¢; = g(x;).
When the more general case, with mixed boundary condition, is considered, a
typical approach is, see [14],

b =dp+ Py Y=7p+n;
where

_ q_bZ x;, €Il'p 0 x;€l'p
bip = bin = (2.17a)
0 X; € FN qb, X, € PN

18 CHAPTER 2. BEM FOR THE LAPLACE EQUATION

and
Yi X € FD 0 X; € FD
0 X; € FN 71 X; € FN-

As seen before, the overlined symbol indicates known values, prescribed by impos-

ing the boundary conditions. The final form of the linear problem to be solved
reads

(HV>¢N - DQ’YD = DVWN - (HQ)$D7 (2.18)

which can be recast in the more familiar form

Mu = b (2.19)

where

u=¢oy+vp, b= DVWN - (HQ)aD;
and where M is defined by

Hlv Xj € 'y
My, = { D4 ern (2.20)

2.3.4 Preconditioner for the Linear System

We have chosen to use an iterative solver for the problem . Once we have
defined the system matrix as in (2.20) we can build a proper preconditioner. The
preconditioner should be an approximation, in spectral sense, of the inverse of the
system matix, M ~!. In this way we can reduce the number of iterations needed
to the solver to converge. This is due to the fact that Krylov method iterations
are strictly linked to the bandwith of the matrix spectrum. Ideally if we use as
preconditioner P the matrix inverse M ~! the preconditioend matrix would have
all its eigenvalues equal 1 and we would need only a step to obtain the solution.
Clearly we can’t afford the computation of an inverse of a dense matrix, thus we
have chosen to compute an Icomplete Gauss LU factorisation of the system matrix.
In this way we seek for

LU ~M (2.21)

In this way we can use its inverse to precondition our system as
P=(LU)" (2.22)

Such an approximation is obtained computing a setting a bandwith and extracting
a diagonal approximation from the system matrix M. Clearly P spectrum is closer

2.3. DISCRETIZATION PROCEDURE FOR BIE 19

to the ideal preconditioner as we increase the bandwith but we increase also the
computational cost of such a matrix. In the present work we have chosen to keep
fix the bandwith, in this way we have a coarser representation of the preconditioner
as the system size increases.

20

CHAPTER 2. BEM FOR THE LAPLACE EQUATION

Chapter 3

Parallel BEM

In this chapter we describe the parallelisation of the Boundary Element Method.
Given the particular resolution strategy we have depicted in Section we have
chosen to follow the MPI paradigm.

3.1 Implementation Principles

The existing code implements a Boundary Element Method to solve the Laplace
equation though its Boundary Integral representation. The code is primarily de-
veloped by mathematicians and engineers at SISSA. We want it to be based on the
principles that guides a very well developed scientific code, ASPECT, [12]. These
basic principles are:

e Usability and extensibility: At the time being the code only solves a BEM
for the Laplace equation. We would like to improve it in order to make easier
some extensions in the future as:

— New boundary conditions for the Laplace equations that may arise from
industrial requirements.

— Possibility to use the code to solve more complex problems (Stokes
system, Helmholtz equation).

Such an extendibility would be a keystep to reach a bigger user community.

e Modern numerical methods: We want to develop a code which makes good
use of the most advanced numerical schemes and techniques. This choice
implies complexity in our algorithms but ensure efficient computations (min-
imisation of unknowns and good memory access).

21

22 CHAPTER 3. PARALLEL BEM

e Parallelism: In BEM problems we need to assemble matrices where every line
is independent from the others. For this kind of massively parallel algorithm
we can achieve a very good level of parallelisation. We need to modify the
code in order to fully support a parallel computation

e Building on others” work: Develop from scratch a code with those character-
istics would be almost impossible. Therefore the code has been built on exist-
ing libraries. For what concerns the implementation of advanced numerical
algorithms we have chosen the deal.II library, [2]. In the deal.II library
the most advanced numerical scheme are implemented and constantly devel-
oped. For what concerns the parallelisation we use, again through deal.II
library, Trilinos, [I1], for parallel linear algebra and METIS, [0], for parallel
mesh handling.

o User community: We believe that a code as ours can only be succesful as
a community project. At the time being the code is developed only by the
three authors. Our goal is to develop a well written and documented code
in order to reach a bigger user community.

3.2 Code Description

We have chosen to divide the code in main objects that handle its different
aspects. The four main classes are:

Driver: this class controls the execution of the overall algorithm;

ComputationalDomain: this class handles only the geometry. In particular we
don’t want it to handle things regarding the unknown and Finite Element Spaces;

BEMProblem: this class is the core of the algorithm. In particular it handles
the Finite Element Spaces, it assembles the matrices of the problem and solve the
linear system,;

BoundaryCondition: this class is responsible for the boundary condition han-
dling. In particular she relies on BEMProblem and ComputationalDomain to know
the necessary informations about unknonws and geometry;

We need all these classes to perform a complete simulation. The real application
runs typically as follow:

e Mesh creation and refinement

3.3. CODE PARALLELISATION 23

e Functional Spaces definitions
e Boundary Condition Set up
e Matrix Assembling

e System solving

3.3 Code parallelisation

The main goal of the present section is to obtain an efficient parallelisation
exploiting the Open MPI paradigm, letting the deal.II library handle internally,
when possible, the shared memory parallelisation. In the following we report the
details of the implementation of the standard BEM. The code provides some very
particular boundary conditions that are defined by industrial requirement in ship
wave interaction problems.

3.3.1 METIS Grid Partitioning

Many of the parallel applications that use the deal.II library make use of a
domain which is distributed among all the processors. This is a key ingredient for
Finite Element Methods where the interactions are limited to the support of the
basis function of the FiniteElement space. In Boundary Element Methods we have
a particular situation where the system matrices depend on the position of all the
unknowns. This is the main difference between FEMs that uses big sparse matrices
and BEMs which exploits little but full matrices. Therefore the computational
domain needs to be shared among all processors. We stress that since that kind
of domain is only the boundary of a standard FEM grid, we can afford all the
processors to have a copy of it. Then we can split only the unknowns, and the
matrices, among the processor exploiting the massively parallel environment of
BEMs.

We have chosen to use METIS, [6], as a graph partitioning tool to split the
domain into subdomains among processors. METIS takes also care of the load
balancing among the processors but it needs the triangulation to be shared which
is exactly what we need too. METIS has been developed to minimise the number
of overlaps between different processors. This ensures that the communication is
minimised.

The METIS partitioning is stored in the Triangulation object as a subdomain
id that memorise which part of the domain is active on each processor. METIS is a
geometrical tool that only splits the cell, thus if we are using standard Lagrangian
Finite Elements we have some unknowns shared between processors. Given the

0O Uik Wi

24 CHAPTER 3. PARALLEL BEM

subdomain id we can retrieve two different subsets of indices representing our
unknowns:

e IndexSet with shared elements: It reports all the unknowns connected to a
given subdomain id, therefore it comprehends the overlapping elements.

e IndexSet without shared elements: It reports only the elements actually
active on each processor, in particular we have that the sum of the unknowns
of these IndexSets equals the total number of unknowns.

In particular we need both these subsets in different part of the parallelisation
strategy. This is need to retrieve an efficient way to split and export distributed
vectors accordingly with these two sets.

// Grid reading from input file

GridIn<dim-1, dim> gi;

gi.attach_triangulation (tria);

gi.read_ucd (in);

// Grid refining as requested
tria.refine_global(refinement_level);

// METIS partitioning
GridTools::partition_triangulation(n_mpi_processes, tria);

Code Listing 3.1: Usage of METIS grid partitioning.

In Figure |3.1f we can see a grid partitioned between 7 processors.

3.3.2 IndexSet Creation

We are using a codimension one environment and we need to use both scalar
and vectorial unknown. To make the vectors as contiguos as possible we have
chosen to renumber our degrees of freedom subdomain wise. In this way we en-
sure that the scalar unknowns are contiguos processor by processor. In order to
implement the boundary conditions we need a combination of scalar and vectorial
unknowns. We need great care in the creation of these index sets and we must
assure consistency among them in order to combine properly gradients of scalar
unknowns with vector unknowns. In particular we have noted some problems in
creation of the unknown-subdomain associations when we have shared unknowns
between different subdomains. Therefore we force the creation of a consistent vec-
torial index set given the scalar one. Furthermore we have chosen to renumber our
vectorial unknowns in order to guarantee a stronger consistency with the scalar
representation.

3.3. CODE PARALLELISATION 25

E]
=
| S .0

Figure 3.1: METIS non trivial partitioning

O © 00O Uk W

[y

for (types::global_dof_index i=0; i<n_dofs; ++i)
if (dofs_domain_association[i] == this_mpi_process)
{
this_cpu_set.add_index (i) ;
types::global_dof_index dummy=sub_wise_to_originall[i];
for (unsigned int idim=0; idim<dim; ++idim)
{
vector_this_cpu_set.add_index(...);

3

3.3.3 Trilinos Parallelisation

We use the wrappers of the Trilinos library already provided by deal.II . The
Trilinos library provides, see [12] 1], a high level interface that we can use to
handle almost any kind of parallelisation problem. In particular we can exploit
the subsets obtained with METIS to set up the distribution of our vectors among
processors. We stress that since the decomposition provided by METIS is not triv-

26 CHAPTER 3. PARALLEL BEM

ial it would be almost impossible to manually treat the communication pattern.
We highlight that once we have set up the vector partitioning we can access to
its value simply using the global indices of such a vector. This make the code ex-
tremely similar to the serial one. We must only take care that the specific index is
stored on the processor but we can do it checking the METIS partitioning through
the usage of the index sets. Trilinos allows for a very straightforward interface
with the linear system solver already available in deal.II .

Almost all the algorithm of deal.II have been wrapped to use also Trilinos vec-
tors. In particular this is a major advantage in the resolution of the linear system
once we have assembled the distributed matrices. We have chosen to use a Gener-
alised Minimal RESiduum linear solver, see [16]. In particular GMRES is a Krylov
method that minimise the residual of a linear system. It has been designed to work
with non symmetric matrices. Therefore we can apply it to the full non symmetric
matrices of BEM. We can use it directly with Trilinos distributed sparse matrices
and vectors.

3.3.4 BEM Algorithm

In this section we describe the actual implementation of the BEM algorithm.
First of all we provide a profiling of the code and then analyse the implementation
of what we believe to be the bottlenecks of the algorithm.

Serial Code Profiling

We consider a test case scenario:

e Laplace Boundary Element Method with 5 global refinements.

e Double Nodes on every sharp edge, [10], this is a request of industrial interest.
We need to maintain these characteristics.

e Mixed Neumann Dirichlet boundary condition.

e Mixed vectorial scalar constraints.

We use the Trilinos utility TeuchosTimeMonitor to take note of the number of
time a specific method is called and the time taken for each call. We consider a
simulation with 6534 unknowns to identify the bottlenecks of the code. We can
see in Table that the assembly of the two full matrices needed for the BEM
resolution is the major part of the overall program. We should focus our efforts
on its parallelisation. We stress that our first goal is to enhance parallelization
through Trilinos. In order to do so we also need to take care of the Gradient
recovery method. This is essential to make the overall code run fully in parallel.

U W N =

3.3. CODE PARALLELISATION 27

Assemble Time 68.44
Solve Time 5.741
Normal and Gradient Recovery Time 0.1645
Total Time 78.6

Table 3.1: First profiling of the execution time in a serial environment

Matrix Assembling

Since this function is extremely time consuming we need to parallelise it very
efficiently. As explained in Chapter [2, we use a collocation scheme to solve the
boundary integral formulation represented by equation . Every line of the
matrix can be assembled at the same time, making this an embarrassingly parallel
BEM formulation. A good way to parallelise the assembling is applying the MPI
paradigm and we expect a theoretically linear scalability. The assembling can be
sketched as follows:

e Loop over all the degrees of freedom.

e For any unknown we need a loop over all the cell in the domain in order to
assemble a single line of the system ([2.14)).

We need to split the first loop among all the MPI processors. We use the index set
for the scalar unknowns. In this way a processor performs the loop over the cells
only if the degree of freedom is between the ones it owns. Thus every processor
assemble a different slice of the overall matrix of (2.14). Since this parallelisation
is very straightforward we expect almost a linear scalability.

for(types::global_dof_index i=0; i<n_dofs; ++1i)
if (this_cpu_set.is_element (i))

{

...BEM assembling...

}

Normal Vector and Gradient Recovery

This part of the code is needed to approximate the normal vector and the
solution gradient on the edges of the domain. In particular we implement an L,
projection that relies on an efficient implementation of Mass Matrices and right
hand sides given a known partitioned vector.

As in the previous computations we have used the Trilinos wrappers for both
SparsityPatterns and SparseMatrices. We need to provide the appropriate map
(EPetraMap in Trilinos language) to all the Trilinos classes. To do so we need a

28 CHAPTER 3. PARALLEL BEM

vector divided considering the non ghosted vectorial IndexSet. Then we can easily
reinit the sparse matrix and proceed to the assemblage. This is very similar to
what can be done in a scalar code, see [7], once we take care of ensuring that
the cell we are considering in our grid is in the subdomain owned by the specific
processor.

Problems arise when we try to assemble the right hand side using a given unknown
split using the non ghosted index set. In this way we get an error when the cell has
ghost elements because deal.II tries to read elements that are not owned by the
specific processors. This is clearly a forbidden operation. We can solve this issue
building a new unknown using the ghosted index set and the existing solution.
Trilinos can efficiently map two vector with different maps internally handling all
the needed communications.

Once again we stress that a manual communication pattern would be almost im-
possible to determine, therefore it is essential the usage of a high level library as
deal.IT and Trilinos. Once we have the ghosted elements we can straightforwardly
proceed to the normal and gradient recovery.

Linear Solver

We have chosen to use an iterative linear solver. In Section 2.3.4] we have
stressed the need for a preconditioner. We need to parallelise its assemblage. Once
we have achieved that we can rely on Trilinos for the parallel implementation of the
incomplete ILU and on deal.II for the resolution via the GMRES algorithm. The
parallelisation of such a preconditioner follows the same strategy of the assembling
of the BEM matrices.

3.4 Strong Scaling Analysis

3.4.1 Strong Scalability up to 40 processors

We try to execute a scaling analysis up to 2 nodes (40 processors) on the SISSA
cluster Ulysses. We perform our first analysis on the same case of Section [3.3.4]
thus we consider 6534 degrees of freedom. We report the result in Figure [3.2

We can see that the code has almost a linear behaviour up to 4 processor and
then we report some non optimal behaviour. The only method that maintains a
linear, nevertheless suboptimal, behaviour is the function that takes care of the
assemblage of the matrix. This is due to the fact that in this function no commu-
nication is involved since it is massively parallel for the well known mathematical
peculiarities of the system. For instance we can see that the normal and gra-
dient recovery function has clearly a suboptimal behaviour and this can be due

3.4. STRONG SCALING ANALYSIS 29

Strong Scaling Analysis

40 || o ideal o
—o— total
assemble °®

30 | —a— solve

—~— gradientrec

SppedUp

\
0 10 20 30 40

Number of processors

Figure 3.2: Strong Scalability test using 6534 degrees of freedom. We test up to 40
processors. We report the scaling considering the worst timing on all the used processors.
In blu with circles we plot the total scalability, in green with squares the performances
of the full matrix assembling, in cyan with stars the gradient recovery scalability, and
in red with triangles the performance of the linear solver. The red dots represents the
ideal speedup.

both communication overheads. These issues could be the reason for the loss of
performance between 32 and 40 processors. To test out hypothesis we execute a
global mesh refining, thus considering 25350 degrees of freedom, and we repeat the
analysis in Figure |3.3

We can easily see that the code has almost an optimal scalability up to 8
processor. This improvement is due to the fact that the communication overhead
is not enough to induce a performance loss. We can also see that the less optimal
function is the one that takes care of the parallel resolution of the system. This is
quite expected since it is mainly based on many matrix vector multiplication that
introduce a communication overhead at each step of the computation.

30 CHAPTER 3. PARALLEL BEM

Strong Scaling Analysis

40 | o ideal o
—6— total
assemble P

30 || —a— solve

—+— gradientrec

SppedUp

\
0 10 20 30 40
Number of processors

Figure 3.3: Strong Scalability test using 25350 degrees of freedom. We test up to 40
processors. We report the scaling considering the worst timing on all the used processors.
In blu with circles we plot the total scalability, in green with squares the performances
of the full matrix assembling, in cyan with stars the gradient recovery scalability, and
in red with triangles the performance of the linear solver. The red dots represents the
ideal speedup.

Now we analyse the gradient and normal recovery function which is the routine
we parallelised in order to make the overall code parallel. We can see that it is
an optimal behaviour due to the communication needed to the assemblage of the
mass matrix. Nevertheless we want to stress that this is not a major issue since
this method requires only the 0.06% of the overall computational time. In Figure
[3.4] we can see the relative importance of all the main functions of the BEM code.

We can see that the two most importance functions are the one which takes
care of the assemblage of the matrices which already has almost an optimal be-
haviour and the one which solves the linear system. For an increasing number
of processors we may expect the assembling function to behave almost optimally

3.5. WEAK SCALING ANALYSIS 31

100 [\ =

—6— assemble

solve

80 |-

—a— gradientrec

60 |-

40 |- :

20 | -

Importance (%)

0 10 20 30 40
Number of processors

Figure 3.4: The relative importance, in terms of computational time, of the main
methods of the BEM code. Simulation up to 25350 unknowns. The blue circled lines
represents the assembling of the full matrices, the green squared the importance of the
linear solver, and the red with triangles the gradient recovery routine.

while the increasing number of iteration for the linear solver would introduce some
new communication overhead.

3.5 Weak Scaling Analysis

In this section we analyse the performances of our code from the point of view
of weak scalability.

3.5.1 Computational Cost O(N?)

Since the computational cost of a Boundary Element Method is of order O(N?),
we consider a number of processor that goes as the square of the number of un-
knowns. In this way we keep constant the computational effort per each processor.
We have performed our analysis up to 256 MPI processors and 25350 degrees of

32 CHAPTER 3. PARALLEL BEM

freedom. We report our weak analysis in Figure We can see that the assem-

Weak Scaling Analysis

10*

; ° ideal E
| —e— total i
B assemble T

—A— solve

100 —~— gradientrec ° ®

T/T,

1071

L1 Lol L1
10° 101 102
Number of processors

Figure 3.5: Weak Scalability analysis up to 25350 degrees of freedom and 256 proces-
sors. We report the scaling considering the worst timing on all the used processors. In
blu with circles we plot the total scalability, in green with squares the performances of
the full matrix assembling, in cyan with stars the gradient recovery scalability, and in
red with triangles the performance of the linear solver. The red dots represents the ideal
speedup.

bling routine has a superoptimal behaviour. This is probably due to the peculiar
structure of the assembling cycle

1 |for(index in processor set)
for(cell in grid)
3 assemble the matrices

\V]

While we guarantee that the number of matrix elements are the same on each
processor, each processor has to loop over all the cells NV times less. This should
explain the superoptimal behaviour. The matrix assembling is the leading term

3.5. WEAK SCALING ANALYSIS 33

for the computational cost and induces the superoptimality up to 16 processors.
If we increase the number of MPI processors to 256 we increase dramatically the
computational costs for the linear solver. This explains the suboptimal behaviour
of this part of the code that is becoming very important in terms of computational
cost as we can see in Figure

3.5.2 Computational Cost O(N)

We repeat the Weak Scaling Analysis considering a computational cost of
O(N). We don'’t expect the code to behave optimally since we know that its
computational costs scales as O(N?), however we would like to further analyse the
behaviour of the assembling function, which is the most computationally demand-
ing one. We can see clearly that if we consider a low number of degrees of freedom

34 CHAPTER 3. PARALLEL BEM

Weak Scaling Analysis

I I ‘ I I I ‘
100'6 | e ideal
—6— assemble

L Lo
10° 101
Number of processors

Figure 3.6: Weak Scalability analysis up to 25350 degrees of freedom and 128 proces-
sors. We report the scaling considering the worst timing on all the used processors. In
blu with circles we plot the scalability for the matrix assembling. The red dots represents
the ideal speedup.

we have a computational cost of O(N), while for a higher number of unknowns we
recover the expected quadratic behaviour.

3.6 PETSc

In the previous sections we have stressed the use of external parallel library
in order to achieve a good scalability. Up to now we have used Trilinos which
is already wrapped in the library deal.II . We have another option, Portable
Extensible Toolkit for Scientific computation (PETSc) [I]. The PETSc library
is constantly developed, as Trilinos, to provide high-quality parallel numerical
libraries using modern computational strategies in order to reduce the difficulties
of writing a parallel code. We need some change inside our code in order to run
using PETSc. We define a generic space LA::MPI and then we set it to PETSc ot

3.6. PETSC 35

Trilinos depending on the case. This is quite straightforward since deal.II has
already defined almost equal interfaces to both the libraries.

3.6.1 Sparsity Patterns

We need to use a sparsity pattern that is usable for both the libraries. We
have chosen the DynamicSparsityPattern from the deal.II library. This is due to
the fact that we need to specify the IndexSet representing the partion among our
MPI processes. We can use the same sets we have used in the precious sections to
provide subdivisions for scalar and vectorial unknowns. We stress that our choice
may induce a loss of performance for the Trilinos code since we are not using
anymore a TrilinosSparsityPattern that we expect to be the best choice for initial-
ising a TrilinosMatrix. However we highlight that the DynamicSparsityPattern is
recognizable from the wrappers of both PETSc and Trilinos.

Trilinos Strong Scalability Comparison

We want to compare the two different implementation of the sparsity pattern
with the Trilinos library. In Figure |3.7] we see the comparison. We can clearly see
that the Trilinos SparsityPattern has better performances both for the reinitiali-
sation time and the matrix assembling. This is probably due to the fact that the
native sparsity pattern allows Trilinos for a faster access to the matrix members.

3.6.2 PETSc Trilinos Comparison on a single processor

In this section we want to profile the code on a single MPI processor. We
have considered in both cases the implementation using DynamicSparsityPattern
in order to highlight the performance differences between the libraries in our code.
This is a preliminar analysis. In Section we have seen that the most expen-
sive section of the BEM is the assembling procedure for the full matrices. We only
compare these timings between the two libraries. We have considered a simulation
with 25350 degrees of freedom From Table [3.2| we can see the following things:

Function Trilinos PETSc
Assemble Time 2494 3187
Total Time 2682 3349

Table 3.2: First comparison between Trilinos and PETSc

we can see how the assembling time represents the major part of the overall com-

36 CHAPTER 3. PARALLEL BEM

Sparsity Pattern Comparison

=TT T T T T T T

—6o— trilinos assemble

O dynamic assemble

—A— trilinos reinit

* dynamic reinit

S

Number of processors

Figure 3.7: The comparison with the two different sparsity pattern implementations.
In blue with circles we see the assemble time with Trilinos, the squares represent the
time needed by the DynamicSparsityPattern. The red line with triangles represents the
reinitialisation time with Trilinos while the stars with DynamicSparsityPatter.

puations, and we can see how the usage of PETSc library has induced a loss of
performance of 27.8%. We expect Trilinos to have better perfomance also in a
parallel run with more than one MPI process.

3.6.3 PETSc Scalability

In this section we want to see if we are able to gain some scalability advantages
using PETSc instead of Trilinos as parallel library. We consider the same problem
as in Section [3.4.1] We note that if we use more than one MPI processor our
code crashes. We have analysed our code and we have found the problem in the
initialisation of PETSc parallel vectors. The deal.II manual is very clear about
the fact that PETSc supports only contiguos IndexSets. We chose to use a renum-
bering of the degrees of freedom subdomain wise. In this way we can guarantee

3.6. PETSC 37

that the IndexSet are contiguos. From a further analysis we have discovered that
the problem depends on the vectorial IndexSet.

In section B.3.2] we have stressed our need to have consistent IndexSets for scalar
and vectorial unknowns since we need to combine scalar and vectorial unknowns.
This choice has a major drawback since we can no longer guarantee the vectorial
IndexSet to be contiguos in memory. In conclusion we can assess that we can’t use
PETSc in our parallel application. This is due to the very particular constraints
we need to impose on the edges of the domain and that have arisen from industrial
requirements.

38

CHAPTER 3. PARALLEL BEM

Chapter 4

Parallel FMA with MPI paradigm

In Chapter [3| we have described the implementation of a fully parallel BEM
by means of MPI paradigm. In the present chapter we present the coupling of
such a parallel Boundary Element Method with a Fast Multipole Algorithm. We
believe that such a coupling would allows us to: increase the size of the problem
and reduce the overall computational complexity. Firstly we have decided to use
a pure MPI parallelisation strategy. For the sake of clarity we have organised the
chapter as follows:

e A description of a generic Fast Multipole Algorithm.
e An explanation of the parallelisation strategy we have adopted.

e The analysis of the results we have obtained.

4.1 The Fast Multipole Method

The Fast Multipole Method has been originally presented in 1987 by Greengard
and Rokhlin in [9]. It presents a highly efficient implementation of the classical
Multipole Method. Its natural implementation is in the field of particle dynam-
ics or, more generally, N-body simulations. We consider a simulation regarding
N particles. In order to completely solve the problem we need to evaluate all
the pairwise interactions. This leads to an overall computational complexity of
O(N?). We can straightforwardly imply that simulations involving a big number
of particles are unbearable. Making good use of the mathematical properties of the
kernel involved in the computation we can approximate the interactions between
"far” couples. This is the key point of the method in fact we have to consider a
certain accuracy in the computation in order to use the multipole expansions. In
the framework of Multipole methods it is possible to know a priori the error we are

39

40 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

introducing approximating the long distance interactions. We can see the general
aspects of a Multipole Method in [15]. Following a divide et impera approach based
on a hierarchical space distribution we can see that the computational costs are
O(NlogN). Using the Fast Multiple Method, [9] we can drop the computational
effort to O(IV) and this results in a great advantage for simulation involving a high
number of particles. Our goal is to develop a parallel implementation of an existing
Fast Multiple Methos, [14], and couple it with the existing BEM code. The Fast
Multiple method isn’t embarrassingly parallel, however there are some existing
parallel implementation, [13] 3], that show that the FMM is able to deal billions
of unknowns on heterogeneous architectures. However we stress a big difference
between the classical parallel framework of such codes and our implementation.
We will not deal with billions of unknowns but hundred of thousands. This is a
crucial different since the communication has a greater impact in the computa-
tions. We need to focus on an implementation for such a number of degrees of
freedom. Moreover we don’t want to introduce any further loss of accuracy. We
are implementing and parallelising Greengard original algorithm maintaining all
of its characteristics, [9].

4.1.1 FMM in a standard N-Body problem

In this section we want to introduce the mathematical description of a Fast
Multipole Method in the standard context of a N-Body problem, we follow the
procedure explained in [14]. We suppose to have M of charges Q; (called sources)
and we want to compute the electrical potential in N points P;(called nodes). We
can straightforwardly compute the unknown potential by means of

o(Pj) = > a:G(Qi P (4.1)

sMi

47r7" Ql,)

From equation (4.1)) we can see that such an algorithm needs N M computation to
get the potential on all the requested nodes. If we assume that M is O(N) we see
that this is a O(NN?) algorithm. The so-called Multipole algorithm are based on the
expansion by means of harmonic series of the potential field due to the presence
of the charge ¢; located at Q;. Such an expansion decouples the contribution of
Q, and P;, making therefore possible to group the contribution of different source
points into a single multipole expansion to be valued just once.

Multipole Expansion

We put ourselves in a polar spherical frame of reference with centre at the
origin. We suppose to have k charges Q; = (p;, «;, 5;) contained in a sphere with

4.1. THE FAST MULTIPOLE METHOD 41

centre at the origin and radius a, so we have p; < a,Vi = 1,..., k. If we suppose
that the evaluation point P = (7,6, 7) is located outside the sphere with radius
a we can expand the contribution of the charges Q; by means of harmonic series.
First of all we need to introduce the so-called spherical harmonics defined as

m _ =mp —im
Y. ™,) = mP' |(cos(ar))e™ ™", (4.2)

where P! is the associated Legendre function defined as the solution of the fol-
lowing differential equation

—U ey d (L =)

FM(@) = 2nn) () dzml+z

with n >0, |m| < n. (4.3)

Using the definition (4.2)) we can introduce the expansion by means of harmonic
series as

0P = =3 S a0

n=0 m=—n

We can see that the contribution of Q; = (p, «, 8) and P = (7, 6,) has decoupled
. Thus we can sum all the contribution of the k sources introducing the multipole
expansion of all the set of charges as

Z Gy, " (4.5)

Using (4.5) we get straightforwardly the potential at point P as
N~ g Y (07)
=2 D> Mo (4.6)
n=0 m=—n

We stress that (4.6]) offers an exact representation but it is unusable since it implies
an infinite summation. We can truncate such a sum introducing an error.

PP IRIAUULNEN 3 VL A R
n=0 m=—n n=0 m=—n

It essential to be able to value exactly such an approximation error . We can do
that analytically as

- Yoo lail (g)”“‘ (4.8)

T —a

~ X~ gy Yat(0,7)
_Z Z M" 7—n+17

n=0 m=—n

42 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

We stress that any multiple method is based on the estimation of such an error in
order to set up the entire algorithm. If we don’t accept such an error we have no
choice than to go for the exact O(N?) algorithm presented in . From equation
(4.5) we can see that the multipole expansion is a complex number associated
with two indices, namely n,m, and it contains information about all the sources
located inside the sphere. We can apply to any point outside the sphere
of radius a to get the potential due to the £ charges. We stress again that M"
needs to be computed only once and this is major advantage of the multipole
method. The introduction of the finite multipole can lead to a reduction of the
computational costs, in fact if we assume to have k& nodes outside the sphere and
the cost of the multiple method would be O(p*k) while the exact method costs
O(k?) operations. If we assume p < k we see that we have gained an advantage.
The linear dependence on k for the multipole method is achieved introducing O(p?)
complex computations and these operation are considerably more difficult that the
simple real evaluation of a distance between two points of (4.1)). We need to stress
that whenever a point is located inside the sphere of radius a we need to perform
the exact computation using .

Hierarchical Space Subdivision

In order to efficiently apply the multipole method we need to hierarchically
subdivide the space in order to know for which nodes we can apply and
where we need instead. We choose to use an octree partitioning of the
space. This is a tree data structure in which each space element (block) can be
recursively divided into 8 octants, thus octree. This kind of structures are often
used to partition three dimensional domains exploiting their recursive divisions.
We start with a first block that contains all the sources and the nodes and then
we recursively subdivide it into children blocks until we have reached a specified
number of levels (or a specified number of nodes-sources in the last level). If a
children block does not hold any source and node it is purged from the tree. With
such a structure we can easily determine a list of nearest neighbours in which we
need ([4.1]), while we can safely use in the other blocks, since holds. Using
such a divide et impera strategy implies a computational of the order O(NlogN)
as we can see in [5]. The Fast Multipole Method makes good use of a series of
mathematical tools in order to get a computational cost of the order of O(N).

Multipole Expansion Translation M2M

Up to now we have seen that we need to evaluate multipole expansion for any
many different regions, blocks. We would like to aggregate these expansions in
order to quicker compute the long-range interactions. In order to do so we need

4.1. THE FAST MULTIPOLE METHOD 43

to be able to translate the multipole expansion, which are centred at the centre of
each different block, to the centre of the parent block and then sum them. If we
call M the multipole to be translated with spherical coordinates, with respect to
the parent block centre, (p, a, 3) we have that the translate multipole is given by

n Ml imllsmml gm gemm ny—m (o,)

Z > e St (4.9)

n=0 m=—n J

where n
A = _ : (4.10)

vV (n—m)l(n+m)!

We get a new error bound for any evaluation of the new multipole R;‘? outside a

sphere of radius 2p
Zk p+1
T—2p T

p

Y R

Jj=0 s=—j

We stress that the evaluation of all the approximation errors is essential for a
proper implementation of the Fast Multipole Method.

Multipole to Local Expansion Conversion M2L

We would like to be able to evaluate the effect of a far away multipole expansion
just once and then values its effect on all the nodes. In order to do so we need to
introduce the so-called Local Expansions. A local expansion L) is a mathematical
tool that allows us to sum the effect of a multiple on all the blocks that are well
separated from it. We consider a set of sources located in a sphere of radius a
centred in Q(p, o, f) with respect to a polar spherical frame of reference centred
in the well separated block. We call R} the corresponding multipole expansion
and we get

> Riln=sl=lnl=lsl gs Amy s a, B)
Ly =Y Z s . (4.12)

1nAJ+n pj+TL+1

=0 s=—j

We see that we are not introducing any new approximation error but we are
considering an infinite summation. We can truncate such a sum and compute the
potential at a point (P) = (7,6,) contained in a sphere of radius a through the
evaluation of the local expansion as

® :i i LmY™(0 +5NZ Z LmY™ (0 (4.13)

n=0 m=—n n=0 m=—n

44 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

If we suppose p > 2a we can value the new approximation error analytically as

_ Zf:o\qz-|(a)W' (4.14)

~ p—2a \p—a

6=|d(P) =) > LyYr(6,7)

n=0 m=—n

Local Expansion Translation L2L

Local expansions account for the contributions of all the charges that are in
well separated blocks. If we are considering the effects of the sources located in
block B; on the nodes of the well separated block By we know that By will be
well separated from all By children. Therefore we can make Bs children inherit
the local expansion of By, by means of a translation of local expansions. If we call
R; the expansion centred in the centre of one child and L;' the parent expansion
we have the exact formula

P pmglml—mes—ls| AT AR (0 8)

n—j 7j n—j

Lm
=Y 3 ST . (4.15)

n=0 m=—n

Where we have assumed the parent block centre located at (p, «r, 5) with respect
to the child centre.

4.1.2 FMM in Boundary Element Method

In this section we want to describe the application of the N-Body FMM algo-
rithm to a Boundary Element Method like the one we are developing. In Section
we have seen how the FMM can be developed and applied in a standard N-
Body problem, we now want to apply it in a very different settings, the Boundary
Element Method. We recall that the kind of operation needed in this framework
is

/F G(P, Q) H(Q(y))ds,. (4.16)

where G is the fundamental solution of the Laplace equation that in three dimen-
sion is !

G(P,Qy) = ————

R T CXI)

We can see that we have the same kind of function that we can approximate by
means of harmonic series to form multipole and local expansions. We assume
P = (7,0,v) and Q(y) = (p(v), a(y), B(y)) and we can get, dropping the explicit
dependence on y

(4.17)

1 = w Y™ (6
GP.Q =YY o1 0D (4.13)

n=0 m=—n

4.1. THE FAST MULTIPOLE METHOD 45

If we introduce the discretisation of the domain in the usual triangulation and the
unknown ¢ we get on each cell

ﬁZ) %/ p"Y, m(a, 0)w (Q(p, v, B))J (p,ct, B)ds. (4.19)

n=0 m=—n K

We stress that p, a, 5 depend on the surface integration variable since Q is taken on
that surface, with J(p, o, 5) we indicate the determinant of the Jacobian relative
to the affine transformation that maps the reference cell to each real cell and with
w? the i-th base function for the variable ¢. We can see that we have connected
the BIE formulation to what we have introduced in Section ..l We introduce
the k-th panel contribute to the BEM multipole expansion around a block centre

O as
MZ(O) = [Ym0l (@,) (0 B)ds. (420)

In the complete boundary integral equation ([2.7)) we have another surface integral
related with the normal derivative of the fundamental solution. We can derive
another harmonic series expansion for such a function obtaining another multipole
expansion for the k-th panel

N20) = [VY mia.0) nel Qoo) (i Bids. (421)
We can, recalling , straightforwardly compute the requested gradient as
Y (p" P (cos(a))e=™) = np™Dp"Y,"m(a,0)Vp
+ p"%(an (cos(oz))e_imﬁVa (4.22)
— imP™(cos(a))e ™V 3.

In our algorithm al these integrals are computed by means of numerical integration
techniques, using quadrature formulas. In detail we use standard Gauss quadra-
ture integration formula and Telles’ singular integration strategy. Once we have
computed the two kinds of multipole we can apply all the passages of section [4.1.1]

4.1.3 Description of the Fast Multipole Method

In this section we want to give quite an informal description of the serial FMM,
we follow the explanation provided by Greengard and Gropp in [§]. We must divide
the sources (quadrature points), and the nodes (degrees of freedom), in near range
and far range interactions. We need to value the effect of the sources on the nodes.
The FMM uses a divide et conquera strategy combined with multipole and local

46 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

(Taylor-like) expansion to value the long range interactions. Once these ones have
been approximated we value the short range interaction directly using the exact
pairwise formulation. The algorithm takes into account N nodes and M sources

\‘\ /’ \‘\ /’ \\ 7 \\ //
~ N N ,
- ¥ SE [
RN .'I \ / AN
e \ . RN i ! N
p Voo et ¥ N
x g B
s B
. . $
s . RSO ~ 1
~ il < AN !
K| -BR | oY
- \ -, ~
Y o’/ \\ ! \\
\

Figure 4.1: The sketch of a complete FMM. On the left we have M sources, on the
right NV nodes. Black dashed lines represents the multipole expansions. Red dotted are
the multipole to multipole translations. The blue line represents the multipole to local
conversions. The green lines are the local to local translations and finally in magenta
we have depicted the evaluations of the local expansions.

that are distinct in space. First of all we need to introduce a hierarchical space
subdivision. We assume that at the first level the space is enclosed in a cube which
represents the seed of our octree. We recursively subdivide the tree dividing each
box into 8 children. We stop the subdivision when we have a certain number of
nodes B in the last level of the tree, the box becomes a leaf of the tree (childless
block). If after a subdivision a block is empty, it does not contain any source or
node, we purge it from the tree. In general we can assume the level of refinements
[to be on the order of logs(NN). For every block at every level of the tree we define
its nearest neighbours as the box itself and any box at the same level with which
it shares at least one boundary point. In three dimensional simulation we can
have 27 nearest neighbours at most. At a given level we call two box, with side
length D, well separated if they are separated by at least D. Then we need to
associate both multipole and local expansions to each box of the tree. We call !
the multipole expansion around the centre of the box i at level [. This expansion
describes the far-field contribution of the sources that are inside the box i. We
denote 1! as the local expansion of the block 4 at level [. This expansion describes
the contribution of the far-field sources on the nodes that are inside the box ¢ and
its nearest neighbours. Then we introduce as 155 the local expansion describing the
contribute of the sources located outside the parent of the box 7 at level [and all
of its nearest neighbours. Finally we need to introduce an interaction list that is

4.2. EXISTING CODE 47

associated at any box at any level of the tree. This set of boxes depicts the blocks
that are children of the nearest neighbours of ¢’s parent but that are well separated
from the box ¢ at level . We can now draw a scheme of the overall FMM

e Octree Generation. We set the level of refinement (the number of particles
in the finest level), and a precision ¢ for the multipole approximation.

e Direct Interactions. We compute the direct interaction between particles
in nearest neighbours box and in all the blocks that does not satisfy the
hypothesis for the multipole and local approximations.

e Ascending Phase.

— Multipole Expansions Generation. We form the multipole expansions
x around the centre of any box at the finest tree level, see (4.20) and
(4.21]).

— Multipole to Multipole operation. We recursively form the multipole
expansion for any box in coarser levels using , we stress that each
expansion represent the field due to the particles inside the box and
that can be applied for long-range interactions.

e Descending Phase. We start from the second level and proceed to finer levels.

— Multipole to Local conversion.: we convert the multipole expansion
Xé’ into a local expansion 1! using equation for any box j that
is located in the interaction list of the box 7. The local expansion
is centred at the centre of the box ¢. We add all the different local
expansions together.

— Local to Local operation. If we are at the finest level the process is
over, otherwise we can use equation and form the expansion wzl*l
for any box ¢ children of the box for which we have complete the M2L
operations.

— Local Expansions valuation. We evaluate the local expansions to get
the contribution of all the far-field source on the node of the box ¢

e Sum of multipole and direct contribution to get the overall pairwise interac-
tions

4.2 Existing Code

We have chosen to use an existing Fast Multiple Method currently developed at
SISSA, [14], by Dott. Andrea Mola. The code is very accurate from a mathematical

48 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

point of view, since it uses Greengard original algorithm, but it is completely serial.
Our first goal is to achieve a parallelisation of such a code in terms of the MPI
paradigm. The existing code is already written in C++ using the deal.IT library.

4.2.1 Existing Code Description

In this section we want to give a brief description of the existing implementation
of the Fast Multiple Method. All the code has been written in C+4 making use
of the deal.IT library.

Octree Block

This represents the building block of the octree data structure that is in the
code. Basically it is a cube that contains degrees of freedom (nodes) and quadra-
ture points (sources). In the implementation this is done through an ad hoc class.
The main characteristic of such a class are

e Geometrical attributes: a position vector that represents locates the block in
the space, a quantity that specifies the dimension of such a block to determine
what elements are inside the block

e Logical attributes: list of children IDs, parent ID, list of nearest neighbours
and lists of interacting blocks

The overall octree is represented through a standard STL vector of pointer to
blocks.

Proximity Lists

Every blocks needs two different lists that describe how to deal properly with
multipole and local expansions.

e Nearest Neighbours List: it contains the IDs of the blocks that share at least
one point with the current block.

e Interaction List: it groups the nearest neighbours of the block and its parent

e Non Interaction List: it contains the blocks that were in the interaction list
of the parent of the considered block but that are not in the interaction list of
the current block. This means that the blocks in this list are well separated
from the current block.

4.2. EXISTING CODE 49

Multipole Expansions

In section we have stressed that the multipole expansion is composed
by complex number and that they can be evaluated, translated and added. The
complex number are represented though the STL library. The two main methods
of such a class are the followings.

e Add: this method can be use, thanking to polymorphism, both to add a new
charge to the expansion and to add an expansion coming from a child block

e Evaluate: this function is used to value the multipole expansion, we stress
that this approximation is reliable only outside a sphere of radius ¢ that is
stored in the block class.

In order to build the class we must establish the order of the multiple expansion,
see (4.7]).

Local Expansions

Another C++ class that implements all that is need for the usage of the Local
Expansions. Once again we must provide at construction time the order of the
approximation. The class stores all the members of the block expansion and has
two polymorphic method.

e Add: this method can be use, thanking to polymorphism, both to add a new
multipole conversion to the expansion and to add an expansion coming from
a parent block

e Evaluate: this function is used to value the local expansion, this is the last
step of the descending phase..

We maintain the same order set for the Multipole expansions even for the Local
ones.

4.2.2 Serial Code Profiling

First of all we want to profile the existing code to understand which parts are
the bottlenecks of the computations and understand how to parallelise them. In
this first computations we have considered a single node in the final level of the
octree, i.e. B = 1. We have executed a computations with 6144 cells and 6534
degrees of freedom. We report the overall time and the timings of the three main
part of the algorithms: tree generation, ascending phase and descending phase.

50 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

Method Time Repetitions
Tree Generation 1.798 1
Ascending Phase Time 0.53285714 42
Descending Phase time 22.91380952 42
Total Time 940 1.

Table 4.1: First profiling of the execution time in a serial environment

We stress that the tree generation is needed only once while the other two
phases are needed any time a BEM matrix vector multiplication is invoked, thus
they are needed at any iteration of our solver. However we can see that the major
time needed of the algorithm is due to the descending phase and by the conversion
of Multipole Expansions into Local Expansions. We need to focus our attention on
the descending phase and we can let the tree generation and ascending one remain
serial on all the processors. Once again we stress that every degrees of freedom
depends on all the others unknowns so it is essential to have a localised complete
tree, which is the FMM representation of the geometry, on every processor.

4.3 Code Parallelisation Strategy

We have decided to parallelise the code maintaining the existing tree generation
procedure, we will focus just on the parallelisation of the descending phase. For
consistency with Chapter [3| we have taken the Trilinos wrappers of the deal.II
library as main tool to achieve an efficient parallelisation. We will describe the
steps needed by the Trilinos structures to be run in a parallel MPI environment
through their deal.IT interfaces. The tree generation is completely uncorrelated
from the geometrical splitting done by the BEM code through METIS. Therefore
we can’t assume the block to be splittable with the same philosophy. Two main
list are generated, one groups the quadrature points in each block, the quadrature
points are the charges of a classical particle dynamics FMM, and one groups the
degrees of freedom that are the evaluation points of such charges.

4.3.1 Close range interactions

Since for close range interaction the bounds that allow the usage of multipole
and local expansions don’t hold, we need to use the so called Direct Method, i.e.
we discretise directly the Boundary Integral Equation to compute these effects.
The code, in its method ”direct_integrals” works as follows.

e For any childless block we check if its nodes belong to the current processor,
using the usual METIS partitioning. Then if the node is on the processor we

4.3. CODE PARALLELISATION STRATEGY o1

compute, the ids of the sources in its nearest neighbours block list. Once we
have all the ids we can compute the sparse matrix that takes care of these
short range interactions.

e Unfortunately we need to compute another class of interactions: if a block
is in the non interaction list of another smaller block, the bound for the
multipole expansion application does not hold, and so we must compute
direct integrals. Here we scan the non interaction lists of each block at each
level to look for bigger blocks and we compute these interactions checking
that every nodes belong to the current processor.

This procedure is quite hard to implement but it can be parallelised quite straight-
forwardly with MPI. We only need to pass the IndexSet of the METIS partitioning
to this function to let it know if a node belongs to the current processor.

4.3.2 Ascending Phase

In this first BEM-FMA implementation we focus our attention on reducing
the time needed without introducing a communication overhead. Moreover we
have seen with our first code profiling that the ascending phase, composed by the
Mulitpole Expansion Generation in the childless blocks and their translation to
their parent blocks in tree isn’t particularly time depending. We have decided to
proceed as follows

e We execute a AlltoAllv communication to get the complete settings of in-
formations on every processor. This is an expansive communication of two
vectors. We stress that we don’t deal with very long arrays and that at
this point we need to communicate standard doubles so we don’t need any
particular communication strategy.

e Every processors performs the complete Multipole Generation.

We don’t expect any improvement in the performances of the method since we are
only introducing a communication overhead. However we know that this function
isn’t the real bottleneck. In principle we could introduce a parallelisation of the
method based on the very same METIS subdivision of our unknowns. We stress
that we need a strategy to split quadrature points as well and this would result
in a particular communication strategy between processors to get the complete
knowledge of nodes and sources. Moreover we would need to perform a AlltoAllv
communication for any level of the octree and this would introduce a much greater
communication overhead.

52 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

4.3.3 Descending Phase

Basically the descending phase cycle on all the blocks that contain a degree of
freedom of our BEM system, the DofsFilledBlocks, and: performs the Multipole
to Local conversion, the Local expansion translation to the childless blocks and
then the Local evaluations. We can insert a check in this cycle so that each
processor performs the computations if and only if a owned degree of freedom is
present. This is enough to break down the overall cycle, and we can ensure that
the every processor compute correctly its owned degrees of freedom since it has
the complete Multipole Expansion at its disposal. However this strategy has two
major drawbacks.

e The code bottleneck is due by the number of Multipole to Local (M2L) op-
erations needed, with this strategy we are implicitly increasing their total
number because if a block has degrees of freedom owned by different proces-
sors this means that its M2L operation are performed more times.

e We have no guarantee that the number of M2L operations should be opti-
mally balanced among the processors.

We stress that such a strategy comes with some advantages

e [t requires a minimum amount of communication since we can directly assem-
ble the solution vector since we are evaluating the complete local expansion
on each owned block.

e Since the degrees of freedom have been, almost optimally, split according to
METIS algorithms we can expect a sensible reduction of the overall M2L
operations needed on each processor.

We don’t expect a perfectly linear speedup in our algorithm but we expect a
sensible performance increase in the BEM matrix vector multiplication. We stress
however that if we try to optimally balance the M2L workload we would need an
expending communication (basically a Al'ToAllv) of the local expansion, that are
not standard MPI types, at each level of the level. This would introduce a much
greater overhead with respect to the M2L increase due by the multiply owned
Processors.

4.3.4 Preconditioner Setting

We have chosen to use a ILU preconditioner build upon the sparse matrix we
have assembled for the direct contributions. At this level we need to consider
the actual constraints otherwise the preconditioned would be ineffective. The

4.4. STRONG SCALING ANALYSIS 53

structure of this method is very similar to what we have highlighted in SO
we need only the IndexSet representing the nodes on the processor to split the
work among all the processors. The MPI parallelisation is straightforward and it
is absolutely needed since the computational cost of the method is of the same
order of magnitude of the computation of the short range interactions.

4.4 Strong Scaling Analysis

First of all we want to analyse the performance of a standard BEM matrix
vector multiplication in the framework of FMM. We expect a good speed up since
we are reducing the number of M2L operations needed by each processor.

4.4.1 Preliminary Multiple to Local Operations Work Bal-
ance

In order to better understand how our algorithm is working we analyse the
number of Multiple to Local transfer operations needed on each processor. This
is basically the sum of the operation needed by each block locally owned by each
processor. We stress that we count any contribution on any processor so we are
considering the increase number of operation introduced by our algorithm. We
consider the same case of Section so 6534 degrees of freedom. Since this is a
preliminary analysis we run up to 3 processors. This is done in order to understand
the effects of our algorithm on a small simulation. We can get the following table.

Processors Proc0 Procl Proc2 Total Increase %
1 779135 0 0 779135 0 0%
2 376286 430708 0 806994.0 | 27859 3.57%
3 264962 273188 273188 811338 32203 4.13%

Table 4.2: First profiling of the execution time in a serial environment

We can see that our work balance is suboptimal, especially for two processors
we can see that processor one will be slower than processor zero for the increased
number of operations assigned. This will result in an overhead for the overall
computation time. Anyway we can easily see that even if we get a non negligible
increase of the operations this should be well balanced by the reduce number of
M2L operations on each single processor. For three processors we can see a better
work balance. This suggests us that the work balance is strongly dependent on the
number of processors and on the original grid of the problem. This is quite expected
since we are relying on the domain subdivision provided by METIS to split the

54 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

workload in the descending phase of the algorithm. Such a split does not guarantee
an optimal workload distribution but it ensures us that the communication are
minimised. At this point we are ready to perform the scalability analyses for the
BEM-FMA code we have developed.

4.4.2 Strong Scaling up to 40 Processors

In this section we want to see weather our parallelisation strategy is effective
in a strong scaling framework. We keep fixed the size of the problem to 25350
degrees of freedom and let the number of processor increase up to 40 processor on
Ulysses cluster, thus we are considering two complete nodes of 20 core each. In
Figure 4.2 we can see the overall results of our parallelisation.

We can see that our code does not present an ideal linear scalability. In fact we
can see that we can hardly reach a speed up of 10 with 40 processors. Thus we can
see an overall efficiency of 25%. In order to better understand the reasons that lead
us to such a suboptimal performance we analyse the speed up of a single matrix
vector multiplication. In Figure [4.3| we analyse the scalability of a single matrix
vector operation and for all the operations needed to solve the linear system.

We can see two very important things. First of all the loss of performance is
due to the fact that the increasing in the number of processors causes an increasing
in the iteration needed to solve the system. This cause a loss of performance of
almost the 50% of our code. Another reason of the performance loss is the increased
number of Multipole to Local (M2L) operations needed, as stressed in section[4.4.1]
We can identify a third very important motivation for the suboptimal behaviour of
our code. In Section |4.3| we have stressed that we have kept the ascending phase of
the algorithm localised on each processor to minimise the communication overhead.
We can’t expect any performance increase from this method, moreover we need a
AlltoAllv communication at the beginning of this function to localised everything.
In Figure |4.4] we can see the relative computational importance in the ascending
phase of such a communication. We can see that causes a loss of performance as the
communication pattern increase in complexity. The ascending phase is becoming
relatively more important, and for Amdahl’s law we are loosing performance. In
Figure we see the comparison between the computational importance of the
two phases We can see that for 40 processors the two phases have the same relative
importance. Thus the overall performance gain, for Amdahl’s law, is limited by
the presence of the unoptimised ascending phase.

4.5. NODES PER BLOCK 95

Strong Scaling Analysis

40| o ideal o
—6— total
solve °®
30 —a— all vmult N

20 |- B

SpeedUp

10 |]

\
0 10 20 30 40
Number of processors

Figure 4.2: Strong Scalability test using 25350 degrees of freedom. We test up to 40
processors. We report the scaling considering the worst timing on all the used processors.
The blue line with circles representes the overall scalability for a complete execution,
the green squared one the scalability of the linear system solver, the red tringled the
scalability for all the needed matrix vector multiplications. The red dots represents the
ideal scalability

4.5 Nodes per block

The actual implementation of the code prescribes one node per childless block.
This choice should maximise the usage of Fast Multipole Method but it may not
be the optimal choice. In [§] we can find a very clear study about the optimal
number of nodes per childless block. The author asserts that the scalability and
the performances of the code strongly depend on the amount of nodes per block
level. We have decided to introduce an additional parameter in our code in order
to specify the maximum number of nodes in each childless block. In our opinion
this is a key ingredient to achieve better performances. A very important effect of
this strategy will be the increase of direct interactions in the algorithm. We stress

56 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

Strong Scaling Analysis

40 | o ideal o
—o— all vmult
single vmult P

30 |- 2
oF
=
& 20 R
o °
N

10 |

\
0 10 20 30 40

Number of processors

Figure 4.3: Strong Scalability test using 25350 degrees of freedom. We test up to 40
processors. We report the scaling considering the worst timing on all the used proces-
sors.In blue with circles we plot the overall scalability for the complete set of matrix
vector multiplications, in green with squares the scalability of a single matrix vector
multiplication. The red dots represents the ideal scalability

that this should lead to a better cost balance between the short range interactions,
needed to deal with nearest neighbours., and the long range ones, needed for the
multipole - local parts. We expect the direct part to scale almost linearly since it
is implemented very similarly to the direct BEM assembly routine which has been
proved to behave optimally.

4.5.1 Optimal Nodes per Leaf

In this section we want to investigate weather we can find an optimal number of
nodes per leaf in our FMM algorithm. in [§] there is such optimal condition but we
stress that the direct BEM implementation is very faster than our FMM so we may
expect a monotone behaviour increasing the number of nodes per leaf. We have

4.5. NODES PER BLOCK o7

Communication Overhead

\ \ \ \
—— communication loss

Time

10

0 10 20 30 40
Number of processors

Figure 4.4: Performance loss due to the increase communication in the ascending phase

run our analysis on 32 processors on the Ulysses cluster. We have considered our
usual test case with 25350 degrees of freedom. We have let the number of nodes
per leaf vary from 20 to 200. We can clearly see from Figure that we have
an optimal value around 60 nodes per leaf. According to [8] the optimal value
depends on the hardware on software specifics. In the paper the author states
that his optimal value is around 15 nodes per block. We find quite reasonable an
increased value in our case since 25 years have passed with a lot of improvements
in terms both of hardware and software. In the following subsection we try to
understand why we see an optimum value .

Direct cost

Roughly speaking we can assert that our algorithm can be split in two main
parts: the near range method and the long range algorithm. In Figure we
analyse the cost needed by the direct near range interactions as we increase the

58 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

\ \
100 —o— ascending

descendig

Importance (%)

0 10 20 30 40
Number of processors

Figure 4.5: Relative importance of the different phases in a matrix vector multiplication
using the BEM FMA algorithm. In green with square we see the importance of the
descending phase while in blue with circles we see the importance of the ascending
phase

number of nodes per leaf. As we can see such a cost is directly proportional to the
number of nodes per leaf in our octree. This is due to the fact that we consider
the same amount for nearest neighbours per block but each block now contains
more sources and nodes. This increases the number of element that we need to
directly compute. For instance for 60 nodes we compute directly the 1.89301% of
the elements, while with 30 nodes we compute the 1.14803%. This causes a cost
increase in our algorithm, that should be compensated by the cost reduction in
the FMM part.

FMM Matrix Vector Multiplication Cost

In Figure 4.8 we analyse the computational cost needed by matrix vector oper-
ations increasing the number of nodes per leaf in the tree. We can see that such a
cost is not monotone. Firstly an increase in the nodes per leaf induces a reduction

4.5. NODES PER BLOCK 59

32 procs 25350 cells

220 | —e—over‘all time a
200 - R
180 |- R
160 |- R
140 |-)
120 |-)

100 |- :

\ \ \
50 100 150 200
Nodes per leaf

Time

Figure 4.6: Overall time to solution for the BEM-FMA algorithm over 32 processors.

of the number of blocks, thus a reduction of the transfer operation needed. This
may explain the first part of the curve where the costs decrease. After 150 nodes
per leaf we see a cost increase. This may be due to the unbalanced workload for
such a condition. Moreover if we have less blocks we have an increased percent-
age of blocks shared between processors. This introduces more overheads in our
computation.

Optimal Conclusion

From Figures and we can conclude that the optimal value of 60 nodes
per leaf highlighted in Figure may be due to the two different effects of the
direct cost increase and of the FMM behaviour.

60 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

32 procs 25350 cells

[
—6— direct time

20 | a

Time

\ \ \
50 100 150 200
Nodes per leaf

Figure 4.7: Time needed for the assembly of the direct part, needed for the resolution
of nearest neighbours interactions.

4.5.2 Strong Scalability with 60 nodes per leaf

In this section we want to analyse the overall scalability of our BEM-FMA algo-
rithm using the optimal number of nodes per leaf we have previously highlighted.
In Figure we can clearly see that our code has a suboptimal behaviour. In fact
we get a worse scalability that what we got for one node per leaf. This seems to
be mainly due to the worse scalability of the FMM part. We stress again that the
assemble time for a BEM matrix scales almost linearly. We stress a very important
difference with respect to the results of section [4.4.1} In Figure we report the
comparison between the plain BEM and the BEM-FMA with the standard imple-
mentation with 1 node per leaf. We can see that, for the number of unknowns
of our study, the direct BEM represents the fastest and most accurate option. In
Figure 4.11| we report the comparison between the plain BEM and the BEM-FMA

4.6. MEMORY CONSUMPTION 61

32 procs 25350 cells

\ \
1 ® —6— single vmult |
\ all vmult

=) =

50 100 150 200
Nodes per leaf

Figure 4.8: In blue with circles we can see the time needed for all the matrix vector
multiplication. In green with squares we see the cost for one matrix vector multiplication.

with the 60 nodes per leaf. We can see that the times to solution is less for the
BEM-FMA implementation up to 32 processors. The better performance of the
BEM for 40 processors is due to its better scaling behaviour in comparison to our
FMM. However we stress that even the direct BEM presents some scaling issues as
we can see from Figure[3.3] Therefore we stress that the time optimal 60 nodes per
leaf implementation has much better performances than the original single node
per leaf one.

4.6 Memory Consumption

In this section we want to highlight another major advantage of the BEM-FMA
algorithm with respect to the plain direct BEM. While in the former we compute
on the fly the effect of the matrix vector multiplication in the latter we need to

62 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

Strong Scaling Analysis

40 | o ideal o
—6— total
all vmult P
30 [| direct N

20 |- B

SpeedUp

10 |

\
0 10 20 30 40

Number of processors

Figure 4.9: Strong Scalability test using 25350 degrees of freedom. We test up to
40 processors. We report the scaling considering the worst timing on all the used pro-
cessors.In blue with circles we plot the overall scalability, in green with squares the
scalability for the complete set of matrix vector multiplications, in magenta with tri-
angles the scalability of the direct matrix assemble. The red dots represents the ideal
scalability

actually allocate the memory needed by the full matrices. This may become a
major issue. We have chosen to use the TrilinosWrappers of the deal.II library.
In this framework we are allowed to write on any element of the matrix and then
we communicate these effect to the proper processors. We have noticed a very
specific error if we require more than 65536 degrees of freedom. The standard
Trilinos implementation stores sparse matrices as a single vector indexed by an
unsigned integer. This means that we have 4294967296 = 65536 possible indices.
In this case Trilinos is not able to compute the sparsity pattern for the distributed
full matrix. The BEM-FMA implementation does not present this issue since we
don’t need to reserve the space for the full matrix. We can continue to use the
TrilionsWrappers without any modifications. We may solve this issue compiling

4.6. MEMORY CONSUMPTION 63

Comparison BEM BEM-FMA
6,000 |- | ‘ 1

—8— BEM-FMA

—— BEM

4,000 |

Time

2,000 |

0 10 20 30 40
Processors

Figure 4.10: Time comparison between plain BEM and BEM-FMA with 1 nodel per
leaf. In blu with circles we plot the time needed by the direct plain BEM, in red with
square we report the BEM-FMA with 1 node per leaf.

the Trilinos library with 64bits indices but nevertheless we stress that we would
anyway encounter this limit if we increase the number of degrees of freedom.

We stress another major disadvantage of the standard BEM approach. We have
stressed the need of using already existing parallel libraries, as deal.II and Trili-
nos, to get an efficient and general subdivision among different processors. However
we note that the system matrix we are assembling has a very peculiar sparsity pat-
tern. In fact we are assembling a full matrix, its sparsity comes from the fact that
we are subdividing it among different processors. It is our belief that it is very
hard to optimise the memory consumption of such a matrix. In fact we have noted
many problems of memory consumption in running our BEM application with 64
bit indices.

64 CHAPTER 4. PARALLEL FMA WITH MPI PARADIGM

Comparison BEM BEM-FMA

| —E‘—BEM-FM‘A
1 500 —— BEM
=1,000 |- .
=

500 =
0 L \ \ \]

0 10 20 30 40

Processors

Figure 4.11: Time comparison between plain BEM and BEM-FMA with 1 nodel per
leaf. In blu with circles we plot the time needed by the direct plain BEM, in red with
square we report the BEM-FMA with 60 nodes per leaf.

Chapter 5

Parallel FMA with MPI and TBB

In the present chapter we present the parallelisation of the BEM-FMA algo-
rithm using an hybrid paradigm. In the Chapter 4] we have seen that the sole
MPI paradigm is not enough to efficiently parallelise the BEM-FMA algorithm.
The need of a hybrid parallelisation strategy that couples MPI with multicore
paradigms has been spotted in recent years in the framework of parallel multipole
methods, [20]. We are dealing with small problems with respect to [20] so we are
not going to deal with GPU accelerator but only with multithread paradigms on
standard CPUs. We will follow the paradigm chosen in the deal.IT library, it is
called Threading Building Blocks (TBB) and is constantly developed by Intel.

5.1 Intel TBB Description

Threading Building Blocks is a widely used C++ template library for task
parallelism. Its most important features are the followings

e Parallel algorithms and data structures

e Scalable memory allocation and task scheduling

e Thought for general purpose parallelism

e Supports Windows™*, Linux*, OS X* and other OSes.

It is designed to work with any C++ compiler thus simplifying development of
applications for multi-core systems. TBB has been designed to match with a code
that is highly object oriented, and makes heavy use of C++ templates and user
defined types. TBB, as native threads, do not require specific compiler support,
while other paradigm, as OpenMP, do. The use of TBB does not require any
specific compiler option. More generally TBB can be seen as an evolution of

65

© 00~ O Uk Wi+

66 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

the standard OpenMP paradigm. It was created as something that was more
conducive to the object oriented/template based programming style of C++. It
has been chosen as multithread paradigm in the deal.II library, which is highly
object oriented and makes very good use of C4++ most recent features. We make
use of two different functions that make use of TBB: TaskGroup and Workstream.

5.1.1 TaskGroup

The basic instruction, in TBB, is called Task. Generally it is a job that needs

to be done. Tasks creation is managed by a scheduler and different task must be
executed concurrently. We stress that a single thread usually has more than a
single Task. It is up to the scheduler to associate each Task to a thread. Two
different task can join through the TBB command join.
TaskGroup is a deal.II class that represents a container for different indepen-
dent tasks. Its typical framework in the BEMFMA code is in the parallelisation
of embarrassingly parallel for loop (in place of pragma for cycles). The typical
implementation of TaskGroup is the following

e We have a loop that can be broken into completely independent tasks. We
let the scheduler organise and spawn all of them.

e We end all the threads spawned in the previous step.

auto f_local_task = [1 (...)

{
...do something...

}

Threads::TaskGroup<> group;

for (unsigned int kk = 0; kk < n_task; kk++)
group += Threads::new_task (static_cast<void (%) (...)>
(f_local_task)...);

group.join_all();

We need to implement a function describing the work that the task needs to
perform. We have chosen to use lambda functions to describe the task. Unluckily
TaskGroup does not allow lambda functions as argument so we need to statically
cast the lambda to a standard void function. We need to be sure that no racing
condition occurs. We highlight that the TaskGroup scheduler is not able to deal
with racing conditions and that we can’t make any assumption on how the Task
will be created. At the end of the for cycle we can use join_all() to end all the
previously spawned tasks. From the point of view of the implementation this is
a very easy solution. Basically we need only to create a function that mimes
what happens inside the embarrassingly parallel loop. If race conditions occur this

5.1. INTEL TBB DESCRIPTION 67

solution is not usable since the very easy scheduler of TaskGroup is not able to
deal with them.

5.1.2 WorkStream

Modern Finite Element codes usually presents the following pattern: a stream
of local independent operation followed by a reduction into a global data structure.
In [19] we see how such a software pattern, called WorkStream inside the deal.II
library, can be efficiently implemented. An explicit synchronisation of the Tasks
would be quite inefficient and may not scale well. More importantly we must
remember that, in floating point arithmetic, the order of a summation may lead to
significant change in the result. Since we can’t make any assumption on the order
of creation of single Tasks we conclude that with this manual synchronisation we
can’t obtain the same result two times in a row.

To overcome such difficulties WorkStream separates

e The embarrassingly parallel local computations.

e The reduction operation.

The local computation can run in any order and in parallel, while the reduction op-
eration must run on a single thread, it should avoid manual synchronisations and
must perform the summation always in the same order. These constraints assures
that the results are both reliable and repeatable. We stress that, for what concerns
the local parallel computations, WorkStream usually schedules more tasks to the
same thread in order to optimise computation time.

The typical application of such a class is the assembling a matrix in a FiniteEle-
mentMethod. In such a case we need to perform computation on each cell and
then add together all the contributions inside the global matrix. The assemblage
of the local contribution can be done on all the cells simultaneously. However we
can’t allow all the local contributions to be written at the same time on the global
matrix because we would have race conditions and we would corrupt the data.
Consequently, we want to ensure that only one thread at a time writes into the
global matrix, and that results are copied in a stable and reproducible order. We
need the following ingredients to use WorkStream

e A stream of object that is used by the scheduler to spawn the needed Tasks.

e A worker function to be run in parallel on all the objects to perform the local
computations

e A copier that reduces the local contributions.

In the following we analyse the basic features of the two functions needed by
WorkStream.

[\)

\V]

68 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

Worker function

WorkStream assigns one worker function per threads. We need to keep in mind
that all the workers must be able to run in parallel since WorkStream does not
check for any race condition at this level. In the following we list the argument of
the worker object.

e Input: a ScratchData object. The worker uses this object to make its com-
putation. The object needs to have a working copy constructor since it is
copied among all threads when WorkStream is run.

e Output: a CopyData object. Every worker fills its own CopyData. This
object will be pass down by reference to the copier function.

e Additional parameters: if we need to pass more informations to the work
stream we have to make sure that this information is the same for all the
threads. Then we have two strategies.

— We can use a std::bind function coupled with placeholder mechanism to
obtain a function that takes only ScratchData and CopyData, in this
way we are binding the additional parameters to some known values

— We can exploit a functionality of C++11, the lambda function. A
lambda function is a function that you can write inline in your source
code. It uses a so-called capture that allows the user to pass additional
information to the function. In this way we can straightforwardly limit
the number of parameter of the function erasing the need of a binding.

auto f_worker = [this,...]
(iterator, Scratch &scratch_data, Copy ©_data)
{...}

Copier function

The copier function is the object that takes care of copy back the result of the
worker computation back to the global memory. It takes as argument the reference
to the CopyData object computed by the worker. For any additional parameter
we can follow the same strategies of the worker function. The copier function
automatically handles any race conditions, this means that it is responsible for
any synchronisation overhead of the WorkStream class.

auto f_copier = [this,...]
(const ©_data)
{...7}

5.2. IMPLEMENTATION 69

5.2 Implementation

In Section we have discussed the basic principles of Threading Building
Blocks. Now we look to our implementation in detail. We need to modify almost
any function of our FMA algorithm in order to apply these principles. We have
chosen to use lambda functions to implement all the TBB functions. In this way
we use the captures to pass additional parameters to WorkStream making the
implementation much simpler.

5.2.1 Direct Interactions

In section we have analysed the implementation of the MPI parallelisation
of the close range interaction. While the parallelisation with MPI was straight-
forward the TBB implementation is not trivial at all. Basically wee need firstly
to set up the sparsity pattern of the direct interactions and then to compute the
corresponding sparse matrix. At this level we don’t care for any constraints, these
will be applied by another method.

Sparsity pattern assembling

The worker function uses the capture to know the actual state of the class
handling the FMA. In this way we can perform the computation of the column
to be added at each row quite straightforwardly. Since all the workers must be
able to run in parallel we must be sure that no racing condition occurs. We use
the global IndexSet to know if the computation belongs to the actual processor
or not, thus using a MPI strategy. Since, see [4.3.1] we have to deal with two
different types of direct contributions we firstly compute the sparsity pattern due
to the contributions of the blocks that are in the childlessList. and then we check
for bigger blocks in the non interaction lists of other smaller blocks. Basically
the workers just compute the indices of all the degrees of freedom that interacts
directly and then the copiers add these indices to the sparsity pattern.

Matrix assembling

Once we have properly computed the sparsity pattern we can assemble the
sparse matrix corresponding to the direct interactions. The structure of the as-
sembling is quite complicated since each block updates all the lines of the matrix
corresponding to its node. We have set up the a worker that compute all the
contribution of a given block in a local dense matrix. Then the copier takes care
of copying everything back to the global memory performing a so called local to
global operation. Once again we need to run two WorkStream for the two different

70 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

kinds of direct interactions, luckily we can use the same TBB data structures for
both the implementations.

5.2.2 Ascending Phase

In seection [4.3.2] we have stressed that we don’t provide any MPI parallelisation
to the ascending phase. Since TBB does not require any communication strategy
we can set up an effective multithread strategy for the ascending phase, see [§].
We have to provide a parallelisation for different methods.

Structure Setting

First of all we need to set up a TBB parallelisation that builds up properly the
structure for the ascending phase. We recall that the sources are the quadrature
points and that their intensities depend on the FiniteElement setting of the BEM.
The function that sets up the strategy is called "multipole_integrals”. We need
to set up elemMultipoleExpansionsKerl and elemMultipoleExpansionsKer2 these
are quite complicated objects so we need great care. These objects represent the
Multipole Expansions of the potential and its normal derivative. Since the creation
of new elements inside a map is not thread safe we need to use WorkStream to
ensure that everything is set up properly. Basically we just need to set up a
structure so we can allow for an empty Scratch. The WorkStream will replace a
loop over the childless blocks that used to set up all the structure. All the workers
need to create their own multipole structures and then we build the copiers to
copy everything in the global memory using the capture of the lambda functions.
This function is called just once in the code but however represents almost half of
the cost of the ascending phase so it is essential to provide a TBB parallelisation.

Multipole Expansion Creations and Translations

Once we have built the structure we can start the real ascending phase. The
function is called ”generate_multipole_expansions”. The inputs are the values of
the boundary conditions (in general the present values of the potential and its
normal derivative). We need these values to assign the proper values to the sources
of the multipoles. Since each matrix vector product may update the values of the
potential and its normal derivative we need to call this method once per each
matrix vector product.

e First of all we set up empty multipole expansions for all the blocks of the
octree. This can be done with TaskGroup, see|5.1.1], since all these creations
are independent and no race condition occurs.

5.2. IMPLEMENTATION 71

e Now all the lower level blocks have a multipole expansion containing the
contribution to the integrals of all the quadrature points in them. Now we
begin summing the child multipole expansion to the the parents expansions:
to do that we need to translate che children expansions to the parent block
center. In this case we have to set up some synchronisation since more blocks
may have the same parent and this would lead to race conditions among
thread. Thus we need WorkStream to copy all the expansion up along the
tree. We have modified the MultipoleExpansion class in order to be able to
set up the center and then if two expansions have the same centre we don’t
need any translation but we just sum the expansion coefficients.

— Since the worker function actually runs in parallel we let it take care
of all the translation of the blocks to a local expansion centred in the
parent block centre. So the worker actually performs the multipole
translations

— The copier functions just add the local coefficients to the real parent
exapansion, inside the global memory. In this way the copier has to
deal only with the synchronisation of all the threads and almost does
not perform any additional work.

In this way we have been able to set up a TBB parallelisation that exploits both the
strategies explained in that minimises the synchronisation time of the copier
funcions. In such a way we should avoid, for the problem sizes we are dealing with,
the bottleneck of the ascending phase highlighted in Figure [4.5]

5.2.3 Descending Phase

The function that takes care of the descending phase is called ” multipole_matr_vect_products”

and actually finalises all the matrix vector products. The method is called once
per every matrix-vector product. We need to call this function after having gen-
erating the multipole expansions. Since this function takes a considerable amount
of time we have chosen to parallelise it using multithreaded TBB on a single node
and MPI to allow even a greater level of parallelism. In this case we don’t need
any communication because we have made sure that the multipole expansions are
replicated on each node. Thus we can safely split the descending phase.

Local Expansion Creations and Translations

First of all we need to create all the empty expansions for all the blocks. This is
an embarrassingly parallel operation that we can perform using the ThreadGroup
strategy without requiring any synchronisation time. In order to perform the

72 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

descending phase properly we need WorkStream. Inside the worker we check the
IndexSet for the MPI parallelisation. The scratch is empty once again since this
class only has to copy from parents to children. As in the ascending phase we use
captures in order to pass global information to the worker and the copier. For each
level of the tree we uses a WorkStream to loop over all the blocks at the current
level.

e The worker creates a local LocalExpansion and then it translates the Local-
Expansion of the parent block. Then we convert the MultipoleExpansion of
blocks of the same size of the current block to the local expansion. With
these two steps we have taken care of the translation of the local expansion.
The worker needs to compute also some contribution to the final results of
the matrix vector product. We have to loop over blocks in the non inter-
action list that are smaller than the current block: in this case the bound
for the conversion of a multipole into local expansion does not hold, but the
bound for the evaluation of the multipole expansions does hold. Thus, we
will simply evaluate the multipole expansions of such blocks for each node
in the block. Also these results are stored in a local array.

e The copier function just add the local Local Expansion to the actual expan-
sions in the global memory handling, once again, all the race conditions. It
also copies the local contribuition to the matrix vector multiplication given
by the Multipole expansion that we could not translate into a Local expan-
sion.

Local Expansion Evaluation

Finally, when the loop over levels is done, we need to evaluate local expansions
of all childless blocks, at each block node(s). This is an embarrassingly parallel
operation so it can be easily performed using ThreadGroup. We also check the
IndexSet to perform the mixed TBB-MPI parallelisation.

5.2.4 Final Preconditioner Setting

We have seen in Section [4.3.4]that it is quite easy to apply a MPI parallelisation.
Unluckily a multithread implementation is not so straightforward since the setting
of the final preconditioner has race conditions. We need, once again, WorkStream
to handle them.

Final Preconditioner Sparsity Pattern

We set up the same worker copier strategy we have used for the first precon-
ditioner setting inside the close range function, see [5.2.1, The worker memorise

5.3. OPTIMAL BLOCK SIZE ANALYSIS 73

the indices to be add per block and then the copier set up the real preconditioner
sparsity pattern.

Final Preconditioner Assembling

We just need to loop over all the degrees of freedom. Firstly we check that the
unknown belongs to the processor and then we fill the preconditioner depending on
the constraints of the current unknown: if it is constrained we use the Constraint-
Matrix, otherwise we just copy the values of the first preconditioner we computed.
This is embarrassingly parallel so we can safely use ThreadGroup. Lastly we can
add the values of a to thepreconditioner, once again we can safely do this operation
with ThreadGroup providing a good MPI-TBB parallelisation.

5.3 Optimal Block Size Analysis

In Section we have seen that is possible to recover an optimal size of the
blocks in the tree by means of nodes in the childless blocks. At the time being
we have recovered a full MPI-TBB parallelisation and we try to recover a more
rigorous analysis.

5.3.1 Theoretical analysis

We follow [§] in order to achieve an optimal block size. We define the following
quantities:
N = number of unknowns,

B = number of unknowns in a leaf, (5.1)
p = number of MPI processors, '

t = number of TBB threads.

We introduce the time needed by the ascending phase as the sum of the time
needed to compute the multipole at childless level and the M2M translation time

N

= (5.2)

N N

Tose = K1— + K1 —
asc 1 t + g log (B)
We can introduce the time of the descending phase as sum of the time for M2L

and L2L translations plus the evaluation time at childless level

N\ N N
These = K31 —) — + K4—. 5.3
d 30g(B>Btp+ T (5.3)

74 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB
We can define the time needed to compute the short range interactions as

Tiir = Ks—. 5.4
e = I (54)

Lastly we introduce the communication-synchronisation time as
Teomm = e(B,p, t)7 (55)

that we can’t value as precisely as we did for the others. The constant K, K5, K3, K4, K5
are constant depending on the precision requested to the FMA and the floating
point unit. We will try to determine them experimentally in the next section. In
order to find a optimum of the block size we compute the partial derivative of all

the timings with respect to B

0T s KoN
OT gese KsN
o5 = ngt (log(B) — log(N) — 1),
OTgir KsN (56)
oB pt’
aT’comm . ae(patﬂ B) 0
oB 0B '

Following [8] we have made the assumption that the communication time derivative
is small compared to the others. This assumption is needed if we want to recover
a theoretical analysis. We introduce the overall time derivative as

0Tor 1 KoN K3N
0B t

KsN
B 5z sz)(log(3>—log(N)—1)+) (5.7)

p

Thus we can conclude that the optimal block size B, is such that

KsN KgN) K5N)
— + log(Bypt) — log(N) — 1) + = 0. 5.8
((o s) (0B () = 1) + 2 (5.8)

From (5.8) we can see first very important conclusion, that makes our analysis
agree with [§], B,pt will not depend on the number of threads but only on the
number of processors. This is due to our MPI parallelisation strategy that involves
only the short range interactions and the descending phase. In order to recover an
analytic condition we made another assumptions

10g(Boye) — log(N) — 1 ~ —log(N). (5.9)

5.3. OPTIMAL BLOCK SIZE ANALYSIS 75

In order to justify such an hypothesis we remember that that all the logarithms
in our analysis are logarithms base 8. Thus we expect log(B) ~ 1. With (5.9)) we
can conclude

KsN K3N> KsN
——— — —— | log(N) + =0, 5.10
(ngt ngtp () ()
so we can derive
(K3 + K3/p)log(N)
B, = . 5.11
vt \/ K5/29 ()

As expected our optimum depends on the number of MPI processors we uses.

5.3.2 Block Size Results

In this section we analyse the timings of our hybrid MPI TBB implementation
for a computation with 25350 unknowns. We uses a single MPI processor and we
exploit the maximum number of threads on Ulysses. We recall that on a standard
node of such a machine we have 20 processors on a single node so we can uses up
to 20 parallel threads. We have chosen to test block size from 20 to 140 nodes
per block. We report a major detail in order to run properly on Ulysses. Since
we want to spawn the maximum number of threads on each node we must ensure
that the scheduler don’t put two MPI processors on the same node if a free one
is available, we need to add the option pernode. To make sure that each MPI
processor is free to spawn threads on different core we need to make sure that no
existing configuration limits its possibility, in order to do so the complete command
to run the code is

mMpirun -np 7Ny, -pernode —bind-to none bemexe n4preqds,

we have set up the code to accept the number of threads as additional command
line input. If no argument is passed the code uses the maximum number possible.

Ascendent Time

In this section we analyse the computational time needed by the ascendent
phase and its relation with the block size B. As time we have considered the

following average

Tse in Trisin
qrirue _ Lsetting F Lrising (5.12)

sac
NGMRES

that comprehends both the time of the setting of the Multipole Expansions and
the true rising phase. We have taken the overall average in order to study the time

76 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

needed for a single matrix vector product. We have applied a standard fitting in
order to recover the constant in (5.2)). We obtain the following results

K, =6.02144325217e — 05,
Ky =0.000214458307065.

In Figure |5.1| we compare our theoretical result with the experimental results We

32 procs 25350 cells

(5.13)

1072

g — \ |]
—o— Theory
61 Actual N
51 a
=
g4\ |
3| a
2 e —]
\ \ \ \ \

20 40 60 80 100 120 14
Nodes per leaf

Figure 5.1: Analysis of the time needed by the Ascendent phase of the FMA. In
blu with circles we report our theoretical result, in green with squares we can see the
experimental results.

can see a pretty good agreement with the theory we have developed and the actual
results. We stress that we have chosen to take an overall average of the timings
even if the setting time is required only once and it takes almost the same time
of all the rising phases. In particular we can see that the time needed by the
ascendent phase decreases as the block size increase. This is rather obvious since
as B increases the overall number of blocks decreases and so does the time needed
by the ascending phase.

5.3. OPTIMAL BLOCK SIZE ANALYSIS 7

Descendent Time

In this section we analyse the computational time needed by the ascendent
phase and its relation with the block size B. As time we have considered the

average per iteration needed by the iterative solver. With usual fitting techniques
we get the following constant for (5.3)

K3 = 0.355460533753,

(5.14)
K4 = 0.0184668562545.

In Figure [5.2] we compare our theoretical result with the experimental results We

32 procs 25350 cells

\ \ \
100 —o— Theory
Actual

Time

40 \@\Q\S—\Q -

\ \
20 40 60 80 100 120 14
Nodes per leaf

Figure 5.2: Analysis of the time needed by the Descendent phase of the FMA. In
blu with circles we report our theoretical result, in green with squares we can see the
experimental results.

can see an extremely good agreement between the experimental results and our
simple theory. In particular we can see that the descendent time needed by the

78 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

algorithm decreases as the block size increase. This is rather obvious since as B
increases the overall number of blocks decreases and so does the time needed by
the descending phase.

Direct Time

In this section we analyse the computational time needed by the short range
interaction and its relation with the block size B. Since these interactions are

computed once we don’t need any average. With usual fitting techniques we get
the following constant for (5.3))

K5 = 0.0017587037037. (5.15)

In Figure we compare our theoretical result with the experimental results We

32 procs 25350 cells

400 |- —o— Theory |

Actual

300 :

200 - y

Time

100 - a

0L \ \ \ \ \ \ \
20 40 60 80 100 120 14

Nodes per leaf

Figure 5.3: Analysis of the time needed by the Direct phase of the FMA. In blu with
circles we report our theoretical result, in green with squares we can see the experimental
results.

5.3. OPTIMAL BLOCK SIZE ANALYSIS 79

can see that we can’t recover a good agreement. This is due to the extremely
complicated structure needed to compute the short range interactions. We have
parallelised it using WorkStream but we can clearly see that for B > 60 we get
a lot of overhead to synchronisation time needed to avoid racing conditions. In
order to have a better estimate of the direct time we compare the time needed to
compute the short range interactions and the one needed to compute the final pre-
conditioner. In Figure we see the results We can see a quite good agreement

32 procs 25350 cells

\ \ ‘
400 - —6— Preconditioner i

Direct

300 .

200 |- :

Time

100 |- :

0L \ \ \ \ \ \ \
20 40 60 80 100 120 14

Nodes per leaf

Figure 5.4: Analysis of the time needed by the Direct phase of the FMA and the time
needed to set up the final preconditioner. In green with squares we report the time
needed by the short range interactions, in red with circles we can see the time needed
for the final preconditioner.

if B < 60. This is due to the fact that both the functions computes operation of
order N B. If we increase the block size we can see that the easier structure of the
preconditioner setting allows for reduced synchronisation timings. We believe that
we can safely use the time needed by the preconditioner to estimate the constant

80 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

K5 getting
K5 = 0.000628596949891. (5.16)

In Figure 5.5| we compare the corrected theoretical result with the direct timing
We can see a quite good agreement for small block sizes. We stress that since the

32 procs 25350 cells

400 - —o— Theory |

Actual

300 :

200 - a

100 - // -

Oe/e/‘ 7

20 40 60 80 100 120 14
Nodes per leaf

Time

Figure 5.5: Analysis of the time needed by the Direct phase of the FMA. In blu with
circles we report our theoretical result using the precondiotener timings, in green with
squares we can see the experimental results.

experimental minus is between 40 and 60 we are interested in a good estimated in
such a size range.

Overall Comparison

In this section we report a comparison between the overall timings we can
recover from our theory and the actual experiments. In Figure |5.6| we can see the

5.4. STRONG SCALING ANALYSIS 81

32 procs 25350 cells

\ \ \
—o— Theory

400 Actual |

300 :

Time

200 |- .

100 |- S 2 .
\ \ \ \ \

\ \
20 40 60 80 100 120 14
Nodes per leaf

Figure 5.6: Analysis of the time needed by the overall FMA. In blu with cirlces we
report our theoretical result using the precondiotener timings, in green with squares we
can see the experimental results.

results Once again we can see quite a good agreement for small block sizes. With
our theory we get

K + K3/p) log(N
Byt = \/(2+ Ka/p)logN) _ 5 5140011254, (5.17)

Ks/p

which agrees with experimental results that show the minimum for 40 < B,,; < 60.
In the following section we will therefore take B = 60 in order to have a comparison
with the results of Section [4.5.2]

5.4 Strong Scaling Analysis

In this section we analyse the Strong Scaling of our BEM-FMA algorithm with
hybrid TBB-MPI parallelisation up to 2 nodes, 40 processors, on Ulysses. We

82 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

consider two different scenario in order to assert the scalability dependence on the
degrees of freedom of our problem.

5.4.1 Strong Scaling with 25350 dofs

We will study the problem with 25350 degrees of freedom. We consider 2 MPI
processes and up to 20 TBB threads per process. We can see that our method does

Strong Scaling Analysis

40 | o ideal o
—6— total
vmult °

30 —A— direct N

—— preconditioner

10 +

0 10 20 30 40
Number of processors

Figure 5.7: Strong Scalability test using 25350 degrees of freedom. We test up to
40 processors. We report the scaling considering the worst timing on all the used pro-
cessors. In blue with circles we plot the overall scalability, in green with squares the
scalability for the complete set of matrix vector multiplications, in magenta with trian-
gles the scalability for the setting time of FMM, in cyan with stars the scalability of the
preconditioner building method. The red dots represents the ideal scalability

not scale ideally. In particular we recover some scalability issue for the short range
interactions. As we stressed in Section this is due to the complex pattern
of the method that computes such interactions. In particular we can see that the

5.4. STRONG SCALING ANALYSIS 83

preconditioner method, that compute the same number of operation but has a
simpler structure, scales almost ideally. We stress that for this kind of interaction
we recover a far better scalability with a pure MPI parallelisation, see Figure [£.9]
If we compare our results in Figure and we compare them with Figure [4.9
we can see that we achieve much better performances with the new TBB-MPI
parallelisation, a scalability of 9.69 against 6.3. In particular if we consider only
the performances of the FMM by means of a single matrix vector multiplication
we get Figure We can see that with the current setting we are able to get

Strong Scaling Analysis

40| o ideal o
—o— vmult
descendent °

30 | | —&— ascendent

—*— setting

0 10 20 30 40
Number of processors

Figure 5.8: Strong Scalability test for a single FMM matrix vector multiplication using
25350 degrees of freedom. We test up to 40 processors. We report the scaling considering
the worst timing on all the used processors. In blue we plot the overall scalability, in
green the scalability descending phase of matrix vector multiplications, in magenta the
scalability of the setting time and in black the scalability of the ascending phase of the
algorithm. The red dots represents the ideal scalability

an overall scalability for a single matrix vector multiplication of 11.83 against the
ideal 40. At the present point we want to assert whether this is due to the reduced

84 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

number od degrees of freedom or if it is an issue of our method.

5.4.2 Strong Scaling with 98306 dofs

In this section we consider a more refined problem with 98306 degrees of free-
dom. Since the computational cost is increased we expect our method to scale
better that in the previous section. We can see that the increased computational

Strong Scaling Analysis

40 | @ ideal ®
—o— total
vmult °

30 | —a— direct |

—+— preconditioner

20 o :

T/T,

10

\
0 10 20 30 40

Number of processors

Figure 5.9: Strong Scalability test using 25350 degrees of freedom. We test up to 40
processors. We report the scaling considering the worst timing on all the used processors.
In blue we plot the overall scalability, in green the scalability for the complete set of
matrix vector multiplications, in magenta the scalability for the setting time of FMM,
in cyan the scalability of the preconditioner building method. The red dots represents
the ideal scalability.

cost has led to increase scalability performances since we are able to get a scala-
bility of 13.93 against 9.69 we got in the previous section. Once again we can see
the scalability issue for the short range interactions. We can see however that the

5.4. STRONG SCALING ANALYSIS 85

preconditioner method scales almost optimally. We stress that the performance
of the matrix vector multiplication may be induced by the augmented number of
iteration needed by the iterative solver when MPI is involved. In order to verify
this fact in Figure [5.10 we study the scalability of a single matrix vector multipli-
cation. We can see that we get a much better scalability when we consider a single

Strong Scaling Analysis

40 | @ ideal ®
—o— vmult
descendent

30 —| —a— ascendent -

—x— setting

20 |- o :

T/T,

10 _ :

\
0 10 20 30 40
Number of processors

Figure 5.10: Strong Scalability test for a single FMM matrix vector multiplication
using 98306 degrees of freedom. We test up to 40 processors. We report the scaling
considering the worst timing on all the used processors. In blue with circles we plot
the overall scalability, in green with squares the scalability descending phase of matrix
vector multiplications, in magenta with stars the scalability of the setting time and in
black with triangles the scalability of the ascending phase of the algorithm. The red
dots represents the ideal scalability.

matrix vector multiplication. This means that the augmented computational cost
has effectively increased the performances of our hybrid MPI-TBB code. In par-
ticular we can get a speed up of 20.36, which is almost the double of what we got
in the previous section.

86 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

5.5 Weak Scaling Analysis

In this section we report two different weak scalability analysis. In Section
we consider a cost of O(N?), while in Section we consider a computational
cost of O(N).

5.5.1 Computational Cost O(N?)

In this section we keep constant the amount of computations for each processor.
Since we are performing a Boundary Element Method we consider a cost of O(N?).
We are executing global refinements, thus we increase by a factor 16 the number of
processors per cycle. This force us to perform a very coarse analysis since we use
16 nodes on Ulysses cluster at the last cycle. Moreover, since we use 393216 cells,
we stress that we use nodes with 160 GigaBytes of RAM since we are allocating

very big matrices for the preconditioner and the direct contributions. We report
in Figure the weak scalability analysis for our BEM-FMA algorithm.

We can see that we are able to get an optimal weak scalability up to 16 pro-

cessors. This is due to the fact that we are fully exploiting the TBB parallelism
on a single computational node. In fact, we can see that both the vmult time
and the direct one are scaling both than optimally. This is due to two different
motivations: firstly the FMM method has a computational cost of O(N), secondly
TBB cost may vary greatly depending on the number of threads. The first reason
explains the behaviour of vmult time, in fact, it is scaling with O(N) leading to a
superoptimal result considering a cost of O(N?). The second motivation explains
instead the non linear behaviour of the direct integral function. It has a computa-
tional cost of O(N?), but it is able to produce a superoptimal result for the TBB
internal characteristics.
However we can see that when we go for a MPI parallelisation we get much worse
results. As we have spotted out in Section [5.4] our parallel BEM-FMA does not
scale optimally, and we can see a confirmation from the weak analysis. In order to
get a better representation of the performances we report the analysis for a single
vmult operation in Figure [5.12]

We see that when we use only TBB paradigm we reach a superoptimal be-
haviour while when we use more than one computational node we report clearly
suboptimal behaviour. We can see however that we recover the same paralleli-
sation efficiency in weak and strong scalability. In fact, we get an efficiency of
roughly 30% in both cases.

5.5. WEAK SCALING ANALYSIS 87

Weak Scaling Analysis

!
10! | e ideal R
| —e— total |
B vmult a

—a direct
[[— preconditioner |

T/T,

10°

I Lol Lol
10° 101 102
Number of processors

Figure 5.11: Weak Scalability test for BEM FMA algorithm up to 393218 degrees of
freedom. We test up to 256 processors. We report the scaling considering the worst
timing on all the used processors. In blue we plot the overall scalability, in green the
scalability for the complete set of matrix vector multiplications, in magenta the scala-
bility for the setting time of FMM, in cyan the scalability of the preconditioner building
method. The red dots represents the ideal scalability.

5.5.2 Computational Cost O(N)

In this section we analyse the weak scalability of our BEM-FMA code consider-
ing its theoretical computational cost O(N). We have stressed in Section [5.5.1] that
we have a good scalability when we use a multithread paradigm, thus we expect
to recover the same in the present analysis. We report the overall weak scalability
results in Figure [5.13] While the time needed for the preconditioner assembling
has clearly a non optimal behaviour, we can see that up to 16 threads the BEM-
FMA algorithm presents a reasonable suboptimal weak scalability. We must keep
in mind that we are increasing the number of degrees of freedom together with the

88 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

Weak Scaling Analysis

° ideal
—6— vmult
100-5 - descendent g

—A— ascendent

—x— setting

10—0.5 L

I Lol L
10° 101 102
Number of processors

Figure 5.12: Weak Scalability test for a single FMM matrix vector multiplication using
up to 393218 degrees of freedom. We test up to 256 processors. We report the scaling
considering the worst timing on all the used processors. In blue with circles we plot
the overall scalability, in green with squares the scalability descending phase of matrix
vector multiplications, in magenta with stars the scalability of the setting time and in
black with triangles the scalability of the ascending phase of the algorithm. The red
dots represents the ideal scalability.

number of processors, thus the number of iterations required to solve the linear
system increase too. Therefore it is more significant to analyse the weak scalabil-
ity of a single vmult operation, as depicted in Figure [5.14 We see that the FMM
part of the code has a good weak scalability considering a multithread paradigm.
We can clearly see that when we use the hybrid MPI-TBB strategy, thus when
we require more than 16 processors, we no more have a computational order of
O(N). This may be due to two main reasons: we introduce some communication
overhead in the multipole algorithms, the ascending phase is not parallelised with
MPI paradigm.

5.6. COMPARISON WITH MPI ALGORITHM 89

Weak Scaling Analysis

| e ideal .

| —e— total |
vmult

102 | . -

- | —a— direct .

- | —+— preconditioner .

T/T,

10*

10Y

g\ L Lol ! Lol ! !
10° 101 102
Number of processors

Figure 5.13: Weak Scalability test for BEM FMA algorithm up to 393218 degrees of
freedom. We test up to 256 processors. We report the scaling considering the worst
timing on all the used processors. In blue we plot the overall scalability, in green the
scalability for the complete set of matrix vector multiplications, in magenta the scala-
bility for the setting time of FMM, in cyan the scalability of the preconditioner building
method. The red dots represents the ideal scalability.

5.6 Comparison with MPI algorithm

In this Section we want to sum up our considerations regarding the parallelisa-
tion of the BEM-FMA algorithm. In Section we have seen that the sole MPI
paradigm is not enough to reach an effective scalability. In fact, we have assessed
that the ascending phase of the algorithm quickly becomes a bottleneck.

The usage of a hybrid parallelisation, see [§, 20] strategy combining multithread
and MPI is necessary to get a proper code parallelisation. Therefore we have cho-
sen to implement a multithread strategy for the entire FMM using Intel Thread-
ing Building Block that ensures a very high reliability, and has been developed
explicitly for Object Oriented C++ library. We have maintained the same MPI

90 CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

Weak Scaling Analysis

2 |
10 | e ideal

—6— vmult

descendent
—A— ascendent

—x— setting

g\ L Lol ! L ! !
10° 101 102
Number of processors

10Y

Figure 5.14: Weak Scalability test for a single FMM matrix vector multiplication using
up to 393218 degrees of freedom. We test up to 256 processors. We report the scaling
considering the worst timing on all the used processors.In blue with circles we plot the
overall scalability, in green with squares the scalability descending phase of matrix vector
multiplications, in magenta with stars the scalability of the setting time and in black
with triangles the scalability of the ascending phase of the algorithm. The red dots
represents the ideal scalability.

parallelisation as in Chapter [l We have seen a substantial improvement in our
results since we are able to get a strong scalability efficiency of about 30%.

Moreover, the weak scalability analysis of Section has clearly pointed out that
our BEM-FMA code has quite good performance as long as we can increase the
thread to be used. However we have noted that the structure of the short range
interactions in the FMM is not straightforward to be parallelised. If we consider
Figure we can see that the direct interaction present a suboptimal behaviour
while in Figure [3.3| we see that the same kind of interactions scales almost op-
timally. This difference is due only to the code structure, in the FMM case we
have to assess the block, inside the octree, to be considered in such operation, this

5.6. COMPARISON WITH MPI ALGORITHM 91

is an extremely complex action and actually TBB needs a lot of synchronisation
overheads to handle it. In standard BEM we can manually split the cycle over the
degrees of freedom and we can fully exploit the embarrassingly parallel structure
of our equations.

92

CHAPTER 5. PARALLEL FMA WITH MPI AND TBB

Chapter 6

Conclusions

We have developed an efficient parallel solver for the Laplace equation by means
of a Boundary Element Method. The code is able to automatically subdivide the
computational domain between an arbitrary number of processors. This has been
possible with the usage of METIS partitioning tool, which is wrapped inside the
deal.IT library. Then we have used the Trilinos library to manage to communi-
cation pattern between the processors.

The parallelisation strategy we have proposed is particularly effective for the as-
semblage of the system matrix. We have observed an optimal strong scalability
up to an arbitrary number of processors. We stress that at the time being the
real bottleneck of the BEM is becoming the solver cycle. A research of an optimal
preconditioner for the system matrix is already underway.

In order to achieve a higher level of computational efficiency we have proposed the
coupling with a Fast Multiple Method. We have seen that, in order to achieve a
proper parallelisation of the BEM-FMA algorithm we need a hybrid multithread
multiprocessor strategy. We have developed a full parallelisation using MPI to-
gether with Intel Threading Building Blocks.

Finally we have carried out an optimal condition for the setting of the FMM. We
have proved that such a setting increases dramatically the efficiency of our code.
We believe that a further efficiency improvement may come from the parallelisa-
tion of the hierarchical tree. At the moment a feasibility study for such an issue
in underway. We want to stress that the only loss of accuracy of our BEM-FMA
method is the order of the expansion we use to approximate the kernel. We don’t
use any cut off radius to speed up the computations and this makes our code ex-
tremely accurate.

Finally we stress that our code makes extensive use of parameter files. In fact it
is possible to set up a new simulation simply changing such files. This has been
possible with the usage of the deal21kit library. This is essential in order to
reduce the compilation timings. Moreover it makes our code easier to use. We

93

94 CHAPTER 6. CONCLUSIONS

believe that this is an essential tool in order to reach a wider range of users, which
is one of the most important principles we depicted in Section (3.1}

Bibliography

1]

S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient Management
of Parallelism in Object-Oriented Numerical Software Libraries. In Modern

Software Tools for Scientific Computing, pages 163-202. Birkhauser Boston,
Boston, MA, 1997.

W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier,
B. Turcksin, and T. D. Young. The \texttt{deal.Il} Library, Version 8.2.
Archive of Numerical Software, 3(1), Dec. 2015.

L. Barba and R. Yokota. How Will the Fast Multipole Method Fare in the
Exascale Era? SIAM News, 46(6):8-9, 2013.

C. A. Brebbia. The Boundary Element Method for Engineers. Pentech Press,
1978.

C. Fochesato and F. Dias. A fast method for nonlinear three-dimensional free-
surface waves. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 462(2073):2715-2735, 2006.

V. K. George Karypis. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. 20(1):359-392, 1998.

N. Giuliani, A. Mola, L. Heltai, and L. Formaggia. Engineering Analysis with
Boundary Elements FEM SUPG stabilisation of mixed isoparametric BEMs
: Application to linearised free surface fl ows. Engineering Analysis with
Boundary Elements, 59:8-22, Oct. 2015.

L. Greengard and W. Gropp. A parallel version of the fast multipole method.
Computers & Mathematics with Applications, 20(7):63-71, 1990.

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Jour-
nal of Computational Physics, 73(2):325-348, 1987.

95

96

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

BIBLIOGRAPHY

S. T. Grilli, P. Guyenne, and F. Dias. A fully non-linear model for three-
dimensional overturning waves over an arbitrary bottom. International Jour-
nal for Numerical Methods in Fluids, 35:829-867, 2001.

M. a. Heroux, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro,
J. M. Willenbring, A. Williams, K. S. Stanley, R. a. Bartlett, V. E. Howle,
R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, and
R. P. Pawlowski. An overview of the Trilinos project. ACM Transactions on
Mathematical Software, 31(3):397-423, 2005.

M. Kronbichler, T. Heister, and W. Bangerth. High accuracy mantle con-
vection simulation through modern numerical methods. Geophysical Journal
International, 191(1):12-29, 2012.

I. Lashuk, G. Biros, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,
R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, and D. Zorin. A massively
parallel adaptive fast multipole method on heterogeneous architectures. Ieee-
Micro, 55(5):101, 2012.

A. Mola. Model for Olympic Rowing Boats. PhD thesis, Politecnico di Milano,
2009.

V. Rokhlin. Rapid Solution of Integral Equations of Classical Potential The-
ory. Journal of Computational Physics, 60(1983):187-207, 1983.

Y. Saad and M. H. Schultz. GMRES: A Generalized Minimal Residual Algo-
rithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856-869, 1986.

A. Sartori, N. Giuliani, M. Bardelloni, and L. Heltai. deal2lkit : a Toolkit
Library for High Performance Programming in deal . II. submitted, pages
1-26, 2015.

J. C. F. Telles. A Self-Adaptive Co-ordinate Transformation For Efficient
Numerical Evaluation of General Boundary Element Integrals. International
Journal for Numerical Methods in Engineering, 24:959-973, 1987.

B. Turcksin. WorkStream a design pattern for multicore-enabled finite ele-
ment computations. submitted, pages 1-24, 2015.

R. Yokota and L. Barba. A Tuned and Scalable Fast Multipole Method as a
Preeminent Algorithm for Exascale Systems. 2011.

	Introduction
	BEM for the Laplace Equation
	Basic notation and governing equations
	Boundary Integral Formulation of the governing equations and BEM
	Discretization procedure for BIE
	Geometry and variable representations
	BEM: collocation technique
	Imposition of the Boundary Condition
	Preconditioner for the Linear System

	Parallel BEM
	Implementation Principles
	Code Description
	Code parallelisation
	METIS Grid Partitioning
	IndexSet Creation
	Trilinos Parallelisation
	BEM Algorithm

	Strong Scaling Analysis
	Strong Scalability up to 40 processors

	Weak Scaling Analysis
	Computational Cost O(N2)
	Computational Cost O(N)

	PETSc
	Sparsity Patterns
	PETSc Trilinos Comparison on a single processor
	PETSc Scalability

	Parallel FMA with MPI paradigm
	The Fast Multipole Method
	FMM in a standard N-Body problem
	FMM in Boundary Element Method
	Description of the Fast Multipole Method

	Existing Code
	Existing Code Description
	Serial Code Profiling

	Code Parallelisation Strategy
	Close range interactions
	Ascending Phase
	Descending Phase
	Preconditioner Setting

	Strong Scaling Analysis
	Preliminary Multiple to Local Operations Work Balance
	Strong Scaling up to 40 Processors

	Nodes per block
	Optimal Nodes per Leaf
	Strong Scalability with 60 nodes per leaf

	Memory Consumption

	Parallel FMA with MPI and TBB
	Intel TBB Description
	TaskGroup
	WorkStream

	Implementation
	Direct Interactions
	Ascending Phase
	Descending Phase
	Final Preconditioner Setting

	Optimal Block Size Analysis
	Theoretical analysis
	Block Size Results

	Strong Scaling Analysis
	Strong Scaling with 25350 dofs
	Strong Scaling with 98306 dofs

	Weak Scaling Analysis
	Computational Cost O(N2)
	Computational Cost O(N)

	Comparison with MPI algorithm

	Conclusions

