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1
I N T R O D U C T I O N

For many years the performance of scientific softwares has been one of the keys to expand
the frontiers of science. The case of Computational Chemistry is not an exception. Quantum
chemists all around the world have worked intensively to produce faster and more efficient
software in order to be able to study bigger and more complex systems.

Hartree-Fock (HF) molecular orbital theory is one of the fundamental pillars of Quantum
Chemistry, and as such, it has been in development for many years. This constant development
includes improved algorithms to accelerate the self consistent field (SCF) convergence, more
efficient algorithms to perform integration [21], and lately, the implementation of all those
algorithms using parallel techniques, such as, MPI (Message Passing Interface), OpenMP
(Open Multi-Processing), CUDA, among others. Nowadays, HF can be applied to molecules
containing hundreds of atoms in commodity computers.

Discussion on HF theory is not the main goal of this work, but let us to recall some of the HF
equations that are needed to illustrate the work done here. More detailed information on HF
theory can be found in reference [20].

The single-particle HF equation is defined as

F (1)|χa(1)〉 = εa|χa(1)〉 (1)

For particle (1) with single particle wave-function χa and Fock operator F expressed as

F (1) = T̂ (1) + V̂ (1) + Ĵ(1)− K̂ (1) (2)

where T̂ (1) is the kinetic energy operator, V̂ (1) the electron-nucleus potential energy operator
and Ĵ(1)− K̂ (1) are the coulomb and exchange operators respectively. This HF equation can
be solved iteratively through the SCF procedure [20].

In this work we will focused in the Coulomb operator Ĵ which is defined as

Ĵb(1) = ∑
b 6=a

∫ |χb(2)|2
r12

d3r2 (3)
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I N T R O D U C T I O N 7

The expectation value of Ĵb(1) leads to the two-electron Coulomb integral

〈χa(1)|Ĵb(1)|χa(1)〉 = Iaa,bb =
∫

χa(1)χa(1)χb(2)χb(2)

r12
d3r1d

3r2 (4)

which is known to be the biggest bottleneck in HF implementations. Finally, χi is expressed as
a linear combination of basis functions φµ, such as,

χi =
k

∑
µ=1

Cµiφµ (5)

A popular choice of basis functions φµ are the Gaussian type orbitals (GTO) since they allow an
efficient evaluation of molecular integrals such as the two-electron Coulomb integral. Efficient
strategies for evaluating this kind of integrals over GTOs have been developed, including,
screening and density fitting schemes [19] [21] [10] [8].

Despite their success, GTO basis-sets have disadvantages, such as the poor description of
cusps and linear dependence of large basis-sets which can lead to poor conditioned equations,
loss of precision, and poor convergence in the iterative procedure. Additionally, GTO basis-set
also causes the so called basis-set superposition error, which can impact in the reliability of the
outcome[4].

The use of alternative basis functions results in more complex and expensive integration
procedures, that could not have been afforded for scientist for many years. Nowadays with
the growth of computational power and the use of accelerators, such as GPUs or Xeon PHI in
computational sciences, the use of this alternatives starts to be feasible[16].

The basis-set-free methods allow a free choice of the basis functions since they offer numerical
integration for any arbitrary integrand by discretization of the molecular space on spherical
grids, avoiding nuclear singularities and offering, depending on the basis function, a correct
description of the nuclear cusp.

In this work we have implemented the basis-set free calculation of the Coulomb operator (two-
electron Coulomb integrals) and the numerical integration for an arbitrary integrand F (r) over
the molecular domain including OpenMP parallelization and massively parallelization on CUDA-
capable devices.



2
B AC K G R O U N D

In this chapter we will discuss about the fundamental concepts used in this work.

2.1 M U LT I - C E N T E R N U M E R I C A L I N T E G R ATO R

The following describes briefly the multi-center numerical integration method proposed by
Becke et. al. [2].

The aim of this method is to approximate integrals of the type

I =
∫

F (r)d3r (6)

where F (r) is an arbitrary integrand, by a discrete numerical summation of the form

I = ∑
i

AiF (ri ) (7)

where ri and Ai are the grid points and their respective integration weights. In a multi-center
system such as a polyatomic molecule, the integrand F (r) may be decomposed into single-
center components Fn(r)

Fn(r) = wn(r)F (r) (8)

such that

F (r) = ∑
n
Fn(r) (9)

so that the integral of eq. 6 is reduced to a sum of single-center integrations In over each nuclei
in the system.

I = ∑
n
In (10)

8
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Figure 1: Relative nuclear weights, the color scale shows the value of the function wn(r)

where

In =
∫

Fn(r)d3r (11)

The relative weight function wn(r) is assigned to each nucleus n such that, for all r

∑
n
wn(r) = 1 (12)

and such that each wn(r) has the value of 1 on the vicinity of its own nucleus, but vanishes
uniformly near to other nucleus. Figure 1 illustrates the behavior of the relative weight function.

The definition of function wn(r) depends on the atomic size, the internuclear separation and the
distance between point r and nuclei n. Further details on the derivation of the relative nuclear
weights can be found in reference [2].

2.1.1 Single-center subintegrations

The procedure for computing the single-center integrals In involves both radial and angular
quadrature for a spherical polar system (r , ϑ, ϕ) on nucleus n. The volume integral for a single
center component Fn(r) is therefore expressed as

In =
∫ ∫ ∫

Fn(r , ϑ, ϕ)r2 sin ϑdrdϑϕ (13)
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This three-dimensional integral can be calculated using Gauss-type quadrature for two dimen-
sional integration on the surface of the unit sphere and therefore the integral of eq. 13 can be
rewritten as

In =
∫ ∫

Fn(r , Ω)r2drdΩ (14)

where Ω denotes the solid angle.

The integration over solid angle Ω is carried out using Lebedev grids [15]. Lebedev grid is
characterized by its rank `quad and is designed to integrate spherical harmonics Y`m exactly up
to ` = `quad .

Finally radial integration is performed using Gauss-Chebyshev quadrature of second kind. How-
ever, the standard Gauss-Chebyshev integration interval −1 < x < +1 must be mapped into
the semi-infinite interval 0 < r < ∞. This mapping can be done through the following coordinate
transformation

r = rm
1 + x

1− x
(15)

where rm corresponds to the half of the atomic radius for all atoms [5] except for the hydrogen
atom in which case the factor 1/2 is not applied.

2.2 C A L C U L AT I O N O F C O U L O M B I N T E G R A L S

We now briefly discuss the methodology for the calculation of the Coulomb integral of equation
4, 4 using the methodology described in reference [3] and [18].

Let us recall the Poisson’s equation

∇2V = −4πρ (16)

for the potential V (r) of an arbitrary distribution ρ(r) in a multi-center i.e. polyatomic system.
Solving equation 16 is equivalent to solve the integral

V (r1) =
∫

ρ(r2)

r12
d3r2 (17)

for all points r1. Combining the solution of Poisson’s equation and the multi-center numerical
integrator described in Section 2.1 the two-electron coulomb integral

Iαβ,γν =
∫ ∫ φα(1)φβ(1)φγ(2)φν(2)

r12
d3r1d

3r2 (18)
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for basis functions φα can be calculated by solving the Poisson’s equation for potential Vαβ of
the charge distribution φαφβ and then evaluate the integral

Iαβ,γν =
∫

Vαβφγφνd
3r (19)

which can be solved using the quadratures explained on Section 2.1.

2.2.1 Solution of Poisson’s equation

As explained above, any arbitrary integrand can be decomposed in single-center functions, so
the charge distribution ρ(r) can be decomposed as

ρ(r) = ∑
n

ρn(r) (20)

ρn(r) = wn(r)ρ(r) (21)

such that each single-center component of the charge distribution leads to a n single-center
Poisson’s equation of the form

∇2V (n) = −4πρn (22)

so that the total potential V can be calculated by summing all V (n) potentials.

To solve the single-center Poisson’s equations 22 one may express the single-center charge
distribution as a multi-polar expansion of the form

ρn(r , ϑ, ϕ) = ∑
`m

ρ`m(r)Y`m(ϑ, ϕ) (23)

where Y`m(ϑ, ϕ) corresponds to a real spherical harmonics functions and ρ`m(r) are functions
of the r variable only. ρ`m(r) functions can be calculated through orthogonality of the spherical
expansion as follows

ρ`m(r) =
∫

Ω
ρn(r , ϑ, ϕ)Y`m(ϑ, ϕ)dΩ (24)

such integrals can be calculated using the already mentioned Lebedev quadratures [15]. In
principle, the multi-polar expansion is infinite, however the truncation order of the expansion
lmax has been chosen to be the half of the order of the Lebedev quadrature lquad

lmax = lquad/2 (25)
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In a similar fashion the potential V (n) can be expanded as

V (n)(r , ϑ, ϕ) =
lmax

∑
`m

r−1U`m(r)Y`m(ϑ, ϕ) (26)

Replacing those expansions into eq. 22 we obtain

∂2

∂r2
U`m −

l(l + 1)

r2
U`m = −4πrρ`m (27)

The equations for U`m are solved by a finite-difference method.

In order to simplify the calculation of the differential equations 27 we map the r points of equa-
tion 15 into a uniform grid z with the following coordinate change

z =
arccos

(
r−rm
r+rm

)
π

(28)

Using chain rule we can convert equation 27 from the r variable to the z variable, as

∂2

∂z2
U`m

(
∂z

∂r

)2

+
∂

∂z
U`m

∂2z

∂r2
− l(l + 1)

r2
U`m = −4πrρ`m (29)

with r equal to

r = rm
1 + cos(πz)

1− cos(πz)
(30)

We now discuss the boundary conditions. At r = ∞ (z = 0) all U`m has the value of zero except
for U00 in which case

U00(r → ∞) =
√

4πqn (31)

where qn is the total charge of the single-center source density

qn =
∫

ρnd
3r (32)

On the other hand at r = 0 (z = 1) all the U`m functions take the value of zero without exception.

Finally, after solving equation 27 for U`m equations, the potential V (r) can be reconstructed
using equation 26.



3
N A P M O PAC K AG E

The computational implementation of the theory explained in Chapter 2 is called nAPMO
(numerical Any Particle Molecular Orbital) which is intended to be the numerical version of
LOWDIN package [9]. In this section we describe the implementation of the package developed
in this work.

nAPMO code was written mainly in Python and C languages. The use of Python allows easier
development and scripting, as well as offering different tools to visualize and to customize the
code. However pure python code has poor performance for numerical calculations. That is why
C coding become important due to the fact that is faster and it can be easily parallelized.

The overall code was written from scratch during the MHPC program. To this day nAPMO
contains more than 10.000 lines of code, the following is the outcome of cloc command

http://cloc.sourceforge.net v 1.64

-------------------------------------------

Language files blank comment code

-------------------------------------------

C 10 644 832 6045

JSON 6 1 0 2097

Python 35 722 861 1609

CUDA 4 96 62 309

C/C++ Header 13 124 221 294

make 6 55 39 197

-------------------------------------------

SUM: 74 1642 2015 10551

-------------------------------------------

The code can be compiled using the standard make command in three different ways; SERIAL,
OMP (OpenMP), and CUDA. Table 1 summarizes the requisites to compile and run nAPMO.

Regardless of the compilation flavor, the user interface is made such that the OMP and CUDA
implementations are totally transparent from the user perspective. Now we will discuss the
structure of the program.

13
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Requisites SERIAL OMP CUDA

C compiler (GCC, INTEL)
√ √ √

SciPy
√ √ √

libGSL
√ √ √

libCBLAS
√ √ √

OpenMP
√ √

CUDA ToolKit
√

Table 1: Requisites to compile and run nAPMO

3.1 N A P M O S T RU C T U R E

The program is divided in two main parts; the C library called napmo library and the Python
interface. The figure 2 shows the file-system structure of the package.

nAPMO

docs

napmo

data

grids

system

tests

src

include

Figure 2: Structure of nAPMO package

3.1.1 Python Interface

The Python interface consists of 3 modules, system, grids and data. The system mod-
ule manages the molecular system interface. For instance, the following code creates a
MolecularSystem object for H2 molecule.

from napmo.system.molecular_system import MolecularSystem

molecule = MolecularSystem (‘H2’)

molecule.add_atom(‘H’, [0.0,0.0,0.371])

molecule.add_atom(‘H’, [0.0,0.0,0.371])

molecule.show()
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===================================================

Object: MolecularSystem

---------------------------------------------------

AtomicElement: atoms number of e-: 2

Symbol Z origin (Bohr) Basis-set

H 1 [ 0. 0. 0.69919862] None

H 1 [ 0. 0. -0.69919862] None

---------------------------------------------------

The data module handles all information related to atomic elements constants, elementary
particles and fundamental constants. It also contains different kind of basis-sets. Additional
basis-sets and supplementary information can be added using json format.

Finally, the module grids contains the implementation of Gauss-Chebyshev grids (radial),
Lebedev grids (angular) and different level of abstraction of grids such as ‘atomic’ for atoms
and ‘becke’ for molecules. Additionally the module grids contains a Poisson solver to calculate
Coulomb Potentials. As an example, the following code builds the grid represented in figure 1.

from napmo.grids.becke import BeckeGrid

angularPoints = 590

radialPoints = 2

grid = BeckeGrid(molecule, radialPoints, angularPoints)

Once created, the grid object contains all the data required to perform numerical integration or
to solve Poisson’s equation for a given function.

3.1.2 C library

The C library is designed to work along with python objects through ctypes library. This means
that the corresponding structures on C were created to match the tuple list fields coded in
the class definition on Python interfaces. For instance, the definition

class RadialGrid(Structure):

_fields_ = [

(‘_size’, c_int),

(‘_points’, POINTER(c_double)),

(‘_weights’, POINTER(c_double)),

]

corresponds to the C structure

struct radial {
int size; // number of grid points.

double *points; // points of the grid

double *weights; // weights of the grid
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};
typedef struct radial RadialGrid;

The memory allocation is done in Python through numpy arrays [22]. This means that for each
‘ member’ POINTER(c type) variable in fields list, exist one self.member variable of the type
numpy.ndarray. The ctypes pointers are set to point the data of its correspondent numpy array.
The following code illustrates the allocation and instantiation of the C pointer.

import numpy as np

def __init__(self, size, atomic_symbol):

self.points = np.empty(self.size, dtype=np.float64)

self._points = np.ctypeslib.as_ctypes(self.points)

Note that the memory allocation is done only once, in the initialization of the object, and that
the self. points pointer is pointing to the data of the self.points numpy array. This strategy
of memory allocation allows to access the data in a numpy fashion and to take advantage of
the huge SciPy library [14] or visualization tools such as Matplotlib [13]

New functions can be added to the C library and be available on Python interfaces by importing
the library in the following manner

from napmo.system.cext import napmo library

However a Python function prototype may be needed to call the new C function. For example,
for the C function,

void angular spherical expansion(AngularGrid *grid,

const int lmax,

const int size f,

double *f,

double *output);

the corresponding Python function prototype looks like

import numpy.ctypeslib as npct

array 1d double = npct.ndpointer(dtype=np.double, ndim=1,

flags=‘CONTIGUOUS’)

array 2d double = npct.ndpointer(dtype=np.double, ndim=2,

flags=‘CONTIGUOUS’)

c func = napmo library.angular spherical expansion

c func.restype = None

c func.argtypes = [POINTER(AngularGrid),

c int,

c int,
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array 1d double,

array 2d double]

So the function can be called as

c func(byref(self.angular grid), lmax, size, f, output)

Note the special case of the array 2d double type. Even if it is a two dimensional numpy array,
this will be used in C code as 1D array. This procedure is only needed if the new functions from
the C library need to be called from Python.

Additional details on the C implementation and parallelization will be given in Chapter 4 and
additional details on the application programming interface (API) can be found in ref [17].

3.2 R E S U LT S

In order to check the correctness of the implementation, several test cases have been designed
for both numerical multi-center integration and for two electron Coulomb integration.

3.2.1 Multi-center integration

As a first test case we choose the integrand

F (r) = ρ (33)

for diatomic systems H2, Li2, Be2, B2, C2, N2 and O2 at their equilibrium internuclear separation.

For convenience the total density ρ has been modeled as the sum of free atomic densities
optimized at HF level of theory [9] using 6−31+G** basis-set [12].

Table 2 shows the results on the calculation using small grids.

Even though small grids were used in this test, the integration provides an accuracy of five
significant figures. Increasing the grid size will produce more accurate results.

In order to explore the error among different grid sizes, the integration of ρ was performed for
the system O2 using all possible combination among radial and angular points, the results can
be seen in the figure 3.

3.2.2 Two electron Coulomb integration

As a second test, we consider the diatomic molecule of H2. In particular, the two-electron
Gaussian integral over a minimal basis STO−3G [11]. Two-electron integration over GTOs can
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Radial Points
System Exact 20 25 30

H2 2.0 1.99995 1.99998 2.00000
Li2 6.0 6.00011 5.99999 6.00005
Be2 8.0 7.99931 7.99975 8.00001
B2 10.0 9.99813 9.99967 10.00002
C2 12.0 11.99808 11.99991 12.00003
N2 14.0 13.99942 14.00034 14.00010
O2 16.0 16.00007 16.00007 15.99991

Table 2: Numerical integration of ρ(r) for different diatomic molecules. 110 angular points were
used in this calculation.

Figure 3: Averaged error calculating
∫

ρ(r) for O2 molecule with different grid sizes. Color in log
scale.
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Mesha Coulomb Integral (a.u.)

40 × 50 0.77561
60 × 110 0.77506

100 × 146 0.77477
180 × 170 0.77465
280 × 194 0.77462

Exactb 0.77461
a Radial × angular points per atom.
b Calculated with LIBINT

Table 3: Two-electron Coulomb integration over STO−3G basis-set for H2 molecule.

be performed analytically, so the exact value of the integration can be calculated by using well
known libraries. In our case we have calculated the analytical integrals using LIBINT library [21].

The results are presented in table 3. As shown in the table, the accuracy of the integration
is around 10−5, for small grids. As in the previous case of ρ integrand, the accuracy can be
improved by increasing the number of grid points.

Once we have checked the correctness of nAPMO results, we proceed to discuss the perfor-
mance and the parallelization strategy in the next chapters.



4
P E R F O R M A N C E A N D PA R A L L E L I Z AT I O N

So far, we have discussed the theory behind nAPMO, and the philosophy used to implement
the code. In this Chapter we will discuss about the strategy adopted to achieve an optimal
parallelization with OpenMP (OMP) and CUDA.

Fist to all let us to describe the configuration used to perform all the calculations and bench-
marking.

4.1 T E S T I N G C O N F I G U R AT I O N A N D E N V I R O N M E N T

4.1.1 System

All the test were performed in the Ulysses-SISSA cluster, Intel Xeon E5−2680 V2 2.80 GHz Ivy
Bridge processor 10 cores 20 Threads.

CUDA benchmarks were carried out on a NVIDIA GeForce GTX 860M Maxwell compute ca-
pability 5.0 (5 Multiprocessors, 128 CUDA Cores/MP), and on a NVIDIA Tesla K20m compute
capability 3.5 (13 Multiprocessors, 192 CUDA Cores/MP).

4.1.2 Compilers

The C part of the code is compiler-independent, that means that the code can be compiled
with any C compiler. GNU GCC compiler from version 4.4.7 to 5.0 and Intel compiler version
16.0.1 were tested. However, the results reported in this work are those obtained with the binary
generated with GCC 4.4.7 compiler along with the following flags:

• −O2 level of optimization.

• −fPIC to produce position-independent code.

• −ffast-math

• −fompenmp for OpenMP support in OMP and CUDA.

• −shared for the linking process to generate the shared library.

20
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The CUDA code was compiled with NVCC compiler version 7.5 with the same flags used on
GCC compiler and the following additional flags:

• -arch=sm 50 for Maxwell card

• -arch=sm 35 for Tesla card

4.2 M U LT I - C E N T E R I N T E G R ATO R

In this section we will analyze the performance of the multi-center numerical integrator, and
its subsequent parallelization with OpenMP and CUDA. To start this analysis, let us first de-
scribe the general algorithm adopted to perform the integration. Figure 4 shows the algorithm
implemented.

Start

Input

Build BeckeGrid

Build AtomicGrid

Build AngularGrid

Build RadialGrid

Calculate
Becke weights

Calculate Integrand

Integral

Stop

Figure 4: Algorithm to perform multi-center numerical integration

As can be seen in the flowchart, the integration is composed of four main steps; load data, build
the molecular grid (BeckeGrid), calculate the integrand F (r) in all points of the grid and, finally,
perform the reduction of the integral (Integrate).
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Having explained the implemented strategy to perform the integration, we will analyze the perfor-
mance of the serial code in order to identify suitable spots were the code should be parallelized
to increase the performance.

4.2.1 Serial performance

The test to analyze the performance of the serial code is the calculation of
∫

ρ(r) for the diatomic
molecule of H2 using 6−31+G** basis-set. The size of the grid is 1202 angular by 1000 radial
points. The following is the profiling of ρ(r) integration:

85036 function calls (82212 primitive calls) in 2.575 sec

Ordered by: internal time

ncalls tottime cumtime filename:lineno(function)

1 1.986 1.987 density.py:31(density_full_...)

1 0.155 0.155 becke.py:85(_becke_weights)

1 0.124 0.356 becke.py:41(__init__)

2 0.074 0.078 atomic.py:29(__init__)

2 0.057 0.119 atomic.py:89(integrate)

tottime is the total time spent in the given function (and excluding time made in calls to
sub-functions), while cumtime is the cumulative time spent in this and all sub-functions (from
invocation till exit).

As expected, the most time consuming part is the calculation of the integrand, which for
this particular test is density.py. Subsequently, another important amount of time is spent
in the the calculation of Becke weights and in the construction of the molecular and atomic grids.

The most obvious target for parallelization is the calculation of the integrand. However, since
the integrator must be generic, i.e. for any arbitrary integrand, the construction of the grids and
the calculation of Becke weights as well will be parallelized.

4.2.2 OpenMP implementation

Having delimited the scope of the parallelization, we will start to explain the implementation of
the parallelization and its results.

4.2.2.1 Grids construction

For the molecular grid construction, as observed in figure 4, the algorithm includes the construc-
tion of AngularGrid and RadialGrid objects which compose the AtomicGrid instance. The
pseudo code to build the AtomicGrid object is
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loop from i = 0 to AngularGrid.npoints

loop from j = 0 to RadialGrid.npoints

each grid coordinate is:

AngularGrid.point[i] * RadialGrid.point[j]

+ atomic origin

each grid point weight is

AngularGrid.weight[i] + RadialGrid.weight[j]

so the OpenMP directive #pragma omp parallel for can be added above the loop over the
number of angular points, which is typically greater than the number of radial points in most of
the cases,

#pragma omp parallel for default(shared) private(i, j, ...)

loop from i = 0 to AngularGrid.npoints

loop from j = 0 to RadialGrid.npoints

each grid coordinate is:

AngularGrid.point[i] * RadialGrid.point[j]

+ atomic origin

each grid point weight is

AngularGrid.weight[i] + RadialGrid.weight[j]

The calculation of Gauss-Chebyshev points (RadialGrid) has been parallelized in a similar way,
over the number of radial points, as well as the Lebedev grid (AngularGrid), but of course, the
latter over the number of angular points.

4.2.2.2 Becke weights

The calculation of the Becke grids is an expensive calculation since for each grid point all centers
in the system must be taken into account. Figure 5 offers a graphical description of the geometry
used to calculate the weights. A and B are centers, i.e. atoms, and i corresponds to a grid point.
riA and riB corresponds to the distance from i to centers A and B respectively, while rAB is the
inter-nuclear distance.

A Bi

riA riB

rAB

Figure 5: Geometrical description for Becke-weight calculation of point i in a system with centers
A and B
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The quantities riA, riB and rAB are used to calculate the coordinate µAB in the following manner

µAB =
riA − riB

rAB
(34)

This coordinate is then passed to a function called step function, which returns the contri-
butions needed to calculate the weights. More detailed description of the form of the step

function can be found in reference [2].

The algorithm to calculate those µAB coordinates and in consequence the Becke weights is

// Calculate internuclear distances

for i = 0 to number of atoms

for j = 0 to i - 1

R_ij[counter] = atomic origin[i] - atomic origin[j]

// Calculate the Becke weights

for atom = 0 to number of atoms

for point = 0 to number of grid points (npoints)

for i = 0 to number of atoms

for j = 0 to number of atoms

if i == j: continue

r_i = distance point - i

r_j = distance point - j

calculate mu_ij

calculate s = s(mu_ij) //step function

cell_function *= s

sum += cell_function

if iatom == atom: P = cell_function

weight[atom * npoints + point] = P / sum

Three of the four loops are over the number of centers (atoms) in the system, which of course
depends on the system size, while the other one is over the number of grid points of a given
center. Regardless of the system size, we can say that the loop over the number of grid points
is greater than the number of centers in the system. In consequence, the loop over the number
of grid points has been chosen for parallelization. The OpenMP directive added to achieve this
parallelization is

#pragma omp parallel for default(shared) \

firstprivate(atom, npoints, idx) private(point, i, j, \

r_i, r_j, mu_ij, s, cell_function, sum, P)
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4.2.2.3 Calculation of the Integrand

As said before, the parallelization strategy for the calculation of the integrand must be inde-
pendent of the integrand itself. Because of this, the problem reduces to the calculation of any
arbitrary function for each point i in the grid. Such as in the previous case of Becke weights
calculation, the parallelization will be over the number of grid points.

From the above discussion it can be concluded that, in order to calculate efficiently integrals
with this method, any new integrand must be implemented and parallelized. Details on the
implementation of new functions inside the nAPMO package can be found in Chapter 3.

4.2.2.4 Results

We now show the performance improvements provided by the OpenMP parallelization described
in the previous sections. As in the serial performance analysis, the integrand is ρ(r) but in this
case for the diatomic molecule of O2. To explore the scaling across different grid sizes, four
different grids were chosen. Figure 6 shows the scaling of the time and speedup versus the
number of threads for each grid.

As can be seen in the plot, linear scaling is reported up to 20 threads for the biggest grid.
However, for smaller and more realistic grids, the speedup scales linearly up to 8 or 4 threads
for the smallest one. The reason of this behavior is related with the ratio between the serial and
parallel zones and its dependency on the grid size.

Table 4 shows the OpenMP analysis performed with Intel VTune amplifier [6] for difference grid
sizes. As can be seen in the table, the serial part of the code becomes more relevant for small
grid sizes, affecting the expected speedup. The theoretical speedup S has been calculated
using the Amdahl’s Law [1]

S =
1

rs +
rp
n

(35)

where rs + rp = 1 and rs and rp represents the ratio of the sequential and parallel portion in one
program executed over n threads.

Grid Size
OpenMP analysis a b c d

Serial Time (%) 69.2 35.9 23.5 13.0
Parallel Region Time (%) 30.8 64.1 76.5 87.0
Theoretical speedup 1.37 2.28 3.02 4.19
Achieved speedup 1.77 2.66 2.90 3.47

Table 4: Intel VTune amplifier OpenMP (8 threads) analysis for the integration of ρ(r) molecule
O2. 6−31+G** basis-set. Grid sizes (angular × radial points): a: 1202×100, b:
1202×500, c: 1202×1000, d: 5810×1000.
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Figure 6: Time and speedup vs number of threads for the integration of ρ(r) for O2 molecule
using different grid sizes. Basis-set used 6−31+G**.
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In the case of small grids (a and b) the speedup is effected by caching effects, explaining why
the the achieved speedup is higher than the theoretical.

4.2.3 CUDA implementation

Consistently with the profiling results for the serial code, Section 4.2.1, the calculation of Becke
weights, the calculation of the integrand and the integration were chosen to be parallelized with
CUDA. The implementation has been done in double precision to preserve accuracy.

Since memory management is critical in CUDA programming model [7], the data structure
used in CUDA implementation is different to the C/OpenMP version. The first consideration
is that device’s global memory is accessed via 32−, 64−, or 128−byte memory transactions,
so the data types used must meet those alignment conditions (i.e must be multiple of those
transaction sizes) to avoid memory transfer overhead.

CUDA toolkit provides a set of data structures that meet with the aforementioned requirements.
One of those data structure is double2. The following code illustrates this data structure.

struct __align__(16) {
double x;

double y;

};

That kind of structures can improve the efficiency of memory access as fewer accesses are
needed for the same amount of data handled. Along double2 another built-in vector types are
available, such as int2, float4, among others.

The proposed data structure for BeckeGrid using built-in vector CUDA data types is as follows

struct _becke_cuda {
int2 gridDim; // Dim of the grid (radial, angular)

double2 *xy; // coord x and y.

double2 *zw; // coord z and weights.

};

Additional memory management considerations were taken into account, such as the use of
shared memory. For instance, in the case of atomic additions, the performance improves dra-
matically by doing the reduction among the threads within a block using a shared array and then
perform the reduction among the blocks through global memory. The following code illustrates
the described two-step reduction.

const unsigned int i = __umul24(blockIdx.x, blockDim.x)

+ threadIdx.x;

__shared__ double temp[THREADS_PER_BLOCK];

__shared__ double sum_block;
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temp[threadIdx.x] = 0.0;

sum_block = 0.0;

if (i < size) {
temp[threadIdx.x] += work[i] * weights[i];

}
__syncthreads();

atomicAdd(&sum_block, temp[threadIdx.x]);

__syncthreads();

if (threadIdx.x == 0) {
atomicAdd(integral, sum_block);

}

The shared memory was also used to reduce the global memory load operations of intensively
used data or data used for all threads simultaneously. For example,

__shared__ double buffer[THREADS_PER_BLOCK];

function_value = 0.0;

for (int i = 0; i < n_cont; ++i) {
for (int j = threadIdx.x; j < n_cont; j+=THREADS_PER_BLOCK) {

buffer[j] = dens[i * n_cont + j];

}
__syncthreads();

temp_val = 0.0;

for (int j = 0; j < n_cont; ++j) {
temp_val += basis_val[j] * buffer[j];

}

Finally, splitting the code into smaller kernels was done to reduce the amount of registers
needed for each kernel in order to improve the occupancy on the device. In the following,
we show the metrics on the performance of this implementation for the particular case of multi-
center numerical integration.

4.2.3.1 Results

The system used for this calculations is the usual integration of ρ(r) for the diatomic molecules
H2 and O2. Different grid sizes were used. Three global kernels are our main focus here,
becke weights kernel, atomic grid integrate kernel and density gto kernel which
corresponds to Becke weights calculation, integration and calculation of the integrand.

Before showing the results on timing and speedup for the integration, we will show some
detailed information about the performance of the kernels in the device. Table 5 contains
several performance metrics for all kernels.
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Kernel
Metric Weights Integrate Density

Multiprocessor Activity 99.99 99.97 99.99
Achieved Occupancy 73.01 61.77 95.20
Global Memory Load Efficiency 70.00 97.73 84.87
Global Memory Store Efficiency 100.00 100.00 100.00

Table 5: Percentage of several NVIDIA profiler metrics for calculation of
∫

ρ(r) for O2 molecule.
6− 31+G** basis-set used. Grid size: 5810 angular by 1000 radial points.

Occupancy refers to the utilization of the device in terms of the number of concurrent blocks
that are being executed by each multiprocessor. Optimize occupancy can impact performance
since greater occupancy means improving the utilization of the computing capacity of the
device. An occupancy greater than 50% is considered to be acceptable. From table 5 it is clear
that all kernels have high occupancy level.

Additionally, The load/store efficiency from global memory is perhaps the most important metric
to be optimized. Latency of the global memory is so high that any optimization on the memory
throughput will improve performance. The greater efficiency the better performance. The lowest
memory load efficiency was evidenced in the Becke weights kernel because of precomputed
data that can not be accessed in a coalesced way. In other kernels the memory efficiency is
high, which means that, the kernels offer a performance near to the actual device limit.

Figure 7 shows the time and speedup reached by the implementation for several grid sizes and
two different systems. It can be seen that the speedup depends on the problem size, that is,
the smaller grid size the smaller speedup. In the case of medium (1202× 500) to big grid sizes
(5810 × 1000 − 2000) it can be reported a speedup near to 30×.

Compared to OpenMP, figure 8 shows that CUDA speedup is greater than OpenMP’s for medium
to large grid sizes. For the particular case of small grids (not in the plot), such as, 194 × 50 grid,
the performance is better in OpenMp than in CUDA because of the overhead of data transfer
which can not be compensated by the computational speedup.
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Figure 7: Time and speedup vs Grid size for the integration of ρ(r) for H2 and O2 on CUDA
device. Basis-set used 6−31+G**. Grid size, angular × radial points.
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Figure 8: Time and speedup vs number of threads for the integration of ρ(r) for H2 molecule
using different grid sizes. The dashed line corresponds to OpenMP and solid to CUDA.
Basis-set used 6−31G**.
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4.3 T W O - E L E C T R O N I C C O U L O M B I N T E G R AT I O N

In this section we will discuss about the performance of the calculation of two-electron coulomb
integrals. As explained in Chapter 2 the calculation of this particular integral includes the so-
lution of Poisson’s equation for the potential of a given charge distribution. The algorithm to
calculate the two-electron Coulomb integrals is shown in Figure 9.

Start

Input

Build BeckeGrid.
Figure 4

Solve Poisson’s Eq. 16
for Vαρ(r) of distribuion

charge ραρ(r) = φα(r)φβ(r)

Calculate ραρ(r)
for all grid points

Calculate spherical
expansion Eq. 24

Solve Eq. 29 for
U`m(r) functions

Build potential Vαρ(r)
through Eq. 26

Calculate
ργν(r) = φγ(r)φν(r)

Integrate Eq.19

Stop

Figure 9: Algorithm to perform two-electron Coulomb numerical integration.

As can be seen, the two-electron coulomb integration follows the same procedure of multi-
center numerical integration. In other words, the procedure called calculate the integrand in
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Figure 4 is in this case the calculation of Vαβ plus the calculation of ργν(r).

It is important to point out that the solution of eq. 29 for U`m(r) functions is done by using the
finite differences method. This method involves the solution of a linear system Ax = b for x
values (U`m(r)) using a tridiagonal matrix A of coefficients. The matrix A is sparse, so direct or
iterative sparse solvers can be used to improve the performance.

4.3.1 Serial performance

We will focus or attention in the two-electron Coulomb integral

Iαβ,γν =
∫ ∫ φα(1)φβ(1)φγ(2)φν(2)

r12
d3r1d

3r2 (36)

of the H2 molecule. (i) refers to electron i . Cµ and φµ correspond to the µth coefficient and
function of the linear combination

χi =
k

∑
µ=1

Cµiφµ (37)

of the one-electron wave-function χi . In this case the basis-set used is the STO−3G. Different
grid sizes have been used. The following is the profiling using a grid of 194 angular × 500 radial
points.

328557 function calls (322104 primitive calls) in 0.500 sec

Ordered by: internal time

ncalls tottime cumtime filename:lineno(function)

66/56 0.056 0.062 {built-in method _imp.create_dynamic}

360 0.037 0.037 {built-in method marshal.loads}

144 0.034 0.034 {built-in method scipy.sparse.linalg}

1 0.028 0.028 atomic.py:52(spherical_expansion)

6 0.023 0.024 primitive_gaussian.py:71(compute)

The scipy.sparse.linalg function refers to the sparse solver from the SciPy library. We
remind that both integration procedure, and the construction of the grids have been already
parallelized, see previous section.

From the previous profiling results it can be seen that there is not any advisable bottleneck.
However, let us try again with a bigger grid (1202 × 500).

548071 function calls (540106 primitive calls) in 3.948 sec



4.3 T W O - E L E C T R O N I C C O U L O M B I N T E G R AT I O N 34

Ordered by: internal time

ncalls tottime cumtime filename:lineno(function)

1 1.595 1.595 atomic.py:71(evaluate_expansion)

1 1.002 1.002 atomic.py:52(spherical_expansion)

900 0.177 0.177 {built-in method scipy.sparse.linalg}

6 0.143 0.143 primitive_gaussian.py:71(compute)

66/56 0.056 0.062 {built-in method _imp.create_dynamic}

In this case there are two identifiable hotspots suitable for parallelization, evaluate expansion

which corresponds to build the potential through eq. 26, and the spherical expansion.

4.3.2 OpenMP performance

Proper OpenMP parallelization was done in the evaluate expansion and spherical expansion

routines. Figure 10 shows the result of the performance.

The implementation reports scalability up to 16 cores, were the serial part of the code starts
to become more and more relevant. Additionally it can be seen a speedup from 2.5 to 4.0
depending on the grid size.

Further optimizations, such as, the utilization of a external sparse solver with OpenMP and
CUDA support can improve the performance reported here.
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Figure 10: Time and speedup vs number of threads for two-coulomb integration of H2 STO−3G
basis-set at different grid sizes.
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S U M M A RY A N D C O N C L U S I O N S

nAPMO package has been developed as a platform to develop a basis-set-free suite for
Quantum chemical calculations. With the aim to develop a basis-set-free Hartree-Fock
implementation, we have developed the multi-center numerical integrator and the solver of the
Poisson’s equation for the calculation of two-electron Coulomb integrals.

To check the correct implementation of the code, the integral
∫

ρ(r) has been calculated for
diatomic molecules from Z = 1 to Z = 8 using 6−31+G** basis-set. Additionally the calculation
of two-electron integrals has been calculated for the STO−3G basis-set of the Hydrogen
molecule. The calculation of the two-electron coulomb integrals has been compared against
the analytic result obtained with LIBINT library [21].

Python language was chosen to be the main language of the program due to the high
scripting facilities and tools that this language offers. The effects of Python overhead is ad-
dressed with the implementation of a C library which contains most of the numerical procedures.

The C library, called libnapmo has been parallelized with OpenMP and CUDA. The OpenMP
parallelization reports a speedup of 3 to 20× for the integration of ρ(r) and up to 4× for the
two-electron coulomb integration. The CUDA implementation reports a speedup from 4 to 30×
depending on the atom and the grid size, for the integration of density ρ.

All performance calculations were obtained using medium to big grid sizes. In the case of
two-electron Coulomb integrals, small grids are enough to get a precision of 10−5. The time
spent for this kind of calculations is of the order of 10−2 seconds, reason for which further
parallelization with CUDA was not taken into account.

Additional optimizations can be implemented, including the use of a high performance sparse
linear algebra solver, and implementation in CUDA of the calculation of real spherical harmonics.
This implementation will be done in future work.

36
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5.1 F U T U R E W O R K

This work is also part of a PhD thesis which has among his goals the implementation of the
basis-set-free Hartre-Fock molecular orbital theory. To achieve this the following work is missing.

• Implementation in CUDA of spherical harmonics.

• Use of a external solver for the linear algebra problem (already done, but not properly
tunned)

• Implementation of the self-consistent field with the integrals implemented here.

• Further optimizations and parallelizations.
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