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Abstract

Neural networks simulations have always been a complex computational chal-
lenge because of the requirements of large amount of computational and
memory resources. Due to the nature of the problem, a high performance
computing approach becomes vital, because the dynamics often involves the
update of a large network for a large number of time steps. Moreover, the
parameter space can be fairly large. An advanced optimization for the single
time step is therefore necessary, as well as a strategy to explore the parameter
space in an automatic fashion.

This work first examines the purely serial original code, identifying its
bottlenecks and inefficient design choices. After that, several optimizations
strategies are presented and discussed, exploiting vectorization, efficient mem-
ory access and cache usage. The strategies are presented together with an
extensive set of the benchmarks and a detailed discussion of all the issues
encountered.

The final part of the work is the design of a high throughput approach
to the paramenter sweep, necessary to explore the behaviour of the network.
This is implemented by means of a task manager that takes care of running
simulations from a batch of predefined runs in an automatic way and collects
their results. A detailed performance analysis of the task manager is reported.

The results of the work show a consistent speed up for the single-run
case, and a massive productivity improvement thanks to the task-manager.
Moreover, the code base is now reorganized to favor extensibility and code
reuse, allowing the application of several of the present strategies to other
problems as well.
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Chapter 1

Introduction to the Algorithm

The Potts associative memory network model is an extension of Hopfield
model to more than two states, intended as a simplified model of macroscopic
cortical dynamics, in which each Potts unit stands for a patch of cortex. The
internal neuronal dynamics of the patch is not described by the model, rather
it is subsumed into an effective description in terms of graded Potts units.

The Potts network exhibits attractor dynamics similar to that of the
Hopfield model. The network is able to store and retrieve a large number of
global patterns (network attractors) when the connectivity matrix is suitably
constructed. Here however we are not so much interested in the statistical
properties of the network, rather we want to exploit dynamical properties
that may be relevant to cortical processing.

Such dynamics are defined such that after retrieving an externally cued
attractor, the network can continue jumping, or latching, from attractor to
attractor, driven by adaptation effects.

The network is a directed graph made of N nodes with C connections.
Each unit has a fixed amount of states S plus an inactive state (labeled from
now on by the 0 index). For a given unit i the state of the unit is described
by a vector with S + 1 components. This is represented by the symbol σki
with k = {0..S} and subject to the constraint:

S∑
k=0

σki = 1 (1.1)

The σki can be seen as the unit vector in a S+1 dimensional space, indi-
cating how much the unit is pointing towards a specific state.

Each connection has a weight describing numerically the strength of that
connection where only active states take part in the construction of J . Specif-
ically Jklij is the weight of the connection between the state k of unit i and the
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state l of unit j. Moreover the J matrix is multiplied by a dilution matrix
C which is a random matrix containing zeros and ones aiming at a more
realistic representation of cortical connectivity. Throughout this work, we
will use lower indices as unit indices and upper indices as state indices.

Figure 1.1: Example of the network topology with N=7 C=3

The aim of the simulation is to collect statistical data on the dynamics
of the model, such as:

• behavior of the latching sequence using random or artificially correlated
patterns.

• the dependence of the latching length on the network parameters.

• the study of limit cases (ex. S >> 1).

1.1 Patterns Generation

Before the initialization of the network, p patterns are generated using a
patterns generating algorithm. These patterns will define, after being used
in the weights generation, the attractors of the dynamic system.

The multifactorial pattern generating algorithm allows for the construc-
tion of patterns for various degrees of pairwise correlation.

To produce the patterns, a set of factors are generated. Each factor is a
subset of the total set of units and may share part of its units with another
factor. In the second step, global patterns(indexed by µ) are generated from
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the factors which are indexed by r in order of decreasing mean importance.
For each global pattern, a weight γµr describing the factor importance is
assigned (eq.1.2)

γµr = εeξr (1.2)

where ε is taken to be 0, with probability 1 − a, with a the activity
parameter, otherwise drawn with flat distribution between 0 and 1.

A value between 1...S representing the index of one of the states sr is
then drawn and a contribution γµr is added to the field onto each Potts unit
over which factor r was defined, in the direction sr.

After accumulating contributions from all factors, the direction in which
each unit received the largest field is computed, and aN units receiving the
largest maximal fields are assigned the corresponding direction sr in pattern
µ, while the remaining (1− a)N units are assigned the null state for pattern
µ.

1.2 Network initialization

Prior to initializing the network, J and C are constructed. To initialize the J
tensor we use the patterns generated by the patterns generating algorithm:

Jklij =
cij

Ca(1− a
S

)

p∑
µ=1

(δξµi k −
a

S
)(δξµj l −

a

S
) (1.3)

in which cij is defined in such a way that cij = 0 if the unit i is not connected
to j while cij = 1 otherwise. The a is called the sparsity parameter and δξµi k
is a Kronecker delta in such a way that it is 1 if if unit i of pattern µ is in
the k-th state and 0 otherwise.

In the code the connectivity matrix C is represented by a N ×C integers
matrix where each column represents of set of units that are connected to
the unit with the index of that column.

The initial active states are defined as follows:

σki ≈ 0 (1.4)

The initial inactive states instead, are computed in the following way:

σ0
i = 1− Sσ1

i (1.5)

Here we introduce another quantity rki , called the input. This quantity
controls the dynamics of the state of the unit. The initialization of the active
and inactive inputs are given by the following relations:
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rki = hki =
∑
j

Jklij σ
l
j (1.6)

r0i = 1− σ0
i (1.7)

1.3 Dynamics

During the dynamics stage the whole network is updated until a predefined
number of total updates(or tupdates)1 is reached, or, an exit condition oc-
cours. At each time step, every unit of the network is updated, but the
order in which the units are updated is selected randomly at each iteration.
Moreover, the units update is strictly sequential because, as we will see in
the next section, the dynamics of a given unit at time t + 1 depends on the
whole state of the network at time t.

1.3.1 Update Rule

A single unit is updated using the following equation:

σki =
eβr

k
i∑S

l=0 e
βrli

(1.8)

rki is the local field that the unit i receives from the other units. For
T = β−1 = 0 corresponds to a strictly single active state being activated.

The r0(t), rk(t) and θk(t) obeys to three different differential equations,
each with a time constant τ1,τ2,τ3:

τ1
drki (t)

dt
= hki (t)− θki (t)− rki (t), ∀k 6= 0 (1.9)

τ3
dr0i (t)

dt
=

S∑
k=1

σki (t)− r0i (t) + U (1.10)

1A total update here is defined as the set of N operations needed to update the whole
network (all the units) exactly one time
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with hki computed at each time step using the equation below:

hki =
∑

j
Jklij σ

l
j + w(σki −

1

S

S∑
l=1

σli) + ge−(t−t0)/τδξµi k (1.11)

The middle term of the equation 1.11 is a self reinforcement term, intro-
duced in order to model non linear convergence to the current active state,
while the last term is the initial cue of the network, enabled when t > t0, that
pushes the network into the basin of attraction of one of the global patterns
µ. The cue term exponentially decades with a time constant τ after being
enabled.

The dynamic threshold θ affecting only active states is instead ruled by:

τ2
dθki (t)

dt
= σki (t)− θki (t), ∀k 6= 0 (1.12)

The differential equations 1.9,1.12,1.10 are integrated with the time for-
ward finite difference method in order to be evaluated in the code.

The network status is evaluated every fixed number of steps. During this
phase, the cross correlation or what we call the overlap between the stored
pattern and the network state is evaluated, with the rule (eq1.13).

mµ =
1

aN(1− a/S)

N∑
i=0

S∑
k=1

(δξµi k −
a

S
)σki (1.13)

Using this measure, it is possible to track the evolution of the network, in and
out of one of the many global attractors guided by input and the threshold
variables. One of the major objectives is to study how the length of the
sequential retrieval of each global pattern (latching) is affected by network
parameters.

1.3.2 Exit condition

Depending on the network parameters that we set the dynamics may either
cease after a finite number of time steps or go on indefinitely. In the former
case the network will arrive to a quiescent state. To check whether the
network is in a quiescent regime or not all the correlations are compared to
a threshold value. If the all correlations are lower than this threshold value
the simulation exits. In the latter case, a maximum number of time steps is
defined. If the dynamics does not cease by itself and reaches this maximum
value, again the simulation exits.
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Chapter 2

Original code

In this chapter we will focus on the description of the original code in order to
analyze its efficiency and identify the possible optimizations to be performed,
with the aim to decrease the total simulation time. The original code is
written in C++ and structured in three executables where one of them is
a “manager” that runs them sequentially. The first executable produces
the patterns and saves them into a file while the second one is focused on
the initialization of the network, its dynamics and the data collection. The
manager executable has the task to compile and run multiple times the two
executables listed before. The initial parameters of the network are saved in
a separate file using precompilation defines and are described in the table 2.1

Increasing the number of the stored patterns or lowering the connectivity
increase the latching length and so the simulation time (figure 2.1).

Figure 2.1: parameters dependence for the latching regime: red, high latching
regime, white, quiescent regime.
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Table 2.1: Set of initial parameters

N total number of units Trete tupdates
Cm connectivity tempostampa number of steps in order

the correlation to be evaluated
p number of patterns NumSet number of different random sequences
S number of states for each unit N fact Number of unit for each factor
a sparsity parameter Num fact number of factors
U static threshold Num u N
b1 time constant from the Num p p

integration of eq1.9
b2 time constant from the Num s S

integration of eq1.12
b3 time constant from the a mod sparsity parameter

integration of eq1.10
beta inverse temperature eps noise parameter
w self reinforcement term a pf activity parameter
g cue constant eq1.11 fact eigen slope exponential slope in pattern generation
tau cue exponential time constant

For certain combinations of the input parameters, the network can reach
a regime of infinite latching, making hard to envision a maximum number of
operations needed to stop a simulation. For each set of network parameters
the simulation is run multiple times with different cue patterns and since
the latching length is unknown, the network has to be updated the highest
possible number of times, in order to be able to spot long latching sequences
that would otherwise be marked as infinite. To quantify the time spent in
the various part of the code we can compare the number of time updates
required to evaluate the pattern generation or the initialization. To do so
we count the clock cycles elapsed for each of those code sections using the
standard library clock function and then we divide by the number of clock
cycles required to perform a whole network update (timestep).
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Figure 2.2: Percentage of single time steps required to simulate each stage
of the code.

2.1 Pattern Generation

The pattern generation is a one-time task that occours at the start of every
simulation and, in the original code, is placed in another executable. Dur-
ing the pattern generation the code generates an output file containing the
patterns. The patterns are stored saving the state index for each unit for
every pattern. We are interested in the relation between the time needed to
perform the pattern generation task and the initial parameters to show how
and when it could give an important contrbution to the whole simulation
time. The results of this analysis are shown in 2.3a

As we can see, all the plots are decreasing functions of the corresponding
parameters except the one involving the number of initial patterns. This
means that the more we grow those parameters the less the pattern genera-
tion will affect the computational time compared to the dynamics.

On the other hand, increasing the number of patterns, the generation will
take a larger and larger amount of time. However, in such a case the latching
sequence is typically very large as well, such that the pattern generation time
should be irrelevant also in the case of large p. Moreover given a certain set
of patterns, the time evolution can be performed several times with different
parameters. Since the patterns depends on the total number of unit N, the
number of pattern p and number of stats S, it is possible to reuse the same
pattern while modifing all the other parameters for example the connectivity,
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Figure 2.3: Dependence of the pattern generation time with the initial pa-
rameters N, Cm, S, p. The time unit of these plots is the time required to
evaluate one-time step in the simulation.

the time integration constants, the static threshold, etc...

2.2 Initialization

The initialization consist in loading in memory the the generated patterns
and then fill the array of states, the connection matrix and the J tensor.
During this stage a sequences matrix containing different sets of shuffled
integers from 0..N − 1 is generated. We remind that the dynamics of the
unit at time t+ 1 depends on the whole state of the network at time t. This
implies that the n-th unit being updated will have its dynamic effected by
the n-1 unit updated so far. To prevent the introduction of a bias in the

9



dynamics, the sequence in which the units are updated at a given time step
needs to be random. The sequence matrix introduced above meets exactly
this need. At every time step one of the possible sequence is randomly
selected and the update is performed using such a sequence. However, from
the point of view of possible optimizations, this routine is irrelevant since
the number of operations to construct it is of order N and so it will not be
considered.

The number of operations required to fill the array of states is required
a number of cycles proportional to N × S while for the connection matrix is
proportional to N×C. To build a more dense matrix in order to save memory
and computation, the connection matrix is just filled with the indices each
unit is connected to. For the J tensor instead a five-nested loop is used,
requiring N × C × S × S × p total number of operations.

The whole initialization task requires N(S + C(1 + p × S2)) operations.
This is an expensive part of the code but since is a one-time task it has
not been the center of the work. Also it applies what already said for the
pattern generation: there are for sure cases where the pattern generation and
the initialization may require a large time, but we are not concentrating on
those cases because they are meant to be only a small part of the simulations
the researchers are interested in.

2.3 Dynamic part

When the main loop of the dynamics starts it will cycle tupdates times or
until the exit condition is reached. At each cycle a unit is picked using the
pregenerated sequence matrix.

The tensor product of the update algorithm(the first term of eq.1.11) is
technically implemented following the representation scheme in fig.2.4
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Figure 2.4: Data model of the original code. Shows how many arrays are
involved, their structure in memory and how they are involved in the tensor
product. The arrow shows that each sub-piece of memory is pointed by the
parent array and how the array S retrieve their index from the connection
matrix C.

Figure 2.4 is a representation of the arrays required to evalute the tensor
product, which is, the most computational consuming part of the code:

h[i][k]+ = J [i][x][k][l] ∗ s[C[i][x]][l]

The required states connected to the unit are retrived using the connec-
tion matrix (in the image denoted with the capital letter C) and, because
C is randomly generated, consecutive indices will point to non contiguous
locations in memory, making impossible for the compiler to perform any op-
timization like vectorization or to exploit cache effects. Also, the arrays are
stored as nested pointer arrays, this means that their memory contiguity is
not guaranteed, reducing the memory fetching efficiency.

When the exit condition is reached, the index variables of each loop are set
to the limit of their loop condition in order to exit each loop simultaneously.

The number of operations of the biggest loop is of the order tsteps×N ×
S×C×S times, where tsteps is the number of time steps after which the exit
condition is met and in the simulation is bounded by the maximum value
tupdates.
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2.4 Memory load

The memory occupation of the dynamics is dominated by the J tensor which
is of size

(4×N × C × S × S)Bytes

as an example using the initial parameters N=1000, Cm=500, S=10, the
memory occupied is roughly 200 MBytes making the memory growth not
an issue for the parameters range we are interested in and for the memory
avaiable per node in the ULISSE cluster(40GB).

2.5 Chaotic regime

In some cases when the network is embedded with a high number of pat-
terns p >> 1 and the other parameters are such that the network is in a
high latching regime, the basins of attraction start to merge giving rise to a
complex energy landscape. Given that the simulation involves an enormous
number of recursive operations, small changes in for example the summation
order may lead to different latching sequences and lengths. Because of this
reason, using a different optimization scheme such as the aggressive compiler
optimizations (for example g++ or icpc compiler -O3 flags) may result in
different simulation outputs. However, it is important to notice that both
the original code as well as the optimized one yield initial sequences of pat-
terns that are identical and it is only at a certain point that a deviation
occurs. This deviation is a random and not a systematic error owing to the
sensitivity of the system to the initial conditions.
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Chapter 3

Optimization strategies

In this chapter we present a detailed report of the Potts neural network code
refactoring. This is organized in three main parts

• Code restructure, in particular the new object-oriented design.

• High connectivity regime strategy

• Low connectivity regime strategy

One of the strongest limitations of the code is the stricly serial update
rule of the network that denies any high level optimization with threads
or processes for a single simulation reducing the allowed strategies to cache
efficiency and vectorization.

3.1 Code restructure

The reorganization of the code is aimed to increase extensibility and read-
ability, in order to allow new developers to easily work on the code. The
new code is written in C++11 and is separated using the following folder
structure:
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Figure 3.1: Project folders tree

The compilation is handled by GNU Make and can be compiled with any
C++ compiler that supports C++11 standard.

In the new code the following object with their respective most important
methods have been defined:

• PatternGen

– PatternGen: initialize the patterns object and allocate the array
for storing the number of patterns.

– generate: generate the patterns

– eval stats: evaluate statistical data of the generated patterns

– get patt: retrieve the pointer of the generated patterns array

• PNet to setup the network object.

– PNet: setup the network object and allocate its member arrays.

– init network: initialize the network, filling the connection matrix,
the J tensor and the initial values as described in 2.2

– start dynamics: starts the network dynamics and stores in a mem-
ber variable the latching sequence
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3.2 Testing environment

3.2.1 Hardware environment

Both the original code and the optimized code have been developed and
tested on the ULISSE SISSA cluster. The specifications of the compute
nodes are:

Table 3.1: Ulisse node hardware specifications

Architecture x86 64
CPU(s) 20
Core(s) per socket 10
Model name Intel(R) Xeon(R) CPU E5-2680 v2
L1d cache 32K
L2 cache 256K
L3 cache 25600K
Total memory 41123748K

3.2.2 Regression tests

To check the coherence of the new code with respect to the original one, a
total of five regression tests has been developed. For each test the new and
the original code print in a text file part of the state of the simulation. After
that, a simple diff1 command is run between the two files.

The list of tests is:

1. pattern generation test: compares the generated patterns

2. states initialization test: compares the initialized states

3. connection initialization test: compares the connectivity matrix

4. J test: compares the J tensor

5. states update test: compares the states at the end of the simulation

1A bash command that outputs the differences between two files
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3.2.3 Benchmarks setup

To benchmark the code we ran the simulation multiple times on the ULISSE
cluster. Since the number of time steps required to hit the exit condition is
strongly dependent upon the initial parameters, to be able to properly bench-
mark the new implementations we forced the dynamics to always execute a
fixed number of time steps.

The benchmarks are run sweeping over the N and C parameters.
Every benchmark has been run at least 5 times in order to reduce fluctu-

ations.

3.3 High Connectivity regime

The first optimization strategy adopted was developed specifically for the
high connectivity regime, which means a N/C ratio lower than 3. Since the
connectivity matrix is initialized at random at every simulation, when the
connectivity gets large this implies that the access to the S array as well as the
tensor J are rather erratic, causing a large number of fetches from the main
memory. In this regime it is more efficient to hide the connectivity directly
inside the J tensor, trading floating point operation for memory fetches.

Figure 3.2: High connectivity new memory management. The connectivity
matrix is hidden inside the J tensor that now has a size of N ×N × S × S
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This means that if two units states are not connected, we set the corre-
sponding value of the J tensor to zero.

∀i, j | cij = 0 =⇒ J [i][j][k][l] = 0 ∀k, l

In this way, while looping on j and s, the access pattern is now contiguous,
allowing faster fetches from the main memory and vectorization. A pictorial
view of this strategy is reported in figure 3.2. This increase the final size of the
J tensor, that now is an array of N ∗N ∗S∗S floats but we completely remove
the non contiguity of the original code in the fetching process of the states.
However the drawbacks are rather irrelevant in this regime (C/N > 1/3):
first the increase in the memory load is at most a factor of 3. Since the
typical memory load is in the order of few hundred Megabytes, the extra
memory requirement is not an issue. Second the increase of the number of
operations, once again, at most a factor of three, is completely overtaken by
the speedup of vectorization. Using this strategy, the number of operations
and so the update time depends just on N and S, but not on the number
of connections, such that increasing the connectivity of the network yields
exactly the same simulation time.

3.3.1 Benchmarks

The first effect of this strategy should be a reduction of the cache reads and
cache misses. In the following table we report a comparison between the
original code and the high connectivity strategy, using cachegrind tool from
the valgrind suite.

Table 3.2: Cache reads

Code version Dr D1mr(miss rate%) DLmr

original code 51,751,792,425 8,570,583,711(16%) 1,983,237,597(%3)
high connectivity 20,414,022,668 1,803,628,810(8%) 1,694,415,417(%8)

Table 3.3: Cache writes

Code version Dw D1mw(miss rate%) DLmw(miss rate%)

original code 8,722,172,354 14,308,771(%0.2) 4,126,601(%0.04)
high connectivity 1,796,819,369 33,574,766(%2) 1,227,975(%0.06)

17



The new data model shows a substantial reduction of cache misses. This is
due to the new memory organization which has increased the spatial locality,
thanks to the usage of contiguous arrays. Regarding the time profiling, we
can see the scaling of the new strategy compared with the original code:
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Figure 3.3: Speedup of the high connectivity strategy compared with the
original code. Results of the benchmark on the ULISSE cluster

The plot in figure 3.3 has been made by fixing the number of units to 1000
and then running the simulation for differenct values of the C parameter.
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Since low connectivities are in general scientifically more interesting, the
sampling gets denser for small C.

The speedup of the high connectivity strategy with respect to the original
code is almost linear. The execution time is independent on C, instead the
execution time of the original code goes roughly as C resulting in the linear
speedup as seen in fig 3.3.

For a number of connections higher than ≈ 140 the algorithm scales
up to 4.2x times faster than the original one. The speedup is due to the
combined effect of both cache efficiency and vectorization. However as the C
gets small the overhead of multiplying a lot of zeros starts to take over the
memory contiguity effects, and we have a decrease in performance compared
to the original code.

3.4 Low Connectivity regime

Since for low connectivity the previous strategy proved to be unsuccessful, we
devised a new one specifically designed for this regime. The low connectivity
strategy N/C (' 3) exploits both temporal and spatial locality plus the
vectorization. To achieve this, it was necessary to change the retrieval of the
states for each update: to perform a unit update at a given time step we
need to re-use several times the states a unit is connected to. This means
that collecting in a contiguous buffer all these states could improve spatial
and temporal locality and allow vectorization. The original code instead was
fetching the same states for S times inside the update subroutine. The new
memory organization is shown in fig 3.4:
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Figure 3.4: Low connectivity strategy memory organization. We can see that
now we use a buffer as intermediate means to evaluate the tensor product

This approach allows vectorization, reduce the memory reads and an
increased cache affinity even in the case of low connectivities. To show the
efficiency of the buffer strategy in the case of repeated reads from a random
index array we have written a sample code reported in Appendix A.

3.4.1 Benchmarks

To analize the performance, we first report the cache usage (table 3.4,3.5)

Table 3.4: Cache reads

Code version Dr D1mr(miss rate%) DLmr

original code 51,751,792,425 8,570,583,711(16%) 1,983,237,597(4%)
low connectivity 15,610,241,799 717,318,361(5%) 568,800,527(4%)

Table 3.5: Cache writes

Code version Dw D1mw(miss rate%) DLmw(miss rate%)

original code 8,722,172,354 14,308,771(%0.2) 4,126,601(%0.04)
low connectivity 4,455,908,387 25,825,680(%0.6) 846,748(%0.02)
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As we can see the number of cache reads has decreased more than 3
times and the number of the relative number of cache-misses is one order
of magnitude lower than in the original code. Also all the other parameters
have decreased except for write misses which are anyway rather low. The
performance of the low connectivity strategy is shown in figure 3.3.
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Figure 3.5: Low connectivity strategy benchmark (N = 1000 and S = 3)

From figure 3.5 it is clear that the buffer strategy gives a consistent im-
provement for every value of the connectivity C. The improvoment goes from
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1.5x for very low connectivies to 5x for (N/C) ≈ 2.

3.5 Results comparison

In this section, we compare the performance of the different strategies im-
plemented.

N=1000 Network update performance
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Figure 3.6: Benchmark comparison (N=1000)
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N=1500 Network update performance
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Figure 3.7: Benchmark comparison (N=1500)
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N=2000 Network update performance
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Figure 3.8: Benchmark comparison (N=2000)

From figure 3.6,3.7,3.8 it is clear that the low connectivity strategy show
the best performance up to N/C ≈ 2. However increasing C in such a
strategy always shows a plateu in the speedup. This is due to the fact that
for large C, the buffering requires too many operations compared to the
gain given by vectorization. In this regime, the high connectivity strategy
becomes more and more efficient.
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Chapter 4

Task manager

In the previous chapter we focused on the efficiency of a single simulation,
however, one of the main needs from the scientific point of view is to collect
data from a large number of simulations in order to have a reliable statistics.
The solution devised for this problem was the development of a task manager.

The idea is to place different simulations in different processes in order to
run them simultaneusly, achieving a potential speedup limited only by the
number of cores.

4.1 Algorithm

The task manager is developed using the MPI framework and a master/slave
paradigm.

The master process is meant to deliver to each of the slave processes the
set of initial parameters to start their own different simulations, and to keep
a stack of the parameters sets to assign to the first avaiable slave process.
To be able to communicate parameters data through MPI a custom MPI
datatype has been created, which contains all the parameters required by a
single simulation.
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The task manager logic is schematized in the following way:

1. on startup, each slave notifies the master that is ready to receive a set
simulation parameters.

2. the master deliver to all the avaiables slaves a different set of parameters
from the parameters stack.

3. the slave execute their own simulation and notifies the master when
done.

4. the master keeps distributing parameters sets until the stack is empty.

5. when the stack is empty, the master send a signal to all the slaves in
order to kill them and then the code exits.

4.2 Tests

Figure 4.1 and 4.2 show the time taken to run a large number of simulatons
concurrently. For small system sizes (figure 4.1) the overhead of the task
manager is almost negligible. This can be seen because the time taken for
1 or 39 simulations is basically the same. In figure 4.2 instead the single
simulation time increases and reaches a plateu after around 20 processes.
This is actually not due to the task manager overhead but to shared L3
cache as we will discuss in the following section.
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Figure 4.1: Task manager sweep, starting from one simulation to 39 with a
step of 2. N=200,C=5,p=3,S=3, tupdates=500000
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Figure 4.2: Task manager sweep, starting from one simulation to 79 with a
step of 2. N=2000,C=500,p=20,S=6, tupdates=3000

4.2.1 The shared memory problem

As seen in the previous section, for large N the task manager shows a slow-
down of each single simulation process. The reason behind this slowdown is
the shared L3 cache between the cores inside a socket (we remind that in our
case each ULISSE node is composed by a two sockets of ten cores each. All
the cores in a socket share an L3 cache of 25MBytes).
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Increasing the number of processes per node, the shared L3 caches starts
to be used by more and more processes concurrently, leading to cache trash-
ing.

The slowdown saturates at 20 cores which is the size of a ULISSE node.
We remind that in these tests we are just running one simulation per core
meaning that the global time reported always indicates the time of the slowest
of the group.

However given the system size and so the amount of cache required, it is
possible to identify an optimal number of simulations to be run per socket
(using for example numactl, or MPI –npersocket) such that the balance be-
tween number of simulation run and time of single simulation yields the
highest productivity.
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Conclusions

In this work we showed the performance optimization of the Potts associative
network model. Due to the very nature of the system and of the algorithm,
a standard parallelization strategy was not possible, so we had to rely on low
level optimizations, exploiting cache efficiency and vectorization.

The most time consuming part of the algorithm is the network update
function, where a tensorial product takes place, requiring a large number of
both memory and computational operations. A complete code reconstructure
has been performed and two different strategies have been developed. One
the strategies targets the simulations with a high number of connections and
the other one with low connectivities.

Both of the strategies showed remarkable speedups up to 5x for the low
connectiviy regime and even higher for the high connectivity regime. Because
of the need of the reaserch team to collect a large amount of data to perform
statistical analysis, we developed a parallel task manager. The task manager
by itself brings negligible overhead and the overall time to solution for a
large set of simulations is only limited by the avaiable amount of L3 cache
per socket. All these optimizations are expected to increase the productivity
of the research team by greatly reducing the time taken to perform statistics
or large parameters sweep.
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Appendix A

In this section we show a proof of concept of the low connectivity algorithm.
The following C code shows the efficiency gain by using a buffer strategy, if
the buffer itself is reaused several times. The code evaluates a scalar product
between two arrays of size tsize, but randomizing the access order to the
elements. This operation is done multiple times but in two different ways.
The first one, mimicking the original code, collects the values by retrieving
them at each loop iteration while the second one saves the values (that are the
same at every iteration) in two buffers, allowing vectorization and a better
cache efficiency.

1 #include <s t d l i b . h>
2 #include <math . h>
3 #include <time . h>
4
5 int main ( int argc , char ∗∗ argv ) {
6
7 typedef f loat f p v ;
8 int i , j , k , t s i z e ;
9 i f ( argc == 2) { t s i z e = a t o i ( argv [ 1 ] ) ;} else { t s i z e = 1024 ;}

10 int r e p e t i t i o n s = 100000;
11
12 c l o c k t s t a r t t , end t , t o t a l t ;
13
14 f pv ∗ a = mm malloc ( s izeof ( f p v ) ∗ t s i z e , 6 4 ) ;
15 f pv ∗ b = mm malloc ( s izeof ( f p v ) ∗ t s i z e , 6 4 ) ;
16 f pv ∗ c = mm malloc ( s izeof ( f p v ) ∗ t s i z e , 6 4 ) ;
17
18 f pv ∗ bu f f e r 1 = mm malloc ( s izeof ( f p v ) ∗ t s i z e , 6 4 ) ;
19 f pv ∗ bu f f e r 2 = mm malloc ( s izeof ( f p v ) ∗ t s i z e , 6 4 ) ;
20 int ∗ indexes1 = mm malloc ( s izeof ( int ) ∗ t s i z e , 6 4 ) ;
21 int ∗ indexes2 = mm malloc ( s izeof ( int ) ∗ t s i z e , 6 4 ) ;
22
23 for ( j = 0 ; j < t s i z e ; ++j ) {
24 a [ j ] = j ;
25 b [ j ] = j ;
26 indexes1 [ j ] = rand ( ) \% ( t s i z e ) ;
27 indexes2 [ j ] = rand ( ) \% ( t s i z e ) ;
28 }
29
30 f pv h = 0 ;
31
32 c l o c k t s ta r t , end ;
33 s t a r t = c lock ( ) ;
34
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35 for ( k = 0 ; k < r e p e t i t i o n s ; k++){
36 h++;
37 //#pragma novector
38 for ( j = 0 ; j < t s i z e ; j++){
39 h += a [ indexes1 [ j ] ] ∗ b [ indexes2 [ j ] ] ;
40 }
41 }
42
43
44 end = c lock ( ) ;
45 p r i n t f ( ”NOT BUFFERED\nTIME: \%f ms\nSOLUTION = \%f \n” ,
46 1000 . 0∗ ( (double ) ( end − s t a r t ) ) / CLOCKS PER SEC, h) ;
47
48 h = 0 ;
49 s t a r t = c lock ( ) ;
50
51 a s sume a l i gned ( bu f f e r2 , 64) ;
52 a s sume a l i gned ( bu f f e r1 , 64) ;
53
54 for ( j = 0 ; j < t s i z e ; j++) {
55 bu f f e r 2 [ j ] = a [ indexes1 [ j ] ] ;
56 bu f f e r 1 [ j ] = b [ indexes2 [ j ] ] ;
57 }
58
59 for ( k = 0 ; k < r e p e t i t i o n s ; k++){
60 h++;
61 //#pragma novector
62 for ( j = 0 ; j < t s i z e ; j++) {
63 h += bu f f e r 2 [ j ] ∗ bu f f e r 1 [ j ] ;
64 }
65 }
66
67
68 end = c lock ( ) ;
69 p r i n t f ( ”BUFFERED\nTIME: \%f ms\nSOLUTION = \%f \n” ,
70 1000 . 0∗ ( (double ) ( end − s t a r t ) ) / CLOCKS PER SEC, h) ;
71
72
73 mm free ( a ) ;
74 mm free (b) ;
75 mm free ( bu f f e r 1 ) ;
76 mm free ( bu f f e r 2 ) ;
77 mm free ( indexes1 ) ;
78 mm free ( indexes2 ) ;
79
80 return 0 ;
81 }

For the parameters set in the code (tsize=1000, repetitions=100000) the
execution time is the following:

************NOT BUFFERED**********

TIME: 68.912000 ms

SOLUTION = 25849778667520.000000

************BUFFERED**********

TIME: 6.789000 ms

SOLUTION = 25849778667520.000000
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As we can see the results are the same but the required time to compute
the sum is different by an order of magnitude, showing that even if the
number of loops and operations are the same, the fetching operations in the
main memory plays a foundamental role, and the buffering strategy can then
greatly increase the overall performance.
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