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ABSTRACT

The three bright TeV blazars Mrk 421, Mrk 501, and PKS 2155—304 are highly variable in synchrotron X-ray
emission. In particular, these sources can exhibit variable time lags between flux variations at different X-ray
energy bands. However, there are a number of issues that may significantly bias lag determinations. Edelson et al.
(2001) recently proposed that the lags on timescales of hours, discovered by 4SCA and BeppoSAX, could be an
artifact of periodic gaps in the light curves introduced by the Earth occultation every ~1.6 hr. Using Monte Carlo
simulations, we show in this paper that the lags over timescales of hours cannot be the spurious result of periodic
gaps, although periodic gaps do indeed introduce greater uncertainty than is present in the evenly sampled data.
The results also show that time-lag estimates can be substantially improved by using evenly sampled light curves
with large lag-to—bin-size ratios. Furthermore, we consider an XMM-Newton observation without interruptions
and resample the light curves using the BeppoSAX observing windows, and then repeat the same cross-
correlation—function (CCF) analysis on both the real and fake data. The results also show that periodic gaps in the
light curves do not significantly distort the CCF characters, and indeed the CCF peak ranges of the real and fake data
overlap. Therefore, the lags discovered by ASCA and BeppoSAX are not due to periodic gaps in the light curves.

Subject headings: BL Lacertae objects: general — galaxies: active — galaxies: nuclei — methods: numerical —

X-rays: galaxies

1. INTRODUCTION

One of the main advances resulting from recent X-ray
observations of blazars is the discovery of the energy-
dependent time lags in the X-ray emission of the three bright
TeV-emitting blazars Mrk 421, Mrk 501, and PKS 2155—-304.
The overall spectral energy distributions (SEDs) show that the
synchrotron-emission component from these sources peaks at
a high-energy (UV/soft X-ray) band. This indicates that the
X-ray emission from these sources is the high-energy tail of
the synchrotron component, in which the most violent vari-
ability is expected. The interband time lag is one of the im-
portant variability parameters. The cross-correlation—function
(CCF) technique is the standard tool for lag determinations.
ASCA and BeppoSAX revealed that in these sources, the lower
energy X-ray photons can lag or lead the higher energy ones;
this is known as soft or hard lag, respectively. The signs and
values of the lags might well depend on either the energy or
the single flare analyzed. The typical lags (either soft or hard
lag) range from ~0—10* s (see Zhang et al. 2002 for a review),
and appear to be correlated to the flare duration: the shorter
the flare duration, the smaller the lag (Zhang et al 2002;
Brinkmann et al. 2003). Zhang (2002) also found evidence for
a dependence of lags on timescales in Mrk 421: lags appear to
be larger on longer timescales. The observed lags have been
interpreted as evidence for the interplay of the acceleration
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and cooling timescales of relativistic electrons responsible for
the observed X-rays that take place in the jets (e.g., Kirk,
Rieger, & Mastichiadis 1998), and these lags have been used
to constrain the main parameters of the emitting region on the
basis of variability (e.g., Zhang et al. 2002) rather than SEDs,
as is commonly used.

However, the latest lag searches with XMM-Newton have put
the discoveries of ASCA and BeppoSAX into question. Edelson
et al. (2001) and Sembay et al. (2002) reported that there is no
evidence for measurable interband lags in the X-rays, with
upper limits of ~0.3 (PKS 2155—304) and 0.08 hr (Mrk 421).
It is commonly believed that the uninterrupted time series
granted by the highly eccentric ~48 hr orbit of XMM-Newton
allows more reliable detection of the lags. This has led these
authors to propose that the lags measured with ASCA and
BeppoSAX could well be an artifact of the periodic inter-
ruptions by Earth occultation related to the short 4ASCA and
BeppoSAX orbital period (~1.6 hr). Maraschi et al. (2004) also
reported no measurable lags with a full-orbit XMM-Newton
observation of PKS 2155—304. Brinkmann et al. (2003)
reanalyzed all the available XMM-Newton observations of
Mrk 421, working with light curves that have a small bin size
of 8 s, and found typical lags of ~5 minutes.

In order to address the issue of the reliability and signifi-
cance of the lags discovered by 4SCA4 and BeppoSAX, in this
paper we perform Monte Carlo simulations to investigate the
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effects of periodically gapped time series on CCF lag deter-
minations. A number of simulations using inverse Fourier
transformation, which is model dependent, have been carried
out in the literature to evaluate the significance and uncer-
tainty of the CCF lag determinations either for poorly sampled
time series (e.g., Gaskell & Peterson 1987; Maoz & Netzer
1989; White & Peterson 1994) or for evenly sampled time
series (e.g., Welsh 1999). The issue of irregular sampling and
noisy data was also previously investigated (see the summary
in Koen 1994). There are a number of issues that can sig-
nificantly bias the reliability of CCF lag determinations. We
refer to Welsh (1999) for a review of these issues; the author
also showed the effects of power spectral density (PSD) slope,
duration, signal-to-noise ratio, de-trending, and tapering of
light curves. We note, however, that the previous simulations
mainly dealt with the relationship between the UV/optical
emission line flux and the continuum variations in Seyfert
galaxies, which applied to the reverberation mapping (to
measure the size of broad-line region) and typical ground-
based irregular sampling patterns. In the blazar context, the
simulations by Litchfield, Robson, & Hughes (1995) were
performed on the radio-sampling patterns. Our simulations are
tailored to match the sampling characteristics of space-based
observations introduced by low Earth orbit satellites, which to
our knowledge have not been explicitly addressed in astro-
nomical literature. Another distinction is that we discuss the
time lags between the variations of the synchrotron emission
in different X-ray bands. In particular, it is worth noting that
there are obvious difficulties in accurately determining lags in
the synchrotron X-ray emission of TeV blazars, since (1) the
lags are short compared to the bin sizes of the available data,
(2) the data are usually not equally sampled (in particular,
periodical interruptions of space-based observations are un-
avoidable for the low Earth orbit satellites), and (3) there are
ambiguities in interpreting the complexities of the CCF
results.

In this work we also make use of the method introduced
by Peterson et al. (1998), namely a model-independent
Monte Carlo method, to assess the uncertainties in the lag
measurements obtained. This method makes use of real data,
and is known as flux redistribution/random subset selection
(FR/RSYS); it is based on the “bootstrap” method. Here we
adopt it to study the effects of periodic gaps in lag deter-
minations. To do so, we use a real XMM-Newton obser-
vation without interruptions, and resample it with the typical
BeppoSAX sampling windows. The same CCF analysis is
then performed on both the real and fake time series.

In § 2, we conduct model-dependent simulations: § 2.1
illustrates the assumptions for the simulations to be per-
formed; and the results are presented in § 2.2. The model-
independent simulations are performed in § 3. We discuss the
significance of our results in § 4.

2. MONTE CARLO SIMULATIONS
2.1. Assumptions

The inverse Fourier transformation from frequency to time
domain is usually performed to simulate light curves by as-
suming a PSD model. We use the algorithm of Timmer &
Koénig (1995), which randomizes both the amplitude and the
phase of a red-noise process at each Fourier frequency. In
exploring the full variety of possible light curves showing
the same PSD, this algorithm is superior to the commonly
used one that randomizes phases only (Benlloch et al. 2001;

Uttley, McHardy, & Papadakis 2002). In order to mimic a
real situation as closely as possible, we normalize fake light
curves on the basis of the real variability behavior of one
observation of Mrk 421 obtained with BeppoSAX (Fossati et al.
2000; Zhang 2002) as this observation has a good signal-to-
noise ratio that lays stress on the key point of this investiga-
tion. The assumptions and procedure of our simulations are
as follows.

A simple power-law PSD, i.e., P(f) o« f~® with slope o =
2.5 is assumed (Zhang 2002) to represent the red-noise
variability of the bright TeV blazars (Kataoka et al. 2001;
Zhang et al. 1999; 2002), and from this the light curves are
recovered on the basis of the Monte Carlo technique. With one
set of Gaussian-distributed random numbers, we construct a
fake pair of light curves that evenly sample 171 points with
bin size At = 512 s. This choice resembles the binned light
curves of Mrk 421 used in Zhang (2002) to perform the CCF
analysis. At the same time, in order to mimic the discovered
time lags we delay the phase of the second light curve of the
fake pair on the basis of the relationship A@( f;) = 2nfi7( f7),
where f; is the Fourier frequency (i=1,...,N/2; N =171
is the total number of the evenly sampled light curve points),
7(f}) is the time lag, and A¢(f;) is the phase lag at f;. For
simplicity, we assume that 7 is independent of frequency, i.e.,
7 = constant (see, however, Zhang 2002 for the evidence of
the dependence of 7 on frequency), and in turn A¢(f) =
277f;. An assumed (true) lag 7 therefore corresponds to
the lag determined with the CCF methods. The aim of our
simulations is to recover the assumed 7 by applying the CCF
methods to the fake pair with specific sampling windows. The
two light curves of the fake pair are then scaled to have the
same mean and variance as the real 0.1-2 keV and 2—-10 keV
light curves of Mrk 421 (Zhang 2002), respectively. In order to
mimic photon-counting (Poisson) white noise, the two fake
light curves are further Gaussian randomly redistributed on the
basis of the average errors on the real 0.1-2 keV and 2—10 keV
light curves of Mrk 421. In order to simulate the periodic gaps
of the light curves obtained with BeppoSAX, we resample the
two fake light curves by applying the real observing windows
on the 0.1-2 keV and 2-10 keV light curves of Mrk 421.
Three CCF methods, namely interpolation cross-correlation
function (ICCF; White & Peterson 1994), discrete correlation
function (DCF; Edelson & Krolik 1988), and Fisher’s
z-transformed DCF (ZDCF; based on the DCF; Alexander
1997), are then used to cross-correlate the two fake light
curves before and after applying the real observing windows.
All CCFs are normalized by the mean and standard deviation
of the two cross-correlated light curves using only the data
points that actually contribute to the calculation of each lag
(White & Peterson 1994), since the light curves in our cases
are not stationary. A simulation is deemed to have succeeded
if rax (the maximum value of the CCF) between the two fake
light curves is significant at a level of confidence greater than
95% (Peterson et al. 1998). For each successful trial, we re-
cord the lags using three techniques to interpret the CCF
results: (1) using the lag corresponding to 7, of the CCF,
Tpeaks (2) computing the centroid of the CCF over time lags
bracketing 7.y, Teent (all the CCF points with » in excess of
0.8rmax are used; Peterson et al. 1998); and (3) fitting the
CCF with a Gaussian function to find the location of the CCF
peak, 74, We repeat this procedure 2000 times to construct
probability distributions of the lags (i.e., the cross-correlation
peak distribution, CCPD; Maoz & Netzer 1989) for 7pea,
Tcent> and Tt
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Fic. 1.—(a) Example of a fake light-curve pair assuming 7 = 3000 s be-
tween them. For clarity, the count rates of the second light curve ( filled circles)
are lowered by 1.5. (b) Corresponding ICCF of (a). The solid line is obtained
from evenly sampled light curves, and the dotted line is obtained from pe-
riodically gapped light curves resampled from (@) after applying the real
BeppoSAX observing windows. (¢) Corresponding DCF of (a). The solid line
is obtained from evenly sampled light curves, and the open circles with error
bars are obtained from the same periodically gapped light curves as in (b).
(d) same as (c), but for the ZDCF. The dashed lines in (b), (c), and (d) indicate
the true lag.

2.2. Results

We simulate time lags covering the range discovered by
ASCA and BeppoSAX in TeV blazars. Therefore, we arbitrarily
assume 7 = 0, 300, 1400, 3000, 5400, and 7100 s, respec-
tively. We create fake light curves using the same sets of
random number for each case except for different 7.

Figure la, as an example, shows a pair of fake light curves
that are evenly sampled, and the second light curve (filled
circles) is delayed by 7 = 3000 s with respect to the first curve
(open circles). The lag is clearly visible by comparing both the
peaks and the troughs of the two light curves. In this case, the
ratio of 7 to Az of the light curves is ~6. The ICCF, DCF, and
ZDCF of the two light curves are shown in Figures 16—1d
(solid lines). We use Tpeak, Teent, and Tg; to measure the lag,
respectively. The results are reported in Table 1. One can see
that the true lag is properly recovered by the different CCF
methods and different techniques used to interpret the CCFs.

TABLE 1
CCF AnaLysis ResuLTs oF ONE PaIrR oF FakE Ligat CURVES

EVENLY SaMPLED DATA PeriobicaLLY GAPPED DaTA

METHOD Tpeak Tcent THit Tpeak Teent THit
ICCF.......... 2900 3092 S 2600 2549 ..
DCF........... 3072 3067 3020 £ 115 2018 2170 3483 £ 359
ZDCF ........ 3072 3067 3030 £ 86 2018 2170 2993 + 287

Note.—The true lag is assumed to be 3000 s.

Fig. 2—Plots of ICCF CCPDs for two different lags: (a) evenly sampled
light curves with 7 = 0 s; (b) periodically gapped light curves with 7 =0 s;
(c) evenly sampled light curves with 7 = 3000 s; and (d) periodically gapped
light curves with 7 = 3000 s. The dotted line refers to 7pca, and the solid line
to Teent- The vertical long-dashed line indicates the true lag.

We then resample these two light curves using the real
BeppoSAX observing windows, as mentioned in § 2.1. The
resulted light curves are thus affected by periodic gaps re-
sembling the light curves obtained with BeppoSAX . Note that
the number of points (63) in the first resampled light curve
is smaller than that in the second (76) because on board
BeppoSAX the LECS detector is less exposed than the MECS
one. The ICCF, DCF, and ZDCF of the two light curves with
periodic interruptions are shown in Figures 1b—1d (dotted
line, open circles with error bars). The measured lags are also
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Fig. 3.—Same as Fig. 2, but for DCF. The dotted line refers to 7pca, the
solid line to 7cey, and the short-dashed line to 74. The vertical long-dashed
line indicates the true lag.
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Fic. 4—Same as Fig. 2, but for ZDCF. The dotted line refers to Tpcax, the
solid line to T¢en, and the short-dashed line to 7. The vertical long-dashed
line indicates the true lag.

reported in Table 1. In this case, both Ty and Tceye under-
estimate the true lag, while 74; of the DCF and ZDCEF still
recover it, although with larger uncertainties. Figures 16—1d
also show that the overall characteristics of the CCFs obtained
from the evenly sampled light curves are almost identical to
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those obtained from the corresponding light curves with pe-
riodic gaps. However, because a large number of data points
are missing in the latter case, the CCF peaks shift somewhat to
smaller lags. Note that 75, is not calculated for the ICCF case
because there are no estimates of the ICCF errors, and the DCF
errors are overestimated with respect to the ZDCF ones.

The statistical significance of the effects of periodic gaps on
the CCF lag determinations is deduced from the probability
distributions of a number of simulations. We show in Figures 2
(ICCF), 3 (DCF), and 4 (ZDCF) the CCPDs of the simulated
lags for the case 7 = 0 and 3000 s. It is worth noting that the
CCPDs are almost always nonnormal distributions, in partic-
ular for 7pcac and 7Ten. Therefore, we use the median and a
68% confidence level (with respect to the median) to statisti-
cally characterize the CCPDs. The statistical results for all the
simulations performed are tabulated in Table 2. Column (1) is
the assumed true lag, and columns (2)—(4) and (5)—(7) give
the CCPD median and 68% confidence range for evenly
sampled and periodically gapped light curves, respectively. As
shown in Figures 2—4 and Table 2, the main results of our
simulations can be summarized as follows:

1. The assumed true lags are recovered in all cases in terms
of the CCPD medians with 68% confidence errors.

2. The main effect of periodic gaps is to broaden the
CCPDs, and thus to increase the uncertainty of the CCF lag
determinations. Most importantly, periodic gaps do not produce
artificial CCF lags. More specifically, from the simulations with
true small lags (e.g., the cases of 0 and 300 s lags) one can see
that periodic interruptions in the light curves definitely do not
produce spurious lags on timescales of hours.

TABLE 2
CCPD AnaLysis REsuLTs oF MONTE CARLO SIMULATION DATA

EvVENLY SAMPLED DATA

PeriopicarLLy GAPPED DATA

TrUE LaG Tpeak Teent THit Tpeak T cent THit
M ) 3) 4) (5) (6) @
ICCF

0.00........ 0.107919 0.0031} 0.107919 0.007934
0.30........ 0.30;%;‘}% 0‘31§§%§ 0.30;‘8);1% oso;g%
1.40........ 1'30;82%8 1‘40;8:{ 3 1'30;8%8 1'32;8322
3.00........ 2.90%57 3.00%5 4 3.00Z530 2.99%07
5.40........ 5407930 5.401024 540704 5447939
7.10........ 7.007940 7.101937 7.107940 7.037048
DCF
0.00........ 0'00§§3§§ o.oozg;g 0,10%5 0'°°§§3§§ 0.00§§;§2 o.oozggg
0.30........ 0.51+5:90 0.26+:2 0.30+3-18 0.51+:% 0.05+5:28 0.29+:47
1.40........ 1.54+5:99 1317538 1387928 1.0279:99 1.14758 136704
3.00........ 3.07+0:%0 3.067024 2.96704 2.02+0.00 2471074 2.98+085
ERACEIIE 92051 20-024 07 -0.64 o154 72-0.72 +22-0.62
7.10....... 7177388 7.167333 7.02+0:0 6.66197¢ 6917072 7.03+023
ZDCF
0.00%0 50 0.007033 0.00%0 10 0.00000 0.00703 0.037033
0.51%0:00 026053 03170110 0.5170%) 0.05%0:¢8 0.34%033
1.54%000 131505 1407015 1.027000 1.14704 143703
3.07*0:0 3.06%0:33 3.00%015 2.02%500 247001 29704,
717500 7.16755; 7.087521 6.667 0 6.917543 7137047

Note.—The quoted values are the medians of the CCPDs, and the errors are 68% confidence range with

respect to the medians.
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Fic. 5.—(a) Light curves obtained with XMM-Newton for PKS 2155—-304
(see text for details). The filled circles refer to the 0.7—1 keV energy band, and
the open circles to the 1-2 keV band; (b) corresponding ICCF of (a). The
solid line is calculated from real data (i.e., evenly sampled light curves), and
the dotted line from periodically gapped light curves resampled from (a) after
applying the BeppoSAX sampling windows to (@); (c) corresponding DCF of
(a). The solid line is calculated from real data, and the open circles with error
bars from the same periodically gapped light curves as used in (b); and (d)
same as (¢), but for ZDCF. The dashed lines in (), (¢) and (d) indicate zero lag.

3. In some cases, the three CCF methods and the three
techniques used to interpret the CCF results do not give rise to
completely consistent results. For example, 7k strongly
depends on the lag steps used to calculate the CCF; the errors of
the DCF are overestimated, thus producing the broadest CCPDs.

These results imply that (1) evenly sampled light curves
with large lag-to—bin-size ratios give more reliable CCF lag
determinations; (2) more importantly, the lags on timescales of
hours discovered by 4SCA and BeppoSAX cannot be an arti-
fact of periodic gaps in the light curves that have intrinsically
small lag; and (3) the only effect of periodic gaps is to in-
troduce uncertainty and to increase the variance on the CCF
lag determinations.

3. A SPECIFIC CASE: XMM-NEWTON OBSERVATIONS
OF PKS 2155-304

The simulations presented in the previous section show that
periodical gaps in the light curves do not produce spurious lags
between them, but only increase the uncertainty and variance
in lag determinations. Uninterrupted data with high temporal

TABLE 3
CCF AnaLysis ResuLTs oF THE XMM-Newton DATA

ReaL Data Fake DATA
METHOD Tpeak Teent THit Tpeak Teent THit
300 1904 . 300 212 .
0 100 695 +865 1200 707 1538 £+ 2547
0 100 433 £179 1200 707 879 £ 592

0.3

0.1 0.2 .
LA L L I L L

v b b by

Probability

0.3

0.1 0.2
TT T T[T rr [ rrrrprrr

cov b b by

Fic. 6.—Plots of CCPDs obtained by Gaussian randomly redistributing
the XMM-Newton light curves (Fig. 5a) on the basis of the quoted errors.
The upper panels are obtained from the real XMM-Newton light curves, and the
lower panels from the periodically gapped light curves resampled from the real
XMM-Newton light curves using the BeppoSAX sampling windows. The dotted
line refers to Tpeak, the solid line to Ten;, and the short-dashed line to 7. The
vertical long-dashed line indicates zero lag.

resolution are available from XMM-Newton observations of
Mrk 421 and PKS 2155—304. All of the CCF analyses, per-
formed by Brinkmann et al. (2001, 2003), Edelson et al.
(2001), Sembay et al. (2002), and Maraschi et al. (2004),
showed that the interband lags between the soft and hard en-
ergy bands are close to zero, with upper limits of ~1000 s. As
we pointed out in the Introduction, these results led Edelson
et al. (2001) to suggest that previous claims of time lags on
timescales of hours might be an artifact of the periodic inter-
ruptions every ~1.6 hours due to the low Earth orbits of sat-
ellites such as ASCA and BeppoSAX . Therefore, in addition to
the simulations presented in the previous section arguing
against the above suggestion, an important test to assess the
role of periodic gaps is to consider the XMM-Newton data and
resample them according to the ASCA or BeppoSAX observing
windows, and then repeat the CCF analysis on the fake ASCA
or BeppoSAX data. Whether or not interband lags would be
detected from the fake data would be a strong argument in
favor or against the claim by Edelson et al. (2001).

In order to perform such a test, we take the first part of the
XMM-Newton observation of PKS 2155—304 (Maraschi et al.
2004). The details of the data reduction and CCF analysis will
be presented in Maraschi et al. (2004, in preparation). For our
purposes, we simply extracted the light curves in two energy
bands, 0.7—1 and 1-2 keV. The light curves (without inter-
ruptions) are shown in Figure 5a. First, we performed the CCF
analysis on them: the results are shown in Figures 5b—5d
(solid line) for the ICCF, DCF, and ZDCF, respectively. We
then resampled the light curves with the typical BeppoSAX
sampling windows, obtaining two light curves with periodic
interruptions resembling real BeppoSAX observations. We
performed the same CCF analysis on the fake light curves
with periodic gaps just as we did on light curves without gaps.
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TABLE 4
CCPD AnNALysis RESULTs OF THE XMM-Newton DATA

REAL Dara Fake DaTa
METHOD Tpeak Tcent Tpeak Tcent THit
ICCF....... 600600 2021+8¢7 . 6007990 12014187 o
DCF........ ongzozg 201 1;22(54 1279}5282 1200;2%%0 14773%3{) 17675%2
ZDCF ..... 0Fo 20114881, 7127418 1200165, 14777110 1457773

Note.—The quoted values are the medians of the CCPDs, and the errors are 68% confidence range with

respect to the medians.

The results are also shown in Figures 5b—5d (dotted lines,
open circles with error bars). In all cases the two light curves
are highly correlated near zero lag, and the CCFs calculated
from the real and fake data overlap near their peaks, sug-
gesting that the periodic interruptions do not change the CCF
character near the peak. We also measured the lags with the
three techniques. The results are tabulated in Table 3. Because
of the complexities of the CCFs, the measured lags depend on
the CCF methods and the techniques used to quantify the
CCFs. However, the results show in general that the real lag
might be close to zero, with 0.7—1 keV photons very mar-
ginally leading the 1-2 keV photons.

Finally, we performed FR simulations (i.e., Gaussian ran-
domly redistributing the light curves on the basis of the quoted
errors). The resulting CCPDs are shown in Figure 6. We used
the same statistical method as in § 2.2 to characterize the
CCPDs. The statistical results are tabulated in Table 4. Within
the 68% confidence errors, T,e, gives lags consistent with
zero, while 7. and 75, suggest positive lags of ~1000—-2000 s,
but at a low confidence (~2 o). Note that the low confidence
of the lag detections can be caused by the complexities of
the variability behavior and the dependence of variations on
the energy band considered. This also explains the fact that
different methods and techniques can give rise to inconsistent
results. In any case, the comparison of the results obtained,
using the same method and technique, from the light curves
with periodic gaps and without gaps does not favor the sug-
gestion that the periodic interruptions produce spurious lags.

4. DISCUSSION AND CONCLUSIONS

We performed two sets of simulations to investigate the
effects of space-based observations with short orbital period
(~1.6 hr) on the reliability and significance of CCF lag deter-
minations, specifically for the energy-dependent variations of
synchrotron X-ray emission of TeV blazars. The first set of
simulations (§ 2) make use of fake light curves generated with
the Fourier transformation method. We investigated two main
issues; (1) the effects of periodic data gaps in the light curves,
and (2) the effects of different lag-to—bin-size ratios of light
curves. The simulations showed that evenly sampled light
curves indeed yield more reliable CCF lags, with smaller var-
iance, than the periodically gapped light curves do. However,
the CCPD analysis clearly showed that the light curves with
periodic gaps still preserve the nature of the true lags (re-
gardless of the values) even though they introduce larger lag
variances than the light curves without gaps. Moreover, larger
ratios of lag-to—light-curve bin size can improve the signifi-
cance of CCF lag determination. The second set of simulations
is based on a real XMM-Newton observation without inter-
ruptions. We resampled it with the typical BeppoSAX sampling

windows in order to study whether or not periodic inter-
ruptions can give rise to strong biases in CCF lag determi-
nations. The complex nature of the variability in TeV blazars
results in obvious difficulties when quantifying lags, and it is
likely to be the source of discrepancies between the results
quantified with different techniques. However, the comparison
of the results derived with the same CCF method and the same
quantifying technique shows that the light curves with periodic
interruptions do not produce spurious lags on timescales of
hours if their intrinsic lag is indeed small. Therefore, our
investigations argue against the proposal by Edelson et al.
(2001) that the lags of about an hour discovered by 4SCA and
BeppoSAX are an artifact of periodic gaps introduced by low
Earth orbit satellites. We thus conclude that the lags discovered
by ASCA and BeppoSAX are most likely due to intrinsic var-
iability properties of the sources, and not artificially produced
from an intrinsic zero lag by periodic gaps. However, because
of the complexities of variability that produces complicated
CCF (irregularities and complexities of CCF could well be
caused by different properties of variability on different time-
scales; Zhang 2002) it is not easy to quantify real lags with the
CCF method, and different CCF methods and interpreting
techniques might work for different cases. Our simulations
also confirm that uninterrupted light curves with large lag-to—
bin-size ratios can improve the accuracy of lag determinations,
in particular for small lags that require high sampling rates of
light curves.

Welsh (1999) showed that the reality of CCF lag determi-
nations also depend (1) on the light curve autocorrelation-
function (ACF) sharpness (the sharper the ACFs, the narrower
the CCF peak and the smaller the lag bias), and (2) on the ratio
of the intrinsic lag to the duration of the light curves. The first
dependence can be easily explained by recalling that a CCF is a
convolution of two ACFs. The ACF sharpness is determined by
the PSD steepness (the steeper the PSD, the broader the ACF).
The X-ray PSDs of the three TeV blazars are steep (with slopes
of ~2-3; Kataoka et al. 2001; Zhang et al. 1999, 2002); the
ACF and the CCF peaks are therefore broad. De-trending light
curves might remove such bias, but it also removes the low
(Fourier) frequency variability of the sources. This can intro-
duce serious errors into time series and needs to be done very
carefully. The second dependence becomes important only for
the lengths of light curves shorter than ~4 times the lag, which
is never the case for the TeV blazars observed in the X-rays
(typical ratios of the lengths of light curves to lags are 10—100).

Finally, we stress that the real light curves of the bright TeV
blazars are very complex (e.g., the relationship between light
curves at different energies cannot be represented by just one
“fixed” lag). Such complexities definitely result in irregular
CCF, e.g., the CCF peaks at zero lag but shows asymmetry,
which makes the CCF methods less straightforward for lag
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determinations. The cross-spectral technique, a more complex
tool used to determine the Fourier-frequency—dependent lags,
might have the advantage of avoiding such ambiguities, at
least over long timescales (see Zhang 2002 for details).
However, because this method relies on the Fourier transfor-
mation it is not applicable to unevenly spaced data. In con-
trast, in the time domain one can use the DCF to substitute the
classical CCF when dealing with irregular data.
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