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ON ANALYTIC FAMILIES OF INVARIANT

TORI FOR PDES

by

Boris Dubrovin

Dedicated to J.-P.Ramis on the occasion of his 60th birthday

Abstract. — We propose to apply a version of the classical Stokes
expansion method to the perturbative construction of invariant tori for
PDEs corresponding to solutions quasiperiodic in space and time vari-
ables. We argue that, for integrable PDEs all but finite number of the
small divisors arising in the perturbative analysis cancel. As an illustrat-
ive example we establish such cancellations for the case of KP equation.
It is proved that, under mild assumptions about decay of the magnitude
of the Fourier modes all analytic families of finite-dimensional invariant
tori for KP are given by the Krichever construction in terms of theta-
functions of Riemann surfaces. We also present an explicit construction
of infinite dimensional real theta-functions and corresponding quasiperi-
odic solutions to KP as sums of infinite number of interacting plane
waves.

1. Introduction

Quasiperiodic solutions of the equations of motion

u̇ = f(u)

in the form

u(t) = U(φ1, . . . , φn), φj = ωjt + φ0
j , j = 1, . . . , n

2000 Mathematics Subject Classification. — 35Q53, 37K10, 37K20, 14H70.
Key words and phrases. — KP equation, Stokes expansion, theta-functions.
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for a 2π-periodic in each φ1, . . . , φn function U has been studied in the

classical mechanics since 19th century. The associated geometric im-

age of linear motion on an n-dimensional torus became widely accepted

after creation of KAM theory and of the Arnold - Liouville theory of

completely integrable Hamiltonian systems [2], although it was already

familiar in the physics literature after the A.Einstein’s treatment of the

Bohr-Sommerfeld quantization rules for integrable systems with many

degrees of freedom [16]. In particular, the Arnold - Liouville theory ap-

plied to a completely integrable Hamiltonian system on a 2n-dimensional

symplectic manifold u ∈ M2n establishes existence of families of n-

dimensional invariant tori depending on n parameters I = (I1, . . . , In)

(1.1) u(t | I) = U(φ1, . . . , φn | I), φj = ωj(I)t + φ0
j , j = 1, . . . , n.

Changing the values of the action variables I1, . . . , In one represents a

2n-dimensional domain in the symplectic manifold as a torus fibration.

Under the nondegeneracy assumption [2] the frequencies ω1(I), . . . , ωn(I)

run through all possible directions. In particular, for generic values of

the parameters I the solution (1.1) is a quasiperiodic function in time.

Systems of evolutionary PDEs

(1.2) ua
t = fa(u, ux, uxx, . . . ), x = (x1, x2, . . . , xd), a = 1, . . . , r

can be considered as an infinite-dimensional analogue of dynamical

systems define on a suitable space of functions of d spatial variables

x1, . . . , xd. Although in certain cases it is possible to develop an

infinite-dimensional analogue of the Arnold-Liouville theory of com-

pletely integrable Hamiltonian systems and to construct families of

infinite-dimensional invariant tori for certain nontrivial examples of

nonlinear evolutionary PDEs, and, moreover, to develop an infinite-

dimensional analogue of KAM theory (see [25, 7, 21]), in the most

physical applications families of low dimensional invariant tori for PDEs

play a prominent role.

For linear PDEs families of one-dimensional invariant tori can be read-

ily found in the form of plane waves

(1.3) u(x, t) = A cos(k1x1 + · · ·+ kdxd − ωt + φ0).
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The wave numbers k1, . . . , kd take arbitrary values within some domain

of the d-dimensional space, the frequency

(1.4) ω = ω(k1, . . . , kd)

is determined from the so-called dispersion relation substituting the an-

satz (1.3) into the equation (1.2). It will be assumed that all branches

of the dispersion relation (1.3) are real-valued functions. For any such

branch A is a r-component vector determined, in the generic situation,

up to a scalar factor called the amplitude. The phase shift φ0 can also

take an arbitrary value. The solution (1.3) in general is quasiperiodic

both in space and time variables. Multidimensional invariant tori for

linear PDEs are obtained as linear superpositions of plane waves

u(x, t) =
n∑

i=1

Ai cos(ki
1x1 + · · ·+ ki

dxd − ωit + φi
0)

with arbitrary amplitudes, phases and wave numbers, the frequencies

determined as above

ωi = ω(ki
1, . . . , k

i
d), i = 1, . . . , n.

Note that, in the discussion of invariant tori for PDEs, we need not

specify the class of functions to be considered.

In many cases families of one-dimensional invariant tori can also be

obtained for various nonlinear PDEs as travelling wave solutions

(1.5) u(x, t) = U(φ |A), φ = k1x1 + · · ·+ kdxd − ωt + φ0.

Here U(φ |A) is a 2π-periodic function in φ depending on some number

of parameters A = (A1, A2, . . . ) that determine the shape of the wave.

The wave numbers and phases take arbitrary values. The shape of the

wave does not depend on the phase shifts but it may depend on the wave

numbers. It is convenient to subdivide the parameters A in two parts

(1.6) A = (k1, . . . , kd; a)

where the parameter a is a nonlinear analogue of the amplitude. The

frequency is to be determined from a nonlinear analogue of the dispersion

relation. The latter involves also the amplitude parameters a,

(1.7) ω = ω(k1, . . . , kd; a).
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For fixed t the solution (1.5) takes constant values along the hyperplanes

k1x1 + · · ·+ kdxd = const.

The points on the hyperplanes move in the orthogonal directions with

the constant phase velocity

v =
ω

|k|
, |k| =

√
k2

1 + · · ·+ k2
d.

Example 1.1. — The periodic travelling wave for the Kadomtsev -

Petviashvili (KP) equation

(1.8) uxt +
1

4
(3u2 + uxx)xx +

3

4
uyy = 0

(here d = 2, x = x1, y = x2) can easily be obtained in terms of elliptic

functions

u(x, y, t) = U(φ), φ = kx + ly − ωt + φ0

U(φ) =
2k2

π2
K2

(
κ2cn 2

[
K

π
φ; κ

]
− γ

)
+

c

6

ω = − c

4
k +

3

4

l2

k
− k3K2

π2

(
3
E

K
+ κ2 − 2

)
γ =

E

K
− 1 + κ2.(1.9)

Here cn [z; κ] is the Jacobi elliptic function with the modulus 0 ≤ κ ≤ 1,

K = K(κ), E = E(κ) are complete elliptic integrals of the first and

second kind resp., c is an arbitrary constant.

The functions (1.9) are periodic travelling waves propagating with con-

stant speed in the (x, t)-plane. For l = 0 the above formulae reduce to

the so-called cnoidal waves for the Korteweg - de Vries (KdV) equation

(1.10) ut +
1

4
(3u2 + uxx)x = 0.

The KdV equation is known to arise in a fairly general setting of one-

dimensional weakly nonlinear waves with small dispersion (see, e.g., [29]).

In particular it describes one-dimensional shallow water waves of small
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amplitude. The y-dependence of solutions to the KP equation (1.8) de-

scribes(1) slow transversal perturbations of the KdV waves [20], [29].

The elliptic modulus κ plays the role of the amplitude parameter.

At the limiting value κ = 0 one obtains trivial solution u = 0; the

frequency takes the value ω = −1
4
(c k + k3). For small positive values of

the parameter

ε2 = k

[
ω +

1

4

(
c k + k3 − 3

l2

k

)]
> 0

one obtains approximately the plane wave solution

u ' c

6
+ A cos(kx + ly − ωt + φ0), ω ' 1

4

(
3
l2

k
− c k − k3

)
with the small amplitude

A ' 2

√
2

3
ε.

More accurate idea about the shape of the solution (1.9) for small amp-

litudes can be obtained by using Stokes expansion method [32]; see also

Chapter 13 of the Whitham’s book [34]. We will represent this classical

method of the theory of water waves in a slightly modified version. Let

us look for the solution to the KP equation in the form of Fourier series

(1.11)

u(x, y, t) =
c

6
+A1 cos φ+A2 cos 2φ+A3 cos 3φ+. . . , φ = kx+ly−ωt+φ0

depending on a small parameter ε assuming that

(1.12) Ak = O(εk), k = 1, 2, . . . .

Also the dispersion law must be expanded in a series with respect to the

small parameter

(1.13) ω =
1

4

(
3
l2

k
− c k − k3

)
+ ω1 + ω2 + . . . , ωk = O(εk).

The KP equation must hold for an arbitrary φ0 as an identity for formal

series in ε. Without loss of generality one can use the small amplitude

(1)The equation (1.8) is often called KPII to distinguish it from the KPI case. The
latter equation differs from (1.8) by the sign in front of the second derivative in y. It
also has physical applications but not within the theory of water waves [20].
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A = A1 of the plane wave as the expansion parameter. Substituting the

ansatz (1.11) - (1.13) into (1.8) yields, after simple calculation

u(x, y, t) =
c

6
+ A cos φ +

A2

2 k2

(
1− A2

8 k4
+ O(A4)

)
cos 2φ

+

(
3 A3

16 k4
+ O(A5)

)
cos 3φ +

(
A4

16 k6
+ O(A6)

)
cos 4φ + . . .(1.14)

ω =
1

4

(
3
l2

k
− c k − k3

)
+

3 A2

8 k
+

3 A4

128 k5
+ O(A6).(1.15)

For small amplitudes (1.14) - (1.15) gives a reasonably good uniform

approximation to the cnoidal wave (1.9).

Multidimensional invariant tori for PDEs is still a not completely un-

derstood phenomenon, although there are quite a few nontrivial examples

of PDEs where families of finite-dimensional invariant tori have been

constructed, mainly by applying the methods of algebraic geometry (see,

e.g.,[12, 23, 10]). One can think of them as of the result of nonlinear in-

teraction of travelling waves solutions, although this operation in general

has to be defined. We suggest the following approach to the definition of

the nonlinear interaction.

Let the PDE (or a system of PDEs) possess a family of travelling wave

solutions of the form (1.5) depending on some vector parameter

A = (k1, . . . , kd; a).

It is assumed that the wave vector k1, . . . , kd assumes arbitrary values

in some domain of Rd,

(k1, . . . , kd) ∈ K ⊂ Rd.

The amplitude parameter a belongs to a m-dimensional domain

a ∈ D ⊂ Rm.

Denote

A := K ×D ⊂ Rd+m.

The solution (1.5) must satisfy the PDE identically in φ0. Let us assume

that, on a certain submanifold of codimension 1,

a ∈ C ⊂ D, dim C = m− 1
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the solution (1.5) becomes constant. We will only consider the local

situation where D is a small neighborhood of the manifold of constant

solutions. Denote ε the distance from C. So, the amplitude parameter is

subdivided into

a = (ε, c), c ∈ C.

For small ε the solution (1.5) must become close to the plane wave

u ' u0(c) + A(ε, c) cos φ,

φ = k1x1 + · · ·+ kdxd − ωt + φ0, ω ' ω0(k1, . . . , kd, c))(1.16)

where ω0(k1, . . . , kd, c) is the dispersion law of the linearized PDE near

the manifold of constant solutions c ∈ C, A(0, c) = 0.

Definition 1.2. — We say that the family of n-dimensional invariant

tori of the form

u = U(φ1, . . . , φn|A(1), . . . ,A(n)),

φi = ki
1x1 + ki

2x2 + · · ·+ ki
dxd − ωit + φ0

i , i = 1, . . . , n(1.17)

is obtained as the result of (nonlinear) interaction of n plane waves if the

following conditions are fulfilled.

(i) The functions (1.17) are 2π-periodic in φ1, . . . , φn.

(ii) As functions of (A(1), . . . ,A(n)) they are analytic on a complement

in A × · · · × A (n factors) to a collection of finite number of algebraic

subvarieties R1, . . . , RN

(1.18) (A(1), . . . ,A(n)) ∈ A× · · · × A \ ∪N
k=1Rk ⊂ Rn (d+m).

(iii) Near the manifold of constant solutions the Fourier expansion of the

functions (1.17) has the form

U(φ1, . . . , φn|A(1), . . . ,A(n)) = u0(c1, . . . , cn; ε1, . . . , εn)

+A(ε1, c1) cos φ1 + · · ·+ A(εn, cn) cos φn

+
∑

m∈Zn,|m|>1

Amei (m1φ1+···+mnφn)

φj = kj
1x1 + · · ·+ kj

dxd − ωj + φ0
j , j = 1, . . . , n

ωj = ω0(k
j
1, . . . , k

j
d, cj) +

∑
k≥1

ωj
k

u0(c1, . . . , cn; ε1, . . . , εn) = u0(c1) + · · ·+ u0(cn) + O(ε).(1.19)
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The Fourier coefficients

Am = Am(k1
1, . . . , k

n
d , ε1, . . . , εn, c1, . . . , cn)

must be analytic functions on (1.18). Their Taylor expansions in ε1,

. . . εn near C × · · · × C must begin with the terms of the order |m|,

(1.20) Am = O
(
ε|m|) , |m| = |m1|+ · · ·+ |mn|.

Also in the expansion of the dispersion law the k-th term

(1.21) ωj
k = ωj

k(k
1
1, . . . , k

n
d , ε1, . . . , εn, c1, . . . , cn)

must be of the order k in ε. The coefficients of the leading Fourier modes

must coincide with the leading coefficients of the plane wave expansions

(1.16).

We believe that existence, for any n ≥ 1, of the analytic families of

n-dimensional invariant tori satisfying the assumptions of the Definition

1.2 implies integrability of the PDE. It would be interesting to prove

precise mathematical theorems in this direction.

In this paper we pursue a more modest goal. For the example of KP

equation we want to prove that, indeed, the analytic families of invariant

tori satisfying the conditions of the Definition 1.2 exist for any n. Ac-

tually, we will prove that the families of invariant tori obtained by the

I.M.Krichever’s construction [22]) satisfy the assumptions of the Defini-

tion. Moreover, we will prove that all such analytic families of invariant

tori must be given by the Krichever’s construction. Our main motiv-

ation was the mathematical understanding of the remarkable physical

experiments of J.Hammack et al. [18, 19]. In these experiments the

propagation of small amplitude shallow water waves was studied. In

a water tank of the size approximately 13× 27 m and depth 20 cm the

waves were generated by a wavemaker programmed to create a superpos-

ition of two cnoidal waves with different directions of propagation and

different amplitudes. The measurements of the resulting wave profile

proved to be in a remarkable agreement with the two-dimensional invari-

ant tori for KP given in terms of theta-functions (see below). Also some

oceanic observation were analyzed in [19]; again the agreement with the

theta-functional invariant tori looked encouraging.
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To our opinion the experimental results suggest the following main

question to be addressed: why the multidimensional invariant tori for KP

created by Krichever [22] with sophisticated algebro-geometric technique

are observable in the physical experiments? Putting this in a different

way, the mathematical questions to be answered are

- does the Krichever’s construction cover all finite-dimensional invariant

tori for KP?

- are these tori stable?

One of the difficulties in proving exact statements in this direction is

quasiperiodicity of the solutions with respect to the spatial directions.

The extension of the finite-dimensional Arnold - Liouville and KAM the-

ory to the infinite-dimensional situation developed in [25, 7, 21] mainly

refers to the space of spatially periodic functions.

In Section 2 we prove a simple uniqueness statement (see Theorem

2.1 below): all finite-dimensional invariant tori for KP obtained as a

result of nonlinear interaction of plane waves in the sense explained above

are expressed in terms of theta-functions of Riemann surfaces via the

Krichever construction.

In the last Section we extend the technique developed in the proof of

Theorem 2.1 to the explicit construction of the moduli space of the KP

theta-functions of infinite genus. They are obtained as infinite superposi-

tions of plane waves satisfying certain requirements to ensure convergence

of the infinite sums. The KP solutions given in terms of these theta-

functions will be quasiperiodic in both space and time variables. For the

case of hyperelliptic Riemann surfaces the theory of theta-functions of

infinite genus and associated KdV periodic and quasiperiodic solutions

was initiated by H.McKean and E.Trubowitz [27]. For the KP case,

where arbitrary Riemann surfaces can appear in the finite genus case,

the infinite genus theory for the doubly periodic in (x, y) KP solutions

was created by I.Krichever [24] (see also [6]). The state-of-the-art of

the theory of the associated infinite genus theta-functions can be found

in the monograph of J.Feldman, H.Knörrer and E.Trubowitz [15]. Ob-

serve that our approach does not require any assumption about spatial

periodicity.
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2. Can one see the shape of Riemann surface looking at the

water waves?

Let us begin with some preliminaries of the theory of KP equation.

Although (1.8) is strictly speaking not an evolutionary PDE, our defini-

tion of nonlinear interaction of plane waves makes sense also for the KP

case. Observe that the mean value∫
u(x, y, t) dx

is a first integral. We will always consider the solutions with zero mean

value. This is not a serious constraint. Indeed, the KP equation is in-

variant with respect to the action of the group of scaling/Galilean trans-

formations

x = cx′ + ac2y′ − 1

2
bc3t′

y = c2y′ − 3

2
ac3t′

t = c3t′

u = c−2

[
u′ +

1

2
a2 − 1

3
b

]
(2.1)

depending on three arbitrary parameters c 6= 0, a, b. Using these trans-

formations one can always kill the mean value.

Technically it is more convenient to work with the so-called bilinear

form of KP. The substitution

(2.2) u = 2∂2
x log τ(x, y, t)

reduces (1.8) to

(2.3) 3τ 2
xx − 4τxτxxx + τ τxxxx + 3(τyyτ − τ 2

y ) + 4(τxtτ − τxτt) + 2bτ 2 = 0.

Here b is an integration constant. Actually what will be studied is the

invariant tori for (2.3) of the form

τ(x, y, t) = A0 +
∑
m6=0

Amei (m1φ1+···+mnφn),

φj = kjx + ljy − ωjt + φ0
j , j = 1, . . . , n(2.4)
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Without loss of generality one can assume

A0 = 1.

Moreover, doing if necessary suitable shifts along φ0
1, . . . , φ0

n one can

normalize the leading coefficients in such a way that

(2.5) A(−1,0,...,0) = A(1,0,...,0), . . . , A(0,...,0,−1) = A(0,...,0,1).

Let us first recall the construction of the algebro-geometric invariant

tori for KP. They are parametrized by quadruples (Σn,∞, ζ, σ) where Σn

is a Riemann surface of genus n with a marked point ∞ ∈ Σn, ζ is a 3-jet

of a local parameter on Σn near ∞, ζ(∞) = 0. Finally, σ must be an

anticomplex involution

(2.6) σ : Σn → Σn, σ(∞) = ∞, σ∗ζ = ζ̄

such that the fixed-point set of the involution σ consists of n + 1 com-

ponents. Call a1, . . . , an the (homology classes of) the suitably oriented

components not containing the point ∞. These will be the basic a-cycles

on the Riemann surface Σn. The conjugated b-cycles can be choosen

arbitrarily provided that

(2.7) σ∗(aj) = aj, σ∗(bj) = −bj, j = 1, . . . , n.

The Fourier coefficients of the algebro-geometric solutions have the

form

(2.8) Am = e−π〈m,β m〉

where β = (βij) is the real symmetric positive definite n×n matrix given

by the periods of holomorphic differentials

(2.9) βij = −i

∮
bj

wi,

∮
aj

wi = δij.

The wave numbers and frequencies are given in terms of the coefficients

of expansions of the basic holomorphic differentials near ∞ ∈ Σn,

(2.10) wi(P ) =
1

2 π

(
ki + liζ + ωiζ

2 + O(ζ3)
)
dζ, P →∞.

The phase shifts φ0
j can be arbitrary real numbers.
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The formulae (2.8) - (2.7) is nothing but the Krichever’s construc-

tion [22] of the algebro-geometric solutions to KP (see also [10, 13]

regarding the reality conditions). We will refer to the class of quadruples

(Σn,∞, ζ, σ) described above as the KP Riemann surfaces, and their

theta-functions as to the KP theta-functions. Recall that, besides the

reality conditions no other constraints are to be imposed on the triple

(Σ,∞, ζ).

Let us call the wave numbers k1, . . . , kn, l1, . . . , ln resonant if, for

some i 6= j

(2.11) ki = ±kj and likj = ljki.

If this is not the case and k1 6= 0, . . . , kn 6= 0 the wave numbers will be

called nonresonant. From the definition of plane waves it follows that

one can assume all wave numbers kj to be positive.

Theorem 2.1. — Let (2.4) be a family of solutions to (2.3), for arbit-

rary phase shifts φ0
1, . . . , φ0

n, depending analytically on the small para-

meter ε and on the “amplitudes”

(2.12) a1 = A(1,0,...,0) > 0, a2 = A(0,1,0,...,0) > 0, . . . , an = A(0,0,...,1) > 0

and on arbitrary nonresonant wave numbers k1 6= 0, . . . , kn 6= 0, l1, . . . ,

ln such that

(2.13) Am = O
(
ε|m1|+···+|mn|

)
.

Then this family is given by (2.8) - (2.7) for some quadruple (Σn,∞, ζ, σ)

of the above form.

Proof. — Let us begin with algebraic preliminaries. Denote

R = C
[
z±1
1 , . . . , z±1

n

]
the ring of Laurent polynomials of n variables. The degree of a monomial

in R is defined by

deg zi1
1 . . . zin

n = |i1|+ · · ·+ |in|.

Denote Rm the subspace of Laurent polynomials of the degree m. The

product of Laurent polynomials satisfies

(2.14) RiRj ⊂ ⊕i+j
k=0Rk.
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The ring of trigonometric polynomials in φ1, . . . , φn is naturally iden-

tified with R by putting

zj = ei φj , j = 1, . . . , n.

So, the above definition and properties of the degree holds true also for

trigonometric polynomials.

We can now reformulate the assumptions of the Theorem in the fol-

lowing way. We are looking for a solution to the equation (2.3) in the

form

(2.15) τ = 1 + ε
n∑

j=1

aj(zj + z−1
j ) +

∑
m≥2

εmτ [m]

where

(2.16) τ [m] =
m∑

k=2

τ
[m]
k , τ

[m]
k ∈ Rk.

In these formulae we use the superscript [m] for labelling the terms of

the order m with respect to ε. The coefficients of these trigonometric

polynomials along with the coefficients of the expansions

(2.17) ωj =
1

4

(
3kjλ

2
j − k3

j

)
+
∑
m≥1

εmω
[m]
j , j = 1, . . . , n

(2.18) b =
∑
m≥1

εmb[m]

are to be determined from the KP equation (2.3). Here we introduce the

notation

λj :=
lj
kj

, j = 1, . . . , n.

Let us now describe more precisely the result of substitution of the an-

satz (2.15) to the KP equation (2.3). We need to introduce the following

notations. Put

∂x =
n∑

j=1

kj
∂

∂φj

, ∂y =
n∑

j=1

kjλj
∂

∂φj

, ∂t =
n∑

j=1

(k3
j − 3kjλ

2
j)

∂

∂φj

.
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We also introduce operators

∂
[m]
t =

n∑
j=1

ω
[m]
j

∂

∂φj

, m ≥ 1.

Finally, the fourth order linear differential operator L will be defined by

(2.19) L = ∂4
x + 3∂2

y + 4∂x∂t.

Using these notations one can rewrite the result of substitution of the

ansatz (2.15) to the KP equation at the order m ≥ 2 approximation as

the following equation:

L τ [m] + b[m] +
∑

k+l=m

′ [
4∂

[k]
t ∂xτ

[l] + 2b[k]τ [l]
]

+
∑

i+j=m

′ [
3∂2

xτ
[i]∂2

xτ
[j] − 4∂xτ

[i]∂3
xτ

[j] + τ [i]∂4
xτ

[j] + 4τ [i]∂x∂tτ
[j] − 4∂xτ

[i]∂tτ
[j]
]

+
∑

i+j+k=m

′ [
4∂

[k]
t ∂xτ

[i]τ [j] − 4∂xτ
[i]∂

[k]
t τ [j] + b[k]τ [i]τ [j]

]
= 0.

(2.20)

In this formula it is understood that, in the sums
∑′ all the summation

indices are distinct from zero.

The left hand side of this equation is a trigonometric polynomial in

φ0
1, . . . , φ0

n. Because of the property (2.14), the degree of this differential

polynomial is less or equal to m. Since φ0
1, . . . , φ0

n are arbitrary variables,

we can determine the unknown coefficients just equating the coefficients

of the trigonometric polynomials. More specifically, in order to determine

the coefficient a
[m]
i1...in

of the trigonometric polynomial

τ [m] =
∑

2≤|i1|+···+|in|≤m

a
[m]
i1...in

ei(i1φ0
1+···+inφ0

n)

one is to collect the coefficients of zi1 . . . zin in (2.20). Clearly the res-

ulting expression will depend linearly on a
[m]
i1...in

. It will also depend on

the lower order coefficients a
[m′]
j1...jn

, b[m′] with m′ < m, and on ω
[m′]
j with

m′ < m−1. Here we use the assumption |i1|+ · · ·+ |in| ≥ 2. Similarly, in

order to compute the coefficient ω
[m−1]
j of the expansion (2.17) one is to

collect the terms containing the monomial zj. Again, it is easy to see that
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all the coefficients of this monomial depend at most linearly on ω
[m−1]
j

and also on a
[m′]
j1...jn

, b[m′] with m′ < m, and on ω
[m′]
j with m′ < m − 1.

Finally, to determine b[m] it suffices to collect the constant term of the

trigonometric polynomial (2.20).

We obtain a recursive procedure for computing the coefficients of the

expansions (2.15) - (2.18). This procedure is an analogue of the classical

Stokes expansion method explained in the introduction; it also resembles

the Lindstedt series method of the classical mechanics (see Chapter XIII

of the Poincaré book [30]). Let us prove that this procedure works to

produce a unique solution for any m.

It is easy that the equations for b[m] and ω
[m−1]
j have unique solutions.

Indeed, from the first line of (2.20) it follows that the coefficients of these

unknowns are equal to 1. Let us prove that the coefficient of a
[m]
i1...in

is not

identically equal to zero.

Let us introduce the polynomial in 2n variables k1, . . . , kn, λ1, . . . , λn

depending on n integer indices i1, . . . , in,

(2.21)

D(i1, . . . , in) :=

(
n∑

s=1

ksis

)4

−3

(
n∑

s=1

ksλsis

)2

−
n∑

s=1

ksis

n∑
s=1

(k3
s−3ksλ

2
s)is.

Clearly, the following identity holds true

(2.22) L ei (m1φ1+···+mnφn) = D(m1, . . . ,mn)ei (m1φ1+···+mnφn)

if

φj = kjx + kjλjy +
1

4
(k3

j − 3kjλ
2
j)t + φ0

j , j = 1, . . . , n.

For example,

D(±1, 0, . . . , 0) = · · · = D(0, . . . , 0,±1) = 0

D(1, 1, 0, . . . , 0) = 3k1k2

[
(k1 + k2)

2 + (λ1 − λ2)
2
]

D(1,−1, 0, . . . , 0) = −3k1k2

[
(k1 − k2)

2 + (λ1 − λ2)
2
]

etc. Let us prove that, for arbitrary integers i1, . . . , in satisfying

(2.23) |i1|+ · · ·+ |in| ≥ 2

the polynomial D(i1, . . . , in) is not an identical zero. Indeed, collecting

the terms of the polynomial that contain the third and fourth powers of
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the variables k1, . . . , kn yields

D(i1, . . . , in) =
n∑

s=1

i2s(i
2
s − 1) k4

s +
∑
s 6=t

isit(4i
2
s − 1)k3

skt + . . .

where the periods stand for the terms of lower degree in kj. If at least

one of the indices i1, . . . in is not equal to zero or to ± 1, then the sum

of the fourth powers of kj does not identically vanish. If this is not the

case, at least two indices, say is and it, s 6= t do not vanish, due to the

assumption (2.23). In this case the coefficient of k3
skt is not equal to zero.

From the above arguments it follows that, all the coefficients a
[m]
i1...in

,

ω
[m−1]
j , b[m] for m ≥ 2 are uniquely determined from the equation (2.20) in

the form of polynomials in a1, . . . , an with the coefficients being rational

functions in k1, . . . , kn.

We are now to prove existence of the analytic families of invariant tori

of the described form. This will imply, last but not least, the proof of

cancellation of all the divisors D(i1, . . . , in) with |i1|+ · · ·+ |in| > 2.

To prove existence of the families of invariant tori with needed ana-

lytic properties we will use the Krichever construction [22] of algebro-

geometric solutions of KP. According to this construction an arbitrary

Riemann surface Σn of genus n with an arbitrary marked point ∞ ∈ Σn

and a 3-jet of a local parameter ζ near ∞, ζ(∞) = 0, gives rise to a

family of solutions of KP of the form

u(x, y, t) = ∂2
x log θ +

c

6

θ =
∑

m∈Zn

e−π〈m,βm〉ei(m1φ1+···+mnφn)

φj = kjx + ljy − ωjt + φ0
j , j = 1, . . . , n.(2.24)

In this formulae β = (βij) is the period matrix (2.9) of holomorphic dif-

ferentials on Σn with respect to a basis of cycles a1, . . . , an,b1, . . . ,bn ∈
H1(Σn, Z) normalized by the standard form of the intersection pairing

matrix

(2.25) ai ◦ aj = bi ◦ bj = 0, ai ◦ bj = δij,

the wave numbers kj, lj and frequencies ωj are given by the expansions

(2.10) of the normalized holomorphic differentials wj near ∞, φ0
1, . . . , φ0

n
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are arbitrary phase shifts, c is a certain constant. The constant c can be

killed by the Galilean transformation

u 7→ u− c

6
, x 7→ x +

c

4
t

corresponding to a suitable change of the 3-jet of the local parameter ζ

ζ 7→ ζ − c

12
ζ3.

We will always assume c = 0.

The solution (2.24) in general is a complex valued meromorphic func-

tion of the variables x, y, t, φ0
1, . . . , φ0

n. If the triple (Σn,∞, ζ) admits an

antiholomorphic involution σ satisfying (2.6) such that the fixed-point

set of the involution consists of n + 1 ovals, then the period matrix βij

and the wave numbers and frequencies are all real provided the basis of

cycles is chosen in the way described in the Theorem. Moreover [14],

the theta-function in (2.24) takes positive values for all real phase shifts

φ0
1, . . . , φ0

n, and the solution u(x, y, t) is real-valued and smooth. There-

fore, in this case, the Krichever formulae (2.24) define a n-dimensional

invariant torus for KP. It will also be invariant for all the flows of the KP

hierarchy. Conversely, from reality and smoothness of the solution (2.24)

on the torus generated by the flows of the KP hierarchy it follows that

(Σn,∞, ζ) must admit the antiholomorphic involution with the above

properties [13].

We will now produce the needed analytic family of n-dimensional

invariant tori for KP considering the families of solutions (2.24) with

“small” a-cycles.

Let us consider the family of Riemann surfaces of the above form de-

pending on n sufficiently small parameters s1, . . . , sn such that, in the

limit sj → 0 the j-th cycle aj is squeezed to zero such that

(2.26) Σn(s)|sj=0

is a genus n − 1 curve with an ordinary double point. Construction of

such a deformation can be found in the Chapter III of the Fay’s book

[14]. The following statements proved in [14] will be essential for us.

First, denote Σ̂j
n the normalization of (2.26) and P∓

j the two points

of the normalization to be identified on the nodal curve. The basic nor-

malized holomorphic differential wj(s) on Σn(s) in the limit sj → 0 goes
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to the normalized third kind differential on Σ̂j
n with simple points with

the residues ± 1
2πi

in the points P∓
j resp. Other normalized holomorphic

differentials wk on Σn(s) go to the normalized holomorphic differentials

on Σ̂j
n. The same claim holds true for limits of normalized 2nd and 3d

kind differentials on Σn(s) with pole away from the pinched cycle. The

diagonal entry βjj has logarythmic behaviour as sj → 0,

βjj = − log sj + O(1),

other matrix entries have regular expansions in sj.

Iterating this procedure, in the limit s1 → 0, . . . , sn → 0 the Riemann

surface Σn goes to the rational nodal curve with n pairs of identified

points z∓1 , . . . , z∓n . The basic holomorphic differentials take the limiting

values

(2.27) wj =
1

2πi

(
1

z − z−j
− 1

z − z+
j

)
dz, j = 1, . . . , n.

We will assume that the marked point ∞ ∈ Σn(s) corresponds to the

point z = ∞ of the limiting Riemann sphere and that the local parameter

ζ on Σn(s) goes to

ζ =
1

z
on the Riemann sphere near infinity. Comparing the expansions

wj = − 1

2πi

[
(z−j − z+

j ) + ((z−j )2 − (z+
j )2)ζ + ((z−j )3 − (z+

j )3)ζ2 + O(ζ3)
]

dζ

with the formulae (2.10) expressing the wave numbers and frequencies in

terms of expansion near ∞ of the basic normalized holomorphic differ-

entials we conclude that the identified points must have the form

(2.28) z±j =
1

2
(λj ± ikj), j = 1, . . . , n

Observe that the nonresonancy condition (2.11) means that all 2n points

(2.28) are pairwise distinct.

The crucial point in proving cancellation of all small divisors but those

corresponding to the resonances (2.11) is in proving that arbitrary con-

figuration of the pairwise distinct double points (2.28) on the Riemann

sphere can be obtained by the above n-parametric degeneration proced-

ure within the family of KP Riemann surfaces.
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Let βij(s) be the period matrix (2.9) of the family of Riemann surfaces

with respect to the basis of cycles that will be assumed to be continuosly

depending on the parameter s. Denote

(2.29) aj(s) = e−πβjj(s), j = 1, . . . , n.

At s = 0 one has

a1(0) = · · · = an(0) = 0.

The off-diagonal entries of the matrix βij(s) admit finite limits at s → 0

and

(2.30) e−2πβij(0) =
(ki − kj)

2 + (λi − λj)
2

(ki + kj)2 + (λi − λj)2
, i 6= j.

The wave numbers kj(s), lj(s) and the frequencies ωj(s) defined from the

expansions (2.10) also admit the limits as s → 0 of the form

(2.31) kj(0) = kj, lj(0) = kjλj, ωj(0) =
1

4
(3kjλ

2
j − k3

j ), j = 1, . . . , n.

We are now to prove that, for arbitrary nonresonant real numbers k1,

. . . , kn and arbitrary real numbers l1, . . . , ln and for arbitrary suffi-

ciently small positive numbers a1, . . . , an there exists a family of triples

(Σn,∞, ζ) of the above form depending analytically on the parameters

a1, . . . , an, k1, . . . , kn, l1, . . . , ln. To this end we are to introduce theta-

functions of the second order.

Let ν = (ν1, . . . , νn) be a vector with all components νj = 0 or 1. Such

a vector will be called characteristic. Define second order theta-function

θ̃[ν](φ|β) with the characteristic ν by

θ̃[ν](φ|β)

=
∑

m∈Zn

n∏
i=1

a
2(m2

i +miν1)
i

∏
i<j

Z
2mimj+miνj+mjνi

ij ei((2m1+ν1)φ1+···+(2mn+νn)φn).

(2.32)

Here

(2.33) aj = e−πβjj , Zij = e−2πβij , i 6= j.
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Our definition of the second order theta-functions differs from the stand-

ard one (see, e.g. [14]) by the factor

1

2

n∏
i=1

a
− ν2

i
2

i

∏
i<j

Z
−

νiνj
2

ij .

The advantage of our normalization is that, the functions (2.32) are real

analytic in the variables Zij > 0, aj ≥ 0, φk ∈ R provided that the lowest

eigenvalue ρ of the symmetric off-diagonal matrix

log Zij

satisfies

(2.34) ρ < 2π log a−2
j , j = 1, . . . , n.

Actually, (2.32) are even functions in a1, . . . , an. In particular,

θ̃[0] = 1 + 2
n∑

i=1

a2
i cos 2φi + O(a4)

(2.35)

θ̃[ni] = cos φi +
∑
j 6=i

a2
j

[
Zij cos(2φj + φi) + Z−1

ij cos(2φj − φi)
]
+ O(a4)

(2.36)

θ̃[nij] = cos(φi + φj) + Z−1
ij cos(φi − φj)

+
∑
k 6=i,j

a2
k

[
ZikZjk cos(2φk + φi + φj) + Z−1

ik Z−1
jk cos(2φk − φi − φj)

+Z−1
ij

(
ZikZ

−1
jk cos(φi − φj + 2φk) + Z−1

ik Zjk cos(φi − φj − 2φk)
)]

+O(a4)

(2.37)

In these formulae ni stands for the characteristic with the i-th component

1 and all others 0,

nij = ni + nj, i 6= j.

The following statement was proven in [8] (cf. also [28], [10]).

Lemma 2.2. — The function

τ(x, y, t) = θ(φ|β) =
∑

m∈Zn

e−π〈m,βm〉ei(m1φ1+···+mnφn),
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φj = kjx + ljy − ωjt + φ0
j , j = 1, . . . , n

satisfies (2.3) for arbitrary phase shifts φ0
1, . . . , φ0

n iff the vectors k =

(k1, . . . , kn), l = (l1, . . . , ln), ω = (ω1, . . . , ωn) and the matrix β = (βij)

satisfy the following system of equations

(2.38) f [ν](k, l, ω, β) :=
(
∂4

k + 3∂2
l − 4∂k∂ω + b

)
θ̃[ν](φ|β)|φ=0 = 0

for some constant b = b(k, l, ω, β) and for arbitrary characteristic ν ∈
(Z/2Z)n. Here

∂k :=
∑

kj
∂

∂φj

, ∂l :=
∑

lj
∂

∂φj

, ∂ω :=
∑

ωj
∂

∂φj

.

In particular, the equations (2.38) remain valid for the values

k = k(s), l = l(s), ω = ω(s), β = β(s)

of our family of Riemann surfaces for a suitable constant b = b(s). Indeed,

it can be readily checked that, at the limit s = 0 the equations (2.38)

hold true by substituting a2
1 = · · · = a2

n = 0 and the values Zij, kj, lj, ωj

from (2.30), (2.31) and b = 0.

We will now prove that the system (2.38) has unique solution of the

form

Zij = Zij(a
2
1, . . . , a

2
n, k1, . . . , kn, l1, . . . , ln),

ωj = ωj(a
2
1, . . . , a

2
n, k1, . . . , kn, l1, . . . , ln),

b = b(a2
1, . . . , a

2
n, k1, . . . , kn, l1, . . . , ln)

Zij(0, . . . , 0, k1, . . . , kn, l1, . . . , ln) =
(ki − kj)

2 + (λi − λj)
2

(ki + kj)2 + (λi − λj)2

ωj(0, . . . , 0, k1, . . . , kn, l1, . . . , ln) =
1

4

(
3kjλ

2
j − k3

j

)
b(0, . . . , 0, k1, . . . , kn, l1, . . . , ln) = 0

(2.39)

analytic for sufficiently small a2
1, . . . , a2

n and for arbitrary nonresonant

vectors k and l. Let us first construct such analytic solution for the

subsystem

(2.40) f [0] = 0, f [ni] = 0, i = 1, . . . , n, f [nij] = 0, 1 ≤ i < j ≤ n.
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To this end let us fix the nonresonant vectors k0 and λ0 and choose a

real positive number A such that the symmetric matrix β0
ij with

β0
jj = −2 log aj, β0

ij = − log
(k0

i − k0
j )

2 + (λ0
i − λ0

j)
2

(k0
i + k0

j )
2 + (λ0

i − λ0
j)

2
, i 6= j

is positive definite for

0 < aj < A, j = 1, . . . , n.

Then the functions f [0], f [ni], f [nij] will be real analytic in a, Z, k, λ,

ω, b for

0 ≤ aj < A′, j = 1, . . . , n

for some A′ < A and for Z, k, l, ω, b sufficiently close to

Z0
ij =

(k0
i − k0

j )
2 + (λ0

i − λ0
j)

2

(k0
i + k0

j )
2 + (λ0

i − λ0
j)

2
, k0, λ0, ω0

j =
k0

j

4

(
3(λ0

j)
2 − (k0

j )
2
)
, b0 = 0

respectively. For a1 = · · · = an = 0 the system (2.40) has unique solution

given by (2.39). We derive existence of such solution to (2.40) for positive

small a by applying the implicit function theorem (cf [9]). Indeed, from

the formulae (2.35) - (2.37) it readily follows that, at a2
1 = 0, . . . , a2

n = 0

∂f [0]

∂b
= 1,

∂f [0]

∂ωj

= 0,
∂f [ni]

∂ωj

= kiδij,

∂f [0]

∂Zpq

= 0,
∂f [ni]

∂Zpq

= 0,

∂f [nij]

∂Zpq

= 3Z−2
ij kikj

[
(ki − kj)

2 + (λi − λj)
2
]
δipδjq, i < j, p < q.

(2.41)

We obtain a triangular Jacobi matrix with the nonvanishing diagonal.

This proves existence of the needed analytic solution.
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Explicitly, the expansion of the needed solution reads

Zij =
ρ−ij
ρ+

ij

{
1 + 32

kikj[
ρ+

ijρ
−
ij

]2 [a2
i k

2
i pij + a2

jk
2
j pji

]
+256

kikj

ρ+
ijρ

−
ij

∑
k 6=i,j

a2
kk

4
kqijk

ρ+
ikρ

−
ikρ

+
jkρ

−
jk

}
+ O(a4)(2.42)

where

(2.43) ρ±ij = (ki ± kj)
2 + (λi − λj)

2, i 6= j

(2.44) pij =
(
k2

i − k2
j

)2
+ 2

(
3k2

i − k2
j

)
(λi − λj)

2 − 3(λi − λj)
4

qijk =

=
[
(λk − λj)(k

2
i − 3λ2

i ) + (λj − λi)(k
2
k − 3λ2

k) + (λi − λk)(k
2
j − 3λ2

j)
]

× [(λi − λj)(λj − λk)(λk − λi)

+λi(k
2
j − k2

k) + λj(k
2
k − k2

i ) + λk(k
2
i − k2

j )
]

(2.45)

ωi =
1

4

(
3kiλ

2
i − k3

i

)
+ 6ki

[
a2

i k
2
i + 8

∑
j 6=i

a2
jk

4
j (λi − λj)

2

ρ+
ijρ

−
ij

]
+ O(a4)(2.46)

(2.47) b = −6
∑

a2
i k

4
i + O(a4).

Let us now prove that the solution (2.42) - (2.47) to the subsystem

(2.40) also satisfies the whole system (2.38).

Lemma 2.3. — Let Z0
ij be the value of the functions (2.42) at a point

a0, k0, l0 (nonresonancy of k0
j , l0j is assumed). Then the system of equa-

tions

(2.48) Zij(a
2
1, . . . , a

2
n, k1, . . . , kn, l1, . . . , ln) = Z0

ij, 1 ≤ i < j ≤ n

for sufficiently small∑(
a2

j − (a0
j)

2
)2

+
∑

(kj − k0
j )

2 +
∑

(λj − λ0
j)

2

has three-dimensional variety of solutions.
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Proof. — Let us first establish validity of the claim of the Lemma for

a0
1 = · · · = a0

n. Let us rewrite the formula (2.30) in the form of the

cross-ratio

(2.49)
(ki − kj)

2 + (λi − λj)
2

(ki + kj)2 + (λi − λj)2
= (z+

i , z−i , z+
j , z−j ) ≡

z+
i − z+

j

z+
j − z−i

·
z−j − z−i
z+

i − z−j

where the complex numbers z±i are defined in (2.28). Because of invari-

ance of the cross-ratio with respect to the Möbius group

z 7→ az + b

cz + d
, ad− bc 6= 0,

the space of complex solutions to the system

(ki − kj)
2 + (λi − λj)

2

(ki + kj)2 + (λi − λj)2
=

(k0
i − k0

j )
2 + (λ0

i − λ0
j)

2

(k0
i + k0

j )
2 + (λ0

i − λ0
j)

2
, 1 ≤ i < j ≤ n

is at least three-dimensional. The subgroup PSL2(R) of the Möbius

group preserves reality of the numbers kj, λj. So the dimension of the

space of real solutions is also greater or equal to three. It is easy to see

that this dimension cannot be greater than 3. This proves the Lemma in

the limiting case a0 = 0.

Let us now extend the PSL2(R)-symmetry onto the whole space of

solutions to the equations (2.40). We first rewrite the symmetry in the

infinitesimal form with the generator

(2.50)

X0 =
∑[

1

4
p(λ2

j − k2
j ) + qλj + r

]
∂

∂λj

+
∑[

1

2
pλjkj + qkj

]
∂

∂kj

.

Here p, q, r are arbitrary real parameters. The one-parameter subgroups

corresponding to q and r have a clear meaning: these are the groups of

scaling transformations of k and λ and diagonal shifts of λ respectively,

kj 7→ c kj, λj 7→ c λj, j = 1, . . . , n, c 6= 0

λj 7→ λj + a, j = 1, . . . , n.(2.51)

They are clearly also symmetries of the full system inducing the trans-

formation

lj 7→ lj + akj, ωj 7→ ωj +
3

2
alj +

3

4
a2kj, j = 1, . . . , n.
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The generator of the one-parameter subgroup corresponding to p can be

recast into the form

(2.52) X
(p)
0 =

∑ 1

2
lj

∂

∂kj

+ ω0
j

∂

∂lj
, ω0

j =
1

4
(3kjλ

2
j − k3

j ).

Remarkably, in this form the transformations (2.52) yield symmetries of

the full system (2.38) when ω0
j is replaced by the exact solution ωj of

the system. This deep result is one of the important steps in the proof

of the Shiota theorem [31]. It follows from the following claim [31]:

compatibility of the system (2.38) implies compatibility of the system

(2.53)
(
2∂3

k∂l + 4∂l∂ω − 4∂k∂ω̇ + ḃ
)

θ̃[ν](φ|β)|φ=0 = 0

for some vector ω̇ and some constant ḃ. From uniqueness of such a vector

it follows that ω̇ coincides with the derivative of ω along the vector field

(2.54) X(p) =
∑ 1

2
lj

∂

∂kj

+ ωj
∂

∂lj
.

The lemma is proved.

We are now ready to complete the proof of the Theorem. According

to Lemma 2.3 combined with Torelli theorem [17], the dimension of the

space of solutions to the system (2.38) is equal to the dimension of the

moduli space of (real) Riemann surfaces of genus n plus 3, i.e., it is

equal to 3n for n ≥ 2. We have described the 3n-dimensional manifold

of solutions (2.42), (2.46) to the subsystem (2.40) that by construction

contains the solutions of the form (2.9) - (2.7) for Riemann surfaces

with sufficiently small real ovals a1, . . . , an. The dimension counting

proves coincidence of these two families. In particular this implies that

all the remaining equations of the system (2.38) hold true on the space

of solutions (2.42) - (2.47). Therefore the unique solution to KP defined

in (2.15) - (2.17) starting from a given nonresonant wave numbers k1,

. . . , kn, l1, . . . , ln and arbitrary sufficiently small amplitudes a1, . . . ,

an must have the form (2.8) - (2.7). Uniform convergence of the series

(2.24) for theta-functions together with cancellation of all the divisors

but D(ni ± nj), i 6= j implies analyticity of the family of invariant tori.

The Theorem is proved.
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Remark 2.4. — Explicitly, the extension of the symmetry (2.52) onto

the full space of solutions to (2.38) reads

X(p) =
∑ 1

2
λjkj

∂

∂kj

+
1

4
(λ2

j − k2
j )

∂

∂λj

+6
∑[

a2
i k

2
i + 8

∑
j 6=i

a2
jk

4
j (λi − λj)

2

ρ+
ijρ

−
ij

+ O(a4)

]
∂

∂λj

(2.55)

Together with the fields

X(q) =
∑

kj
∂

∂kj

+ λj
∂

∂λj

and

X(r) =
∑ ∂

∂λj

it generates the action of PSL2(R) on the space of solutions of the system

(2.38):[
X(q), X(p)

]
= X(p),

[
X(r), X(p)

]
=

1

2
X(q),

[
X(r), X(q)

]
= X(r).

The vector field X(p) generates infinitesimal changes of the marked point

∞ ∈ Σn. In other words, integrating the vector field (2.55) one obtains,

for n > 1, the Riemann surface with the parameters a2
1, . . . , a

2
n, k1, . . . , kn,

λ1, . . . , λn. This construction gives an answer to the question put in the

title of the Section. It would be important however to elaborate more

practical tools in the analysis of the experimental water wave data in

order to measure the moduli of the Riemann surface “hidden” behind

the water wave picture. For the case of two interacting plane waves such

tools has been developed in [18, 19].

3. Infinite genus theta-functions of Riemann surfaces without

Riemann surfaces

The invariant tori for KP identified in the previous Section as the result

of nonlinear interaction of n plane waves with small amplitudes 2a1, . . . ,

2an can be represented as infinite sums of homogeneous polynomials in

a1, . . . , an of various degrees with coefficients depending on the phases
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φ1, . . . , φn and on the wave numbers k1, . . . , kn, l1 = k1λ1, . . . , ln = knλn.

Let us recast this sum in the following way. For any subset

I = {i1, . . . , ig} ⊂ {1, 2, . . . , n}, g > 0

denote

(3.1) θI = ai1 . . . aig∆θI

the sum of all monomials that contain only ai for i ∈ I. We put

θ∅ = 1.

Denote also

φI = {φi1 , . . . , φig}, aI = {ai1 , . . . , aig},

kI = {ki1 , . . . , kig}, λI = {λi1 , . . . , λig}.

Lemma 3.1. — The genus n KP theta-function described in the The-

orem 2.1 can be represented in the form

(3.2) θ(φ1, . . . , φn|β) =
∑

I

θ|I|(φI |aI , kI , λI)

where the summation takes place over all subsets I ⊂ {1, 2, . . . , n}. The

functions θ|I|(φI |aI , kI , λI) are real analytic for all real nonresonant vec-

tors kI , λI and for sufficiently small nonnegative amplitudes aI . The

terms of this expansion can be uniquely determined from the system of

the form (2.38) with n 7→ |I| by requiring that the sum

(3.3)
∑
J⊂I

θ|J |(φJ |aJ , kJ , λJ)

with

φi = ki(x + λiy)− ωI
i t + φ0

i , i ∈ I

with some vector ωI satisfies KP.

Here |I| is the cardinality of the set I. It should be emphasized that

the radii of convergence

ai1 < ri1 , aig < rig

of the series depend on kI , λI .
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Proof. — This statement is almost obvious since, supressing all the amp-

litudes aj = 0 for j ∈ {1, 2, . . . , n}\ I one reduces a theta-function of the

genus n to another one of the genus |I|.

We will also redenote the functions ∆θI by ∆θg with g = |I|. Explicitly,

from (2.42) - (2.45) it follows that

(3.4) ∆θ1(φ|a) = 2
∑
n>0

an2−1 cos nφ

∆θ2(φ1, φ2|a1, a2, k1, k2, l1, l2) = 2

[
ρ−12
ρ+

12

cos(φ1 + φ2) +
ρ+

12

ρ−12
cos(φ1 − φ2)

]
+64

k1k2

[ρ+
12ρ

−
12]

2

(
a2

1k
2
1p12 + a2

2k
2
2p21

) [ρ−12
ρ+

12

cos(φ1 + φ2)−
ρ+

12

ρ−12
cos(φ1 − φ2)

]
+O(a6)

(3.5)

∆θ3(φ1, φ2, φ3|a1, a2, a3, k1, k2, k3, l1, l2, l3)

= 2

[
ρ−12ρ

−
23ρ

−
31

ρ+
12ρ

+
23ρ

+
31

cos(φ1 + φ2 + φ3) +
ρ−12ρ

+
23ρ

+
31

ρ+
12ρ

−
23ρ

−
31

cos(φ1 + φ2 − φ3)

+
ρ+

12ρ
+
23ρ

−
31

ρ−12ρ
−
23ρ

+
31

cos(φ1 − φ2 + φ3) +
ρ+

12ρ
−
23ρ

+
31

ρ−12ρ
+
23ρ

−
31

cos(−φ1 + φ2 + φ3)

]
+512

k1k2k3q123

ρ+
12ρ

−
12ρ

+
23ρ

−
23ρ

+
31ρ

−
31

{
a1k

3
1

[
ρ−23
ρ+

23

cos(φ2 + φ3)−
ρ+

23

ρ−23
cos(φ2 − φ3)

]
+a2k

3
2

[
ρ−31

ρ+
31

cos(φ3 + φ1)−
ρ+

31

ρ−31
cos(φ3 − φ1)

]
+a3k

3
3

[
ρ−12

ρ+
12

cos(φ1 + φ2)−
ρ+

12

ρ−12
cos(φ1 − φ2)

]}
+ O(a5)

(3.6)

In these formulae we use the same notations as in the previous Section,

i.e., the polynomials ρ±ij, pij, qijk in the variables k1, . . . , kn, λ1, . . . , λn

whith

λj = lj/kj
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are defined in (2.43) - (2.45). Recall that, in order to obtain a solution

τ(x, y, t) to the KP equation (2.3) one is to substitute in (3.2)

φj = kjx + ljy − ωjt + φ0
j

with arbitrary phase shifts φ0
j and the frequencies represented by a de-

composition similar to (3.2)

(3.7) ωj = ω0
j (kj, λj) + ∆ω1

j (aj, kj) +
∑
i6=j

∆ω2
j (aj, ai, ki, kj, λi, λj) + . . .

In this expansion

ω0
j (kj, λj) =

1

4
(kjλ

2
j − k3

j )

is the dispersion law of the linearized KP,

ωn
j (a1, . . . , an, k1, . . . , kn, λ1, . . . , λn)

is the “pure genus n” contribution into the nonlinear dispersion law (3.7)

to be found from the system (2.40) of the genus n and then subtracting

the lower genera contributions. Explicitly,

(3.8) ω1
i = 6k3

i

(
a2

i + 3a4
i + O(a6

i )
)

(3.9) ω2
i = 48ki

∑
j 6=i

a2
jk

4
j (λi − λj)

2

ρ+
ijρ

−
ij

+ O(a4)

etc. The genus g term

ai1 . . . aig∆θg(φi1 , . . . , φig |ai1 , . . . , aig , ki1 , . . . , kig , λi1 , . . . , λig)

φj = kjx + kjλjy − ωjt + φ0
j

ωj = ω0
j (kj, λj)

+∆ω1
j (aj, kj) + · · ·+ ∆ωg

i (ai1 , . . . , aig , ki1 , . . . , kig , λi1 , . . . , λig)

(3.10)

is created as the result of interaction of g plane waves

2ai1 cos[ki1(x + λi1y)− ω0
i1
(ki1 , λi1)t + φ0

i1
] + . . .

+2aig cos[kig(x + λigy)− ω0
ig(kig , λig)t + φ0

ig ]

and their harmonics. If the amplitudes of the plane waves are of order

ε then their g-tuple interaction is of the order εg. In other words, to

compute the solution τ(x, y, t) of (2.3) of genus N >> 1 with the accuracy
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εn for n < N it suffices to sum the expansions of the form (3.10) with

g ≤ n truncating them at the order n. The result of the truncation will

give uniform in the whole plane (x, y) ∈ R2 approximation of the genus

N solution for the times |t| < O(ε−n).

We want to generalize the expansion (3.2) to the case of interaction of

infinite number of plane waves. Given infinite sequences of real numbers

(3.11)

a = (a1, a2, . . . ), aj > 0, k = (k1, k2, . . . ), kj > 0, λ = (λ1, λ2, . . . )

we can construct a formal Fourier series of infinite number of variables

φ = (φ1, φ2, . . . ) representing it as the following power series in a

(3.12) θ(φ|a, k, λ) =
∞∑

g=0

∑
|I|=g

aI∆θg(φI |aI , kI , λI).

The summation takes place over all finite subsets I ⊂ N. This formal

expression makes sense for finite sequences of amplitudes a, i.e., assuming

that aj = 0 for j ≥ N for some big N . In that case it reduces, for

sufficiently small a1, . . . , aN , to the KP theta function of genus N .

If all the amplitudes a1, a2, . . . do not vanish, then, at each order in a

one is to summate infinite series. E.g., at the order one (3.12) gives

2
∞∑
i=1

ai cos φi,

at the order two

2
∑
i<j

aiaj

[
ρ−ij
ρ+

ij

cos(φi + φj) +
ρ+

ij

ρ−ij
cos(φi − φj)

]
etc. We will now give simple sufficient conditions for convergence of the

series (3.12) for infinite sequencies of the data (3.11). To this end we

are to recall some important points of the theory of infinite dimensional

theta-functions, following the book [15].

Let β = βij be an infinite symmetric matric with real values, i, j =

1, 2, . . . . We say that the matrix β satisfies FKT condition if there exists

a sequence of positive numbers σ = (σ1, σ2, . . . ) and a number κ satisfying

0 < κ < π

such that
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(i) the following series converges

(3.13)
∞∑

j=1

e−κ σj < ∞;

(ii) for all finite sequencies of integers m = (m1, m2, . . . ), |m| = |m1| +
|m2|+ · · · < ∞ the following inequality holds true

(3.14) 〈m, βm〉 ≡
∑
ij

βijmimj ≥
∑

j

σjm
2
j .

For a given sequence σ introduce the Banach space Bσ given by

(3.15) Bσ =

{
z = (z1, z2, . . . , ) ∈ C∞ | lim

j→∞

|zj|
σj

= 0.

}
with the norm

(3.16) ‖z‖ = sup
j

|zj|
σj

.

According to the Theorem 4.6 of [15] for a symmetric matrix β satisfying

FKT condition for some σ the theta-series

(3.17) θ(φ|β) =
∑

m∈Z∞, |m|<∞

e−π〈m,βm〉ei〈m,φ〉

converges absolutely and uniformely on a sufficiently small ball around

any point φ ∈ Bσ to a holomorphic function.

It is clear that, for a given symmetric matrix βij satisfying FKT con-

dition, another symmetric matrix β′ij with the same off-diagonal terms

β′ij = βij for i 6= j and with arbitrary diagonal terms satisfying β′jj ≥ βjj

for all j = 1, 2, . . . will also satisfy FKT condition with the same σ.

Let us first give a simple sufficient condition for an off-diagonal sym-

metric matrix βij to ensure a possibility to choose positive numbers β11,

β22, . . . in such a way that the whole symmetric matrix βij satisfies FKT

condition for some sequence σ.

Lemma 3.2. — Let the real symmetric off-diagonal matrix βij satisfies

the condition

(3.18) µ2
i :=

∑
j>i

β2
ij < ∞, i = 1, 2, . . . .
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Let σ be any sequence of positive numbers satisfying the convergence con-

dition (3.13) with some positive κ < π. Let β0
jj be another sequence of

positive numbers defined by

β0
jj = σj + 2

j∑
k=1

µk, j ≥ 1

(it is assumed that all numbers µj are nonnegative). Then, for any choice

of the diagonal entries satisfying

(3.19) βjj > β0
jj, j ≥ 1

the matrix β satisfies FKT condition.

Proof. — Because of the obvious inequality∑
i,j

βijmimj ≥
∑

j

βjjm
2
j − 2

∑
i

|mi

∑
j>i

βijmj|

it suffices to obtain upper estimate for the second term. Let us consider

the Hilbert space of square summable sequencies

L
(i)
2 = {(xi, xi+1, . . . ) |

∑
j≥i

x2
j < ∞}.

Applying the standard inequality

|(x, A x)| ≤ ‖A‖L2(x, x), x ∈ L
(i)
2

valid for an arbitrary Hilbert - Schmidt operator A to the rank one op-

erator

(xi, xi+1, . . . ) 7→ (
∑
j>i

βijxj, 0, . . . )

we obtain

|xi

∑
j>i

βijxj| ≤ µi

∑
j≥i

x2
j .

Finite sequencies of integers give vectors in L
(i)
2 . Applying to these vec-

tors the last inequality yields∑
i,j

βijmimj ≥
∑

j

βjjm
2
j − 2

∞∑
j=1

µj

∑
k≥j

m2
k.

This proves the Lemma.
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Using the Lemma, we will give a simple sufficient condition for an in-

finite sequence of plane waves to generate, via the formula (3.12), an in-

finite genus KP theta-function for arbitrary sufficiently small amplitudes

aj and given wave numbers kj, lj.

Lemma 3.3. — Let

zj =
1

2
(λj + ikj), kj > 0 j ≥ 1

be a sequence of complex numbers satisfying the following conditions.

(i) There exists a small positive number r > 0 such that

(3.20) |zi − zj| > r, i 6= j, |zi − z̄j| > r, i, j = 1, 2, . . . .

(ii) The series

(3.21)
∞∑

j=1

|zj|−2 < ∞

converges.

Then there exists a sequence of positive numbers β0
jj such that the mat-

rix β with the off-diagonal entries

(3.22) β0
ij = − 1

2π
log

(ki − kj)
2 + (λi − λj)

2

(ki + kj)2 + (λi − λj)2
, i 6= j

satisfies FKT condition for arbitrary diagonal entries such that

βjj > β0
jj, j = 1, 2, . . . .

Proof. — The formula for β0
ij can be rewritten in the form

β0
ij = − 1

2π
log

∣∣∣∣zj − zi

zj − z̄i

∣∣∣∣2 .

Using the elementary inequality∣∣∣∣∣log

∣∣∣∣z − w

z − w̄

∣∣∣∣2
∣∣∣∣∣ < 4

|z|
|Im w| for

∣∣∣w
z

∣∣∣ < 1

2

we derive that

|β0
ij| <

2

π

ki√
k2

j + λ2
j
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for a fixed i and any sufficiently large j >> i. Applying Lemma 3.2 we

complete the proof of the Lemma.

We are now ready to prove convergence of the series (3.12) for a suitable

class of parameters a, k, λ. Let the vectors k, λ satisfy the conditions

of the Lemma 3.3. Choose positive numbers σj in such a way that the

series (3.13) converges for some positive κ < π. Choose numbers β0
jj in

such a way that

(3.23) β0
jj > σj + 2

j∑
k=1

µ0
k, j = 1, 2, . . .

where

(3.24) µ0
i :=

(∑
j>i

(
β0

ij

)2) 1
2

and the off-diagonal matrix β0
ij = β0

ij(k, λ) is defined in (3.22).

Theorem 3.4. — For arbitrary positive numbers a = (a1, a2, . . . ) satis-

fying

(3.25) aj < e−π β0
jj , j = 1, 2, . . .

the series (3.12) converges absolutely and uniformely on a sufficiently

small ball around any point φ ∈ Bσ to a holomorphic function. The series

expansion (3.7) also converges to a sequence of frequencies (ω1, ω2, . . . ).

The theta-function (3.12), after the substitution

φj = kj(x + λjy)− ωjt + φ0
j , j = 1, 2, . . .

for arbitrary real phase shifts, yields a quasiperiodic solution to the KP

equation (2.3) for some constant b = b(a, k, λ).

Proof. — Let us consider the space of off-diagonal matrices βij satisfying

the following inequalities

(3.26)
k∑

j=1

(∑
j>i

βijr

) 1
2

<
1

2

(
β0

kk − σk

)
, k = 1, 2, . . . .

For any a satisfying (3.25) and any off-diagonal βij satisfying (3.26) the

theta-series (3.17) converges to an analytic function on Bσ. It will also
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depend analytically on the period matrix, moreover, it satisfies the heat

equations

ak
∂θ

∂ak

= − ∂2θ

∂φ2
k

, Zij
∂θ

∂Zij

= − ∂2θ

∂φi∂φj

.

One can also prove analyticity of the theta-functions of the second order

(2.32). Like in the proof of the Theorem 2.1, we consider the system of

equations (2.40). The functions f [ν] vanish at a = 0 for

βij = β0
ij, i < j, ωj =

1

4
(3kjλ

2
j − k3

j ), b = 0.

The inverse to the Jacobi matrix (2.41) is a bounded operator due to our

assumptions about the wave numbers. Applying the implicit function

theorem we obtain convergence of the series (3.12), (3.7). The Theorem

is proved.

Example 3.5. — Let λj = 0 for all j ≥ 1 and kj be arbitrary positive

numbers satisfying

|ki − kj| > r, i 6= j

for some positive r. Then the assumptions of the Theorem 3.4 are ful-

filled. In this way one obtains the theta-functions of the hyperelliptic

Riemann surfaces of infinite genus (cf. [27], [15]). In particular, if kj

grows linearly with j, then the series (3.12) will converge for all a with

exponential decay

aj < e−c j

for some positive constant c. The formulae (3.12), (3.7) define quasiperi-

odic solutions to the KdV equations.

More generally, our approach describes some neighborhood of the man-

ifold of hyperelliptic Riemann surfaces of infinite genus. In particular,

assuming that the points zj satisfying (3.20) belong to a strip of a finite

width along the imaginary axis, one obtain slow transversal perturba-

tions of the KdV quasiperiodic solutions. The condition (3.21) in this

case holds automatically true. It would be interesting to prove that the

intersection with this neighborhood of the so-called heat curves of [24],

[6], [15] associated with doubly periodic in x, y solutions u(x, u, t) of KP
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form a dense subset. For the case of finite genus density this was proved

in [5].

Some of our assumptions about behaviour of the sequence of wave

numbers can in fact be relaxed. We will consider more general situation

in a subsequent publication. The assumption (3.20) that prevent the in-

teracting waves to be close to resonant seems however to be essential. For

example, as it was shown by S.Venakides [33], the limits of hyperelliptic

theta-functions with the parameters kj accumulating in the interval [0, 1]

are weird functions described by a minimization principle of the Lax -

Levermore type [26]. It would be also interesting to prove that our infin-

ite genus theta-functions (3.12) come from a parabolic Riemann surfaces

in the sense of Ahlfors and Sario [1].

We also plan to study in subsequent publications the relationship of

our approach to the approach of V.Zakharov and E.Schulman to the

problem of classification of integrable PDEs.
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