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1 Introduction

In the last few years there has been an intense effort to model superconductor/superfluid

phase transitions using the AdS/CFT correspondence. The basic observation that makes

this industry possible is the fact that at finite charge density and at sufficiently low tem-

peratures, an AdS black hole in the presence of a charged scalar field is unstable to the

formation of hair [1]. Using the basic AdS/CFT dictionary [2–4], this gets easily interpreted

as a superfluid-like phase transition in the dual field theory, cf. Weinberg [5].

Much of the work on holographic superconductors is done in the context of phenomeno-

logical models, along the lines of the proposal originally presented in [6]. This is based on

the minimal set-up of a charged massive scalar minimally coupled to Einstein-Maxwell

theory. While many interesting results can be obtained within this minimal framework

(see [7–9] for reviews and references), such a bottom-up approach has some intrinsic lim-

itations. Since the hope is that holographic constructions may eventually shed some light

on some basic properties of high-Tc superconductors, it would be desirable to have a micro-

scopic understanding of the underlying theory. This is something that phenomenological

models, by definition, cannot offer. Secondly, they do not guarantee the existence of a quan-

tum critical point in the phase diagram, which is instead expected to control the physics

of high-Tc superconductors. Indeed, the phenomenological models that one typically works

with have no potentials but the mass term. However, it is expected that to have an emer-

gent conformal symmetry in the infrared in the zero temperature limit, one should have
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potentials that allow symmetry-breaking minima [10]. Recently, some progress has been

made in this respect and several microscopic embeddings of holographic superconductors

have been proposed in the framework of type IIB string theory [11], M-theory [12], and

D7-brane models [13, 14]. In these models, the potentials quite generically allow symmetry

breaking vacua.

Most studies have also been performed in the probe approximation, which is a large-

charge limit in which the backreaction of the matter fields on the gravitational field is

negligible. While many interesting results can be obtained with such a simplified setup

when the temperatures are near the phase transition, the analysis becomes less and less

reliable at very low temperatures, where the backreaction is non-negligible. This prevents

exploration of interesting low temperature phenomena: in particular, understanding the

ground state of holographic superconductors is outside the regime of applicability of the

probe limit. Therefore, it is useful to realize holographic constructions where the backreac-

tion is taken into account. Progress in this direction began with [15], where a (numerical)

backreacted solution for the phenomenological model of [6] was presented.

In trying to explore the phase diagram of holographic superconductors, an interesting

direction was pursued in [16, 17] where the original holographic superfluid was studied in

the presence of a non-vanishing superfluid velocity (aka superfluid flow). Holographically

this needs a non-trivial profile for a spatial component of the gauge field, besides the ever-

present temporal component. The latter corresponds to a charge density and is necessary

to have a phase transition in the first place (see [18] for a recent alternative proposal). Two

interesting results obtained in [16, 17] were to show the existence of a critical velocity above

which the superfluid phase ceases to exist, as expected for physical superfluids, and the

existence of a tricritical point in the velocity vs. temperature diagram where the order of

the phase transition changes from second to first. Moreover, it was noticed in [19, 20] that

these solutions can be efficiently compared to 2+1-dimensional superconducting thin films

or wires. They behave very much like superfluids, in that an applied external magnetic

field does not get expelled as if the gauge field were not dynamical. The four-dimensional

gravitational model of [16, 17] was further analyzed from this latter viewpoint in [20], where

the system was in fact studied at fixed current rather than at fixed velocity. This choice

allowed new checks, and remarkable agreement with some peculiar properties of real-life

superconducting films (see [21]) was found.

All solutions presented in [16, 17, 20] have been obtained in the probe approxima-

tion. Hence, while being able to confront phenomena near or right below the critical

temperature, not much could be said about the low temperature regime of such superfluid

flows. This problem was addressed more recently in [22], where the backreaction of the

phenomenological four-dimensional model of [16, 17] was obtained.

1.1 Summary of results

In this paper we take some concrete steps forward in the above program on superfluid

flows: we focus our attention on models with known microscopic embedding and symmetry

breaking vacua, and work at the backreacted level. Specifically, we will describe a holo-

graphic superfluid flow in four dimensions by means of a fully backreacted solution of a
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five-dimensional gravitational system whose action arises as a consistent truncation of type

IIB string theory [11]. The effective theory is essentially Einstein-Maxwell theory with a

Chern-Simons term, interacting with a complex charged scalar with a non-trivial potential.

It can be obtained upon compactification of type IIB theory on an AdS5 × Y geometry, Y

being a Sasaki-Einstein manifold. Using the numerical solutions that we find, we analyze

several aspects of the rich phase diagram of this system. In particular, we present the

plots of the scalar condensate against temperature and its dependence on the superfluid

velocity, analyze the nature of the phase transition computing the free energy difference

between the superconducting and the normal phase, and give some predictions on the zero

temperature limit.

As one would expect on physical grounds, we observe that for high enough velocity the

system stops superconducting. Interestingly, we find that for all velocities we have investi-

gated the phase transition in these type IIB constructions is always second order. Hence,

we do not find the tricritical point which characterizes the phase diagram of models with

large charges. The same behavior was observed in the phenomenological but backreacted

AdS4 model of [22] for low values of the scalar charge (in fact, only for the case q = 1 in

their notation). The persistence of the second order phase transition has been observed

also in the unbackreacted case for large masses of the scalar in five dimensions [23]. We

will have some more comments on this in section 4.

One of the advantages of having a fully backreacted model is that one can also in-

vestigate the low temperature limit. In the zero velocity case, it is known [10, 24] that

the type IIB hairy black hole solution tends to a domain wall with an emergent conformal

symmetry in the deep IR. (This is in contrast with the phenomenological model of [25]

where the potential has only a mass term and no symmetry breaking minima, and the zero

temperature limit generically does not lead to an IR AdS geometry.) When the velocity

is turned on and it is high enough, we find evidence that the solution stops being AdS in

the IR. This suggests that beyond some critical velocity the IR conformality is lost. Along

the way, we also discuss the importance of the frame comoving with the superfluid flow in

these results.

The rest of the paper is organized as follows. In section 2 we present the truncated type

IIB five-dimensional action and the equations of motion. Our ansatz for the relevant fields,

and the procedure we pursue to obtain numerical solutions with the desired features are

discussed in section 3. Using these solutions, in section 4 we study the phase diagram of the

superfluid flow. In particular, we analyze the nature of the phase transition as a function of

the superfluid velocity. In doing so, we compute the free energy of the superfluid phase and

compare it to that of the normal phase (which is described, holographically, by a Reissner-

Nordstrom black hole with no scalar hair). Finally, in section 5 we study the T → 0 limit of

some geometrical quantities like the Ricci scalar and the Riemann tensor squared. We also

study the variation of the superfluid fraction as the temperature is lowered. These analyses

allow us to explore the nature of the ground state of holographic type IIB superfluid flows.

The appendices contain more technical material which might help the reader in following

our analytical and numerical computations more closely.
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2 The IIB set up

In [11] a consistent truncation of type IIB supergravity was presented, which has the

structure of an Einstein-Maxwell (plus Chern-Simons) system in five dimensions coupled

to a charged scalar field with a non-trivial potential. The action reads

SIIB =

∫

d5x
√−g

[

R− L2

3
FabF

ab +
1

4

(

2L

3

)3

ǫabcdeFabFcdAe+

− 1

2

(

(∂aψ)2 + sinh2 ψ(∂aθ − 2Aa)
2−

6

L2
cosh2

(

ψ

2

)

(5 − coshψ)

)]

. (2.1)

Here, ǫ01234 = 1/
√−g, and we have written the charged (complex) scalar by splitting the

phase and the modulus in the form ψeiθ. For later convenience we recall that the Abelian

gauge field A is dual to an R-symmetry in the boundary field theory [11] and the scalar

field has R-charge R = 2.

The matter equations of motion are

1√−g∂a

(4

3
L2√−gF ab − 8

27
L3√−gǫabcdeFcdAe

)

+

+
2

27
L3ǫpqrsbFpqFrs + 2 sinh2 ψ(∂bθ − 2Ab) = 0 , (2.2)

1√−g∂a(
√−g∂aψ) − 1

2
sinh 2ψ(∂bθ − 2Ab)

2 +

+
3

2L2

(

sinhψ(5 − coshψ) − 2 cosh2

(

ψ

2

)

sinhψ

)

= 0 . (2.3)

The Einstein equations can be written as

Rab −
1

2
gabR− 2

3
L2
(

FacF
c

b − gab

4
F cdFcd

)

+

−1

2
Ξab +

1

4
gabΞ

a
a − 3

2L2
gab cosh2

(

ψ

2

)

(5 − coshψ) = 0 , (2.4)

with Ξab ≡ ∂aψ∂bψ + sinh2 ψ(∂aθ − 2Aa)(∂bθ − 2Ab) .

It is convenient to use the gauge invariance to shift away the angle θ and also write the

various expressions in terms of covariant derivatives. This basically means that we set θ to

zero in the above equations and use

∇a

(

4

3
L2F a

b −
8

27
L3ǫa cde

b FcdAe

)

+
2

27
L3ǫpqrs

bFpqFrs − 4 sinh2 ψ Ab = 0 , (2.5)

∇a∇aψ − 2 sinh 2ψ(AbA
b) +

3

2L2

(

sinhψ(5 − coshψ) − 2 cosh2

(

ψ

2

)

sinhψ

)

= 0 , (2.6)
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as the matter equations of motion. The leading terms in the scalar potential take the form

V (ψ) = − 12

L2
− 3ψ2

2L2
+ . . . (2.7)

which have the immediate interpretation as the AdS cosmological constant and the scalar

mass term. Typically, in a minimal phenomenological model the scalar potential has just

the above two terms. Higher order terms affect mostly the very low temperature regime

where the condensate becomes larger and thus the type IIB model can become substantially

different from the minimal one. There are then two reasons as to why one should try and

work out a fully backreacted solution for this type IIB model. The first is that the scalar

has charge R = 2 and hence the probe approximation, which is a large charge scaling limit,

is potentially inappropriate already at temperatures near the critical temperature. The

second is that a backreacted solution would let one study the system in a regime (i.e. very

low temperatures) where, as just noticed, the differences of the action (2.1) with respect

to that of a phenomenological model, are more apparent.

Note that the scalar mass is m2 = −3. In d = 4, this mass is in the range where

the leading fall-off at the boundary, which is O(1/r), corresponds to a non normalizable

mode. So, using the AdS/CFT map, we will interpret it as the source of the dual field

theory operator O. The subleading fall-off is O(1/r3) and corresponds to a condensate for

O (whose dimension will therefore be ∆ = 3). It is evident from the value of the R-charge

and this fall-off that ∆ = 3|R|/2 and O is therefore a chiral primary [11].

3 Hairy black hole solution

We want to construct a fully backreacted hairy black hole solution, holographically de-

scribing a superfluid flow. To achieve this we must keep the metric (also) unfixed and

find a self-consistent solution for the metric, the gauge field and the scalar. To have a

charged scalar condense, we need to turn on both the scalar and the time component of

the gauge field in the bulk [1]. Moreover, to obtain a non-vanishing superfluid flow, we

should break the isotropy in the boundary directions that was present in the original holo-

graphic superconductor construction of [11]. Indeed, the superfluid velocity in (say) the

x-direction is captured by the leading fall-off of the bulk gauge field component Ax at the

boundary, which should therefore have a non-trivial bulk profile. Altogether, this means

that we need ψ,At and Ax to be non-trivial. Since we would like to work with ordinary as

opposed to partial differential equations, we look for an ansatz where these are functions

purely of the holographic direction r: fortunately, this turns out to be enough to obtain

a solution. Consistency of the Einstein equations then demands that we choose a metric

ansatz of the form

ds2 = −r
2f(r)

L2
dt2+

L2h(r)2

r2f(r)
dr2−2C(r)

r2

L2
dtdx+

r2

L2
B(r)dx2+

r2

L2
dy2+

r2

L2
dz2 . (3.1)

The metric contains four independent functions, f(r), h(r), C(r) and B(r). Together with

the ansatz for the gauge field and the scalar

A = At(r) dt +Ax(r) dx , ψ = ψ(r) , (3.2)
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this will give rise to a set of seven independent equations for seven unknowns. Our ansatz

here is essentially of the same form as the one in [22], albeit in one more dimension. This

can be demonstrated by going over to an Eddington-Finkelstein form and working in a

frame where the normal fluid considered in [22] is at rest.

Let us first notice that with this choice of ansatz the terms in the equations of mo-

tion (2.5) arising from the ǫabcde piece all vanish. A second important fact is that there

are several scaling symmetries one should be aware of. In particular, the ambiguity in the

units at the boundary for the time t and the distance along x translate to the following

two scaling symmetries of the resulting equations

t→ t/a , f → a2f , h→ ah , C → aC , At → aAt , (3.3)

x→ x/b , B → b2B , C → bC , Ax → bAx . (3.4)

These are symmetries of the action and therefore of the equations of motion. Two further

scaling symmetries of the system that we will use are

(r, t, x, y, z, L) → α(r, t, x, y, z, L) , (At, Ax) → (At, Ax)/α , (3.5)

r → βr , (t, x, y, z) → (t, x, y, z)/β , (At, Ax) → β(At, Ax) . (3.6)

The first scaling changes the metric by a factor α2 and leaves the gauge field invariant, but

its effect is to scale the action (2.1) by an overall constant factor α2, therefore leaving the

equations of motion unaffected. The second scaling is the usual holographic renormalization

group operation in AdS, and it is easily seen that the metric, gauge field and the equations

of motion are left invariant. Using the symmetries (3.5) and (3.6) we can scale the horizon

radius rH and the AdS scale L to unity. We will assume this has been done in what follows,

unless stated otherwise.

The strategy we pursue to construct (numerically) our solution is as follows. First,

using our ansatz, one can massage the equations of motion and end up with first order

differential equations for f and h and second order differential equations for B,C,At, Ax

and ψ. All in all we have then two first order and five second order equations resulting in

twelve degrees of freedom. Therefore, to fix a solution we need twelve pieces of data.

We start by considering the fields (3.1)–(3.2) near the horizon (r = rH) and expand

their several components Φ in a Taylor series as

Φ = ΦH
0 + ΦH

1 (r − rH) + . . . . (3.7)

Requiring regularity of the solution at the horizon amounts to setting some specific coeffi-

cients to zero. To linear order in (r − rH), the expansion at the horizon takes the form

f = fH
1 (r − rH) + . . . (3.8)

h = hH
0 + hH

1 (r − rH) + . . . (3.9)

B = BH
0 +BH

1 (r − rH) + . . . (3.10)

C = CH
1 (r − rH) + . . . (3.11)

At = AH
t,1(r − rH) + . . . (3.12)

– 6 –
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Ax = AH
x,0 +AH

x,1(r − rH) + . . . (3.13)

ψ = ψH
0 + ψH

1 (r − rH) + . . . . (3.14)

That is, demanding regularity is tantamount to setting fH
0 , C

H
0 and φH

0 to zero. Imposing

now the equations of motion has the effect of putting further constraints on many coeffi-

cients, which all end up being determined by a small set of independent horizon data. It

turns out that the coefficients can all be determined in terms of six independent data

(hH
0 , B

H
0 , C

H
1 , A

H
t,1, A

H
x,0, ψ

H
0 ) . (3.15)

This means that the solutions that we will find by integrating from the horizon will be a

six-parameter family. All other coefficients are functions of these ones. One such relation

which will be useful later is

fH
1 = (hH

0 )2
(

9

4
+ 2 coshψH

0 − cosh(2ψH
0 )

4

)

−
2(AH

t,1)
2

9
. (3.16)

The next step is to integrate the solution from the horizon out to the boundary (r → ∞),

starting with the free horizon data (3.15), trying a suitable ansatz for the asymptotics of

the fields at the boundary. In fact, the asymptotic expansion in five dimensions is subtle

because, as already noticed, the mass of the scalar is such that there is a non-normalizable

mode. To accommodate a generic solution obtained by integration from the horizon, we

therefore need to turn on the non-normalizable mode of the scalar as well at the boundary.

The non-normalizable mode triggers further logarithmic terms in the asymptotic expansion,

so we need to keep track of them as well. It turns out that a combined series expansion in

both 1/rn and log r/rm

Φ =

∞
∑

n=0

Φn
1

rn
+

∞
∑

m=0

Φl
m

log r

rm
, (3.17)

works nicely.

Using a shooting technique we select, out of all possible solutions, those which match

our physical requirements. In particular, we ask that the space be asymptotically AdS and

that the source term for the field theory operator dual to the scalar field be vanishing, since

we want the U(1) breaking to be spontaneous.

We have found that the following asymptotic expansion solves the equations of mo-

tion,1 while being general enough to match the curves arising from the integration from

1What we do is to plug this expansion into the EoMs and demand that the result be zero order-by-

order. We find that either this is satisfied identically or that the resulting relations can be interpreted as

the definitions of higher order terms in the expansion.
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the horizon

f = h2
0 +

f4

r4
+
f l
4

r4
log r + . . . , h = h0 +

h2

r2
+
h4

r4
+
hl

4

r4
log r + . . . , (3.18)

B = B0 +
B4

r4
+
Bl

4

r4
log r + . . . , C = C0 +

C4

r4
+
C l

4

r4
log r + . . . , (3.19)

At = At,0 +
At,2

r2
+
Al

t,2

r2
log r + . . . , Ax = Ax,0 +

Ax,2

r2
+
Al

x,2

r2
log r + . . . , (3.20)

ψ =
ψ1

r
+
ψ3

r3
+
ψl

3

r3
log r + . . . . (3.21)

Of course, not all of the above coefficients are independent. We relegate the explicit

expressions for the dependent ones to appendix A. We merely note that when the non

normalizable mode ψ1 is set to zero, the expressions are such that all the logarithmic

pieces vanish as expected. It can also be seen that the independent parameters at the

boundary can be taken to be

(h0, f4, B0, B4, C0, C4, At,0, At,2, Ax,0, Ax,2, ψ1, ψ3) . (3.22)

To get asymptotically AdS solutions, we must set B0, h0 to 1 and C0, ψ1 to zero. The

scaling symmetries can be used to accomplish the first two conditions, whereas we need

to shoot for the last two. We are therefore left with eight independent boundary data.

They are

(f4, B4, C4, At,0, At,2, Ax,0, Ax,2, ψ3) . (3.23)

We see here that the physical requirements we impose at the boundary do not fix as many

integration constants of the ODE system, as the regularity conditions at the horizon does.

This means that for the solutions that we obtain, there are hidden relations between the

boundary data. Concretely, since there are only six independent pieces of horizon data this

gives us relations between the above eight variables, which will then be used to study the

phase diagram of the boundary theory.

An important quantity for studying the thermodynamics of the system is of course

the superfluid temperature. This corresponds to the black hole Hawking temperature, T.

From the structure of the metric (3.1) we easily get

T =
r2H f ′(rH)

4π L2 h(rH)
, (3.24)

which is then also determined in terms of our horizon data. After some simple algebra,

recalling we have set rH = 1 and using the horizon relation (3.16), we get

T =
1

4π

[

hH
0

(

9

4
+ 2 coshψH

0 − cosh(2ψH
0 )

4

)

−
2(AH

t,1)
2

9hH
0

]

. (3.25)

4 Superfluid flow phase transition

We plot the result for the condensate versus the temperature in figure 1, for different values

of the superfluid velocity. For the rest of the paper, we will introduce the notation

µ ≡ At,0, 〈O〉 ≡
√

2ψ3, ξ ≡ Ax,0

At,0
, (4.1)
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Figure 1. Condensate plots for various values of the velocity ξ = 0, 0.1, 0.33, 0.4, 0.5 (from right to

left). The zero velocity case, ξ = 0, which we report for ease of comparison, precisely agrees with

existing results in the literature [11].

where µ is the field theory chemical potential, O the (condensing) chiral primary operator,

and ξ the superfluid velocity in units of the chemical potential. When we work in an

ensemble with fixed chemical potential, the meaningful (dimensionless) quantities relevant

for the condensate plot are
T

µ
and

〈O〉
µ3

. (4.2)

In constructing the plots, we have also rescaled by the (velocity-dependent) factor
√

1 − ξ2,

which is nothing but the relativistic boost factor.

From the form of the curves in figure 1, it is evident that there is a phase transition

to a hairy black hole at low temperatures. As expected, the critical temperature decreases

as the velocity is increased. For instance, for ξ = 1/2 (which is the highest velocity we

have investigated) we observe that Tc(ξ = 1/2) = 0.067Tc(ξ = 0). It is clear from the

condensate plot that the superfluid phase cannot exist for velocities that are much higher

than this.

One can compare the free energy of the normal phase (which corresponds to a Reissner-

Nordstrom black hole with no hair) and the hairy/superfluid phase to see that the superfluid

phase is favored when it exists. We collect some details of the free energy computation

in appendix D, while figure 2 contains the free energy comparison between the superfluid

phase and the normal phase at the same value of T/µ. In terms of Sren defined in eq. (B.11),

the precise quantities we plot are

Sren

µ4 Vol4
≡ Ω

µ4
vs.

T

µ
. (4.3)

The plot demonstrates that the phase transition stays second order for all values of the

velocity, up to our numerical precision. This should be contrasted to the unbackreacted

– 9 –
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Figure 2. Free energy plots for various velocities ξ = 0, 0.1, 0.33, 0.4, 0.5 (dashed lines from bottom

to top). The RN-AdS black hole is also presented for comparison (solid line). The plots show that

for any velocities the phase transition is second order. The apparent overlap of the ξ = 0.5 curve

with the normal phase, is an artifact of the resolution of the figure.

cases previously considered in the literature, where the phase transition typically changes

to first order for high enough values of the velocity [16, 17, 20]. In [22] a backreacted

superfluid in AdS4 was considered and it was found that for low enough values of the

charge of the scalar field, the phase transition remained second order. Our type IIB system

seems to be analogous to this latter scenario: the (R-)charge of the scalar in our case is

fixed by the IIB construction to be 2 and it is plausible that this is a low enough value so

that the transition remains second order all through.

In [23], the phases of the (unbackreacted) superfluid for various values of the masses

of the scalar field in AdS5 were investigated and it was found that for high enough mass,

there is always a second order transition close to the normal phase. Since the probe limit

is a large charge limit, we should expect a similar structure also in the backreacted case

when the charge is large. That is, when the charge and the mass are both large, we

should expect a persistent second order transition. In our IIB case, we are exploring the

opposite limit, namely low (R-)charge and low mass (since the charge and mass are related

for chiral primaries). Again, we find that the second order transition exists irrespective

of the velocity. Based on these observations, it is tempting to make the suggestion that

whenever the mass and charge are scaled together in some appropriate way, the second

order transition persists for all velocities. Of course, to make and/or establish a precise

statement along these lines will require a much more thorough exploration of the masses

and charges of the scalars than we have undertaken here. Moreover, as already noticed,

the persistence of the second order transition was also found in the AdS4 case for small

charges and small mass [22], while it was found not to exist for any value of the mass in

the probe limit [23]. So it is clear that the appropriate statement, if it exists, will have to

be dimension-dependent.
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5 Zero temperature limit

One of the advantages of having a fully backreacted solution is that one can reliably go

to the zero temperature limit. At zero velocity, the zero temperature solution is expected

to be described by a domain wall, corresponding to the symmetry-breaking vacuum of the

scalar potential that restores conformal symmetry in the IR. Such domain wall solution

was constructed in [24], and conjectured to correspond to the ground state of the type IIB

holographic superconductor. Since we have here fully backreacted solutions at non-zero

velocity, a natural question one would like to answer is whether and how such IR behavior

gets modified when the superfluid flows.

As a warm-up, and for later comparison, let us first consider the static case. A prelim-

inary check one can perform is to see whether for ξ = 0 our condensate value tends to the

condensate value found in [24]. This is indeed the case: for the lowest temperature point

(T/µ = 3.05 · 10−4), our condensate in the normalizations of [24]

〈O〉DW ≡ ψ3

(2µ/
√

3)3
(5.1)

is ≈ 0.3215, which is close enough to the zero-temperature value of ≈ 0.322 found in [24].

Even without explicitly constructing the domain wall solution, one can find evidence for

its existence by investigating the horizon values of the curvature scalars R and RabcdR
abcd.

This strategy was adopted in [12] for superconductors in M-theory, and it was found that

these curvature scalars on the horizon go to the AdS4 values expected from a domain wall

solution with a symmetry-breaking minimum in the IR. We can do the same computation

here, and we do find evidence that the solution has an emergent AdS5 in the IR with the

correct length scale. Note that the IR AdS scale, as determined by the symmetry-breaking

vacuum [24] is L′ = 23/2

3 where we have set L = 1 in the UV. Using the fact that the Ricci

scalar for AdS5 is −20/L2, we find that the predicted value is −22.5 in the IR. A similar

computation using the RabcdR
abcd = 40/L4 shows that in the zero temperature limit we

should get the value 50.625. We plot the results for both curvature scalars in figure 3 The

plots clearly demonstrate that at low temperatures the curvatures indeed stabilize to the

expected domain wall values in the infrared.

The behavior of RabcdR
abcd deserves a closer look, however. A distinctive feature of the

present five-dimensional case, as compared to the four-dimensional model of [12], is that

RabcdR
abcd stabilizes to the domain wall value close to the horizon, but it starts increasing

as the radius is further reduced. At the horizon its value is (of course) finite, but is well

on its way to the divergence at the singularity inside the horizon.2 Note that in order to

make the connection with the domain wall, what we really need is the emergence of an

AdS5 throat of the correct length scale at zero temperature, and our plots give evidence

for that. Figure 4 reports the behavior of RabcdR
abcd zooming in near the horizon region

2This sharp ascent in the curvature scalars close to the horizon is not a peculiarity of the broken phase: it

is also there in the normal phase. For instance, RabcdR
abcd, whose expression for the normal phase Reissner-

Nordstrom black hole we report in eq. (D.4), has a similar sharp ascent at the horizon, while remaining

finite there. On the other hand, the AdS4 case is somewhat special in that the Ricci scalar is a constant in

the normal phase due to the tracelessness of the electromagnetic stress tensor in four dimensions.
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Figure 3. Ricci scalar R and RabcdR
abcd as a function of the radial coordinate near the horizon,

at zero superfluid velocity. The horizontal dashed lines mark the corresponding values of R and

RabcdR
abcd for the UV and IR AdS geometries.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

50.6

50.8

51.0

51.2

51.4

51.6

51.8

Figure 4. Behavior of RabcdR
abcd near the horizon for different temperatures, from left to right:

T/µ = 3.05 · 10−4 (black), 1.55 · 10−3 (red), 3.33 · 10−3 (blue). The dashed vertical lines correspond

to the corresponding horizon radii. The stabilized (i.e. domain wall) value RabcdR
abcd = 50.625 is

indicated by the dashed horizontal line.

for different temperatures. Happily, as the temperature is lowered the stabilized region of

the plot gets closer to the horizon and asymptotes to the expected AdS5 value of 50.625.

Let us now consider the cases with velocity, ξ 6= 0. We report in figure 5 the plot for

the Ricci scalar vs. radius for different superfluid velocities (including the zero-velocity

case, to ease the comparison) and in figure 6 that for RabcdR
abcd. The presence of a new

scale means that there is a possibility that the emergent conformal symmetry in the IR

is broken. While for low velocities our plots suggest that the same IR fixed point as the

static case is recovered, interestingly enough, we find that for high enough velocities the

conformal symmetry of the solution is indeed broken and the curvature scalars diverge

without any stabilization whatsoever. This is analogous to the phenomenological models

with no quantum critical point in the IR. The conclusion seems to be that the solutions

do not stabilize to the conformal quantum critical point when the velocity is high enough.
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Figure 5. Ricci scalar R as a function of the radial coordinate near the horizon for a low temper-

ature. The horizontal dashed lines indicate the corresponding values of R for the UV and IR AdS

geometries.
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Figure 6. RabcdR
abcd as a function of the radial coordinate near the horizon for a low temperature.

The horizontal dashed lines indicate the corresponding values of RabcdR
abcd for the UV and IR AdS

geometries. The stabilization to the IR value, when it happens, holds till very close to the horizon.

While we have not performed an exhaustive scan of velocities in this paper, it would

be interesting to see for what precise value of the velocity this qualitative change happens,

and study the precise nature of the phases and phase transitions, if any, there. From our
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Figure 7. Plots of the superfluid fraction vs. temperature for various values of the velocity

ξ = 0.1, 0.33, 0.4, 0.5 (from right to left).

analysis, it appears that the regime where this transition happens is between ξ = 0.33 and

ξ = 0.4. Related to this is the observation that the condensate

〈O〉1/3

µ
√

1 − ξ2
(5.2)

that we plotted earlier, tends to the same value at the horizon for all values of the velocity,

for small enough velocity. This is again indicative of a quantum phase transition: there is

a change in the nature of the solution as we tune an order parameter at zero temperature.

The results we find are consistent with the idea that the phase structure in the temperature-

velocity plane is determined by the quantum critical point. It is intriguing that the relevant

condensate seems to be measured in units of chemical potential as seen in a frame comoving

with the superfluid flow. For a timelike vector, which for us is the superfluid velocity 4-

vector, the time component in the rest (i.e., comoving) frame is nothing but its norm.

Therefore, since we want to plot a scalar quantity for the dimensionless condensate, this is

the natural choice. But unlike in the case of an ordinary fluid where the fluid velocity can

be interpreted as arising from a boost of a static black hole, here the anisotropic part of

the metric does not seem to have such a simple interpretation in the bulk. We intend to

come back to some of these questions in the near future.

Another quantity of interest3 in understanding the zero temperature limit is the su-

perfluid fraction ζ. It corresponds to the ratio between the charge density of the superfluid

flow and the total charge density of the system. In appendix C, following [22], we elab-

orate on the interpretation of the boundary theory in terms of a two-fluid model and

compute the expression of the superfluid fraction in terms of the fall-offs of the bulk fields,

eqs. (3.18)–(3.21). The result is

ζ = −Ax,2C4

At,2B4
. (5.3)

3We thank Julian Sonner for raising this point.
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This quantity is interesting because from the curves in figures 1 and 2 of [22] we see that for

the AdS4 case its behavior near zero temperature captures some interesting aspects of the

nature of the phase transitions. More specifically, together with our results in this paper

(see figure 7), we are lead to conjecture that ζ → 1 at zero temperature for all velocities

where the rescaled condensate value at zero temperature tends to its value at zero velocity.

From the evidence presented in [22] one could think that the zero temperature limit of the

superfluid fraction is correlated with the existence or not of a first order phase transition

at high enough velocity. However, in our case we have an explicit situation where we see

a consistently second order phase transition where the limiting value of the condensate

at zero temperature changes qualitatively as we tune the velocity. Remarkably, we find

that ζ → 1, only in those cases where the zero temperature condensate value 〈O〉1/3

µ
√

1−ξ2

takes its corresponding value at zero velocity. Since this condensate value captures the

existence or not of the (anisotropic) domain wall, the natural conjecture is that ζ = 1,

for the domain wall when it exists. Notice that ζ → 1 is what one would expect for

the ground state of a superfluid flow. What we have basically demonstrated then is that

three quantities (namely the curvature scalar(s), the rescaled condensate and the superfluid

fraction) undergo a qualitative change at the same velocity, as we tune the velocity. We

believe this is strong evidence for the existence/non-existence of the domain wall as we go

through that velocity.

Despite the evidence we have presented, it should be borne in mind that the preser-

vation of the conformal symmetry for low velocities is not fully established. Unlike in the

zero velocity domain wall examples discussed in the literature, we have not constructed an

explicit solution that has emergent conformal symmetry in the IR in the cases with (low)

velocity. However, the fact that the curvature scalars and the condensate (5.2) stabilize

to their respective zero velocity values (within our numerical precision), is an indication

that this might indeed be the case. One another caveat that we emphasize here is that

the perturbative stability of these consistent truncations in the zero temperature limit is

not settled. In particular, when the Sasaki-Einstein manifold is a sphere, instabilities are

known to exist in the zero temperature domain wall solution [26, 27].4 It is possible that

for a more complicated choice of Sasaki-Einstein space (which is indeed what we need to

have here anyway, in order to let the scalar chiral primary we focus on to be the operator

responsible for the black hole phase transition [11]) the five-dimensional theory is stable.

It is also interesting that the simple stringy consistent truncations do give rise to scalar

potentials with symmetry breaking vacua, resulting in an emergent conformal symmetry

in the IR at zero temperature. This is precisely what one expects in the zero temperature

limit of a high-Tc superconductor, which is believed to be governed by a quantum critical

point. So our expectation is that in the (unlikely?) event that no Sasaki-Einstein trun-

cation can be made stable, these models should still capture some generic features of a

holographic superfluid with emergent conformal symmetry in the IR.5

4A related instability was recently shown to exist also in M-theory [28] for a similar consistent truncation

for the ground state of a 2+1 dimensional superconducting system [24, 29].
5We thank Nikolay Bobev and Chris Herzog for a discussion on this point.
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A Asymptotic relations

In this appendix, we present the relations defining the dependent coefficients in the asymp-

totic expansion in the IIB case

f4 =
1

48C2
0

(

96C0C4h
2
0 + 48B4h

4
0 + 96C2

0h0h4 + 96B0h
3
0h4 + C2

0h
2
0ψ

4
1 +B0h

4
0ψ

4
1+

+ 24C2
0h

2
0ψ1ψ3 + 24B0h

4
0ψ1ψ3 − 12h4

0L
4ψ2

1A
2
x,0+

+ 24C0h
2
0L

4ψ2
1Ax,0At,0 + 12B0h

2
0L

4ψ2
1A

2
t,0

)

, (A.1)

f l
4 =

1

3C2
0

(

− C2
0h

2
0ψ

4
1 −B0h

4
0ψ

4
1 + 3B0h

2
0L

4ψ2
1A

2
t,0+

+ C2
0 (h2

0ψ
4
1 − 3L4ψ2

1A
2
t,0) +B0h

2
0(h

2
0ψ

4
1 − 3L4ψ2

1A
2
t,0)
)

, (A.2)

h2 =−h0ψ
2
1

12
, hl

4 =
h2

0ψ
4
1−3L4ψ2

1A
2
t,0

6h0
, Bl

4 =L4ψ2
1A

2
x,0, C l

4 =−L4ψ2
1Ax,0ψ0, (A.3)

ψl
3 = −

2(C2
0ψ

3
1 +B0h

2
0ψ

3
1 + 3h2

0L
4ψ1A

2
x,0 − 6C0L

4ψ1Ax,0At,0 − 3B0L
4ψ1A

2
t,0)

3(C2
0 +B0h2

0)
, (A.4)

Al
t,2 = −3ψ2

1At,0

2
, Al

x,2 = −3ψ2
1Ax,0

2
. (A.5)

These are the general expressions when ψ1 6= 0. Our primary interest will be to shoot for

the case ψ1 = 0, in which case all of the coefficients above vanish identically, except

h4 =
f4C

2
0 − 2C0C4h

2
0 −B4h

4
0

2h0(C
2
0 +B0h

2
0)

. (A.6)

In particular, all the logarithmic terms vanish and we end up with a usual asymptotic

expansion in 1/r, as expected. Note also that in asymptotically AdS solutions, C0 = 0 as

well. Moreover, when there is no superfluid velocity and the isotropy is not broken, B4 = 0

and therefore we end up getting h4 = 0. This last result is useful in making comparisons

with the holographic superconductor case investigated in [11].

B On-shell action and counter-terms

In order to compute the free energy, we need the on-shell action for the type IIB system.

As we show below it turns out that, remarkably, the on-shell action can be written purely
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as a boundary piece, and be easily evaluated. However, this boundary term is divergent:

to cancel it we need to introduce boundary counter-terms. In what follows, we describe

both these steps.

For the ansatz that we work with, it can be checked directly that, despite the compli-

cations of the equations of motion, the following relations hold

L0 −R =
2L2

r2
Tyy =

2L2

r2
Tzz . (B.1)

Here T stands for the stress tensor arising from our IIB Lagrangian, L0 is defined via

SIIB =

∫

d5x
√−gL0 , (B.2)

and R is the Ricci scalar. Notice that these relations only depend on our ansatz, i.e. they

are true before we use the equations of motion. Going on-shell, we replace Tyy and Tzz

by Eyy and Ezz, where E denotes the Einstein tensor Eab ≡ Rab − 1
2gabR. Together with

the relation

Ea
a = −3

2
R (B.3)

that is valid in five dimensions, this implies that

√−gL0 =
√−g

(

L2

r2
(Eyy + Ezz) −

2

3
Ea

a

)

. (B.4)

The right-hand-side depends only on the metric functions and can be evaluated explicitly

for our ansatz. Direct computation reveals that it can be written as a total differential so

that the (on-shell) action takes the form

SIIB,OS =−vol4

∫ ∞

rH

dr

(

2rf(r)

L2h(r)2
√−g

)′

, where
√−g=

r3h(r)

L3

√

C(r)2

f(r)
+B(r) , (B.5)

and the prime denotes the derivative with respect to r. Because of the presence of f , this

expression is zero at the horizon and that end of the integral is safe. But it clearly gets

contributions from the boundary, where it diverges as r4 and we need to regulate it with

appropriate counter-terms.

The counter-terms6 for the gravitational part of the action in asymptotically AdS

spaces can be looked up in [30]. Along with these we also have to add counter-terms for

the scalar part. The final form of these terms in our notations and conventions can be

written as

Sct = 2

∫

d4x
√−γ

(

K − 3

L

)

+

∫

d4x
√−γ |ψ|

2

L
. (B.6)

The sign convention for the extrinsic curvature is chosen so that with the outward pointing

normal na,

Kab ≡
1

2
(∇anb + ∇bna) . (B.7)

6We loosely refer to the Gibbons-Hawking term also as a counter-term, even though strictly speaking it

is a boundary term necessary to make the variational problem well-defined.
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Note that the general gravitational counter-term discussed in [30] involves a boundary Ricci

scalar as well: but this does not contribute for us, because our boundary becomes flat as we

take it to infinity. The various quantities (including the scalar extrinsic curvature) can be

computed by cutting off the spacetime at some finite r = r0, then taking the limit r0 → ∞
for the quantity SIIB,OS + Sct at the end of the computation. If we define the boundary at

r = r0, then the outward normal to the surface Φ(t, r, x, y, z) ≡ r − r0 = 0 is na ∼ ∇aΦ,

and after normalizing7 so that gabnanb = 1, we get

na =

(

0,
Lh(r)

r
√

f(r)
, 0, 0, 0

)

. (B.8)

Since we need only the scalar extrinsic curvature, we don’t need to introduce 4-D coordi-

nates on the boundary and can compute it directly in the bulk coordinates as

K = gab∇anb =
f1/2

(

8C2 + rfB′ + 2rCC ′ + 8Bf + rBf ′
)

2L(C2 +Bf)h
. (B.9)

So the final form of the counter-term action is

Sct =Vol4 lim
r→∞

[

r4f1/2
(

8C2+rfB′+2rCC ′+8Bf+rBf ′
)

L5h
√

C2 +Bf
− r4

L4

√

C2+Bf
( 6

L
−ψ2

L

)

]

.

(B.10)

With the addition of this piece, the renormalized action SIIB,OS + Sct no longer has the r4

divergence and is finite. The net result is

Sren = vol4 lim
r→∞

[

r4f1/2
(

8C2 + rfB′ + 2rCC ′ + 8Bf + rBf ′
)

L5h
√

C2 +Bf
+

− r4

L5

√

C2 +Bf(6 − ψ2) − 2r4f(r)

L5h(r)

√

C(r)2

f(r)
+B(r)

]

. (B.11)

It is interesting to note that since we are always working with solutions with ψ1 = 0, the

scalar piece can in fact be omitted if one desires.

C Superfluid fraction

In this section we present some details of the definition and computation of the superfluid

fraction ζ for our solutions. We start with the renormalized action from the previous

appendix and compute the boundary stress tensor and the boundary current by varying

with respect to the boundary metric and the boundary components of the vector potential.

Tµν =
1√−γ

δS

δγµν
, Jµ =

1√−γ
δS

δAµ
, (C.1)

where now S = SIIB+Sct with SIIB defined by (2.1) and Sct defined by (B.6). In particular,

the relations above are not tied to our ansatz. To compute the boundary stress tensor and

7Note that the boundary is timelike, so it has a spacelike normal.
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current, we need to introduce coordinates on the boundary, and we will use Greek indices

for them. After doing the variations, using our ansatz and going on shell on the bulk, the

resulting stress tensor and current vanish in the strict r → ∞ limit. This is consistent with

the fact that they should be finite since we are using the renormalized action to compute

them. The more interesting quantity is the boundary fluid stress tensor and the fluid

current, which are defined in AdS5 via

Tµν = lim
r→∞

r2Tµν , Jµ = lim
r→∞

r2Jµ . (C.2)

We are using units where 16πG = 1 = L in this section. Suppressing the details and re-

stricting to our ansatz these quantities can be explicitly computed in terms of the boundary

fall-offs of eqs. (3.18)–(3.21) to be

Tµν =











3f4 −B4 4C4 0 0

4C4 f4 − 3B4 0 0

0 0 B4 + f4 0

0 0 0 B4 + f4











, Jµ =
4

3











At,2

Ax,2

0

0











. (C.3)

Now we follow the interpretation of [22] for these quantities in terms of a two-fluid model

on the boundary, where one component is an ordinary (ideal) fluid and the other is a

superfluid. First we can write these quantities suggestively in terms of uµ = (−1, 0, 0, 0)

and nµ = (0, 1, 0, 0) as

Tµν = (ǫ+ P )uµ uν + P ηµν − 4B4 nµ nν − 8C4 u(µ nν) , Jµ = ρ uµ − Js nµ , (C.4)

where

P ≡ f4 +B4 , ǫ ≡ 3f4 −B4 , ρ ≡ −4

3
At,2 , Js ≡ −4

3
Ax,2 . (C.5)

Note that what we have done is merely to rewrite the expressions covariantly in terms of

the vectors uµ and nµ. Another way to state the same thing is that (for example) the most

general symmetric second rank tensor constructed from uµ and nµ will have to be a linear

combination of ηµν , uµ uν , u(µ nν) and nµ nν.

The two fluid model can be defined by the stress tensor

Tµν = (ǫ0 + P0)uµ uν + P0 ηµν + µρs vµ vν , Jµ = ρn uµ + ρs vµ , (C.6)

where the subscripts n and s stand for the normal and superfluid components of the charge

density, with the total charge density ρ = ρs+ρn. Aside from the various thermodynamical

state variables (whose precise interpretations will not be important to us, see [22]), we

have also introduced the superfluid velocity vµ that satisfies the constraint (“Josephson

equation”)

uµ vµ = −1. (C.7)

The superfluid fraction is defined as

ζ =
ρs

ρ
. (C.8)
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Our stress tensor (C.4) can be brought to the two-fluid form by defining vµ as

vµ = uµ +
B4

C4
nµ . (C.9)

This automatically satisfies vµu
µ = −1 as a consequence of uµu

µ = −1, and nµu
µ = 0.

Rewriting our stress and current tensors (C.4) in these new variables we get the two-fluid

form (C.6):

Tµν = (ǫ+ P + 4 C2
4/B4)uµ uν + P ηµν − (4C2

4/B4) vµ vν , (C.10)

Jµ = (ρ+ Js C4/B4)uµ − (Js C4/B4) vµ . (C.11)

Reading off the superfluid fraction from this, we find that

ζ =
−(JsC4/B4)

ρ
= −Ax,2C4

At,2B4
, (C.12)

where we have written the final result in terms of the fall-offs obtained directly from the

solutions. This is the form we use for making the plots in figure 7.

D The hairless solution: Reissner-Nordstrom

In understanding the phase structure, it is important to keep in mind that we are interested

in comparing the free energy of the hairy black hole solution to that of Reissner-Nordstrom.

In the five dimensional IIB case, the Reissner-Nordstrom metric [11] can be given in terms

of our ansatz (3.1) by

f(r) = 1 − 1

r4

(

1 +
4µ2

9

)

+
4µ2

9r6
, At = µ

(

1 − 1

r2

)

, (D.1)

h = 1 , B = 1 , C = 0 , Ax = 0 , ψ = 0 . (D.2)

In this notation, the curvature invariants studied in section 5 take the form

R = −20f − r
(

10f ′ + rf ′′
)

, (D.3)

RabcdR
abcd = 40f2 + 4r f

(

10f ′ + r f ′′
)

+ r2
[

22(f ′)2 + 8r f ′ f ′′ + r2(f ′′)2
]

. (D.4)

All these expressions are obtained after all the necessary rescalings: we have set 16πG =

L = rH = 1. The Hawking temperature now takes the form

TH =
1 − 2µ2/9

π
, (D.5)

as can be determined by the periodicity of the Euclidean section. The renormalized on-shell

action that we determined before takes a simple form for this solution:

Sren = 1 + 4µ2/9 . (D.6)

We will compare the free energies of the hairy and hairless cases at the same T/µ to

determine which one is the favored phase.
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