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1. Introduction

Despite a lot of efforts, string theory in curved backgrounds remains a hard problem to be

understood. This is because, generically, the perturbative methods apply only if the gravi-

tational background is almost flat (in string units) and a true nonperturbative formulation

of the theory is still to be given. The only partly positive results in this direction being

some cases of homogeneous spaces whose study is available because of the power of the

WZNW model (see for example [1]).

A simple case of tractable model is the string in the pp-wave [2]. The pp-wave solution

of IIB ten dimensional supergravity is given by the metric

ds2 = −4dx+dx− − f2x2dx+2
+ dx2 (1.1)

where x is the eight dimensional coordinate vector, and the self-dual constant RR 5-form

F+1234 = F+5678 = f × C

where C is a non zero numerical constant. The light-cone GS string obtained in [2] is given

by the quadratic action

S =
1

2πα′

∫

dξ2

(

1

2
∂+x∂−x−

1

2
f2x2 + [fermions]

)

(1.2)

where the fermionic term contains the proper RR-vertex at zero momentum. The simplicity

of the above σ-model makes the theory then tractable.
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The additional importance of studying this background is that it can be obtained as a

particular contraction of the AdS×S [3, 4] and therefore its analysis is linked to the general

issue of holographic gauge/string correspondence. This point has been addressed in [3],

where the spectrum of strings in the pp-wave is recontructed from N = 4 SYM in four

dimension and is a presently studied subject [5].

In this framework, there appears a strong resemblance in the string spectrum recon-

truction by the gauge theory operators with the world-sheet generation in Matrix String

Theory (MST). This suggests a deeper relation within the holographic approach between

the string-bits and the four dimensional gauge theory.

Moreover, the problem of MST in the pp-wave is interesting also by itself, since no

curved background has been implemented in the MST framework so far.

A possible strategy to obtain a matrix model for strings on the pp-wave might be

to compactify along an isometric direction the eleven dimensional matrix models for pp-

waves. This compactification is rather troubling because of the (space-)time dependence

of the supersymmetry parameters and therefore the results obtainable this way need to be

carefully analized from the point of view of supersymmetry.

An alternative strategy for model building, which will be developed in this letter, is

a constructive one. We will first study deformations of ten dimensional super Yang-Mills

(SYM) [6] induced by the addition of a quadratic term in the spinorial field – accompanied

by a suitable purely bosonic term – in the action and then see under dimensional reduction

to two dimensions which kind of deformed matrix string models are available.

As a counter-check we study the deformations of matrix theory induced by this mech-

anism via dimensional reduction to one dimension and we find the pp-wave martix theory

of [7] as a particular solution of more general possible structures.

In the next section we study the possible deformations of N=1 SYM in ten dimensions

induced by the addition of a constant bi-spinorial coupling as
∫

Ψ̄HΨ (plus purely bosonic

terms) with a particular attention to the surviving supersymmetries. In the next section we

perform a dimensional reduction from ten to one dimension of the results of the previous

section and find the relevant matrix models for particles. In the third section we face

the problem of a formulation of matrix string theory on pp-wave background and find

the existence of a plethora of new models with supernumerary supersymmetries. The last

section is left for the conclusions and some open questions. A deformation of the IKKT

matrix model [8] is also discussed in appendix A.

2. Deformation of SYM via a constant bispinor

In this section we describe a general deformation scheme for N = 1 supersymmetric Yang-

Mills theories by applying it to the ten dimensional case. This deformation is induced by the

addition to the action of a purely quadratic fermionic term plus some bosonic completition.

Here we study the general equations for the deformed supersymmetry.

The action of N = 1 D=10 SYM theory with gauge group U(N) is

S0
10 =

1

g2
10

∫

d10xTr

(

−
1

4
F 2 +

i

2
ΨTΓ0ΓµDµΨ

)

(2.1)
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where Ψ is a Weyl-Majorana spinor and in the adjoint representation of the U(N) gauge

group. The action is invariant under the following supersymmetries

δ0Aµ =
i

2
ε̄ΓµΨ δ0Ψ = −

1

4
ΓµνFµνε (2.2)

δ0
′

Aµ = 0 δ0
′

Ψ = ε′ (2.3)

where ε and ε′ are constant Weyl-Majorana spinors.

Notice that, if we perform a variation with ε and ε′ non constant Weyl-Majorana

spinors, we get

δS0
10 =

1

g2
10

∫

d10xTr Ψ̄

{

−
i

4
FµνΓ

µνΓρ∂ρε− iΓρF
ρµ∂µε+ iΓµ∂µε

′

}

(2.4)

which is linear in the spinor field Ψ.

To deform the theory, we add a fermionic bilinear to the ten dimensional action as

SH =
1

g2
10

∫

d10x
i

2
TrΨTΓ0HΨ

where H is a real chiral bispinor such that H = −Γ11H = HΓ11 and such that Γ0H is

anti-symmetric. Because of the above consistency conditions, the expansion of H in Γ

matrices correspond just to a three form (plus its dual).1

Obviously, this term breaks supersymmetry (2.2) and (2.3) and our aim is to construct

deformations of the field variations δ0 and δ0
′
and of the action such that no other fermionic

term enters the action. A simple degree counting shows that this is possible by adding a

further purely bosonic term Sb to the action if the new supersymmetry variation δ is such

that

δAµ = δ0Aµ and δΨ = δ0Ψ+K[A]ε (2.5)

where K[A] is real chiral bispinor such that Γ11K[A] = K[A]Γ11 = K[A] which we take to

be a local functional of the bosonic field Aµ only. We drop the condition that ε is constant.

In terms of Γ-matrices analysis, K[A] is given in terms of even self dual tensors. The

closure of the the deformed susy algebra implies that K[A] is linear2 in Aµ.

We consider therefore the total action functional

S = S0
10 + SH +

1

g2
10

Sb (2.6)

and we impose the invariance δS = 0 under the transformations (2.5). The total variation

δS turns out to be linear in the fermion field Ψ and therefore we are left with a single

condition

−
1

4
F µνΓµνΓ

ρ∂ρε− ΓρF
ρµ∂µε−

1

4
HF µνΓµνε+ (ΓρDρ +H)K[A]ε−

1

2

δSb
δAµ

Γµε = 0 (2.7)

equivalent to δS = 0.

1This is actually the standard analysis of type I R-R tensor fields.
2More general forms of K[A] could perhaps be considered in an open superalgebra framework.
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Notice that S is always invariant under δ′ = δ0
′
if ε′ satisfies the condition (Γµ∂µ +

H)ε′ = 0. Further supersymmetries are then classified by the possible solutions of eq. (2.7).

Notice that if we would require ten dimensional Lorentz invariance, we would get H = 0

and therefore this deformation is naturally suitable for dimensionally reduced theories,

where the Lorentz invariance along the reduced dimensions becomes R-symmetry which

will be eventually broken3 together with some of the original supersymmetries. In studing

eq. (2.7), we will assume that K[A] and Sb are respectively gauge covariant (a section

of the adjoint gauge bundle) and gauge invariant with respect to the gauge group of the

dimensionally reduced theory.

Equations analogous to (2.7) can be worked out for reductions of deformed lower

dimensional N=1 SYM theories and/or for SYM theories coupled with matter.

3. Matrix theory on the pp-wave

Matrix theory [9] can be obtained by dimensional reduction of SYM10 along nine space

dimensions. There has been recently [3, 7] proposed a model for matrix theory on pp-wave

backgrounds in eleven dimension.

Here we show how the model there obtained follow as a particualr cases from dimen-

sional reducion along nine space directions of the deformed ten dimensional SYM that we

studied in the previous section.

In particular we show that all the set of supersumerary supergravity solutions studied

in [7] are contained in a larger class of matrix models.

Let us split the ten dimensional index as µ = 0, I, where I = 1, . . . , 9.

We parametrize K[A] = KIAI and consider the following bosonic functional

Sb =
1

g2

∫

dx0 Tr
{

QIJAID0AJ +M IJAIAJ +N IJKAI [AJ , AK ]
}

where Q and N are completely antisymmetric and M is symmetric. Substituting Sb in

the dimensionally reduced (to 1 + 0) equations (2.7), we get three bispinorial equations,

namely

1

4
[ΓIJ ,H] +

1

2
(ΓIKJ − ΓJKI) +

1

4
ΓIJL−

1

2

(

3NKIJΓK −QIJΓ0

)

(

1 + Γ11

2

)

= 0

−
1

2
Γ0I(H + L)−

1

2
HΓ0I + Γ0KI +QIJΓJ

(

1 + Γ11

2

)

= 0

[

HKI − Γ0KIΓ0(H + L)−M IJΓJ
]

ε = 0 (3.1)

where we parametrized (Γ0∂0 +H + L)ε = 0, with L a generic chiral bispinor.

The first two equations imply

KI = −
1

2

(

1

12
ΓIN3 +

1

4
N3Γ

I + Γ0QIKγK
)(

1 + Γ11

2

)

3Anyhow, the kind of breaking of the full ten dimensional Lorentz invariance induced by the presence of

the bi-spinorial Ψ̄HΨ term resembles a higher rank breaking dual to the one induced by non commutativity

parameters.
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and

H =
1

4

(

N3 + Γ0Q2

)

(

1 + Γ11

2

)

and L = −
1

3
N3

(

1 + Γ11

2

)

where N3 = N IJKΓIJK and Q2 = QIJΓIJ .

The third equation (3.1) reduces to

{

ΓI(N3)
2 + 6N3Γ

IN3 + 9(N3)
2ΓI−12Γ0

(

3N3Q
IKΓK +QIKΓKN3

)

+ 144 · 2M IJΓJ
}

ε = 0

(3.2)

which generalizes the structure equation for supernumerary supersymmetries of 11 dimen-

sional pp-wave solutions found in [7, eq.(20)] to matrix models with couplings to constant

magnetic fields Q.

The dimensionally reduced action — obtained by defining AI = igXI and Ψ = gΘ —

reads

Smmm = Smm + Sm

where

Smm =

∫

dx0 Tr

{

−
1

2
D0X

ID0X
I −

g2

4

(

[XI , XJ ]
)2

+
i

2
ΘtD0Θ−

g

2
Θ̄ΓI [XI ,Θ]

}

is the usual matrix theory action and

Sm =

∫

dx0 Tr

{

i

8
Θ̄
(

N3 +Γ0Q2

)

Θ−QIJXID0XJ −M IJXIXJ − igN IJKXI [XJ , XK ]

}

is the deformation part.

The whole action Smmm is invariant under the following field transformations

δA0 =
ig

2
ε̄Γ0Θ δXI =

1

2
ε̄ΓIΘ

δΘ =
i

2
D0X

IΓ0Iε+
g

4
[XI , XJ ]ΓIJε−

1

2

(

1

12
ΓIN3 +

1

4
N3Γ

I +Γ0QIKγK
)

XIε (3.3)

if the ε spinor satisfies eq. (3.2) and

(

Γ0∂0 +
1

4

(

−
1

3
N3 + Γ0Q2

))

ε = 0 and

(

Γ0∂0 +
1

4

(

N3 + Γ0Q2

)

)

ε′ = 0

Therefore we obtained a generalization of the matrix models for pp-wave of [7] and

have shown that all the classification of pp-wave vacua can be obtained directly from the

matrix theory.

Let us notice that the constant magnetic field QIJ appearing in Smmm cannot be

in general re-absorbed in the other couplings by a change of variables. One can try to

re-absorb it by a coordinate change to a co-rotating frame as

XI →
(

e−tQ
)IJ

XJ and Θ→ e−
1
4
tQ2Θ

together with a mass matrix redefinition M IJ → M IJ − 2QIKQKJ . It turns out however

that in the co-rotating frame one finds a new 3-tensor and a new mass matrix which are

– 5 –
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generically time dependent because of the induced rotation. The time dependence of the

new 3-tensor and mass matrix can be avoided only if they are invariant under the rotation

generated by the anti-symmetric matrix Q.

Therefore we conclude that the model Smmm effectively generalizes the one studied

in [7] if [N3, Q2] 6= 0 or QM −MQ 6= 0 which hold in the generic case.

4. Matrix string theory on the pp-wave

Type IIA Matrix String Theory [10, 11] can be obtained by reducing the N = 1 D=10

SYM theory with gauge group U(N) down to two dimensions [6]. MST is directly for-

mulated for the IIA string (and the heterotic as well), while it is just indirectly linked

to the type IIB string by T-duality. We will follow a constructive procedure by looking

for possible supersymmetric deformations of the original model induced by the presence

of a constant additional fermionic bilinear. This can be done just specifying the general

equation obtained above in the appropriate dimensionally reduced framework.

We split the ten dimensional index µ = (α, I), with α = 0, 9 and I = 1, . . . , 8 and solve

the dimensionally reduced version of equation (2.7).

By imposing two dimensional Lorentz invariance and two dimensional gauge covari-

ance, we find the most general cubic bosonic additional action functional to be

Sb =

∫

d2xTr

{

F09AIvI +
1

2
MIJAIAJ +

1

3
N IJKAI [AJ , AK ]

}

We find the following four equations

ΓγΓ09∂γε+HΓ09ε+ v1ε = 0

−
1

2
ΓγΓαI∂γε+ ΓαKIε−

1

2
HΓαIε+

1

2
vIεαβΓβε = 0

−
1

4
ΓγΓIJ∂γε+

1

2

(

ΓIKJ − ΓJkI
)

ε−
1

4
HΓIJε−

1

2
N IJKΓKε = 0

ΓγKI∂γε+HKIε−
1

2
M IJΓJε = 0 (4.1)

The first three equations are equivalent to

KI = −
1

2

(

1

12
N3Γ

I +
1

4
v1Γ

IΓ09 + vIΓ09

)

and H =
1

12
N3 −

1

4
v1Γ

09

and the following differential equation for the spinor ε

∂αε+
1

2
Γα

(

1

12
N3 +

3

4
v1Γ

09

)

ε = 0 (4.2)

while the last equation (4.1) is the mass/flux equation

(

1

12
N3Γ

I −
1

4
v1Γ

IΓ09 − vIΓ09

)

·

(

1

12
N3 +

3

4
v1Γ

09

)

+

+

(

1

12
N3Γ

I −
1

4
v1Γ

09

)(

1

12
N3 +

1

4
v1Γ

IΓ09 + vIΓ09

)

+M IJΓJ = 0 (4.3)

– 6 –
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Moreover the integrability condition for (4.2), which is given by
(

N3 + 9v1Γ
09
)T (

N3 + 9v1Γ
09
)

ε = 0 (4.4)

has to be considered.

The reduced action then reads

Smms = Sms + Sm (4.5)

where

Sms =

∫

d2xTr

{

−
1

4g2
FαβFαβ +

1

2
ηαβDαX

IDβX
I −

g2

4

(

[XI , XJ ]
)2

+

+
i

2
Θ̄ΓαDαΘ−

g

2
Θ̄ΓI [XI ,Θ]

}

(4.6)

is the usual matrix string theory action and

Sm =

∫

d2xTr

{

i

8
Θ̄

(

1

3
N3 − v1Γ

09

)

Θ+
i

g
F09XIvI−

1

2
MIJXIXJ−

ig

3
N IJKXI [XJ , XK ]

}

is the massive/flux part.

The action (4.5) is invariant under the following field variations

δAα =
ig

2
ε̄ΓαΘ δXI =

1

2
ε̄ΓIΘ

δΘ =

(

−
1

4g
FαβΓ

αβ +
g

4
[XI , XJ ]ΓIJ −

i

2
DαX

IΓαI −

−
1

2

(

1

12
N3Γ

I +
1

4
v1Γ

IΓ09 + vIΓ09

)

XI

)

ε+ ε′ (4.7)

provided eqs. (4.2), (4.3) and (4.4) hold for ε and ε′ satisfies
(

Γα∂α +
1

12
N3 −

1

4
v1Γ

09

)

ε′ = 0

Let us discuss the strong coupling limit as g → ∞ of the above model. Considering

the potential terms g2[X,X]2 and gΘ[X,Θ], we find that at strong coupling all the fields

are projected to a mutually commuting subset and the gauge group action becomes a

parametrization of this choice. Once the choice of a Cartan subalgebra T is made, the

leftover gauge group is generically U(1)N semidirect with the Weyl group SN .

At strong coupling the physical gauge fields degrees of freedom decouple from the other

fields and the curvature field F09/g = F plays the role of an auxiliary field.4 The action at

strong coupling is therefore (all the fields are now Cartan valued)

S∞mms =

∫

d2xTrT

{

+
1

2
F 2 +

1

2
ηαβ∂αX

I∂βX
I +

i

2
Θ̄Γα∂αΘ+

+
i

8
Θ̄

(

1

3
N3 − v1Γ

09

)

Θ+ iFXIvI −
1

2
MIJXIXJ

}

(4.8)

4Notice that in two dimensions a gauge field has only a finite number of degrees of freedom [12] whose

role in matrix string theory has been studied in [13]. We disregard these finite degrees of freedom for the

time being.
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and the action is invariant under the transformations

δF =
i

2
[∂0 (ε̄Γ9Θ)− ∂9 (ε̄Γ0Θ)] δXI =

1

2
ε̄ΓIΘ

δΘ = −
1

2

(

FΓ09 + ∂αX
IΓαI +

(

1

12
N3Γ

I +
1

4
v1Γ

IΓ09 + vIΓ09

)

XI

)

ε+ ε′ (4.9)

under the same constrains as before.

Integrating out the auxiliary field F , we get a light-cone string action for the (matrix)

strings given by

S =
1

2

∫

d2xTrT

{

ηαβ∂αX
I∂βX

I + iΘ̄Γα∂αΘ+
i

4
Θ̄

(

1

3
N3 − v1Γ

09

)

Θ−

− (MIJ − vIvJ)XIXJ

}

This result is obtained as strong coupling limit of the classical action and it should be

checked if there are quantum corrections adding further complicancies. These are absent

in the flat matrix string theory case because of strong non renormalization theorems for

the theory with the full (8, 8) supersymmetry. It would be important to verify if these non

renormalization properties are still effective for the models we have been considering here.

The role of the abovementioned discrete gauge theory degrees of freedom should also be

considered in detail.

4.1 A set of models

A particular set of Matrix String Theories in pp-wave backgrounds can be given for example

as follows.

We solve the constraints (4.3) and (4.4) with the choice

N3 = 9µηΓ123 and v1 = µΓ4

where µ is a mass parameter and η = ±1.

Moreover we break 1/4 of the original dymamical supersymmetry, by choosing

(Γ09 + η′)ε = 0 and (Γ1234 − ηη′)ε = 0

where η′ = ±1. The two flags η and η′ label with their values four different models.

The mass matrix M IJ turns out diagonal

M =
µ2

16

[(

3η′(3 + η)− 4
)

13 ⊕ 12(1 + η′)11 ⊕ 2(3η′ + 1)14

]

(4.10)

and these models all break the original SO(8) R-symmetry of the flat (µ = 0) model to

SO(3)× SO(4). The full action is

Sηη
′

mms = Sms + Sηη
′

m

– 8 –
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where Sms is the flat Matrix String action of the previous section and Sηη
′

m is given by

Sηη
′

m =

∫

d2xTr

{

iµ

2
Θ̄

[

3

4
ηΓ123 −

1

4
Γ409

]

Θ+
iµ

g
F09X

4 −
igµη

2

3
∑

I,J,K=1

εIJKXI [XJ , XK ]−

−
µ2

32

[

(3η′(3+η)−4)
3
∑

I=1

(XI)2+12(1+η′)(X4)2+2(3η′ + 1)

8
∑

I=5

(XI)2

]}

(4.11)

The deformed supersymmetry transformations are then

δAα =
ig

2
ε̄ΓαΘ δXI =

1

2
ε̄ΓIΘ

δΘ =

(

−
1

4g
FαβΓ

αβ +
g

4
[XI , XJ ]ΓIJ −

i

2
DαX

IΓαI −

−
1

2

(

3

4
µηΓ123ΓI +

1

4
µΓ4ΓIΓ09 + µδI4Γ09

)

XI

)

ε+ ε′ (4.12)

and the action is left invariant provided the above conditions on ε are satisfied and ε ′

satisfies
[

Γα∂α +
µ

4

(

3ηΓ123 − Γ409
)

]

ε′ = 0

5. Conclusions and open questions

In this letter we provided a set of possible models for Matrix String Theory on different

pp-wave backgrounds and a general scheme to analyse their supersymmetries. It will be

of interest to see how they will enter the gauge/string correspondence (a role played by

matrix string theory has been recently advocated in [14]).

A crucial check of MST is the interpretation of the inverse gauge coupling as the

actual type IIA string coupling. This was obtained in [11] by a carefull analysis of the

supersymmetry preserving vacua. These are classified my solutions of an integrable sys-

tem, the Hitchin equations, whose spectral surfaces materialize the interacting worldsheet

diagrams in the strong coupling expansion. A proper index counting on these spectral

surfaces provides in the relevant path integrals the crucial factor of (1/g)−χ, where χ is

the Euler characteristic of the string worldsheet, and this implies the interpretation of 1
g

as the string coupling gs. Therefore, it is crucial to study susy-preserving configurations to

check if and how the presence of the pp-wave background changes the reconstruction of the

superstring interaction. This will hopefully provide a clear scheme — which is intrinsic the

Matrix String Theory hypothesis — for the study of closed string interaction in a pp-wave

background.

Let us notice that we can perform a full dimensional reduction to zero dimensions while

keeping our scheme (at the price of excluding at least some kinematical supersymmetries)

and get a deformed version of the IKKT matrix model [8]. This is done in appendix A.

It would be nice to understand how to interpret this deformation from the type IIB string

point of view of [8].
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As it is evident from the results obtained here, the number of constrains on the sur-

viving supersymmetries increases with the number of unreduced dimensions. It would

be interesting to study also deformations of higher dimensional SYM theories along the

paths of the general scheme presented here to see if some of them still can have some

supernumerary supersymmetries.
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A. Deforming the IKKT model

The deformation of the IKKT model [8] along the scheme outlined in this letter shows a

peculiar phenomenon of a complete breaking of the kinematical supersymmetries ε ′. In

this appendix we present the formulas for the relevant deformation.

We perform dimensional reduction of the ten dimensional gauge theory down to zero

dimensions and we choose the bosonic completition of the action to be

Sb = Tr {MµνAµAν +NµνρAµ[Aν , Aρ]}

and find the following two equations (we have K[A] = KµAµ)

{HΓµν − 2 (ΓµKν − ΓνKµ) + 6NµνρΓρ} ε = 0

{HKµ −MµνΓν} ε = 0 (A.1)

The first one is identically solved by

Kµ = −
1

16
ΓµN3 −

1

8
N3Γ

µ and H =
1

4
N3

where, as usual, N3 = NµνρΓ
µνρ, while and the last one out of (A.1) is left as a mass/flux

equation
[

N3 (Γ
µN3 + 2N3Γ

µ) + 43MµνΓν
]

ε = 0 (A.2)

The deformed IKKT matrix model is given by the action matrix function

SIKKTm = SIKKT + Sm

where

SIKKT = Tr

{

−
g2

4
[Xµ, Xν ]2 −

g

2
Θ̄Γµ [X

µ,Θ]

}

is the IKKT matrix model for the flat IIB Schild action and

Sm = Tr

{

i

8
Θ̄N3Θ−MµνXµXν + igNµνρXµ[Xν , Xρ]

}

is the deformation part.
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The total action is invariant under the transformations

δXµ =
1

2
ε̄ΓµΘ and δΘ =

g

4
[Xµ, Xν ] Γµνε−

i

16
Xµ (ΓµN3 + 2N3Γµ) ε (A.3)

if (A.2) is satisfied. Notice the fact that all the kinematical linear supersymmetries ε ′ have

been at least partly lost due to the constrain N3ε
′ = 0.

The easiest realization of these models can be obtained by studying the case N3 = µΓ789

for which, choosing the mass matrix to be

M = −
µ2

43
(η7 ⊕ 313)

we solve identically in ε the mass/flux constrain (A.2) and we retain the whole 16 ε super-

symmetries — all the kinematical ones being lost — while breaking the ten dimensional

Lorentz group SO(1, 9) to SO(1, 6) × SO(3).
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