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STABILITY OF L∞ SOLUTIONS FOR HYPERBOLIC SYSTEMS WITH

COINCIDING SHOCKS AND RAREFACTIONS

STEFANO BIANCHINI

Abstract. We consider a hyperbolic system of conservation laws{
ut + f(u)x = 0
u(0, ·) = u0

where each characteristic field is either linearly degenerate or genuinely nonlinear. Under the assumption
of coinciding shock and rarefaction curves and the existence of a set of Riemann coordinates w, we prove
that there exists a semigroup of solutions u(t) = Stu0, defined on initial data u0 ∈ L∞. The semigroup

S is continuous w.r.t. time and the initial data u0 in the L1
loc topology. Moreover S is unique and its

trajectories are obtained as limits of wave front tracking approximations.

S.I.S.S.A. Ref. 65/2000/M

1. Introduction

Consider the Cauchy problem for a strictly hyperbolic system of conservation laws

(1.1)

{
ut + f(u)x = 0
u(0, ·) = u0

where u ∈ Rn and f : Ω 7→ Rn is sufficiently smooth, Ω open. If the initial data u0 is of small total
variation, the global existence was proved first in [18]. Moreover a series of papers [6, 7, 9, 10, 15]
establishes the uniqueness and well posedness of the Cauchy problem (1.1). However, when u0 has large
total variation or even more generically u0 belongs to L∞, the solution u may not exist globally in L∞

[20]: only for special system it is possible to consider initial data with large total variation. We recall
some of the results available in this direction.

1) For scalar conservation laws, the entropy solution to (1.1) generates a contracting semigroup w.r.t
the L1 distance, on a domain of L∞ data [21].

2) For general Temple class system, in [3, 5, 24] it is proved the existence and stability of the entropy
solution for initial data with arbitrarily large but bounded total variation.

3) If all characteristic families are genuinely nonlinear and the system is Temple class, the existence
and stability for initial data in L∞ is proved in [12].

4) For special 2× 2 systems, in which one of the equation is autonomous, various results have been
proved in [4, 16], with initial data with unbounded total variation.

An open question is if the semigroup of solutions to the systems of case 2), defined on all the initial data
u0 with total variation arbitrary large but bounded, can be extended to data in L∞. In many systems,
in fact, some of the characteristic fields are linearly degenerate, so that the results of [12] do not apply.

An example is the 2× 2 traffic model considered in [2],

(1.2)

{
ρt +

(
ρv

)
x

= 0(
ρ(v + p(v))

)
t
+
(
ρv(v + p(ρ))

)
x

= 0

where ρ(t, x) is the density of cars in the point (t, x) and v(t, x) is their velocity. In this model, the
first eigenvalue is genuinely nonlinear and the integral curves of the corresponding right eigenvector are
straight lines. The second eigenvector is linearly degenerate, so that the assumption of coinciding shock
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2 STEFANO BIANCHINI

and rarefaction curves is verified for this system. The existence of a set of Riemann coordinates follows
by the fact that the system is 2× 2.

Another example is a simple 2× 2 model for chromatography,
u1
t +

(
u1

1 + u1 + u2

)
x

= 0

u2
t +

(
u2

1 + u1 + u2

)
x

= 0

where all characteristic fields are linearly degenerate and the integral curves of the eigenvalues are straight
lines. The major difficulty here in applying the results of [12] is the fact that the total variation of the
solution does not decay in time.

The aim of this paper is to prove that, at least in the case where the eigenvalues are genuinely
nonlinear or linearly degenerate and shocks and rarefactions coincide, the solution to (1.1) can be defined
for u0 ∈ L∞.

This result is particular interesting from the point of view of control theory. Consider for example the
traffic model (1.2) in the quarter plane t ≥ 0, x ≥ 0: this system describes the flow of cars in a highway,
given a boundary condition ũ(t) on the line x = 0. The function ũ can be thought as a control on the
system: we are allowed to choose ũ in order to minimize some prescribed cost functional, for example the
average time spent by a car to arrive from x = 0 to x = x̄. As shown in [1], in general the compactness
of the attainable set can be obtained only with L∞ boundary data.

To illustrate the heart of the matter, we assume that the system (1.1) admits a system of Riemann
coordinates w ∈ Rn, and that shock and rarefaction curves coincide in Ω. Moreover we assume that each
characteristic field is linearly degenerate or genuinely nonlinear. Differently form [11], we do not assume
that rarefaction curves are straight lines. We consider a set E of the form

E
.
=

{
u ∈ Ω : w(u) ∈ [ai, bi], i = 1, . . . , n

}
.

With L∞(R;E) we denote the space of L∞ functions with values in E. The main result of this paper is
the following:

Theorem 1.1. There exists a unique semigroup S : [0,+∞) × L∞(R;E) 7−→ L∞(R;E) such that the
following properties are satisfied:

i) for all un, u ∈ L∞(R;E), tn, t ∈ [0,+∞), with un → u in L1
loc, |t− tn| → 0 as n → +∞,

lim
n→+∞

Stnun = Stu in L1
loc;

ii) the trajectory Stu0 is a weak entropy solution to the Cauchy problem (1.1) for every u0 ∈
L∞(R;E);

iii) if u0 is piecewise constant, then, for t sufficiently small, Stu0 coincides with the function obtained
by piecing together the solutions of the corresponding Riemann problems.

From the results of [11], [14], any solution to (1.1) satisfying Lax entropy conditions and a weak
regularity assumption is unique. Theorem 1.1 proves that it is possible to define a weak solution u(t)
when the initial data are in L∞ so that u(t) depends continuously w.r.t. the initial data u0. The
uniqueness follows because S satisfies iii) and it is limit of wave front approximations.

As it is shown in the last example of [12], the semigroup S cannot be uniformly continuous: thus
we cannot apply any compactness argument to construct the solution u(t)

.
= Stu0. The fundamental

problem is that, differently from [12], the total variation of the Riemann invariants corresponding to
linearly degenerate families does not decrease in time.

The main idea of this paper is to study how the solution to the characteristic equation

(1.3) ẋ(t) = λi(u(t, x(t))), x(0) = y,

depends on the solution u of (1.1). Denote with x(t, y) the solution of (1.3).
It will be shown that, for a fixed time τ , the map y 7→ x(τ, y) depends Lipschitz continuously on the

initial data u0, and moreover the Lipschitz constant is independent of the total variation of u0. Since the
Riemann invariant wi is the broad solution to

(1.4) (wi)t + λi(u(t, x))(wi)x = 0,
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a simple argument gives the convergence of the wave front tracking approximations. We recall that a
broad solution of (1.4) with initial data w̄i(·) is given by wi(x(t, y)) = w̄i(y), where x(t, x) is the solution
to (1.3). In other words, the value of wi is constant along the integral lines of (1.3).

We note that the stability of the map y 7→ x(t, y) implies also the well posedness of the ODE (1.3)
when u(t, x) is an L∞ solution of the system (1.1). This result is quite surprising because, as noted in
[16], for general hyperbolic systems the solution to (1.3) does not exist or it is not unique. In our case,
the assumption on the existence of Riemann invariants and the conservation form of the equations (1.1)
implies the continuous dependence of x(t, y) on the initial data u0, and then we can extend the notion of
solutions to (1.3) when u0 is in L∞.

The paper is organized as follows. Section 2 contains the basic assumptions on the system (1.1).
Moreover we construct the wave front approximation of the solution u(t). In Section 3 we analyze
carefully the shift differential map, i.e. the evolution of a perturbation in u0 in which only the position of
the initial jumps has changed. The method we use is essentially the one in [12], with slight modifications
due to the fact that in our system the rarefaction curves do not need to be straight lines. The main result
is here the explicit computation of the shift differential map.

Section 4 is concerned with the equation for characteristics (1.3). We prove the Lipschitz dependence
of the map y 7→ x(t) w.r.t. both the initial data u0 and y. Moreover we will show that the Lipschitz
constant is independent from the total variation of u0. Finally, in Section 5, we prove Theorem 1.1.

2. Basic assumptions and wave front approximations

We consider a strictly hyperbolic system of conservation laws

(2.1) ut + f(u)x = 0,

where f : Ω → Rn is a smooth vector field defined on some open set Ω ⊆ Rn. Let A(u)
.
= Df(u)

be the Jacobian matrix of f and denote with λi(u) its eigenvalues and with ri(u), l
i(u) its right and

left eigenvectors, respectively. We assume that the eigenvalues λi can be either genuinely nonlinear or
linearly degenerate. In the following the i-th rarefaction curve through u ∈ Ω will be written as Ri(s)u,
with Ri(0)u = u, while the i-th shock curve will be denoted by Si(s)u, and its speed by σi(s, u). The
directional derivative of a function φ(u) in the direction of ri(u) will be denoted as

ri • φ(u)
.
= lim

h→0

φ(u+ hri(u))− φ(u)

h
,

while the left and right limit of a BV function f in a point x will be written as

f(x−) = lim
y→x−

f(y), f(x+) = lim
y→x+

f(y).

We assume that the rarefaction curves Ri generate a system of Riemann coordinates w(u). We recall
that a necessary and sufficient condition for the local existence of Riemann coordinates is the Frobenius
involutive condition: if [X,Y ] denotes the Lie bracket of the vector fields X,Y , the condition is

[ri, rj ] ∈ span{ri, rj} for all i, j = 1, . . . , n.

In the following we will use indifferently the conserved coordinates u or the Riemann coordinates w.
Fix a domain

(2.2) E
.
=

{
u ∈ Ω : w(u) ∈ [ai, bi], i = 1, . . . , n

}
.

Since E is compact, there is a constant c > 0 such that

(2.3) ri • λi(u) > c ∀u ∈ E, if λi is genuinely nonlinear.

We suppose that the system (2.1) is uniformly strictly hyperbolic in Ω: this means that there exists a
constant d such that

(2.4) λi+1(u)− λi(v) ≥ d, ∀u, v ∈ E, i = 1, . . . , n− 1.

We also assume that in the system (2.1) shock and rarefaction curves coincide: this implies [27] that
either the rarefaction curve Ri(s)u is a straight line or the eigenvalue is linearly degenerate. In fact, one
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Figure 1. The various situations for a 2× 2 system considered in Remark 2.1.

can prove that

(2.5)
d2

ds2
σi(s, u)

∣∣∣∣∣
s=0

=
1

6
(ri • λi(u))〈li(u), ri • ri(u)〉+

1

3
ri • (ri • λi(u)),

and for the shock curve Si(s)u we have

(2.6) 〈lj(u), S′′′(0)u−R′′′(0)u〉 = 1

2(λj(u)− λi(u))
(ri • λi(u))〈lj(u), ri • ri(u)〉.

If λi is genuinely nonlinear, the left hand side of (2.6) is zero if and only if the rarefaction curve is a
straight line, because ri • ri(u) is orthogonal to ri(u).

The flux function f thus satisfies the following assumptions:

H1) the eigenvalues λi of Df are linearly degenerate or genuinely nonlinear;
H2) the rarefaction curves form a system of coordinates;
H3) shock and rarefaction curves coincide.

The system (2.1) has thus nld linearly degenerate fields λi, corresponding to the Riemann invariants wi,
and ngnl = n − nld genuinely nonlinear fields λk, corresponding to the Riemann invariants wk. In the
latter case we have rk • rk(u) = 0 for all u ∈ E.

Remark 2.1. If Ω ⊆ R2, then the rarefaction curves Ri(s)u always generate a system of Riemann coordi-
nates. Thus our assumptions are satisfied by the following classes of systems:

i) both eigenvalues are linearly degenerate;
ii) one eigenvalue is linearly degenerate, the other genuinely nonlinear and the rarefaction curves of

the latter are straight lines;
iii) both eigenvalues are genuinely nonlinear and the system is of Temple class.

The various situations are shown in fig. 1. Case ii) corresponds to the traffic model considered in [2],
while case i) corresponds to 2× 2 chromatography.

Given the two points u−, u+ ∈ E, with coordinates u− = u(w−
1 , . . . , w

−
n ) and u+ = u(w+

1 , . . . , w
+
n ),

with w+
i 6= w−

i , consider the intermediate states u(ωi), where

(2.7) ω0 = w(u−), ωi = (w+
1 , . . . , w

+
i , w

−
i+1, . . . , w

−
n ), i = 1, . . . , n.

For all i = 1, . . . , n, we denote with vi(u
−, u+) the vectors defined as

(2.8) vi(u
−, u+) = u(ωi)− u(ωi−1),
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and we define ri(u
−, u+) as

(2.9) ri(u
−, u+) =


vi(u

−, u+)

|vi(u−, u+)|
=

u(ωi)− u(ωi−1)

|u(ωi)− u(ωi−1)|
if w−

i 6= w+
i

ri(ωi−1) = ri(ωi) if w−
i = w+

i

where ri(u) is the i-th eigenvector of DF (u). We assume that the vectors ri(u
−, u+) are linearly inde-

pendent for all u−, u+ ∈ E. This condition is satisfied for data in a sufficiently small neighborhood of a
given point ū ∈ Ω. We denote also with {li(u−, u+), i = 1, . . . , n} the dual base.

We now define an approximated semigroup of solutions Sν on a set Eν ⊆ E. The construction is
similar to the one in [3]. For any integer ν ∈ N, set

(2.10) Eν .
=

{
u ∈ E : wi(u) ∈ 2−νZ, i = 1, . . . , n

}
,

and let Dν,M be the domain defined as

(2.11) Dν,M .
=

{
u : R 7−→ Eν : u piecewise constant and Tot.Var.(u) ≤ M

}
.

Given ū ∈ Eν , we construct a solution u(t) by wave front tracking. We first define how to solve the
Riemann problem [u−, u+], with u−, u+ ∈ Eν .

The solution to the Riemann problem u−, u+ is constructed by piecing together the solutions to the
simple Riemann problems [ωi−1, ωi], where ωi is defined in (2.7). If the i-th field is linearly degenerate,
then [ωi−1, ωi] is solved by a contact discontinuity travelling with speed λi(ωi). If the i-th field is genuinely
nonlinear and w+

i < w−
i , then [ωi−1, ωi] is solved by a shock travelling with the Rankine-Hugoniot speed

σi(ωi−1, ωi). Finally, if the i-th field is genuinely nonlinear and w+
i > w−

i , then [ωi−1, ωi] is solved by a
rarefaction fan: if w+

i = w−
i + pi2

−ν , pi ∈ N, consider the states

ωi,0 = ωi−1, ωi,l = (w+
1 , . . . , w

+
i−1, w

−
i + `2−ν , w−

i+1, . . . , w
−
n ), ` = 1, . . . , pi.

The solution will consist of pi shock waves [ωi,l−1, ωi,l], travelling with the corresponding shock speed
σi(ωi,l−1, ωi,l).

At time t = 0 we solve the initial Riemann problems of ū. Note that the number of wave fronts is
bounded by 2ν ·Tot.Var.(ū). When two or more fronts interact, we solve again the Riemann problem they
generate, and so on. It is easy to show that at each interaction at least one of the following alternatives
holds:

i) the number of waves decreases at least by 1;
ii) the total variation of the solution u(t) decreases by 21−ν ,
iii) the interaction potential Q(t), defined as

(2.12) Q(t)
.
=

∑
α,β approaching

|σα||σβ | ≤ M2,

decreases by 2−ν . We recall that two waves σα, σβ of the families kα, kβ , located at points xα,
Xβ , are considered as approaching if xα < xβ and kα > kβ .

This implies that there are at most a finite number of interactions, so that we can construct our approx-
imate solution for all t ≥ 0. Note that Sν

t u = u(t) is a semigroup of solutions, but not entropic due to
the presence of rarefaction fronts.

If the i-th family is linearly degenerate, the i-th Riemann coordinate wi(t, ·) of the solution can be
constructed by solving the semilinear system

(2.13)

{
(wi)t + λi(u(t, x))(wi)x = 0

wi(0, x) = wi,0(x)

Since u is a piecewise constant solution, with a finite number of jumps, the broad solution to (2.13) is
well defined [8]: if we denote with x(t, y) the solution to the ODE

(2.14) ẋ = λi(u(t, x)), x(0) = y,

then the solution to (2.13) is given by

(2.15) wi(t, x(t, y)) = wi,0(y).
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In the following sections we will consider the dependence on the initial data u0 of the genuinely nonlinear
Riemann coordinates wk(t, ·) and the map ht

i(y) defined as

(2.16) ht
i(y)

.
= xi(t, y),

where xi(t, y) is the solution to (2.14).

3. Estimates on the shift differential map

In this section we prove some properties of the shift differential map. These properties are closely
related to the structure of (2.1), i.e. the conservation form, the coinciding shock and rarefaction assump-
tion, which prevents the creation of shock when two jumps of the same family collide, and the existence
of Riemann invariants, which prevents the creation of shock when two jumps of different families interact.

Consider a wave front solution u(t, ·) of (2.1), and assume that the initial datum u(0, ·) has a finite
number N of jumps σα, located in yα:

u(0, x) =

N∑
α=1

σαχ[yα,+∞)(x).

If ξα is the shift rate of the jump σα, define uθ(t, ·) as the front tracking solution with initial datum

(3.1) uθ(0, x) =
N∑

α=1

σαχ[yα+θξα,+∞)(x).

In the following, we will use the integral shift function, defined by

(3.2) v(t, x)
.
= lim

θ→0

{
−1

θ

∫ x

−∞
uθ(t, y)− u(t, y)dy

}
.

If u(t, ·) has a shock σβ , located in yβ , and if ξβ is its shift rate, it is clear that the following relation
holds:

(3.3) σβξβ = v(t, yβ+)− v(t, yβ−).

We first recall the following result in [12], obtained using the conservation form of the equations:

Lemma 3.1. Consider a bounded, open region Γ in the t-x plane. Call σα, α = 1, . . . , N , the fronts
entering Γ and let ξα be their shifts. Assume that the fronts leaving Γ, say σ′

β, β = 1, . . . , N ′, are linearly

independent. Then their shifts ξ′β are uniquely determined by the linear relation

(3.4)
N ′∑
β=1

ξ′βσ
′
β =

N∑
α=1

ξασα.

Remark 3.2. As observed in [12], formula (3.4) implies that the shift rates of the outgoing fronts depend
only on the shift rates of the incoming ones, and not on the order in which these wave-fronts interact
inside Γ. In particular we can perform the following operations, without changing the shift rates of the
outgoing fronts:

O1) switch the order of which three or more fronts interact;
O2) invert the order of two fronts at time 0, if they have zero shift rate.

The second lemma is concerned with a configuration where a sequence of contact discontinuities inter-
acts with a wave of another family.

Lemma 3.3. Consider a family of parallel contact discontinuities σα, α = 1, . . . , N of the i-th linearly
degenerate family and a single wave-front σ of the k-th family, k 6= i. Let ξα and ξ be their initial shifts,
respectively, and let ξ′α, ξ

′ be their shifts after interaction. Assume that ξα = ξ̄ for all α. Then after the
interactions all the shift rates ξ′α of the i-th family have the same value ξ̄′ and

(3.5) ξ′α = ξ̄′ =
ξ̄(Λ̄′ − Λ)− ξ(Λ̄′ − Λ̄)

Λ− Λ̄
, ξ′ =

ξ̄(Λ′ − Λ)− ξ(Λ̄′ − Λ̄)

Λ− Λ̄
,

where Λ̄, Λ and Λ̄′, Λ′ are the speeds of the shocks σα and σ, before and after interaction, respectively.
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Figure 2. Interaction with a sheaf of contact discontinuities.

Proof. Define the vector v in the t-x plane as the shift of the first collision point. By a direct computation
one finds

(3.6) v =

(
ξ − ξ̄

Λ̄− Λ
,
Λ̄ξ − Λξ̄

Λ̄− Λ

)
.

Since all the incoming shock of the linearly degenerate family have the same speed Λ̄, by simple geometrical
considerations it follows that the vector v is constant during all interactions (fig. 2). Formula (3.5) follows
easily. �

Remark 3.4. Note that this lemma allows us to perform the following new operation, without changing
the shift rates:

O3) replace a family of contact discontinuities σα of a linearly degenerate, all with the same shift rate
ξ̄, by a single wave σ =

∑
σα with shift rate ξ̄.

In the next lemma we will show that the existence of Riemann coordinates w implies a strong relation
among shocks of different families.

Lemma 3.5. Consider two adjacent jumps belonging to different families, σi and σj, i < j, located at
xi > xj. Let σ′

i, σ
′
j be their strength after interaction. Then the following holds:

(3.7) span{σi, σj} = span{σ′
i, σ

′
j}.

Proof. If ξi, ξj are the shift rates before interaction, and ξ′i, ξ
′
j after interaction, then (3.7) follows easily

from the conservation relation

(3.8) σiξi + σjξj = σ′
iξ

′
i + σ′

jξ
′
j ∀ξi, ξj ∈ R,

because by assumptions no waves of other families are generated. �

Remark 3.6. Note that the previous lemma implies that the conservation relation (3.8) is bidimensional,
i.e. the shocks σi, σj and σ′

i, σ
′
j lie on a two dimensional plane (fig. 3). We can obtain then an identity

which relates the the strengths σ with the speeds Λ: substituting (3.5) in (3.8), since ξ̄, ξ are arbitrary,
we get

σi(Λj − Λi) = σ′
i(Λ

′
i − Λj) + σ′

j(Λ
′
j − Λj),(3.9)

σj(Λi − Λj) = σ′
i(Λ

′
i − Λi) + σ′

j(Λ
′
j − Λi).

One can show that if a Riemann solver verifies (3.9) for all couple of waves i, j, then there exists a flux
function f such that the wave front approximation is a weak solution to (2.1).

An important property of the shift differential map for Temple class systems is the fact that a
perturbation to the initial data, initially localized in [a, b], remains in the neighborhood of the set
∪i[xi(t, a), xi(t, b)], where xi(t, y) is the solution of the i-th characteristic equation starting at y. We
now extend this property to hyperbolic systems satisfying the hypotheses H1), H2), H3) of section 2.
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Figure 3. Vector relations among shocks.

Consider N jumps σα, α = 1, . . . , N , of some linearly degenerate family i, located at xα and corre-
sponding to the jumps c(α)ei in the Riemann coordinates w:

(3.10) σα = u(w(xα−) + c(α)ei)− u(w(xα−)),

for some constants c(α), α = 1, . . . , N .

Definition 3.7. We say that the jumps σα defined in (3.10) are in involution if

(3.11)

N∑
α=1

c(α) = 0,

i.e. the initial and final Riemann coordinate wi is the same: wi(x1−) = wi(xN+).

Note that, by the existence of Riemann coordinates, this relation does not depend on the positions
and strength of the shocks of the other families. We can now extend Lemma 2 in [12] to our systems:

Lemma 3.8. Consider a wave front tracking solution u. Assume that there are N shocks σα

i) either of the i-th linearly degenerate family in involution,
ii) or of the k-th genuinely nonlinear family,

and let xα(t), 0 ≤ t ≤ T , be the position of the shock σα, α = 1, . . . , N . Then it is possible to assign
at time t = 0 shift rates to all shocks such that ξ1 = 1 and the shift of all fronts outside the strip
Γ

.
= {(t, x); t ∈ [0, T ], x1(t) ≤ x ≤ xN (t)} is zero.

Proof. We consider only the case of linearly degenerate family i, since in the other case the proof is
exactly the one given in [12].

Let xα(t), α = 1, . . . , N , be the position of the shock σα of the i-th family in involution, and let w̄i be
the value of the Riemann coordinate at x1(t)− = x1(0)−. For w ∈ E, define w̃ as the projection of w on
the hyperplane {wi = w̄i}, and ũ = u(w̃).

We choose the shift rates such that

(3.12) − d

dθ

∫ x

−∞
uθdy =

∑
xi(t)≤x

ξi(t)σi(t) = c(t, x)(u(t, x)− ũ(t, x)),

where c(t, x) is a scalar function different from 0 only in [x1(t), xN (t)], and we recall that ũ(t, x) =
u(w̃(t, x)).

By imposing the value ξ1 = 1, i.e. c(0, x1(0)−) = 0, c(0, x1(0)+) = 1, we need to prove that (3.12)
can be satisfied at time t = 0. We have two cases.

1) If the jump σi belongs to the i-th family and is inside [x0(0), xN (0)], then set ξ = c(t, xi−).
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Figure 4. Computation of the shift rate.

2) If the jump σi belong to the k-th family with k 6= i, then by assumption (2.8) and by (3.7) there
exists a unique shift ξi and a unique constant c(0, x+) such that

ξiσi + c(0, x−)(u(0, x−)− ũ(0, x−)) = c(0, x+)(u(0, x+)− ũ(0, x)).

Since we assume that the shocks are in involution, setting ξN = c(0, xn−) we have that (3.12) holds at
time t = 0: in fact the last jump has size ũ(0, xN (0)−)− u(0, xN (0)−).

We now show that this property is conserved for all t ≥ 0. This follows easily from conservation
and Lemma 3.5. The proof is exactly the same as in [12]: we repeat it for completeness. Consider the
interaction between two shocks σi and σj in the point (τ, y), see fig. 4. By inductive assumption, we have
for the states ul, um and ul that ∑

xγ(τ)<y

σγ(τ)ξγ(τ) = cl(ul − ũl),(3.13)

cl(ul − ũl) + σiξi = cm(um − ũm),

cm(um − ũm) + σjξj = cr(ur − ũr).

Using conservation we have

(3.14) ξiσi + ξjσj = ξ′jσ
′
j + ξ′iσ

′
i,

so that for the new middle state u′
m we have

(3.15) cl(ul − ũl) + σ′
jξ

′
j = c′m(u′

m − ũ′
m) = cr(ur − ũr)− σ′

iξ
′
i,

and using Lemma 3.5 we conclude

span
{
ul − ũl, σ

′
j

}⋂
span

{
ur − ũr, σ

′
i

}
= span

{
um − ũ′

m

}
.

The same relation proves that they vanish outside Γ: in fact, assume for example that cl = 0 and j < i.
Then from (3.15) we get

σ′
jξ

′
j = c′m(u′

m − ũ′
m),

which implies that c′m = 0. This concludes the proof. �
Remark 3.9. Note that for discontinuities of a linearly degenerate family all shift rates has the same sign.
Note moreover that if no waves of other families are present, then we shift all jumps σα by unit rate 1.
This corresponds to the case considered in Lemma 3.3, i.e. to the substitution of a family of contact
discontinuities with a single jump, whose strength in this case is 0 by the involution assumption.
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Using conservation and the previous lemmas, we obtain explicitly the shift differential map at a given
time τ . We recall that, given the states u−, u+ ∈ E, we denote with ri(u

−, u+) the vectors defined in (2.9),
and with li(u−, u+) its dual base. Let Pj(u

−, u+) be the projection operator on span{ri(u−, u+), i =
1, . . . , j}:

(3.16) Pj(u
−, u+)v

.
=

j∑
i=1

〈
li(u−, u+), v

〉
ri(u

−, u+),

where 〈·, ·〉 denotes the the scalar product in Rn.
Given a point (t, x), with u(t, x) continuous in x, define xi the intersection of the backward i-th

characteristics starting at (t, x) with the real axis {(0, x)}, and for all (0, y) let j(y) the index such that
xj(y) ≤ y < xj(y)−1, j(y) = 1, . . . , n+1, with x0 = +∞ and xn+1 = −∞. Without any loss of generality,
we can assume that in (0, y) there is a jump σ of the k-th family.

Define the points wl, wr ∈ E by

wl(x, y)
.
=


w(t, x) j(y) = 1

(w1(0, y−), . . . , wj(y)−1(0, y−), wj(y)(t, x), . . . , wn(t, x)) 2 ≤ j(y) ≤ n

w(0, y−) j(y) = n+ 1

(3.17)

wr(x, y)
.
=


w(0, y+) j(y) = 1

(w1(t, x), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wn(0, y+)) 2 ≤ j(y) ≤ n

w(t, x) j(y) = n+ 1

Moreover define the point wm ∈ E by
(3.18)

wm(x, y)
.
= (w1(t, x), . . . , wk(0, y+), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wn(0, y+)) 2 ≤ j(y) ≤ n,

if k < j(y), and in a similar way, if k ≥ j(y),
(3.19)

wm(x, y)
.
= (w1(t, x), . . . , wj(y)−1(t, x), wj(y)(0, y+), . . . , wk(0, y−), . . . , wn(0, y+)) 2 ≤ j(y) ≤ n.

Define P (x, y) as the vector
(3.20)

P (x, y)
.
=


0 j(y) = 1

Pj(y)−1(wl, wm)σ + Pj(y)−1(wm, wr)
(
σ − Pj(y)−1(wl, wm)σ

)
2 ≤ j(y) ≤ n+ 1, k < j(y)

Pj(y)−1(wl, wm)
(
Pj(y)−1(wm, wr)σ

)
2 ≤ j(y) ≤ n, k ≥ j(y)

where wl = wl(x, y), wm = wm(x, y), wr = wr(x, y) and σ is the initial jump in (0, y). Consider now a
front tracking solution uθ, obtained by shifting the initial jumps σα in yα with rates ξα.

Theorem 3.10. If v(t, x) is the integral shift function of uθ(t, ·), defined in (3.2), then

(3.21) v(t, x) = lim
θ→0

{
−1

θ

∫ x

−∞
uθ(t, y)− u(t, y)dy

}
=

∑
α

P (x, yα)ξα.

Proof. The theorem will be proved outside the times of interaction, because the Lipschitz dependence in
L1 of the approximate semigroup implies the validity of (3.21) for all t ≥ 0.

If is sufficient to show that
∑

yα
P (x, yα)ξα is piecewise constant, with jumps only at the points xβ

where u(t, ·) has a shock σβ , and the following relation holds:

(3.22)
∑
yα

(
P (xβ+, yα)− P (xβ−, yα)

)
ξα = σβξβ , lim

x→−∞

∑
yα

P (x, yα)ξα = 0,

where ξβ is the shift rate of σβ , located in x. Note that by (3.20) the second equality of (3.22) is trivially
satisfied.

By linearity in the shift rates ξα, we can consider the case in which a single shock is shifted, let us say
σ at y: (3.21) becomes

(3.23) v(t, x) = P (x, y)ξ.
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Figure 5. Wave pattern for the computation of formula 3.16.

Formula (3.16) follows from the following considerations: consider a wave front pattern, fig. 5, where for
simplicity we assume that k < j(y). The states wl, wm are computed considering the Riemann problem
generated by adding to the k-jump σ in (0, y) all the i-waves starting from the left of (0, y) and ending
in the right of (t, x) and all the i-waves, with i 6= k, starting from the right of (0, y) and ending in the
left of (t, x). The jump wm, wr is a single wave of the k-th family formed by adding all the k-waves
between (0, y) and (t, x). Using the definition of v(t, x) given (3.2), one obtains easily the second case
of (3.20): in fact the shift rates of the shocks in the left of (t, x) is given by the shift rates of the jumps
of the Riemann problem wl, wm ending in the left of (t, x), Pj(y)−1(wl, wm)σ, plus the shift rate of the
shock wm, wr, Pk(wm, wr)(σ−Pj(y)−1(wl, wm)σ). Since only the i-waves with i ≥ j(y) > k are present in
σ−Pj(y)−1(wl, wm)σ, then Pk(wm, wr)(σ−Pj(y)−1(wl, wm)σ) = Pj(y)−1(wm, wr)(σ−Pj(y)−1(wl, wm)σ).
The other cases can be computed in a similar way: in this case one solves the Riemann problem wm, wr

in (0, y), and consider the k-wave wl, wm starting in the left of (0, y) and ending in the right of (t, x).
From the above considerations it is clear that P (x, y) is piecewise constant, with jumps only when in

(t, x) there is a i-shock σ′: in fact otherwise the wave front pattern used to compute P (x, y) remains the
same. Let {zp : p = 1, . . . ,M} be the set of the starting points of all shocks arriving in (t, x), and define

(3.24) z− = min
p

zp, z+ = max
p

zp.

We consider two cases:

1) the shocks arriving in (t, x) start on both sides of (0, y): z− ≤ y ≤ z+. In this case, (P (x+, y)−
P (x−, y))ξ is the shift rate of the i-shock starting in the Riemann problem wl(x−, y), wm(x+, y) if
i > k (wm(x−, y), wr(x+, y) if i < k) which collides with a k-shock wm(x+, y), wr(x+, y) (wl, wm

if i < k): in fact the only difference is that in wm(x−, y), wm(x+, y) there is a shock of the i-th
family starting in (0, y), and i is genuinely nonlinear. Finally, using ri • ri(u) = 0 and Lemma
3.5, one can change position to the i-wave and the remaining k-wave wm, wr, whose strength does
not change.

If i = k, there are no k-shocks starting on the right (left) of (0, y) and ending on the right (left)
of (t, x), so that (P (x+, y)− P (x−, y))ξ is the shift rate of the i-shock of the Riemann problem
wl(x−, y), wr(x+, y).

2) the shocks of the i-th family arriving in (t, x) start either in (−∞, y) or (y,+∞): assume for
definiteness that y < z−. In this case the difference (P (x+, y)−P (x−, y))ξ is the shift rate of the
shock σ′ colliding with the shifted shocks of the Riemann problem wl(x−, y), wm(x−, y) in (0, y),
crossing the jump wm(x−, y), wr(x−, y), and finally overtaking σ′. In fact one can use Lemma
3.5 (and ri • ri(u) = 0 if i is genuinely nonlinear) to obtain the wave pattern of fig. 7.

The various cases will be proved in the following lemmas.

Lemma 3.11. Assume that z− ≤ y ≤ z+, i.e. case 1). If the shock σ′ is of the i-th family, then its shift
ξ′ is

(3.25) ξ′σ′ =
(
P (x+, y)− P (x−, y)

)
ξ.
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Figure 6. Computation of the shift rate in the case of Lemma 3.11.

Proof. We follow closely the method of [12]. Assume for definiteness k < j(y), the other cases being
similar. The basic idea is to reduce the computation to the single Riemann problem wl(x−, y), wm(x+, y),
with eventually a single k-wave wm, wr.

Consider fig. 6. By Lemma 3.1, we can simplify the wave configuration considering only the fronts
crossing starting in the right of (0, y) and ending in the left of (t, x): in fact we can move the other fronts
to ±∞ without changing the shift rate of σ′.

We can now shift the initial position of the waves of the i-th family merging in x such that their initial
position coincide with y, without changing the shift rate ξ′. This operation can be repeated for all shocks
of genuinely nonlinear families.

Finally, we can move the shocks of the linearly degenerate families such that they have the same
sequence of interaction with the other shocks. This means that, if xj

i is the position of the j-th shock of
the i-th linearly degenerate family, the only interactions among shocks occurring in the sector [x1

i (t), x
n
i (t)]

are the one involving one i-th wave and one k-th wave, with k 6= i. Using Lemma 3.3, we can at this
point substitute them with a single shock, whose strength is the sum of the strengths of the i-waves.
Finally we move their position at t = 0 such that it coincides with y: we obtain the wave patterns of
fig. 6. To conclude, we just need to prove that the Riemann problem obtained in this way is exactly
wl(x−, y), wm(x+, y) and that the remaining k-wave is wm(x+, y), wr(x+, y).

By the previous argument, the strength of the shock of the j-th family j < i, j 6= k, is given by the
j-waves starting in the right of y and ending in the left of x: since they are the only j-wave crossing the
segment [(0, y−), (t, x+)], it follows

wl,j(x, y) = wj(0, y−), wr,j(x, y) = wj(t, x+).

The other relations for j = k and j > i follows in the same way. Finally, for j = i the jump is
wi(t, x+)− wi(t, x−). Note that the wave pattern is the same obtained in 1). �

We consider only the case y < z−, since the other is entirely similar.

Lemma 3.12. Assume that y < z−. Then the shift ξ′ of σ′ is given by

(3.26) ξ′σ′ =
(
P (x+, y)− P (x−, y)

)
ξ.

Proof. The hypothesis implies that the i-th shocks ending at x starts in the right of y. With the same
simplification considered in Lemma 3.11, we reduce to the Riemann problem wl(x, y), wr(x, y) in ȳ, such
that the waves of the j-th families, j > i, generated at ȳ collide with the i-wave in xα (see fig. 7),
after overtaking the k-wave wm, wr. The conclusion follows easily, since the wave pattern is the same
considered in 2). �

This concludes the proof of Theorem 3.10. �

Finally we extend to our case the following result proved in [12]:
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Figure 7. Computation of the shift rate in the case of Lemma 3.12.
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Figure 8. Cancellation among contact discontinuities.

Proposition 3.13. Let u be a wave-front tracking solution, and consider two wave-fronts, x(t) and y(t),
t ∈ [0, T ]. Then there exists a second front tracking solution ũ such that the initial and final positions of
the two shocks is the same, and Tot.Var.(ũ) is uniformly bounded.

Proof. For genuinely nonlinear fields, the proof is the same as in [12]. We then restrict the proof to the
case of a linearly degenerate fields i.

Assume that there exists two jumps σ1, σ2 of the i-th family, with positions z1(t) < z2(t), such that

(3.27) x(0) /∈ [z1(0), z2(0)] and y(0) /∈ [z1(0), z2(0)], x(T ) /∈ [z1(T ), z2(T )] and y(T ) /∈ [z1(T ), z2(T )].

For definiteness, assume wi(0, z1−) < wi(0, z1+), and the following conditions is satisfied:

(3.28) wi(0, z1−) ∈ [wi(0, z2−), w(0, z2+)].

Let σα, α = 1, . . . , N be the jumps of linearly degenerate family i in the strip [z1(0), z2(0)): if we define

σN+1 = u(wi(0, z1−))− u(wi(0, z2−)),

it is easy to verify that the shocks σα, α = 1, . . . , N + 1, are in involution. By Lemma 3.8, we can then
moving the jumps to the left until either z1(t) meets the wave fronts x(t), or z1(t) coincides with another
shock of the i-th family (fig. 8). It is clear that we can repeat the same procedure also in the following
cases:

i) wi(0, z1−) > wi(0, z1+) and wi(0, z1−) ∈ [wi(0, z2+), w(0, z2−)];
ii) wi(0, z2−) < wi(0, z2+) and wi(0, z2+) ∈ [wi(0, z1+), w(0, z1−)];
iii) wi(0, z2−) > wi(0, z2+) and wi(0, z2+) ∈ [wi(0, z1−), w(0, z1+)].

It is now easy to prove that the total variation of the jumps of the i-th family satisfying (3.27) can at
most be 3‖w‖∞. Since x(t), y(t) divide the lines t = 0 and t = τ in three regions, the total variation of
wi is bounded by 27‖w‖∞. �
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4. Estimates on characteristics

In this section we prove some estimates on the solution xi(t, y) of the characteristic equation:

(4.1)

{
ẋi = λi(u(t, xi))
xi(0) = y

We assume for simplicity that the i-th family is linearly degenerate, however the same results are valid
for characteristics of a genuinely nonlinear family if the following condition holds: for all τ there exists
an ε such that in the strip {(t, x); τ ≤ t ≤ T, xi(t, y) − ε ≤ x ≤ xi(t, y) + ε} there are no shock waves
of the i-th family. Given front tracking approximation u, xi(t, y) is unique, since it crosses only a finite
number of transversal jumps, and it depends Lipschitz continuously on the initial data y (see [8]).

We want to give uniform estimates on this dependence. The idea is to suppose that in y there is a
shock σε of the i-family of size ε: wi(0, y+)−wi(0, y−) = ε. Since by assumption no shocks of the i-family
collide with σε, it is easy to construct a wave front solution: for x < x(t, y), the solution uε(t, ·) takes
values in

Eν,− .
=

{
u : wj(u) ∈ [aj , bj ] ∩ 2−νZ, j = 1, . . . , n

}
,

while for x > x(t, y), enlarging E and assuming ε sufficiently small,

Eν,+ .
=

{
u : wj(u) ∈ [aj , bj ] ∩ 2−νZ, j 6= i, wi(u) ∈ [ai, bi] ∩

{
2−νZ+ ε

}}
.

The following lemma proves the continuous dependence of the solution uε(t) and the position xε
i(t, y)

of the shock σε w.r.t. ε.

Lemma 4.1. Consider a front tracking solution u, with initial data u0 and the characteristic lines
xi(t, y1) < xi(t, y2), defined in (4.1) for a linearly degenerate family i. Let uε the wave front solution with
initial data u(wε

0), where wε
0 is defined as

(4.2) wε
0(x)

.
=


w(u0(x)) x ≤ y1

w(u0(x)) + εei y1 < x ≤ y2

w(u0(x)) x > y2

Then there exists constants L, L′, depending only on the total variation of the initial data u0, such that
for all t ≥ 0

(4.3)

∫
R

∣∣u(t, x)− uε(t, x)
∣∣dx ≤ Lε

∣∣y1 − y2
∣∣ and

∣∣xε
i(t, yj)− xi(t, yj)

∣∣ ≤ L′εt
∣∣y1 − y2

∣∣, j = 1, 2,

where xε
i(t, yj) is the position of the shock σε

j starting in (0, yj).

Proof. The first inequality is an easy consequence of the L1 continuous dependence for front tracking
solutions, see [3]. For the second one, note that all the shocks different from σε have size uniformly bigger
than 0, so that their position is shifted of the order ε. Thus the second inequality follows by standard
ODE perturbation estimates, see [8]. �

An easy application of the previous lemma together with Proposition 3.13 implies that to compute
x1(t, y1) and x2(t, y2), we can actually consider in (4.1) a solution ũ with uniformly bounded total
variation, so that the constant L′ in (4.3) is independent on the total variation of u0.

We now estimate the dependence of xi(t, y) w.r.t. u.

Proposition 4.2. Let ξα be the shift rate of the jump σα in u(0, ·), and denote with xθ
i the solution to{

ẋθ
i = λi(u

θ(t, xθ
i ))

xθ
i (0) = y

where uθ(t) is the shifted front tracking solution. Then there exists a constant D independent of the total
variation of u such that

(4.4)

∣∣∣∣ limθ→0

xθ
i (t, y)− xi(t, y)

θ

∣∣∣∣ ≤ D
∑
α

∣∣∣σαξα

∣∣∣.
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Proof. If ε is the size of the shock σε located in (0, y), then we can apply Theorem 3.10 to compute its
shift ξε: by formula (3.21) we obtain

(4.5) ξεσε =
∑
α

(
P (x+, yα)− P (x−, yα)

)
ξα.

If θ is sufficiently small, then we have

ξε =
xθ,ε
i (t, y)− xε

i(t, y)

θ
,

where xθ,ε
i (t, y) is the position of the shifted shock and xε

i(t, y) is its original position. Note that
(P (x+, yα)−P (x−, yα))ξα is the shift rate of the shock σε, after colliding with the shocks of the Riemann
problems wl, wm and wm, wr. Their total shift is proportional to |σαξα|, and after the interaction with
σε, the shift of the latter is proportional to |σε||σαξα|. Thus taking the limit as ε tends to 0 of (4.5), we
obtain for ε sufficiently small ∣∣∣∣xθ

i (t, y)− xi(t, y)

θ

∣∣∣∣ ≤ D
∑
α

∣∣∣σαξα

∣∣∣,
which implies (4.4). �

We prove now the uniform Lipschitz continuity of the map y 7−→ xi(t, y) for all t ≥ 0.

Proposition 4.3. Consider two characteristic lines xi(t, y1) xi(t, y2), solution to (4.1). There exists
C > 0, depending only on the system and the set E, such that

(4.6)
1

C
≤ x2

i (t, y2)− x1
i (t, y1)

y2 − y1
≤ C.

Proof. As in the previous proposition, let ε be the size of the shock σε(t) located in (0, y) in Riemann
coordinates. If ξ(t) is its shift rate, then for θ sufficiently small by Theorem 3.10 we obtain

(4.7)
xε
i(t, y + θξ)− xε

i(t, y)

θ
σε(t) = ξε(t)σε(t) = ri(wl, wr)

〈
li(wl, wr), σ(0)

〉
ξ(0).

In fact, by assumption, in the simplified wave patterns to compute the shift rate of σε, there are no waves
of the i-th family different from σε. Dividing by ε and taking the limit as ε tends to 0, we obtain

xi(t, y + θξ)− xi(t, y)

θ

∂

∂wi
u(t, x) =

∂

∂wi
u(0, y)

〈
li(wl, wr), ri(0, y)

〉
ξ(0),

which implies

(4.8)
d

dy
xi(t, y) =

∂u(0, y)/∂wi

∂u(t, x)/∂wi

〈
li(wl, wr), ri(0, y)

〉
.

We use the fact that σε(t)/ε tends to ∂u(0, y)/∂wi ·ri(wl, wr) as ε → 0. Since E is compact, the conclusion
(4.6) follows easily. �

Remark 4.4. The above proposition implies that the map ht
i defined in (2.16) is uniformly Lipschitz,

independent on the total variation of u0, together with its inverse map (ht
i)

−1.

To end this section, we give a different proof of the following result given in [12]:

Proposition 4.5. If x(t), y(t) are the positions of two adjacent k-rarefaction waves, then for some
constant κ > 0 one has

(4.9) y(τ)− x(τ) ≥ κτ2−ν ,

where c > 0 is the constant defined in (2.3). Thus for all τ > 0 the total variation of the Riemann
invariant wk of the k-th genuinely nonlinear family with N shocks at t = 0 is bounded by

(4.10) Tot.Var.{wk(τ, ·); [a, b]} ≤ 2(b− a)

κτ
+
∥∥wk

∥∥
L∞ + (N + 1)21−ν .



16 STEFANO BIANCHINI

tα

t i+1
ti

t iz(t,x(    ))

t i+1z(t,x(      ))x(t)
y(t)

t

x

τ

Figure 9. Decay of positive waves.

Proof. Consider two adjacent k-rarefaction fronts x(t) and y(t), and let tα, α = 1, . . . , N , be the in-
teraction times of x(t), y(t) with other waves in the interval [0, τ ]. Fixed ti ∈ (tᾱ, tᾱ+1) for some ᾱ,
let z(t, x(ti)) be the characteristic line of the k-th genuinely nonlinear family starting in (ti, x(ti)) (see
fig. 9). Assume ti+1 > ti sufficiently close to ti such that ti+1 ∈ (tᾱ, tᾱ+1) and z(t, x(ti)) does not collide
with shocks of other families for t ∈ [ti, ti+1]. Let z(t, x(ti+1)) be the characteristic curve starting in
(ti+1, x(ti+1)). By the assumption of genuinely nonlinearity, at time ti+1 we have

z(ti+1, x(ti))− z(ti+1, x(ti+1)) ≥ c(ti+1 − ti)2
−ν−1,

for some constant c, depending only on E. Using Proposition 4.3, at time τ we have

(4.11) z(τ, x(ti))− z(τ, x(ti+1)) ≥
c

C
(ti+1 − ti)2

−ν−1.

Repeating the process, it is possible to find a countable number of times ti such that

lim
i→−∞

ti = tᾱ, lim
i→+∞

ti = tᾱ+1,

and using (4.11) we get

(4.12) z(τ, x(tᾱ)− z(τ, x(tᾱ+1)) ≥
c

C
(tᾱ+1 − tᾱ)2

−ν−1.

Repeating the process for y(t) and for all intervals (tα+1, tα), we obtain (4.9) where κ = c/C.
The second equation follows noticing that the total amount of positive jumps in the interval [a, b] is

bounded by (1 +N)2−ν + (b− a)/κτ . �

5. Proof of the main theorem

In this section we construct the semigroup S on L∞(R;E). In [3] it is shown that for all M , there
exists a semigroup SM defined on the domain

(5.1) DM .
=

{
u : R 7→ E : Tot.Var.(u) ≤ M

}
,

which is the only limit of the wave front tracking approximations constructed in section 2. We study now
the dependence of the solution on the initial data u ∈ DM . We consider separately the case for genuinely
nonlinear and linearly degenerate families.

Proposition 5.1. Consider a front tracking solution u, such that u(0, ·) has N jumps σα, α = 1, . . . , N ,
and let ξα be their shift rates. Given τ ≥ 0, denote with σβ the jumps in the Riemann invariant wk(τ, ·)
of the k-th genuinely nonlinear family. Then there exists a constant K, depending only on the system
and the domain E such that

(5.2)
∑
β

∣∣ξβσβ

∣∣ ≤ K(1 +N2−ν)
N∑

α=1

∣∣ξασα

∣∣.
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Proof. The proof follows by Theorem 3.10 and Proposition 4.5. In fact, fixed a shock σᾱ, using Theorem
3.10, we have that at time τ for a shock σβ of the i-th family there exist D′

(5.3)
∣∣ξβσβ

∣∣ ≤ D′∣∣ξᾱσᾱ

∣∣,
if the shock σβ starts on both sides of σᾱ, or, using the same estimate of Proposition 4.2,

(5.4)
∣∣ξβ∣∣ ≤ D

∣∣σᾱξᾱ
∣∣,

if σβ start on one side of σᾱ. Since there is at most 1 shocks such that (5.3) holds, and the interval of

influence is [xᾱ − λ̂τ, xᾱ + λ̂τ ], using Proposition 4.5 together with (5.3) and (5.4) we obtain∑
β

∣∣ξβσβ

∣∣ ≤ D′∣∣ξᾱσᾱ

∣∣+D
∣∣σᾱξᾱ

∣∣ · Tot.Var.{wk, [xᾱ − λ̂τ, xᾱ + λ̂τ ]
}
≤ F (1 + 2−ν)

∣∣ξᾱσᾱ

∣∣.
The conclusion follows the linearity of the shift differential map. �

Using the results of the previous section, the following result is trivial:

Proposition 5.2. Consider a wave front solution u, such that u(0, ·) has N jumps σα, α = 1, . . . , N ,
and let ξα be their shifts. Consider the equation (4.1), with the eigenvalue λi linearly degenerate. Fixed
τ ≥ 0, then the shift ξi of xi(τ, y) is bounded by

(5.5)
∣∣ξi∣∣ ≤ D

N∑
α=1

∣∣ξασα

∣∣.
Proof. This is a corollary of Proposition 4.2. �

Using the above propositions, we can prove the following theorem:

Theorem 5.3. Consider two initial data u1 and u2, and denote with wj,k(t, ·), the k-th Riemann co-
ordinate of SMuj, j = 1, 2, corresponding to the k-th genuinely non linear family. Moreover, let hτ

j,i,
j = 1, 2, the map defined in (4.1) for the i-th linearly degenerate family. Then there exists a constant K ′,
independent of M , such that the following estimates hold:

(5.6)

∫
R

∣∣w1,k(t, x)− w2,k(t, x)
∣∣dx ≤ K ′

∫
R

∣∣u1(x)− u2(x)
∣∣dx,

(5.7) sup
t≥0,x∈R

∣∣ht
1,i(x)− ht

2,i(x)
∣∣ ≤ K ′

∫
R

∣∣u1(x)− u2(x)
∣∣dx.

Proof. Consider two piecewise constant initial data uν
1 , u

ν
2 in DM,ν , and construct a pseudo polygonal

path γ0 : θ 7−→ uν
θ , connecting u1 and u2, such that∥∥γ0∥∥L1 ≤ E

∥∥uν
1 − uν

2

∥∥
L1 .

We can assume that uν
θ has a finite number N of jumps. If we denote with γν

τ the path θ 7−→ Sν
τ u

ν
θ , we

have by Proposition 5.1∥∥wν
2,k(τ)− wν

1,k(τ)
∥∥
L1 ≤

∥∥∥(γν
τ

)
k

∥∥∥
L1

≤ K(1 +N2−ν)
∥∥γ0∥∥L1(5.8)

≤ K ′(1 +N2−ν)
∥∥u2 − u1

∥∥
L1 .

If now ν → +∞, since wν
j,k(τ) converges to wj,k(τ), we obtain (5.6). Since this estimate does not depend

on the number of initial jumps N , we can extend it uniformly on DM .
Using the same pseudo polygonal path, in a similar way we can prove that∣∣xν

2,i(τ, y)− xν
1,i(τ, y)

∣∣ ≤ K ′∥∥u2 − u1

∥∥
L1 .

This shows that xν
i (τ, ·) converges uniformly to the solution xi(τ, ·) as ν → +∞ and uν → u. It also

implies that ∣∣x2,i(τ, y)− x1,i(τ, y)
∣∣ ≤ K ′∥∥u2 − u1

∥∥
L1 ,

This concludes the proof. �

We can now define S on the domain L∞(R;E):



18 STEFANO BIANCHINI

Definition 5.4. For all u ∈ L∞(R, E), let uM ∈ DM be such that

(5.9) lim
M→+∞

uM = u in L1
loc.

Define Stu as

(5.10) Stu = lim
M→+∞

SM
t u,

where the limit is in L1
loc.

It is easy to prove that the right hand side of (5.10) is a Cauchy sequence in every compact set [a, b]:

in fact, using the finite speed of propagation, we can consider u with compact support [a − λ̂t, b + λ̂t].
For the components wk of the k-th genuinely nonlinear family, it follows directly from (5.6), while for a
linearly degenerate component wi, let w̃ be a Lipschitz continuous function such that∫

R

∣∣wi(0, x)− w̃(x)
∣∣dx ≤ ε.

By Theorem 5.3 we have for u1, u2 ∈ DM such that ‖u− ui‖L1 < δ, i = 1, 2,

sup
t≥0,x∈R

∣∣ht
1,i(x)− ht

2,i(x)
∣∣ < K ′δ,

and it follows by easy computations that∥∥w1,i(t)− w2,i(t)
∥∥
L1 ≤

∥∥w1,i(t)− w̃ ◦
(
ht
1,i

)−1∥∥
L1 +

∥∥w2,i(t)− w̃ ◦
(
ht
2,i

)−1∥∥
L1+(5.11) ∥∥w̃ ◦

(
ht
1,i

)−1 − w̃ ◦
(
ht
2,i

)−1∥∥
L1

≤ C
∥∥w1,i(0)− w̃

∥∥
L1 + C

∥∥w2,i(0)− w̃
∥∥
L1 + L(b− a)G

∥∥u2 − u1

∥∥
L1

≤ 2C(ε+ δ) + L(b− a)Gδ,

where L is the Lipschitz constant of w̃. This shows that wM
i (t) is a Cauchy sequence for all t ≥ 0, because

the right hand side of (5.11) can be made arbitrarily small. We can now prove the main theorem:

Theorem 5.5. The semigroup S : [0,+∞) ⊗ L∞(R;E) 7−→ L∞(R;E) defined in (5.10) is the only
continuous semigroup on L∞(R;E) such that the following properties are satisfied:

i) for all ūn, ū ∈ L∞(R;E), tn, t ∈ [0,+∞), with ūn → ū in L1
loc, |t− tn| → 0 as n → +∞,

(5.12) lim
n→+∞

Stn ūn = Stū in L1
loc;

ii) each trajectory t 7→ Stu0 is a weak entropic solution to the Cauchy problem

(5.13)

{
ut + f(u)x = 0
u(0, x) = u0(x)

with u0 ∈ L∞(R;E);
iii) if u0 is piecewise constant, then, for t sufficiently small, Stu0 coincides with the function obtained

by piecing together the solutions of the corresponding Riemann problems.

Proof. The statement follows easily, since we proved that Stu is the unique limit of wave front approxi-
mations, and for data with bounded total variation we can apply the results in [3]. �

Remark 5.6. Note that what we also proved that the characteristic equation (4.1) is well posed for L∞

data: the solution xi(t, y) is Lipschitz continuous w.r.t. both variables. In fact, if un
0 converges to u0

in L1
loc, Proposition 4.2 implies that xn

i (t, y), solution to the i characteristic equation, tends to x(t, y)
uniformly for all t, y: it is then easy to prove that x(t, y) satisfies the equation

xi(t, y) = y +

∫ t

0

λi

(
s, xi(s, y)

)
ds.

The above equation implies uniqueness of xi(t, y) in the sense of Caratheodory, and Proposition 4.3 prove
continuous dependence on y.

This is not trivial, since even for 2 × 2 systems not in conservation form the dependence is Hölder
continuous, while for general n× n the solution does not exist [16].
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Note moreover that semigroup S is continuous, but not uniformly continuous. However if the initial
data takes values is a compact set of L1 ∩ L∞, then the semigroup becomes uniformly continuous. This
extend the Lipschitz continuity when the initial data have bounded total variation.
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